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Abstract

The main result of this paper states that a symplectic s-cobord-
ism of elliptic 3-manifolds is diffeomorphic to a product (assuming
a canonical contact structure on the boundary). Based on this
theorem, we conjecture that a smooth s-cobordism of elliptic 3-
manifolds is smoothly a product if its universal cover is smoothly
a product. We explain how the conjecture fits naturally into the
program of Taubes of constructing symplectic structures on an
oriented smooth 4-manifold with b+

2 ≥ 1 from generic self-dual
harmonic forms. The paper also contains an auxiliary result of
independent interest, which generalizes Taubes’ theorem “SW ⇒
Gr” to the case of symplectic 4-orbifolds.

1. Introduction: conjecture and main result

One of the fundamental results in topology is the so-called s-cobord-
ism theorem, which allows one to convert topological problems into
questions of algebra and homotopy theory. This theorem says that if
W is a compact (n + 1)-dimensional manifold with boundary the dis-
joint union of manifolds Y1 and Y2, then when n ≥ 5, W is diffeomor-
phic, piecewise linearly homeomorphic, or homeomorphic, depending on
the category, to the product Y1 × [0, 1], provided that the inclusion of
each boundary component into W is a homotopy equivalence and that
a certain algebraic invariant τ(W ; Y1) ∈ Wh(π1(W )), the Whitehead
torsion, vanishes. (Such a W is called an s-cobordism from Y1 to Y2;
when π1(W ) = {1}, the theorem is called the h-cobordism theorem, first
proved by Smale.) Note that the s-cobordism theorem is trivial for the
dimensions where n ≤ 1. However, great effort has been made to un-
derstand the remaining cases where n = 2, 3 or 4, and the status of the
s-cobordism theorem in these dimensions, for each different category, re-
flects the fundamental distinction between topology of low-dimensional
manifolds and that of the higher dimensional ones.

For the case of n = 2, the s-cobordism theorem is equivalent to
the original Poincaré conjecture, which asserts that a closed, simply
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connected 3-manifold is homeomorphic to the 3-sphere (cf. e.g., [19,
31, 38]). For n = 4, work of Freedman [17] yielded a topological s-
cobordism theorem for W with a relatively small fundamental group,
e.g., finite or polycyclic. On the other hand, Donaldson [16] showed
that the h-cobordism theorem fails in this dimension for the smooth
(and equivalently, the piecewise linear) category.

This paper is concerned with 4-dimensional s-cobordisms with bound-
ary components homeomorphic to elliptic 3-manifolds. (An elliptic 3-
manifold is one which is homeomorphic to S3/G for some finite sub-
group G ⊂ SO(4) acting freely on S3.) Building on the aforementioned
work of Freedman, the classification of topological s-cobordisms of el-
liptic 3-manifolds up to orientation-preserving homeomorphisms was
completed in a series of papers by Cappell and Shaneson [6, 7], and
Kwasik and Schultz [27, 28]. Their results showed that for each ellip-
tic 3-manifold, the set of distinct topological s-cobordisms is finite, and
is readily determined from the fundamental group of the 3-manifold.
In particular, there are topologically nontrivial (i.e., non-product), ori-
entable s-cobordisms in dimension four1, and the nontriviality of these
s-cobordisms is evidently related to the fundamental group of the 3-
manifold. On the other hand, not much is known in the smooth cat-
egory. Note that the construction of the aforementioned nontrivial s-
cobordisms involves surgery on some topologically embedded 2-spheres,
and it is generally a difficult problem to determine whether these 2-
spheres are smoothly embedded. In particular, it is not known whether
these nontrivial s-cobordisms are smoothable or not. As for smooth
s-cobordisms obtained from constructions other than taking a product,
examples can be found in Cappell and Shaneson [8, 9] (compare also
[1]), where the authors exhibited a family of smooth s-cobordisms Wr

from S3/Qr to itself, with

Qr = {x, y | x2 = y2r
= (xy)2 = −1}

being the group of generalized quaternions of order 2r+2 (note that Qr

with r = 1 is the group of order 8 generated by the quaternions i, j).
It has been an open question, only until recently, as to whether any of
these s-cobordisms or their finite covers are smoothly nontrivial. In [2],
Akbulut showed that the universal cover of Wr with r = 1 is smoothly
a product. Despite this result, however, the following general questions
have remained untouched.

(1) Are there any exotic smooth structures on a trivial 4-dimensional
s-cobordism?

(2) Are any of the nontrivial topological 4-dimensional s-cobordisms
smoothable?

1Existence of nontrivial, non-orientable 4-dimensional s-cobordisms, which is of a
different nature, has been fairly understood, cf. [33], also [26] for a concrete example.
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In this paper, we propose a program for understanding smooth s-
cobordisms of elliptic 3-manifolds. At the heart of this program is the
following conjecture, which particularly suggests that in the smooth
category, any nontrivial s-cobordism (should there exist any) will have
nothing to do with the fundamental group of the 3-manifold.

Conjecture 1.1. A smooth s-cobordism of an elliptic 3-manifold to
itself is smoothly a product if and only if its universal cover is smoothly
a product.

We propose two steps toward Conjecture 1.1, and undertake the first
one in this paper.

In order to describe the first step, we recall some relevant definitions
from symplectic and contact topology. Let Y be a 3-manifold. A con-
tact structure on Y is a distribution of tangent planes ξ ⊂ TY where
ξ = kerα for a 1-form α such that α ∧ dα is a volume form on Y .
Note that the contact manