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PROOF OF THE PROJECTIVE
LICHNEROWICZ-OBATA CONJECTURE

VLADIMIR S. MATVEEV

Abstract

We prove that if a connected Lie group action on a complete
Riemannian manifold preserves the geodesics (considered as un-
parameterized curves), then the metric has constant positive sec-
tional curvature, or the group acts by affine transformations.

1. Introduction

1.1. Results.

Definition 1. Let (M7, ¢1) and (M3, g2) be smooth Riemannian
manifolds.

A diffeomorphism F': M{* — MJ is called projective if it takes the
unparameterized geodesic of g; to geodesics of go. A projective diffeo-
morphism of a Riemannian manifold is called a projective transfor-
mation.

A diffeomorphism F': M]* — M3 is called affine if it takes the Levi-
Civita connection of g; to the Levi-Civita connection of g5. An affine
diffeomorphism of a Riemannian manifold is called an affine transfor-
mation.

Theorem 1 (Projective Lichnerowicz Conjecture). Let a connected
Lie group G act on a complete connected Riemannian manifold (M™, g)
of dimension n > 2 by projective transformations. Then, it acts by
affine transformations, or g has constant positive sectional curvature.

The Lie groups of affine transformations of complete Riemannian
manifolds are well understood (see, for example, [40]). Suppose a con-
nected Lie group acts on a simply-connected complete Riemannian man-
ifold (M™, g) by affine transformations. Then, there exists a Riemannian
decomposition

(Mnag) = (M1n17gl) + (Rn2ageuclidean)

of the manifold into the direct sum of a Riemannian manifold (M, ¢1)
and Euclidean space (R™2, geuclidean) Such that the group acts compo-
nentwise. More specifically, it acts on (M7, ¢1) and (R"2, geyclidean) bY
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isometries and by compositions of linear transformations and parallel
translations, respectively. In particular, every connected Lie group of
affine transformations of a closed manifold consists of isometries [86].
Thus, a direct consequence of Theorem 1 is the following

Corollary 1 (Projective Obata Conjecture). Let a connected Lie
group G act on a closed connected Riemannian manifold (M™,g) of
dimension n > 2 by projective transformations. Then, it acts by isome-
tries, or g has constant positive sectional curvature.

Any connected simply-connected Riemannian manifold of constant
positive sectional curvature is a round sphere. All projective transfor-
mations of the round sphere are known (essentially, since Beltrami [4]);
in this view, Theorem 1 closes the theory of non-isometric infinitesimal
projective transformations of complete manifolds.

1.2. History. The theory of projective transformations has a long and
fascinating history. The first non-trivial examples of projective trans-
formations were discovered by Beltrami [4]. We describe their natural
multi-dimensional generalization. Consider the sphere
gn & (21,29, ..., Tpt1) € RV $%+93%+"'+$%+1 =1}

with the restriction of the Euclidean metric. Next, consider the mapping
a:S" — S™ given by a : v — %, where A is an arbitrary non-
degenerate linear transformation of R"*1.

The mapping is clearly a diffeomorphism taking geodesics to geodesics.
Indeed, the geodesics of g are great circles (the intersections of planes
that go through the origin with the sphere). Since A is linear, it takes
planes to planes. Since the normalization w +— HwTH takes punctured
planes to their intersections with the sphere, a takes great circles to
great circles. Thus, a is a projective transformation. Evidently, if A is
not proportional to an orthogonal transformation, a is not affine.

Beltrami investigated some examples of projective transformations.
One of the first important papers on smooth families of projective trans-
formations is due to Lie (see [43]). He formulated the problem of finding
metrics (on surfaces) whose groups of projective transformations are big-
ger than the groups of isometries (the Lie Problem according to Fubini),
and solved it assuming that the groups are big enough. For complete
manifolds, this problem was formulated in Schouten [67].

The local theory of projective transformations was well understood
thanks to efforts of several mathematicians including Dini [17], Schur
[68], Levi-Civita [39], Fubini [21], Eisenhart [19], Cartan [12], Weyl
[82], Solodovnikov [71], Sinjukov [69], Aminova [2, 3], Mikes [61] und
Shandra [70]. We will recall their results in Theorems 7,8,9,10.

The basic philosophical idea behind these results can be described as
follows (see, for example, [81]): the Universe can be explained by its
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infinitesimal structure, and this infinitesimal structure is invariant with
respect to a group of transformations.

Weyl studied projective transformations at the tensor level and found
a number of tensor reformulations. He constructed the so-called projec-
tive Weyl tensor W [82], which is invariant with respect to projective
transformations. We will recall the definition of W in Section 2.3 and use
it in Section 3.5. E. Cartan [12], T. Y. Thomas [76], J. Douglas [18] and
A. Lichnerowicz et al [42] studied groups of projective transformations
at the level of affine connections, sprays and natural Hamiltonian sys-
tems. They introduced the so-called projective connection and Thomas
projective parameters, which are invariant with respect to projective
transformations.

Theorem 1 and Corollary 1 are known in mathematical folklore as the
Lichnerowicz and Obata conjectures, respectively, although Lichnerow-
icz and Obata never formulated them explicitly. They were formulated
as “well known classical conjectures” in several papers (see, for example,
(63, 84, 24]).

Perhaps the name “Lichnerowicz-Obata conjecture” appeared be-

cause of the similarity with the conformal Lichnerowicz conjecture
(proved by Obata [64], Alekseevskii [1], Ferrand [20] and Schoen [66]).

Recall that in the time of Lichnerowicz and Obata, projective and
conformal transformations were studied by the same people and meth-
ods (see, for example, [14, 87]). A reason for this is that the tensor
equations for conformal and projective infinitesimal transformations are
very similar.

Projective transformations were extremely popular objects of study in
the 50s—80s. One of the reasons for that is their possible applications in
physics (see, for example, [65, 16]). One may consult the surveys [61]
(more geometric one) and [3] (from the viewpoint of physics), which
contain more than 500 references.

Most results on projective transformations require additional geomet-
ric assumptions written as tensor equations. For example, Corollary 1
was proven under the assumption that the metric is Einstein [13], K&hler
[13], Ricci-flat [62], has negatively definite Ricci curvature [83] or has
constant scalar curvature [84].

An important result which does not require additional tensor assump-
tions is due to Solodovnikov [75]. He proved the Lichnerowicz conjecture
under the assumptions that

e the dimension of the manifold is greater than two and
e that all objects (the metric, the manifold, the projective transfor-
mations) are real-analytic.
The statement itself is in [75], but the technique was mostly developed in
[71, 72,73, 74]. In Section 2.3 we will review the results of Solodovnikov
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(mostly from [71]) that we use to prove Theorem 1. We will also use
certain results from [71] in Section 3.5.

Both of the assumptions are important for Solodovnikov’s methods.
His technique is based on a very accurate analysis of the behavior of the
curvature tensor under projective transformations and completely fails
in dimension two (compare Theorem 9 and Examples 1,2 from [58]). In
addition, real analyticity is also important for his methods. Indeed, all
of his global statements are based on it.

In dimension 2, Theorem 1 was announced in [55, 57| and proved
n [58]. The technique for proving Theorem 1 in dimension two is not
applicable for dimensions greater than two. It probably should be men-
tioned that our proof of the Lichnerowicz-Obata conjecture in dimen-
sions greater than two does not work in dimension two. The reason is
that Theorems 8, 9, 10 are wrong in dimension two, and therefore all
the results of Sections 3.2, 3.4, 3.5 are not applicable in the proof of
Theorem 16. Note that Theorem 16 is still true in dimension two, see
[58], but its proof in dimension two uses essentially different methods.
It is based on Kolokoltsov’s and Igarashi-Kiyohara-Sugahara’s descrip-
tion of quadratically integrable geodesics flows on complete surfaces, see
[33, 34, 26, 29, 30, 9].

The new techniques which made it possible to prove the Lichnerowicz-
Obata conjecture were introduced in [45, 77, 78, 49, 48]|. The main
observation is that the existence of projective diffeomorphisms allows
one to construct commuting integrals for the geodesic flow (see Theo-
rem 5 in Section 2.2). This technique has been used quite successfully
for describing the topology of closed manifold admitting non-homothetic
projective diffeomorphisms [47, 52, 50, 53, 54, 36, 59|.

1.3. Counterexamples to Theorem 1 if one of the assumptions

is omitted. All assumptions in Theorem 1 are important.

If the Lie group is not connected, a counterexample to Theorem 1
is possible only if the group is discrete. In this case, a counterexam-
ple exists already in dimension two. Consider the torus T2 := R?/,»
with the standard coordinates z,y € (R mod 1) and a positive smooth
nonconstant function f: (R mod 1) — R such that the metric

2 . T _L T 272 1 2
0= (1 f(y))( F@) da? + f(y)dy>

is positive definite. Then, the diffeomorphism F : T? — T? given by
F(z,y) := (y,x) takes the original metric to the metric

N f(z) 2 fy) o
(y f<x>)<f<x> o f(y)dy>‘

Hence, it is a projective transformation by Levi-Civita’s Theorem 7.




PROOF OF THE PROJECTIVE LICHNEROWICZ-OBATA CONJECTURE 463

If the manifold is not complete, a counterexample is as follows (essen-
tially, it was constructed in [43]). The method to construct this example
and generalisations of this example to all dimensions is explained at the
end of Section 4.1.

The metric (x,y are coordinates on R?, C' is a constant) is given by

ep(Cr) o ewlm)

(exp(z) + exp(—x))? (exp(z) + exp(—x))
The projective vector field (= vector field whose flow takes geodesics
to geodesics) is v := (1,3Cy). It is easy to check that the vector field
is complete, i.e., it generates projective transformations, and that it is
neither a Killing nor an affine vector field.

If we allow the manifold to have more than one connected component,
one can construct non-interesting counterexamples as follows. The first
component is the round sphere, where the group GL acts by projec-
tive transformations as in Beltrami’s example. The other components,
on which the group GL acts identically, are manifolds of nonconstant
curvature.

If the manifold is one-dimensional, every diffeomorphism is a projec-
tive transformation and only homotheties are affine transformations.

The next example shows that, even on a complete manifold, the ex-
istence of a non-affine projective vector field does not imply that the
metric has constant sectional curvature. The example comes from the
following observation. If the geodesic flow of a two-dimensional metric
g admits three independent integrals, such that one of them is linear
in velocities, the second is quadratic in velocities, and the third is the
energy integral, then one can construct two projective vector fields. In-
deed, by [45, 46], the existence of the quadratic integral allows us to
construct a metric g projectively equivalent to g. The linear integral
gives us a Killing vector field v for g, which allows us to construct a
Killing vector field v for g, see [31, 78]. Since v preserved the geodesics
of g, it preserved the geodesics of g, i.e. it is a projective vector field
for g. The assumption that the integrals are independent insures that
the vector fields ¥ and v are linearly independent.

The first examples of the metrics such that their geodesic flows admit
such three integrals are known since Konigs [35]. We will give only one
example. Other examples can be constructed by the algorithm described
above by using explicit formulas for the Konigs metrics, which could be
found for example in [27, 28].

The metric is (v is a positive constant, =,y are standard coordinates
on R?)

(2 + y* + ) (dz? + dy?).
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The independent integrals (in the standard coordinates (x,y, pz, py)

on T*R?)) are

ps” + py”
22+ 2+
By = xpy — yps
P’y = (2° +7) py?

2+ y? 4y

F3 = xyH — pypy.

And the projective vector fields are

H =

F2 =

vr = (y, )

= ((=* + v)y, yz))
v = ((2(y? = 2® =), y(y? + 7 —2?)) .
(The first vector field is the Killing vector field corresponding to the
integral F}.)

Note that the vector fields vs,v3 are not complete and generate no
diffeomorphism of R?. In fact, they can not be complete by Theorem 1.

Acknowledgements. I would like to thank D. Alekseevskii for for-
mulation of the problem, V. Bangert, A. Bolsinov, 1. Hasegawa, M.
Igarashi, K. Kiyohara, O. Kowalsky and K. Voss for useful discus-
sions, R. Smirnov for grammatical corrections and DFG-programm 1154
(Global Differential Geometry), Ministerium fiir Wissenschaft, Fors-
chung und Kunst Baden-Wiirttemberg (Eliteférderprogramm Postdocs
2003) and KU Leuven for partial financial support.

2. Preliminaries: BM-structures, integrability, and
Solodovnikov’s V(K) spaces

The goal of this section is to introduce the classical as well as new
tools, which will be used in the proof of Theorem 1. In Sections 2.1,
2.2, we introduce the notion of “BM-structure” and explain its relations
to projective transformations and integrability; these are new instru-
ments of the proof. In Section 2.3, we formulate in a convenient form
classical results of Beltrami, Weyl, Levi-Civita, Fubini, de Vries and
Solodovnikov. We will extensively use these results in Sections 3 and 4.

2.1. BM-structure. Let (M", g) be a Riemannian manifold of dimen-
sion n > 2.

Definition 2. A BM-structure on (M", g) is a smooth self-adjoint
(1, 1)-tensor L such that for every point x € M™ and vectors u,v,w €
T, M" the following equation holds:

(1) g((VuL)v,w) = %g(v,u) - dtracer,(w) + %g(w,u) - dtracer,(v),
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where tracey, is the trace of L.

The set of all BM-structures on (M", g) is denoted by B(M™, g). It is
a linear vector space, whose dimension is at least one, since the identity

tensor Td % diag(1,1,1,...,1) is always a BM-structure.

The equation (1) appeared independently in the theory of projectively
equivalent metrics (see [2] or Chapter 3 in [69]), and in the theory of
integrable geodesic flows (see [25], [15], or [37]). In this and in the
next sections we describe important cross-relations between these three
notions.

Definition 3. Let g, g be Riemannian metrics on M™. They are
projectively equivalent, if they have the same (unparameterized)
geodesics.

The relation between BM-structures and projectively equivalent met-
rics is given by

Theorem 2 ([69, 10]). Let g be a Riemannian metric. Suppose L
is a self-adjoint positive-definite (1,1)-tensor. Consider the metric g
defined by

1

(2) g(&m) = det(L)g(L‘l(fS),n)

for every tangent vector & and n with the common foot point.
Then, the metrics g and g are projectively equivalent, if and only if
L is a BM-structure on (M",g).

An equivalent form of this theorem is

Corollary 2 ([10]). Let g, g be Riemannian metrics on M™.
Then, they are projectively equivalent, if and only if the tensor L
defined by

1 n
- def det(g) n+1l .
i< i i
?) 7 () S

is a BM-structure on (M™,g).

A one-parameter group of projective transformations of (M™, g) gives
us a one parameter family of BM-structures, whose derivative is also a
BM-structure:

Theorem 3 (Infinitesimal version of Theorem 2). Let F;, where t €
R, be a smooth one-parameter family of projective transformations of
(M™, g). Consider the (1,1)-tensor A given by

i def - i
(4) Aj = Zg (‘Cg)oéja

a=1
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where Lg denotes the Lie derivative with respect to F; (so that (Eg)aj =
—% ((Ft*g)aj)uzo) and g" is the inverse of g;j. Then, A— n%rltraceA-Id
is a BM-structure on (M",g).

Proof. For every t, let us denote by g¢; the pull-back Fjg. Fix a
point x € M™ and a coordinate system in 7,M"™. Then, we can view

gt and g as matrices. Clearly, g9 = g. Since F}; consists of projective
transformations, by Corollary 2 for every t € R the tensor

1
def (det(ge) \ "L 4
L, &=
t <det(g) 9t g

5)  g((VuLi)v,w) = %g(v,u) - dtracep, (w) + %g(w,u) - dtracer, (v)

satisfies the equation

for every u,v,w € T, M". Differentiating this equation by ¢ and substi-
tuting ¢ = 0, we obtain

(s (tm) )

1 1
= 5g(v, u) 'dtrace(%Lt)lt:O (w) + §g(w, u) - dtrace<%Lt)lt_O (v),

so that (%Lt)\tzo is a BM-structure on M"™. Now, let us calculate it.
_1
(dr) = (fb)= (40,
dt ") 1o det(g) /= \ dt =0
1
d (det(ge)\ ™" -1
* <dt <det(g) (979) 1o
|t=0
1
s
- () o (i ()™
t = 0 et g =0
=~ (g tO( >t09t t=09
1
n (d det( gt)> d
n+1 \dt det(g) /g

=g 'Lg-

—— traceg-1.41d.

Thus, L := A— —trace 4ld is a BM-structure. Theorem 3 is proven.
For use in future we recall one more property of BM-structures:

Theorem 4 ([10],[51]). The Nijenhuis torsion of a BM-structure
vanishes.
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2.2. Integrals for geodesic flows of metrics admitting BM-
structure. Objects similar to BM-structures on Riemannian manifolds
appear quite often in the theory of integrable systems (see, for example
[5, 6, 7, 25, 15]). The relation between BM-structures and integrable
geodesic flows is observed on the level of projective equivalence in [45],
on the level of projective transformations in [79] and is as follows:

Let L be a self-adjoint (1, 1)-tensor on (M",g). Consider the family
Sy of (1, 1)-tensors

(6) Sy ¥ det(L —t1d) (L —t1d)™", teR

Remark 1. Although (L — ¢ Id) ™" is not defined for ¢ lying in the
spectrum of L, the tensor S; is well-defined for every t. Moreover, .S; is
a polynomial in ¢ of degree n — 1 with coefficients being (1,1)-tensors.

We will identify the tangent and cotangent bundles of M™ by g. This
identification allows us to transfer the natural Poisson structure from
T*M™ to TM™.

Theorem 5 ([77, 45, 78, 79]). If L is a BM-structure, then, for
every t1,te € R, the functions

(7) L, : TM" >R, I,(v) & g(S;, (v),v)
are commuting integrals for the geodesic flow of g.

Since L is self-adjoint, its eigenvalues are real. Denote by A\ (z) <

. < Ap(z) the eigenvalues of L at each x € M"™. )\; are continu-
ous functions on the manifold. They are smooth at typical points, see
Definition 4 below.

Corollary 3. Let (M™, g) be a Riemannian manifold such that every
two points can be connected by a geodesic. Suppose L is a BM-structure
on (M™, g). Then, for every i € {1,...,n — 1}, for every x,y € M",
the following statements hold:

1) Ai(z) < Aita(y).

2) If Ni(x) < Nip1(x), then Ai(z) < Nit1(z) for almost every point

z e M™.

A slightly different version of this corollary was proven in [54, 78].
The proof will be recalled in Section 3.1, to be used in what follows.

At every point x € M™, denote by Np(x) the number of different
eigenvalues of the BM-structure L at z.

Definition 4. A point x € M"™ will be called typical with respect
to the BM-structure L, if

Nip(z) = [nax Ni(y).



468 V.S. MATVEEV

Corollary 4. Let L be a BM-structure on a connected Riemannian
manifold (M™, g). Then, almost every point of M™ is typical with respect
to L.

Proof. Consider points x,y € M™ such that x is typical. Our goal
is to prove that almost every point in a small ball around y is typical
as well. Consider a path v € M™ connecting  and y. For every point
z € 7, there exists €, > 0 such that the open ball with center in z and
radius €, is convex. Since 7 is compact, the union of a finite number
of such balls contains the whole path . Therefore, there exists a finite
sequence of convex balls By, Bs, ..., By, such that

e B; contains x.

e B,, contains y.

e Foreveryi =1,...,m—1, the intersection B; [ B;+1 is not empty.
Since the balls are convex, every two points of every ball can be con-
nected by a geodesic. Using that for a fixed i the set {z € M™ : \;(x) <
Ai+1(z)} is evidently open, by Corollary 3, almost every point of Bj is
typical. Then, there exists a typical point in the ball By. Hence, almost
all points of Bs are typical. Applying this argument m — 2 times, we
obtain that almost all points of B,, are typical. Corollary 4 is proven.
2.3. Projective Weyl tensor, Beltrami Theorem, Levi-Civita’s
Theorem and Solodovnikov’s V(K )-metrics. Let g be a Riemann-
ian metric on M™ of dimension n. Let R;kl and R;; be the curvature
and the Ricci tensors of g. The tensor

; i LG ;
(8) Wik == Rjp — ] (67 Rjr. — o1, Rjr)

is called the projective Weyl tensor.

Theorem 6 ([82]). Consider Riemannian metrics g and g on M".
Then, the following statements hold:

1) If the metrics are projectively equivalent, then their projective Weyl
tensors coincide.

2) Assume n > 3. The projective Weyl tensor of g vanishes if and
only if the sectional curvature of g is constant.

Corollary 5 (Beltrami Theorem [44, 68, 60]). If there exists a pro-
jective diffeomorphism between two Riemannian manifolds, and if one
of them has constant sectional curvature, then so does the other.

Formally speaking, Corollary 5 follows from Theorem 6 for dimensions
greater than two only. For dimension two, Corollary 5 was proven by
Beltrami himself in [4].

Corollary 6. Let F' : M — M3 be a projective diffeomorphism
between complete Riemannian manifolds (M]', g;), i = 1,2, of dimension
n > 2. Then, if g1 has constant negative sectional curvature, F is a
homothety. Moreover, if g1 is flat, F' is affine.
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Corollary 6 is a mathematical folklore. Unfortunately, we did not
find a classical reference for it. If g1 is flat, Corollary 6 can be found in
every good textbook on linear algebra. If the curvature of g, is negative,
under the assumption that the dimension is two, Corollary 6 was proven
n [11]. The case of arbitrary dimension trivially follows from the two-
dimensional case, since in every two-dimensional direction there exists
a totally geodesic complete submanifold.

In view of Theorem 2, the next theorem is equivalent to the classical
Levi-Civita’s Theorem from [39].

Theorem 7 (Levi-Civita’s Theorem). The following statements hold:
1) Let L be a BM-structure on (M™,g). Letx € M™ be typical. Then,

there ezists a coordinate system T = (Z1,...,Tm) in a neighbor-
hood U(x) containing z, where T; = (x},,xfl), (1 <i<m),
such that L is diagonal
(9) dia'g(¢1a'"7¢17"-'7¢m7"-7¢m)7
k b

and the quadratic form of the metric g is given by
(10) 9(z,z) = Pi(2)A1(Z1,21) + Pa(Z)As(Za, Z2) + -+
+ P () A (Zon, Zom),
where_ Ai(Z;, ;) are positive-definite quadratic forms in the veloc-
ities T; with coefficients depending on T;,
def

P, = (¢i—#1) - (95 — dic1)(Bi1 — &) - -+ (dm — b5),
and ¢1 < ¢g < ... < ¢ are smooth functions such that
= ¢i(T3), if ki=1,
") constant, if k; > 1.
2) Let g be a Riemannian metric and L be a (1,1)-tensor. If in a
neighborhood U C M™ there exist coordinates T = (ZT1,...,Tm)
such that L and g are given by formulas (9), (10), then the re-

striction of L to U is a BM-structure for the restriction of g to
U.

Remark 2. In Levi-Civita’s coordinates from Theorem 7, the metric
g given by (2) has the form

(11) 9(z,z) = p1PL(Z)A1(Z1, 1) + p2Pa(T) Az (T2, T2) + - - - +
+ PP (Z) A (T, T,

where

1 1

Pi= g
lfl... fnm(bl
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The metrics g and g are affine equivalent (i.e., they have the same Levi-
Civita connections) if and only if all functions ¢; are constant.

Let p be a typical point with respect to the BM-structure L. Fix
i € 1,...,m and a small neighborhood U of p. At every point of U,
consider the eigenspace V; with the eigenvalue ¢;. If the neighborhood
is small enough, it contains only typical points and V; is a distribution.
By Theorem 4, it is integrable. Denote by M;(p) the integral manifold
containing p.

Levi-Civita’s Theorem says that the eigenvalues ¢;, j # 4, are con-
stant on M;(p), and that the restriction of g to M;(p) is proportional
to the restriction of g to M;(q), if it is possible to connect ¢ and p by a
line orthogonal to M; and containing only typical points. Actually, in
view of [23], the first observation follows already from Theorem 4. We
will need the second observation later and formulate it in the form of
the following

Corollary 7. Let L be a BM-structure for a connected Riemannian
manifold (M™,g). Suppose the curve v : [0,1] — M™ contains only
typical points and is orthogonal to M;(p) at every point p € Image(7y).
Let the multiplicity of the eigenvalue ¢; at every point of the curve be
greater than one. Then, the restriction of the metric to M;(v(0)) is
proportional to the restriction of the metric to M;(y(1)) (i.e., there exists
a diffeomorphism of a small neighborhood U;(v(0)) C M;(v(0)) to a
small neighborhood U;(y(1)) C M;(y(1)) taking the restriction of the
metric g to M;(~v(0)) to a metric proportional to the restriction of the
metric g to M;(v(1))).

Definition 5. Let (M",g) be a Riemannian manifold. We say that
the metric g has a warped decomposition near x € M™ if a neighbor-
hood U™ of  can be split in the direct product of disks D*0 x - - - x DFm
ko + - -+ + k,, = n, such that the metric g has the form

(12) go + 0191 + 0292 + -+ - + OmGm,

where the 7th metric g; is a Riemannian metric on the corresponding
disk D*i, and functions o; are functions on the disk D*0. The metric

(13) 90 + o1dy} + oadys + -+ omdyp,
on D0 x R™ is called the adjusted metric.

We will always assume that kg is at least 1. Adjusted metric has a very
clear geometric sense. Take a point p = (po, ..., pm) € DF0 x - x DFm,
At every disk D¥| i =1,...,m consider a geodesic segment y; € D¥i
passing through p;. Consider now the product

My = D X 1 X 2 X -+ X Yy

as a submanifold of D*0 x ... x DFm_ As easily follows from Definition 5,
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e M, is a totally geodesic submanifold.
e The restriction of the metric (12) to My is (isometric to) the
adjusted metric.

Comparing formulas (10,12), we see that if L has at least one simple
eigenvalue at a typical point, Levi-Civita’s Theorem gives us a warped
decomposition near every typical point of M™: the metric go collects all
P;A; from (10) such that ¢; has multiplicity one, the metrics g1, ..., gm
coincide with A; for multiple ¢;, and o; = P;.

Definition 6 ([71, 73, 74, 70]). Let K be a constant. A metric g is
called a V(K )-metric near x € M"™ (n > 3), if there exist coordinates
in a neighborhood of x such that ¢g has the Levi-Civita form (10) for
which the adjusted metric has constant sectional curvature K.

The definition above is independent of the choice of the Levi-Civita’s
form for g:

Theorem 8 ([71, 72, 73, 74]). Suppose g is a V(K )-metric near
x € M"™. Assume n > 3. The following statements hold:

1) If there exists another presentation of g (near ) in the form (10),
then the sectional curvature of the adjusted metric constructed for
this other decomposition is constant and is equal to K.

2) Consider the metric (10). For every i =1,...,m, denote

glgrad (Py), grad (R))
4 P;

by K;. Then, the metric (12) has constant sectional curvature if
and only if for every i € 0,...,m such that k; > 1 the metric A;
has constant sectional curvature K;. More precisely, if the metric
(12) is a V(K)-metric, if k1 > 1 and if the metric Ay has constant
sectional curvature Ky, then the metric go + P1A1 has constant
sectional curvature K.

3) For a fixed presentation of g in the Levi-Civita form (10), for every
i such that k; > 1, K; is a constant.

(14) +KP,

The first statement of Theorem 8 is proven in §3, §7 of [71]. In the
form sufficient for our paper, it appeared already in [80]; although it
is hidden there. The second and the third statements can be found,
for example, in §8 of [71]. The relation between V(K)-metrics and
BM-structures is given by

Theorem 9 ([73, 74]). Let (D", g) be a disk of dimension n > 3
with two BM-structures L1 and Lo such that every point of the disk is
typical with respect to both structures and the BM-structures Id, Ly, Lo
are linearly independent. Assume that at least one eigenvalue of Ly is
stmple.

Then, g is a V(K)-metric near every point.
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A partial case of this theorem is

Theorem 10 (Fubini’s Theorem [21, 22]). Let (D", g) be a disk of
dimension n > 3 with two BM-structures L1 and Lo such that Ni, =
N, = n at every point. If the BM-structures 1d, L1, Lo are linearly
independent, then g has constant curvature.

3. Global theory of projectively equivalent metrics

The goal of this section is to provide necessary tools for Section 4.

3.1. The eigenvalues of a BM-structure are globally ordered.
Within this section we assume that (M",g) is a Riemannian manifold
such that every two points can be connected by a geodesic. Our goal is
to prove Corollary 3. We need the following technical lemma. For every
fixed v = (&1,&2,...,&) € T, M™, the function (7) is a polynomial in ¢.
Consider the roots of this polynomial. From the proof of Lemma 1, it
will be clear that they are real. We denote them by

tl(x>v) < tg(iL‘,U) <. < tn—l(xvv)'
Lemma 1 ([54, 56]). The following holds for everyi € {1,...,n—1}:
1) For everyv € T,M",
Ai(z) < ti(z,v) < A ().

In particular, if \i(x) = Aiy1(x), then t;(z,v) = Ni(x) = Nip1(z).
2) If Ai(x) < Xix1(z), then for every 7 € R the Lebesgue measure of

the set

V., cT,M"™ V., def {veT,M" : ti(z,v) =T},

1S zero.

Proof. By definition, the tensor L is self-adjoint with respect to g.
Then, for every z € M™, there exist “diagonal” coordinates in T, M"
such that the metric g is given by the diagonal matrix diag(1,1,...,1)
and the tensor L is given by the diagonal matrix diag(A1, A, ..., Ay).
Then, the tensor (6) reads:

Sy = det(L — tId)(L — tId)(~Y
= diag(Ty (t), Ha(t), ..., H,(t)),
where the polynomials II;(¢) are given by the formula
I1;(t) def M=t A2 —=1t) - (Nic1 =) Nig1 — ) -+ (Apm1 — ) (A — ).

Hence, for every v = (&1,...,&,) € T M™, the polynomial I;(z,v) is
given by

(15) I = €10 () + E3T0a(t) + - - - + 210, (1).
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Evidently, the coefficients of the polynomial I; depend continuously on
the eigenvalues A; and on the components &;. Then, it is sufficient to
prove the first statement of the lemma assuming that the eigenvalues \;
are all different and that & are non-zero. For every « # i, we evidently
have I1,(\;) = 0. Then,

I, =) T (M€ = TLi(N)E]
a=1

Hence Iy, (x,v) and Iy, (2,v) have different signs. Hence, the open
interval |\;, A\j+1[ contains a root of the polynomial I;(z,v). The degree
of the polynomial I; is equal n — 1; we have n — 1 disjoint intervals;
every interval contains at least one root so that all roots are real and
the ¢th root lies between A; and A;41. The first statement of Lemma 1
is proven.

Let us prove the second statement of Lemma 1. Assume A\; < Aj41.
Suppose first A; < 7 < Aj+1. Then, the set

v, ¢ {veT,M" : ti(x,v) =T},

consists of the points v such that the function I (z,v) def (Ie(2,v)) =~

is zero. Then, V; is a nontrivial quadric in T, M™ = R"™ and, hence, has
ZEero measure.

Now suppose 7 is an endpoint of the interval [A\;, Ai+1]. Without loss
of generality, we can assume 7 = )\;. Let k be the multiplicity of the
eigenvalue \;. Then, every coefficient II,(¢) of the quadratic form (15)
has the factor (\; — )*~!. Hence,

5 def I;
e —t
t (\i — t)kq

is a polynomial in ¢ and I, is a nontrivial quadratic form. Evidently, for
every point v € V., we have fT(v) = 0 so that the set V; is a subset of
a nontrivial quadric in T, M™ and, hence, has zero measure. Lemma 1
is proven.

Proof of Corollary 3. The first statement of Corollary 3 follows
immediately from the first statement of Lemma 1: Let us join the points
x,y € M™ by a geodesic v : R — M™, v(0) =z, v(1) = y. Consider the
one-parametric family of integrals I;(z,v) and the roots

ti(z,v) <ta(x,v) <o <tpa(z,0).

By Theorem 5, every root t; is constant on every orbit (,%) of the
geodesic flow of g so that

ti(7(0),4(0)) = ts(v(1),¥(1))-
Using Lemma 1, we obtain

Ai(7(0)) < £:(7(0),5(0)), and  #;(v(1),4(1)) < Aipa(y(1)).
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Thus A;(7(0)) < Aig1(7(1)) and the first statement of Corollary 3 is
proven.

Let us prove the second statement of Corollary 3. Suppose \;(y) =
Ai+1(y) for every point y of some subset V' C M™. Then, \; is a constant
on V (i.e., \; is independent of y € V). Indeed, by the first statement
of Corollary 3,

Ai(yo) < Aiv1(y1) and Ai(y1) < Aiv1(vo)s

so that Ai(yo) = Ai(y1) = Aix1(y1) = Ait1(yo) for every yo,y1 € V.

We denote this constant by 7. Let us join the point  with every
point of V' by all possible geodesics. Consider the set V; C T, M™ of the
initial velocity vectors (at the point x) of these geodesics.

By the first statement of Lemma 1, for every geodesic v passing
through at least one point of V', the value t;(v,%) is equal to 7. By
the second statement of Lemma 1, the measure of V; is zero. Since the
set V lies in the image of the exponential mapping of V., the measure
of the set V is also zero. Corollary 3 is proven.

3.2. Local theory: behavior of BM-structure near non-typical
points. Within this section we assume that L is a BM-structure on a
connected (M™, g). As in Section 2.2, we denote by Aj(z) < --- < A\, (z)
the eigenvalues of L, and by N (z) the number of different eigenvalues
of L at x € M".

Theorem 11. Suppose the eigenvalue A1 is not constant, the eigen-
value A9 1s constant and Ny, = 2 in a typical point. Let p be a non-typical
point. Then, the following statements hold:

1) The spheres of small radius with center in p are orthogonal to the
eigenvector of L corresponding to A1, and tangent to the eigenspace
of L corresponding to Ao. In particular, the points q such that
A1(q) = Mg are isolated.

2) For every sphere of small radius with center in p, the restriction
of g to the sphere has constant sectional curvature.

Proof. Since A1 is not constant, it is a simple eigenvalue in every
typical point. Since Ny = 2, the roots A9, A3, ..., A\, coincide at every
point and are constant. We denote this constant by A. By Lemma 1,
at every point (z,&) € T, M™, the number A is a root of multiplicity at
least n — 2 of the polynomial I;(x,&). Then,

It(l‘, f)
O\ — t)n2

is a linear function in ¢ and, for every fixed ¢, is an integral of the
geodesic flow of g. Denote by I : TM — R the function

I(z,€) == I}(2,&) == (Ié(m7§))\t:)\'

Li(x,€) =
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Since \ is a constant, the function I is an integral of the geodesic flow
of g. At every tangent space T, M™, consider the coordinates such that
the metric is given by diag(1,...,1) and L is given by diag(A1, A, ..., A).
By direct calculations we see that the restriction of I to TR M™ is given
by (we assume & = (£1,82,...,&n))

L (€) = (Ma(x) = A) (& + -+ &2).

Thus, for every geodesic  passing through p, the value of I(y(7),%(7))
is zero. Then, for every typical point of such a geodesic, since A1 < A,
the components &, ...,&, of the velocity vector vanish. Finally, the
velocity vector is an eigenvector of L with the eigenvalue A;.

Then, the points where A\ = X are isolated: otherwise we can pick
two such points p; and ps lying in a ball with radius less than the radius
of injectivity. Then, for almost every point ¢ of the ball, the geodesics
connecting g with p; and po intersect transversally at gq. Then, the point
q is non-typical; otherwise the eigenspace of A\; contains the velocity
vectors of geodesics and is not one-dimensional. Finally, almost every
point of the ball is not typical, which contradicts Corollary 4. Thus, the
points where A1 = \ are isolated.

It is known (Lemma of Gaufl), that the geodesics passing through
p intersect the spheres of small radius with center in p orthogonally.
Since the velocity vectors of such geodesics are eigenvectors of L with
eigenvalue A1, then the eigenvector with eigenvalue A; is orthogonal to
the spheres of small radius with center in p. Since L is self-adjoint,
the spheres are tangent to the eigenspaces of A\. The first statement of
Theorem 11 is proven.

The second statement of Theorem 11 is trivial, if n = 2. In order
to prove the second statement for n > 3, we will use Corollary 7. The
curve « from Corollary 7 plays the geodesic passing through p. We put
i = 2. By the first statement of Theorem 11, M;(x) are spheres with
center in p. Then, by Corollary 7, for every sufficiently small sphere
Se, and S, with center in p, the restriction of g to the first sphere is
proportional to the restriction of g to the second sphere. Since for very
small values of € the metric in a e-ball is very close to the Euclidean
metric, the restriction of g to the e-sphere is close to the round metric
of the sphere. Thus, the restriction of g to every (sufficiently small)
sphere with center in p has constant sectional curvature. Theorem 11
is proven.

Theorem 12. Suppose N;, = 3 at a typical point and there exists a
point where Ni, = 1. Then, the following statements hold:

1) There exist points p1, py such that A\1(p1) < A2(p1) = M\u(p1) and

A1(pn) = A2(pn) < An(pn).
2) The points p such that Np(p) =1 are isolated.
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Proof. Let us prove the first statement. Suppose Aj(p2) = Aa(p2) =
-+ = Ap(p2) and the number of different eigenvalues of L at a typical
point equals three. Then, by Corollary 3, the eigenvalues Ao = - =
An—1 are constant. We denote this constant by A. Take a ball B of small
radius with center in py. We will prove that this ball has a point p; such
that A\1(p1) < A2 = A\u(p1); the proof that there exists a point where
Al = Ay < A, is similar. Take p € B such that A\;(p) < A and A\ (p)
is a regular value of the function \;. Denote by Mj(p) the connected
component of {g € M™: Xi(¢) = A1(p)} containing the point p. Since
A1 (p) is a regular value, M;(p) is a submanifold of codimension 1. Then,
there exists a point p; € Mi(p) such that the distance from this point
to po is minimal over all points of Mj(p).

Let us show that A1(p1) < A = Ap(p1). The inequality A\ (p1) < A is
fulfilled by definition, since p; € Mj(p). Let us prove that \,(p,) = A.

Consider the shortest geodesic v connecting py and p;. We will
assume y(0) = p; and (1) = pe. Consider the values of the roots
ty < --- < tp_1 of the polynomial I; at the points of the geodesic or-
bit (v,%). Since I; are integrals, the roots ¢; are independent of the
point of the orbit. Since the geodesic passes through the point where
Al =+ = Ay, by Lemma 1, we have

(16) fo= = thog = A

Since the distance from p; to ps is minimal over all points of M, the
velocity vector 4(0) is orthogonal to M;. By Theorem 4 and [23], the
sum of eigenspaces of L corresponding to A and )\, is tangent to M;.
Hence, the vector 4(0) is an eigenvector of L with eigenvalue A;p.

At the tangent space 1), M", choose a coordinate system such that
L is diagonal diag(\1,...,A,) and g is Euclidean diag(1,...,1). In this
coordinate system, I;(§) is given by (we assume & = (£1,...,&,))

an =0 = -
O = DO = (E -+ ) + ( — (A —HE2).

Since 4(0) is an eigenvector of L with eigenvalue \;, the last n — 1
components of 4(0) vanish, so that ¢t,—1 = \,. Comparing this with
(16), we see that A,(p1) = A. The first statement of Theorem 12 is
proven.

Now let us prove the second statement. We suppose that in a small
convex ball B C M™ there exist four points p’,p”, p"”,p"”" with N =
1, and will find a contradiction. By Corollary 4, almost every point
p of the ball is typical. Clearly, for almost every typical point p of
the ball the geodesics connecting the point with p/, p”, p™, p”" intersect
mutually-transversally in p. Since these geodesics pass through points
where Ay = --- = \,, by Lemma 1, the roots t¢1,%s9,...,t,_1 on the
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geodesics are all equal to A. If the point p is typical, the restriction

of I; to T,M"™ has the form (17). Then, if (&,...,&},), (&,-... &),
&80, (&7, ..., &) are the coordinates of velocity vectors of the
geodesics at p, the sums ((£5)” o n-1)2)s (€)% + -+ (&7-0)%),

(24 4+ (€7 D?), (&Y% +- -+ (£ )?) vanish and the following
system of equat1ons holds:

(An —A)(§1)2+( (£)° =
An = N(EN?+ (M = N)(&)? =
(An = A)( ”’)2 +(M = N(E)? =
(/\ _)\)( ////)2 +( ( ////)

Thus, at least two of the vectors (&],...,¢),) and (&7,...,&)) are pro-
portional. Then, there exists a pair of geodesics that do not inter-
sect transversally at p. The contradiction shows that the points where
Ny =1 are isolated. Theorem 12 is proven.

oo oo

—A)
—A)
—A)
—A)

3.3. Splitting Lemma.

Definition 7. A local-product structure on M" is the triple
(h, By, B,,—,), where h is a Riemannian metric and B,, B,_, are trans-
versal foliations of dimensions r and n — r, respectively (it is assumed
that 1 < r < n), such that every point p € M™ has a neighborhood
U(p) with coordinates

(i.a y) :((Jil, L2, .. 7xT)7 (y'l"+17 Yr+25- - yn>)
such that the z-coordinates are constant on every leaf of the foliation
B,,—.NU(p), the y-coordinates are constant on every leaf of the foliation
B, NU(p), and the metric h is block-diagonal such that the first (r x r)
block depends on the z-coordinates and the last ((n—r) x (n—r)) block
depends on the y-coordinates.

A model example of manifolds with local-product structure is the
direct product of two Riemannian manifolds (M7, g1) and (M35 ™", g2).
In this case, the leaves of the foliation B, are the products of M| and
the points of MJ ™", the leaves of the foliation B,,_, are the products
of the points of M| and MJ ™", and the metric A is the product metric
g1+ g2.

Below we assume that

(a) L is a BM-structure for a connected (M", g).

(b) There exists r, 1 < r < n, such that A, < A\,41 at every point of
M™.

We will show that (under the assumptions (a,b)) we can naturally
define a local-product structure (h, B;, B,—,) such that the (tangent
spaces to) leaves of B, and B,_, are invariant with respect to L, and
such that the restrictions L|p , L|p,_, are BM-structures for the metrics
hB,, hB respectively.

n—r’
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At every point x € M", denote by V| the subspaces of T, M™ spanned
by the eigenvectors of L corresponding to the eigenvalues Ai,..., A;.
Similarly, denote by V*~" the subspaces of T, M spanned by the eigen-
vectors of L corresponding to the eigenvalues A\,y1, ..., A\,. By assump-
tion, for every 4, 7 such that i <r < j, we have A\; # \; so that V] and
V=" are two smooth distributions on M™. By Theorem 4, the distri-
butions are integrable so that they define two transversal foliations B,
and B,,_, of dimensions r and n — r, respectively.

By construction, the distributions V, and V,,_, are invariant with
respect to L. Let us denote by L., L,_, the restrictions of L to V.
and V,,_,, respectively. We will denote by x,, xn—» the characteristic
polynomials of L,, L,_,, respectively. Consider the (1,1)-tensor

C Y (1) x (L) + Xn_r(L))

and the metric h given by the relation
def _
h(u,v) = g(C~H (), )

for every vector u,v. (In the tensor notations, the metrics h and g are
related by 9ij = hiach-)

Lemma 2 (Splitting Lemma). The following statements hold:

1) The triple (h, By, By—) is a local-product structure on M™.

2) For every leaf of By, the restriction of L to it is a BM-structure
for the restriction of h to it. For every leaf of B,,—,, the restriction
of L to it is a BM-structure for the restriction of h to it.

Proof. First of all, h is a well-defined Riemannian metric. Indeed,
take an arbitrary point x € M"™. At the tangent space to this point, we
can find a coordinate system such that the tensor L and the metric g
are diagonal. In this coordinate system, the characteristic polynomials
Xrs Xn—r are given by
(18) (_I)TXT’ = (t_)\l)(t_ A2)(15_)‘7‘)

Yoor = Qs =Dz =)+ (= ).
Then, the (1,1)-tensor C' = ((—1)"xr(L) + xn—r(L)) is given by the
diagonal matrices

n

(19) diag( IT =20,

Jj=r+1
H (>\j =), H()\r+1 - >‘j)v ) H()\n - )‘j)>'

j=r+1 j=1 J=1

We see that the tensor is diagonal and that all diagonal components are
positive. Then, the tensor C~! is well-defined and A is a Riemannian
metric.
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By construction, B, and B,,_, are well-defined transversal foliations
of dimensions r and n — r. In order to prove Lemma 2, we need to
verify that, locally, the triple (h, B;, B,—,) is as in Definition 7, that
the restriction of L to a leaf is a BM-structure for the restriction of h
to the leaf.

It is sufficient to verify these two statements at almost every point of
M™. Indeed, since the foliations and the metric are globally-given and
smooth, if the restrictions of g and L to a leaf satisfy Definitions 7, 2 at
almost every point, then they satisfy Definitions 7, 2 at every point.

Thus, by Corollary 4, it is sufficient to prove the Splitting Lemma
near every typical point. Consider Levi-Civita’s coordinates Z1,...,ZTm
from Theorem 7 near a typical point. As in Levi-Civita’s Theorem, we
denote by ¢1 < -+ < ¢, the different eigenvalues of L. In Levi-Civita’s
coordinates, the matrix of L is diagonal

diag | &1, D1,y Gy ooy O | = diag( A1, ..., An).

~~

k1 km

Consider s such that ¢5 = A, (clearly, k1 +- - -+ks = r). Then, by con-
structions of the foliations B, and B,,_,, the coordinates Z1,...,Z are
constant on every leaf of the foliation B,_,, the coordinates Tsy1,...,
T, are constant on every leaf of the foliation B,. The coordinates

Z1,...,Ts will play the role of z-coordinates from Definition 7, and the
coordinates Tsy1,...,ZTym will play the role of y-coordinates from Defi-
nition 7.

Using (19), we see that, in Levi-Civita’s coordinates, C' is given by

diag( H (¢j_¢1)kj""’AH (¢j_¢1)kj""a

Jj=s+1 j=s+1
k1
H (¢J - QSS)kja LRI H (qb] - ¢S)kj7
j=s+1 j=s+1
ks
H¢S+1 J7"'7H(¢S+1_¢j)kj7"'7
: j:l
kst1
H(¢m - Qb])kjv ey H(d’m - ij)k] >
j=1 J=1
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Thus, h is given by
(20) h#,%) = PLA1(Z1,31) + -+ + PsAs(%s, T5)
+ Pop1Asi1 (Bsr1, Bop1) + - + P A (T, ),
where the functions P; are as follows: for i < s, they are given by

B (gi— 1) (i — i1)(bin1 — bi) -+ (65 — &) H |pi — ;| H.
=t

For i > s, the functions P; are given by

5, def

Py (1 — bou1) - (i — di-1)(dis1 — 1) -+ (bm — ) [ [ 1o —a51* 1.

Jj=s+1
J#i
Clearly, |¢; — ¢;|¥s=1 can depend on the variables Z; only. Then, the
products

S m
ITlei =5l %, I 60— o'
Jj=1 j=s+1
J#i J#i

can be hidden in A;, i.e., instead of A; we consider

A; H i — dj|' " A;  for i < s and
=1

j=
J#i
m
A, def H \pi — d;|' M A; for i > s.
Jj=s+1
J#i

Finally, the restriction of the metric to the leaves of B, has the
form from Levi-Civita’s Theorem. Hence, the restriction of L is a BM-
structure for it. We see that the leaves of B, are orthogonal to leaves of
B,,—,, and that the restriction of h to B, (B,,—,, respectively) is precisely
the first row of (20) (second row of (20), respectively) and depends on
the coordinates Z1,...,%s (Tsy1,.-.,Tm, respectively) only. Lemma 2
is proven.

Let p be a typical point with respect to the BM-structure L. Fix
i1 €1,...,n. At every point of M", consider the eigenspace V; with the
eigenvalue \;. V; is a distribution near p. Denote by M;(p) its integral
manifold containing p.

Remark 3. The following statements hold:

1) If \;(p) is multiple, the restriction of g to M;(p) is proportional to
the restriction of h to M;(p).
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2) The restriction of L to B, does not depend on the coordinates
Yr+1,- -+, Yn (Which are coordinates Zs41,...,Z, in the notations
in proof of Lemma 2). The restriction of L to B,_, does not de-
pend on the coordinates z1,...,z, (which are coordinates z1, ...,
Zs in the notations in proof of Lemma 2).

Combining Lemma 2 with Theorem 11, we obtain

Corollary 8. Let L be BM-structure on connected (M™, g). Suppose
there existi € 1,...,n and p € M™ such that:

e \; is multiple (with multiplicity k > 2) at a typical point.

® Ai1(p) = Aitk—1(P) < Aitxk(p)-

e The eigenvalue \;_1 is not constant.
Then, for every typical point ¢ € M™ which is sufficiently close to p,
M;(q) is diffeomorphic to the sphere and the restriction of g to M;(q)
has constant sectional curvature.

Indeed, take a small neighborhood of p and apply Splitting Lemma, 2
two times: for r = i+ k — 1 and for r = ¢ — 2. We obtain a metric
h such that locally, near p, the manifold with this metric is the Rie-
mannian product of three disks with BM-structures, and BM-structure
is the direct sum of these BM-structures. The second component of
such decomposition satisfies the assumption of Theorem 11; applying
Theorem 11 and Remark 3 we obtain what we need.

Arguing as above, combining Lemma 2 with Theorem 12, we obtain

Corollary 9. Let L be a BM-structure on connected (M™,g). Sup-
pose the eigenvalue \; has multiplicity k at a typical point. Suppose
there exists a point where the multiplicity of A\; is greater than k. Then,
there exists a point where the multiplicity of A; is precisely k + 1.

Combining Lemma 2 with Corollary 4, we obtain

Corollary 10. Let L be a BM-structure on connected (M™,g). Sup-
pose the eigenvalue A\; has multiplicity k; > 2 at a typical point and
multiplicity k; +d at a point p € M™. Then, there exists a point g € M"™
in a small neighborhood of p such that the eigenvalue \; has multiplicity
k; +d in p, and such that

Ni(g) = max (Nr(z)) - d.

We saw that under hypotheses of Theorems 11, 12, the set of typical
points is connected. As it was shown in [47], in dimension 2 the set of
typical points is connected as well. Combining these observations with
Lemma 2, we obtain

Corollary 11. Let L be a BM-structure on connected (M",g) of
dimension n > 2. Then, the set of typical points of L is connected.
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3.4. If ¢; is not isolated, A; has constant sectional curvature. In
this section we assume that L is a BM-structure on a connected complete
Riemannian manifold (M",g). As usual, we denote by A\i(z) < --- <
An(x) the eigenvalues of L at x € M™.

Definition 8. An eigenvalue )\; is called isolated, if, for all points
p1,p2 € M™ and for every 4,5 € {1,...,n}, the equality A\i(p1) = A\;j(p1)
implies Aj(p2) = Aj(p2)-

As in Section 3.3, at every point p € M"™, we denote by V; the
eigenspace of L with the eigenvalue \;(p). If p is typical, V; is a distri-
bution near p; by Theorem 4, it is integrable. We denote by M;(p) the
connected component (containing p) of the intersection of the integral
manifold with a small neighborhood of p.

Theorem 13. Suppose A; is a non-isolated eigenvalue such that its
multiplicity at a typical point is greater than one. Then, for every typical
point p, the restriction of g to M;(p) has constant sectional curvature.

It could be easier to understand this theorem using the language of
Levi-Civita’s Theorem 7: denote by ¢1 < ¢pg < --- < ¢y, the different
eigenvalues of L at a typical point. Theorem 13 says that if ¢; (of
multiplicity > 2) is non-isolated, then A4; from Levi-Civita’s Theorem
has constant sectional curvature.

Proof of Theorem 13. Let k; > 1 be the multiplicity of A; at a typical
point. Then, A; is constant. Take a typical point p. We assume that
A; is not isolated; without loss of generality, we can suppose \;—1(p1) =
Ait+k;—1(p1) for some point p;. By Corollary 9, without loss of generality,
we can assume \;_1(p1) = Ai(p1) < Aigk; (p1). By Corollary 10, we can
also assume that Nz (p1) = Nr(p) — 1, so that multiplicity of A\;(p1) is
precisely k; + 1.

Consider a geodesic segment v : [0,1] — M"™ connecting p; and p,
7(0) = p and (1) = py. Since it is sufficient to prove Theorem 13 at
almost every typical point, without loss of generality, we can assume
that p; is the only nontypical point of the geodesic segment v(7), 7 €
[0, 1]. More precisely, take j & i—2,1,...,i+k;—1. If there exists a point
p2 € M"™ such that Aj(p2) < Ajt1(p2), then, by assumptions, A;(p1) <
Aj+1(p1). Hence, by Lemma 1, for almost every & € T, ;) M", we have
ti(v(1),€) # maxgepmn(Aj(z)). Thus, almost all geodesics starting from
p1 do not contain points where \; = Aj;q1. Finally, for almost every
p € M™, the geodesics connecting p and p; contain no points where
)‘_] = )\j+1.

Take the point ¢ := v(1 — €) of the segment, where € > 0 is small
enough. By Corollary 8, the restriction of g to M;(q) has constant
sectional curvature.
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Let us prove that the geodesic segment v(7), 7 € [0,1 — €] is orthog-
onal to M;(y(7)) at every point. Consider the function

[:TM™ - R; I(z,€):= (%) .
) t=A;

Since the multiplicity of \; at every point is at least k;, by Lemma 1,

the function (%) is polynomial in ¢ of degree n — k;. Since I; is

1(x,8)
(Ai—t)ki—1
the geodesic flow of g. Thus, I is an integral.

At the tangent space to every point of geodesic v, consider a coordi-
nate system such that L = diag(Aq,...,\,) and g = diag(1,...,1). In
these coordinates, I;(€) is given by (15). Then, the integral I(€) is the
sum (we assume & = (&1,...,&,))

an integral, for every fixed ¢, the function ( > is an integral for

Z—‘rkz—l n
(21) >ole I Ge-M
a=1 B=1

Biit1,... itki—1

n

(22) + > & I[I -
=1

o=l p=1
i+l itk —1 Bi+1,... itk —1
B#a

Since the geodesic passes through the point where A;_1 =X, =--- =
Aitk;—1, all products in the formulas above contain the factor A\; — A;,
and, therefore, vanish, so that I(7(0),%(0)) = 0. Since I is an integral,
I(v(1),%(7)) = 0 for every 7. Let us show that it implies that the
geodesic is orthogonal to M; at every typical point; in particular, at
points lying on the segment v(7), 7 € [0, 1].

Clearly, every term in the sum (22) contains the factor A\; — A;, and,
therefore, vanishes. Then, the integral I is equal to (21).

At a typical point, we have

A< SN <A = = A1 < A S S A

Then, the coefficient

=

(A — Ai)
1
yeens ks —1

%
Il

B it
is nonzero. Then, all components &,, a € 4,...,% 4+ k; — 1 vanish. Thus,
v is orthogonal to M; at every typical point.
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Finally, by Corollary 7, the restriction of g to M;(p) is proportional
to the restriction of g to M;(q) and, hence, has constant sectional cur-
vature. The theorem is proven.

3.5. If g is V(K)-metric, if ¢x is not isolated, and if the sectional
curvature of Ay is constant, then it is equal to Ky. Within this
section we assume that L # const - Id is a BM-structure on a connected
Riemannian manifold (M", g) of dimension n > 3. We denote by m the
number of different eigenvalues of L at a typical point. For every typical
point x € M"™, consider the Levi-Civita coordinates (Z1,...,T,) such
that the metric has the form (10). We assume that there exists 7 such
that k; = 1. Recall that the functions ¢; are the eigenvalues of L: in
the Levi-Civita coordinates,

L =diag(\, ..., \n) = diag(d1, ..., 1y s iy s bm)-
k1 km,

Consider X € {1,...,m} such that kx > 2. We put r :== k; +--- +
kx_1. Let us assume that the eigenvalue ¢ = Ar41 is not isolated; that
means that there exists a point p; € M™ such that A\.(p1) = A\y1, or
Arthp+1(P1) = Arg1

Let us assume in addition that in a neighborhood of every typical
point, the following holds:

1) The sectional curvature of Ay is constant,

2) g is a V(K) metric.

As we saw in Section 3.4, the assumption 1 follows from the previous
assumptions, if the metric is complete. As we saw in Section 2.3, the
assumption 2 is automatically fulfilled, if the space of all BM-structures
is more than two-dimensional.

Theorem 14. Under the above assumptions, the sectional curvature
of Ay is equal to Ky.

Recall that the definition of Ky is in the second statement of Theo-
rem &.

Proof of Theorem 14. Let us denote by Ky the sectional curvature of
the metric Ax. By assumption, it is constant in a neighborhood of every
typical point. Since the set of typical points is connected by Corollary
11, Ky is independent of the typical point. Similarly, since Ky is locally-
constant by Theorem 8, Ky is independent of the typical point. Thus,
it is sufficient to find a point where Ky = Ky.

Without loss of generality, we can suppose that there exists p; € M™
such that A\.(p1) = A\pt1.

By Corollaries 10 and 11, without loss of generality we can assume
that the multiplicity of \,41 is kx + 1 in p;, and that Np(p1) =m — 1.
Take a typical point p in a small neighborhood of p;.
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Then, by Corollary 8, the submanifold M, 1(p) is homeomorphic to
the sphere. Since it is compact, there exists a set of local coordinate
charts on it such that there exist constants const > 0 and CONST
such that, in every chart (x%t,...,:cg’*), for every o, € {1,...,kx},
the entry (Ag)gg is greater than const and the absolute value of the
entry (An)ep is less than CONST, ie., Ay (ﬁ7 ﬁ) > const;
\AN(%, %)I < CONST.

8 -
sz ’
i # N, for every typical point p’ in a neighborhood of p;, we obtain
coordinate charts on M, 1(p’) such that for every a, 3, (An)gs > const,
|(Ar)ap| < CONST.

Let us calculate the projective Weyl tensor W for g in these local
coordinate charts. We will be interested in the components (actually,
in one component) of W corresponding to the coordinates Zy. In what
follows we reserve the Greek letter «, 8 for the coordinates from Iy, so
that, for example, g,3 will mean the component of the metric staying
on the intersection of column number r + 3 and row number r + .

As we will see below, the formulas will include only the components
of Ay. To simplify the notations, we will not write subindex R near Ay,
so for example, g,z is equal to Py A.g.

Take v # (3. Let us calculate the component Wisa- In order to do

where

By shifting these local coordinates along the vector fields

it by formula (8), we need to know R, and Rgg. It is not easy to
calculate them: a straightforward way is to calculate R35, and Rgg
for the metric (10), then combine the result with assumption 2 (which
could be written as a system of partial differential equations) and with
assumption 1 (which is a system of algebraic equations). This was done
in §8 of [71], see formula (8.14) and what goes after it there. Rewriting
the results of Solodovnikov in our notations, we obtain

Rsa = (Kx — (Kx — K R)) Agg,
Rgg = ((k}z — 1) Ky + K(TL — 1) Py — (kN — 1) KN) Agﬁ.
Substituting these expressions in the formula for projective Weyl tensor
(8), we obtain

o — n — kN
Wﬁﬁa == (KN - KN)

Agg.
1 p8
We see that, if Ky # Ky, the component Wﬂo‘ﬂ ., is bounded from zero.
But if we consider a sequence of typical points converging to pi,
the component Wg‘ﬂa converges to zero. Indeed, by definition Wg‘ﬁa =

a 0 0 0 9 ; ;
W (dxg, 528" 5l azg)’ and the length of 5l goes to zero, if the point

goes to pi. Finally, Ky = Ky. The theorem is proven.
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4. Proof of Theorem 1

If the dimension of B(M™, g) is one, Theorem 1 is trivial: every projec-
tive transformation is a homothety. In Section 4.1, we prove Theorem 1
under the additional assumption that the dimension of B(M™", g) is two
(Theorem 15). In Section 4.2, we prove Theorem 1 under the additional
assumption that the dimension of M™ and the dimension of B(M™", g)
is at least three (Theorem 16). The last case, namely the existence of
non-affine projective transformations on complete two-dimenstion man-
ifolds such that the dimension of B(M™", g) is at least three, was treated
in [58]. It was proved that they are possible if and only if the metric
has constant positive sectional curvature.

4.1. If the space B(M"™,g) has dimension two. Suppose g and g
are projectively equivalent. The next lemma shows that the spaces
B(M™,g) and B(M™, g) are canonically isomorphic:

Lemma 3. Let L be the BM-structure (3) constructed for the projec-
tively equivalent metrics g and g. Suppose Ly is one more BM-structure
for g. Then, L~ Ly is a BM-structure for §g.

Corollary 12. If B(M™, g) is two-dimensional, every projective
transformation takes typical points to typical points.

Proof of Lemma 3. 1t is sufficient to prove the statement locally. Let
us fix a coordinate system and think about tensors as about matrices.
For every sufficiently big constant «, the tensor L + « - Id is positive
defined. Then, by Theorem 2,

_ 1

" det(L; + - 1d)
is a Riemannian metric projectively equivalent to g. Then, it is pro-
jectively equivalent to g. Direct calculation of the tensor (3) for the
metrics g, g gives us that L~!(L; +«-Id) is a BM-structure for g. Since
it is true for all big a, and since B(M™, g) is a linear space, L™'L; is a
BM-structure for g. Lemma 3 is proven.

g (L1 +a-1d)7

QI

Definition 9. A vector field v is called projective if its flow takes
geodesics to geodesics.

A smooth one-parameter family of projective transformations F; :
M"™ — M"™ immediately gives us a projective vector field (%Ft)‘ 0"
A projective vector field gives us a one parameter family of projective

transformations if and only if it is complete.

Theorem 15. Suppose (M™,g) of dimension n > 2 is complete and
connected. Let v be a complete projective vector field. Assume in addi-
tion that the dimension of B(M™, g) is precisely two. Then, the flow of
the vector field acts by affine transformations, or the metric has constant
positive sectional curvature.
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Proof. Denote by F; the flow of the vector field v. If it contains not
only affine transformations, there exists {3 € R such that the pull-back
g = F}(g) is projectively equivalent to g, and is not affine equivalent
to g.

Consider the BM-structure L € B(M™, g) given by (3). Take a typical
point p such that v does not vanish at p . Since g is not affine equivalent
to g, without loss of generality we can assume that at least one eigen-
value is not constant near p. By Levi-Civita’s Theorem 7, there exists
a coordinate system T = (Z1,...,Z;,) in a neighborhood of p such that
the tensor L and the metrics g, g have the form (9, 10, 11), respectively.
In particular, all these objects are block-diagonal with the parameters
of the blocks (ki,...,kn). Note that the nonconstant eigenvalue of L
has multiplicity one.

Let the vector v be (U1,...,7,,) in this coordinate system. Then,
by Theorem 3 and Lemma 3, and using that the space B(M",g) is
two-dimensional, we obtain that the Lie derivatives £,g and L,g are

block-diagonal as well. In the coordinate system & = (Z1,...,Zy,), the
metric g is given by the matrix #(L)gLfl. Then, the Lie derivative
L7 is

<£”det1(L)> gL™!+ detl(L) (Log) L7+ detl(L)g (€oL77).

We see that the first two terms of the sum are block-diagonal; then, the
third term must be block-diagonal as well so that £, L is block-diagonal.
Let us calculate the element of £, L which is on the intersection of z{-

row and a:jﬂ -column. If 7 # j, it is equal to

ov¥
+(p; — d;)—%.
(¢ (b])ax?
Thus,
aviﬂ =0.
axj

Finally, the block ©; of the projective vector field depends on the vari-
ables Z; only.

Using this, let us calculate the tensor ¢~'£,g from Theorem 3 for
the metric g. We see that (in matrix notations), the matrix of g is AP,
where

P :=diag(Pi,...,Pi,..., Pm,..., Pn)
k1 km
and A := block-diagonal(Ay, ..., An).

We understand A as a (0,2)-tensor and P as a (1,1)-tensor. Then,
g ' Log=PTTATYLA)P + PTIL,P.
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Since the entries of A; and of v; depend on the coordinates Z; only, £, A
is block-diagonal so that the first term on the right hand side is equal
to A~1L,A. Thus,

(23) g ' Lyg=AT"L, A+ PTIL,P.
By direct calculations, we obtain:

P lc,P

. oot ol od ol
— dia TR/ 4P
8 Z bi— P11 P11 — & Z bi— b1 1 — b

*
1=2,...,m 1=2,...,m

~~

k1

mm O mlm O
o Z ¢i_¢m+¢m_¢i’”"ilz ¢i_¢m+¢m_¢i

km

i=1,...m—1 yeeeym—1

By Theorem 3, since the space B(M", g) is two-dimensional, g~'L,g
equals

al+ (-1d+ trace,; 514 - 1d,

where o, 8 € R. Then, the first entry of the block number j gives us
the following equation:

I-Ul' /1)1
(24)  a;(z;) + Z ¢J_]¢ +¢'Z “— = ag;j + [+ trace,; 514,
i=1l,..,m "t J

e o ¢Z
i#]
where a;(Z;) collects the terms coming from A~1L,A, and, hence, de-

pends on the variables Z; only.
Our next goal is to show that

e Only one ¢; can be nonconstant. The behavior of nonconstant ¢;
on the orbit passing through p is given by

b vD
Q@ !
where D := b%/4 + ac, where b, ¢ and d are certain (universal

along the orbit) constants.
e The constant eigenvalues ¢ are roots of the polynomial

—ag? +bp + c.

In particular, m is at most 3.



PROOF OF THE PROJECTIVE LICHNEROWICZ-OBATA CONJECTURE 489

Take s # j € 1,...,m. We see that the terms in (24) depending on
the variables T, are

/.ful. /,Ul
q)‘ = J ) + sYs o k Oz(;5 )
/ ¢s - ¢j ¢j - ¢S B B
Thus, ®; depends on the variables Z; only. Similarly,
! !yl
P, — sVs 4 JJ —k-aqﬁ‘
° ¢j - ¢s ¢s - ¢j ’ /

depends on the variables Z, only. Using that ®;—®; is equal to a(k;¢; —
ksps), we obtain that (for an appropriate constant B) ®; must be equal
to Oéqubj + B. Thus,

¢l /vl
25 JJ 4 5 keags = aki¢; + B.
(25) o= Gy =y TaPs = Ok

Now let us prove that at least one of the functions ¢, and ¢; is con-
stant near p. Otherwise, ks = k; = 1, and Equation (25) is equivalent
to

g-vjl + ozd)]z — Bo; = ‘ol + ag? — Bo,.
We see that the terms on the left-hand side depend on the variable x]l
only, and the terms on the right-hand side depend on the variable x!
only. Then, there exists a constant ¢ such that

fvj = —agi +bpj+c
iy = —agl +bgs + ¢,

where b := B. Since ¢; and vjl- depend on the variable mjl only, ;vjl

at the point Fy(p) is equal to ¢; := %d)j(Ft(p)), so that ¢s(Fi(p)) and
¢j(Fi(p)) are solutions of the following differential equation:

(26) b= —ap? +bp+c.

By Corollary 12, all points Fi(p) are typical. Then, ¢, and ¢; are
solutions of Equation (26) at every point of the orbit passing through p,
and the constants «, b, ¢ are universal along the orbit. The equation can

Vb2 /4+ac
« )

be solved (we assume « # 0). The constant solutions are % +
and the nonconstant solutions are:

1) For D := b?/4 + ac < 0, every nonconstant solution is the function
2+ D tan (V=D (—t + dy)).
2) For D :=b?/4 + ac > 0, every nonconstant solution is one of the
functions
a) & + YL tanh(vD(t + d)),
b) & + YL coth(v/D(t + d3)).

3) For D := b*/4+ac = 0, every nonconstant solution is the function
b 1
2 T atirdn):
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The solutions (1, 2b, 3) explode in finite time. This gives us a con-
tradiction: the metrics ¢ and g are smooth and, hence, the eigenvalues
of L are finite on every compact set.

If the functions ¢4(F;(p)) and ¢;(Fi(p)) have the form (2a), then
there exist points p1, p2, g1, g2 of the orbit passing through p, such that
os(p1) < 9j(p2), ds(q1) > ¢j(g2). This gives a contradiction with Corol-
lary 3.

Thus, only one eigenvalue of L can be nonconstant in a neighborhood
of p. Let ¢; be nonconstant near p.

Now let us show that a constant eigenvalue is a root of the polynomial
—a¢? + bp + ¢; in particular, there are no more than two different
constant eigenvalues.

Suppose ¢ is constant. Then, the derivative ¢/ vanishes and (25)
reads:

Pv} = —ag? + (aps — aksds — B)p; + adlks + ¢sB.

Denoting a¢s — aksds — B by b and a¢?ks by ¢, and arguing as above,
we see that ¢; is a solution of (26). Hence, the behavior of ¢; on the
orbit (passing through p) is given by (2a). Clearly, ¢, is a root of
—ag? +bg + c.

Thus, near p only the following three cases are possible:

Case 1: m = 3. The eigenvalues ¢1, ¢3 are constant; the eigenvalue
¢9 is not constant.

Case 2a: m = 2. The eigenvalue ¢, is constant; the eigenvalue ¢q is
not constant.

Case 2b: m = 2. The eigenvalue ¢9 is constant; the eigenvalue ¢, is
not constant.

In all three cases, one can prove that the metric has constant sectional
curvature. We will carefully consider the most complicated case, case 1,
and sketch the proof for case 2a. The proof for case 2b is similar to the
proof for case 2a.

Suppose m = 3, the eigenvalues ¢1, ¢3 are constant and the eigen-
value ¢9 is not constant in a neighborhood of p. Without loss of gener-
ality, we can assume As(dzl, dzl) = (dzl)?. Then, oL + 3 -1d is

dla’g a(bl+5,...,0[(Z)1+,6,0é¢2+,8,0[¢3+/8,...,0[¢3+ﬁ
k’l k3
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Since g71L,g is equal to aL + 3 -1d + trace,; . 514 - Id, Equation (23)
gives us the following system:
(27)
/ Ul
(a1 + B) (k1 + 1) + ads + B+ (ags + Bks = a1 (z1) + 222

1—p2

$5v, ¢’2U%

(a1 + B)k1 + 2(adz + B) + (ads + ﬁ)k3:_28x% + b1—02 + $3—2
(ady + B)ky + ads + B+ (ads + B) (ks + 1) = a3(3) + 422,

Here a1, as collect the terms coming from AflﬁvAl and A;lﬁvAg,
respectively. Using ¢hvd = ¢o = —a(p1 — ¢2)(¢h3 — ¢2), we obtain

(a¢1 + ﬂ)(kﬁl + 1) + (Ozd)g + ﬂ)(kg + 1) = (.fll)
(28) NN =

(g1 + B) (k1 + 1) + (a3 + B) (k3 +1) = a3(x3).

We see that a; = a3z = const; we denote this constant by a. Let us

prove that a = 0. We assume that a # 0 and will find a contradiction.

Consider Equation (23). We see that the first block of the left-hand

side and the first block of the second term at the right-hand side are

proportional to diag(1,...,1). Then, A;lﬁvAl is proportional to iden-
——

k1
tity. The coefficient of proportionality is clearly a. Then, Al_lﬁvAl =
adiag(1l,...,1), and £,4; = aAj, so that the flow of the vector field
k
1
(v1,0,0,...,0) acts by homotheties on the restriction of g to the coor-
k
dinate plagque of the coordinates Z;. Note that this vector field is the
orthogonal projection of v to the coordinate plaque.
Similarly, the vector field (0,...,0,0,v3) acts by homotheties (with
k
1

the same coefficient of stretching) on the restriction of g to the coordi-
nate plaque of the coordinates 3.

Without loss of generality, we can suppose that ¢a(p) is a regu-
lar value of ¢. Denote by M, the connected component of the set
{qg € M™ : ¢3(q) = ¢o2(p)} containing p. By construction, M, is a
submanifold of codimension 1, and the derivative of ¢o vanishes at no
points of M. Then, at every point of Ms, the flow of the orthogonal
projection of v to Mj acts by homotheties. Since M™ is complete, Mo
is complete as well. Then, M, with the restriction of the metric g is
isometric to the standard Euclidean space (R" !, geuctidean), and there
exists precisely one point where the orthogonal projection of v vanishes,
see [40] for details. Without loss of generality, we can think that p is
the point where the orthogonal projection of v vanishes.
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Moreover, at every point of Mo, consider the eigenspaces of L cor-
responding to ¢ and ¢3. By Theorem 4, they are tangent to Ms; by
Corollary 3, every point of Ms is typical so that the eigenspaces corre-
sponding to ¢ and ¢3 give us two distributions. These distributions are
integrable by Theorem 4. We denote by M (p) and M3(p) their integral
manifolds passing through p. Locally, in Levi-Civita’s coordinates from
Theorem 7, the manifold M; is the coordinate plaque of coordinates z;
and Ms is the coordinate plaque of coordinates 3. Then, M;(p) and
M;(p) are invariant with respect to the orthogonal projection of v to
M.

Consider the orbit of the projective action of (R,+) containing the

point p. Since at the point p the vector v has the form (0,...,0,v3,
——
k1
0,...,0), and since the components 71, 5 do not depend on the coor-
——
k3

dinate o, at every point of the orbit v is an eigenvector of L with the
eigenvalue ¢s.

Let us show that the length of the orbit is finite at least in one
direction. Indeed, the second equation in (28) implies

a

@ tog (uh(F(p)) = 2.

Its solution is v} (Fy(p)) = Constexp (—%¢t). Then, the length between
points t1 < to of the orbit is equal to

to 2
/t vV g(v,v) dt = Const t V(92 — ¢1)(¢3 — da) exp (—gt) dt.

Since (¢2 — ¢1)(¢p3 — ¢2) is bounded, the length of the orbit is finite at
least in one direction.

Then, since the manifold is complete, the closure of the orbit contains
a point ¢ € M™ such that either ¢o(q) = ¢1 or ¢a2(q) = ¢3. Without
loss of generality, we can assume that ¢2(q) = ¢1.

Then, without loss of generality, we can assume that p is close enough
to g, so that, by Corollary 8, M;(p) is homeomorphic to the sphere. We
got a contradiction with the fact that M;(p) admits a vector field whose
flow acts by homotheties, see [40]. Finally, a = 0.

Since a = 0, the second equation in (28) implies

L Jog (ub(t)) =0,

so that locally

(29) x3 = Const t.
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Then, the adjusted metric has the form

(1—tanh(ya +d)) (dy1)* + C(1—tanh(ys +d))(1 + tanh(y +d)) (dy2)*
+ (1 + tanh(ys + d))(dys)*

in a certain coordinate system and for certain constants C, d. By direct
calculation, we see that the sectional curvature of the adjusted metric
is positive constant. If the dimension of the manifold is three, it implies
that the sectional curvature of g is constant.

If the dimension of the manifold is greater than three, in view of
Theorems 13,14,8, it is sufficient to show that there exist points q1, g3
such that ¢2(q1) = ¢1 and ¢2(q3) = ¢3. Take the geodesic v such that
7(0) = p and §(0) = (0,...,0,v3,0,...,0).

k1 k3

Let us show that at every typical point of the geodesic, in Levi-

Civita’s coordinates, the Z1- and Zs-components of the geodesic vanish.

Consider the functions

I
I' = <7> :TM" — R,
(¢1 - t)kl_l [t=¢1

1
I" = <7t > :TM"™ — R.
(¢5 - t)k?’il [t=¢3

They are integrals of the geodesic flow. Since

I'(7(0),4(0)) = I"(7(0),4(0)) = 0,

at every point 7 of the geodesic we have I'(v(7),5(7)) = I" (y(7), (7))
= 0. Then, at every typical point of the geodesic, the T1- and Z3- com-
ponents of the velocity vector vanish. Consider the maximal (open) seg-
ment of this geodesic containing p and containing only typical points.
Let us show that this segment has finite length; that ¢; = ¢o at one
end of the segment and ¢3 = ¢ at the other end of the segment.

Using (29), we obtain that v = Const near every point of the seg-
ment. Then, we can globally parameterize the coordinate x3 near the
points of the geodesic segment such that the constant Const is universal
along the segment. Then, the length of the segment is given by (we
denote by vy the projection of v to the segment)

+oo “+o0o
\/ g('UQ, ’02) dt = Const \/((Z)Q — ¢1)(¢3 — (252) t dt.

Since (2 — ¢1)(¢3 — ¢2) decreases exponentially for ¢ — +oo, the
length of the segment is finite. Clearly, the limit of ¢o is ¢; in one
direction and ¢3 in the other direction. Finally, there exists a point
where ¢1 = ¢ and a point where ¢o = ¢3.
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Then, all eigenvalues of L are not isolated. Then, by Theorems 13, 14,
every A; has constant sectional curvature K;, and, by Theorem 8, g has
constant sectional curvature. By Corollary 6, the sectional curvature of
g is positive. Theorem 15 is proven under the assumptions of case 1.

The proof for cases 2a and 2b is similar; we will sketch the proof for
case 2a: First of all, under the assumptions of case 2a, oL + 3 - 1d is

dlag a¢1+/87"'7a¢1+ﬁ7a¢2+ﬁ
k1

Since g~ L,g is equal to oL + 3-1d + trace,r , 514, Equation (23) gives
us the following system:

(30) (apr+B)(k1+1)+ap+ 5 = ai(Z1)+ Jfé_v;;
(ady +A)ki +2(ady +8) = -25% + F2E.

As we have proven, ¢ is a root of —a¢? + bg + c. We denote by ¢3 the
second root of —a¢? + b + c. Arguing as in case 1, we have

{ (g1 + B) (k1 +1) + (ads + B3) = a1(71)

(31)

_ . Bv%
a(p2 — ¢1) + a1 (Z1) = 251

2
Then, a; = Const. Arguing as in case 1, one can prove that a; = 0.
Then, the second equation of (31) implies

%log (v3) = a(1 + tanh(\/b2/4 + ac t + d)).

Thus, U%(t) _ exp(y/b2/44ac t/2+d/2)'
\/cosh(\/b2/4+o¢c t+d)

(locally) proportional to

V2[4 + ac ya +d)
| — tanh(v//A + ac yo + d)) | dy + =2 dy3
( (VB v+ d) ( . cosh(/b2/4 + ac yz + d) v

and, therefore, has constant curvature. If n = 2, it implies that g has
constant curvature. If n > 3, similar to the proof for case 1, we can
show that there exists a point where ¢; = ¢o. Then, by Theorems 13,
14, 8, the sectional curvature of g is constant. By Corollary 6, it is
positive. Theorem 15 is proven.

Then, the adjusted metric is

4.2. Proof if dim(M"™) > 3; dim(B(M",g)) > 3. Assume
dim(B(M™, g)) > 3, where (M", g) is a connected complete Riemannian
manifold of dimension n > 3. Instead of proving Theorem 1 under these
assumptions, we will prove the following stronger

Theorem 16. Let (M™, g) be a connected complete Riemannian man-
ifold of dimension n > 3. Suppose dim(B(M",g)) > 3.
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Then, if a complete Riemannian metric g is projectively equivalent to
g, then g has positive constant sectional curvature or g is affine equiv-
alent to g.

Proof. Denote by L the BM-structure from Theorem 2. In view of
Remark 2, without loss of generality, we can assume that at least one
eigenvalue of L is not constant.

Denote by m the number of different eigenvalues of L in a typical
point. The number m does not depend on the typical point. If m = n,
Theorem 16 follows from Fubini’s Theorem 10 and Corollary 6.

Thus, we can assume m < n. Denote by mg the number of simple
eigenvalues of L at a typical point. By Corollary 3, the number mg does
not depend on the typical point. Then, by Levi-Civita’s Theorem 7,
the metric g has the following warped decomposition near every typical
point p:

m m
32) g=g0+| [[ (Pmos1— )| gmor1 + -+ | ][ (@m — ¢)| G-
iy i
Here the coordinates are (%o, . .., %m), where §o = (yg,- .-, yy") and for
i>1 4= (y},... ,yfi). For i > 0, every metric ¢,,,+; depends on the

coordinates ¢; only. Every function ¢; depends on yg for i < mg and is
constant for i > mg.

Let us explain the relation between Theorem 7 and the formula above.
The term go collects all one-dimensional terms of (10). The coordinates
Jo collect all one-dimensional Z; from (10). For i > mg, the coordinate
¥; is one of the coordinates z; with k; > 1. Every metric gy, +; for i > 1
came from one of the multidimensional terms of (10) and is proportional
to the corresponding A;. The functions ¢; are eigenvalues of L; they
must not be ordered anymore: the indexing can be different from (9).
Note that, by Corollary 3, this re-indexing can be done simultaneously
in all typical points.

Since the dimension of the space B(M™,g) is greater than two, by
Theorem 9, ¢ is a V(K) metric near every typical point. By Corol-
lary 11, the set of the typical points is connected, so that the constant
K is independent of the typical point.

According to Definition 8, a multiple eigenvalue ¢; of L is isolated if
there exists no nonconstant eigenvalue ¢; such that ¢;(¢) = ¢; at some
point ¢ € M™. If every multiple eigenvalue of L is non-isolated, then, by
Theorems 13, 14, 8, g has constant sectional curvature. By Corollary 6,
the sectional curvature is positive.

Thus, we can assume that there exist isolated eigenvalues. With-
out loss of generality, we can assume that (at every typical point) the
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re-indexing of ¢; is made in such a way that the first multiple eigenval-
ues @pmg+1,---,Pm, are non-isolated and the last multiple eigenvalues
Omyi+1, - - -, Om are isolated. By assumption, m; < m.

We will prove that in this case all eigenvalues of L are constant. By
Remark 2, it implies that the metrics g, g are affine equivalent.

Let us show that K is nonpositive. We suppose that it is positive and
will find a contradiction.

At every point ¢ of M™, denote by Vo C T,M" the direct product
of the eigenspaces of L corresponding to the eigenvalues ¢1,...,om,.
Since the eigenvalues ¢, +1, ..., ¢m are isolated by the assumptions,
the dimension of Vj is constant, and V4 is a distribution. By Theorem 4,
Vb is integrable. Take a typical point p € M™ and denote by My the
integral manifold of the distribution containing this point. Since My is
totally geodesic, the restriction gy, of the metric g to My is complete.
By Theorems 13,14,8, the metric g5, has constant sectional curvature
K, or My is one-dimensional.

Consider the direct product My x R™~" with the metric

m m

33) gt +| [] Gmir — i) | dtd, o+ + | ] (0m — 63)| dt,,

#’ﬁfﬂ m
where (ty,+41,-..,tm) are the standard coordinates on R™~™ . Since
the eigenvalues ¢, 41, ..., ¢ are isolated, (33) is a well-defined Rie-
mannian metric. Since gy, is complete, the metric (33) is complete.
Since the sectional curvature of the adjusted metric is K, and since the
sectional curvature of g, is K (or My has dimension 1), the sectional
curvature of (33) is K as well. If K > 0, then the product My x R™~"1
must be compact, which contradicts the fact that R” ™! is not com-
pact. Finally, K is not positive.

Now let us prove that all eigenvalues of L are constant. Without
loss of generality, we can assume that the manifold is simply connected.
We will construct a totally geodesic (immersed) submanifold M4, which
is a global analog of the submanifold M4 from Section 2.3. At every
point x € M", consider Vp,,11,..., Vi, C T M", where V,,, 4; is the
eigenspace of the eigenvalue ¢,,4;. Since the eigenvalues ¢,,+; are
isolated, Vi 41, ..., Vi, are distributions. By Theorem 4, they are inte-
grable. Denote by My, +1, M, +2, ..., My, the corresponding integral
submanifolds.

Since M™ is simply connected, by [8], it is diffeomorphic to the prod-
uct Mo X Mp,41 X My, 42 X -+ X M. Clearly, the metric g on

M"™ >~ My X My, 41 X My 42 X -+ X My,
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has the form

m m
B g +| [T Gmsr = )| gmrr+-+ [ 6m — 6)| gm,
i;ézn?11+1 lz;fr}l

where every g is a metric on Mj. Take a point

P = (Poapm1+17pm1+2, oo 7pm) € MO X Mm1+1 X Mm1+2 X X Mm

On every My, +x, K = 1,...,m — mq, pick a geodesic Y, 1% (in the
metric g, +%) passing through pg. Denote by M4 the product

Mo X ony 1 X+ X .

M4 is an immersed totally geodesic manifold. Hence, it is complete in
the metric g|57, and in the metric g5,. Locally, in a neighborhood of
every point, M4 coincides with M4 from Section 2.3 constructed for
the warped decomposition (34). The restriction of the metric g to My
is isometric to (33) and, therefore, has nonpositive constant sectional
curvature K. Then, by Corollary 6, the restriction of g to M4 is affine
equivalent to the restriction of g to M 4. Then, by Remark 2, all ¢; are
constant. Then, g is affine equivalent to g. Theorem 16 is proven.
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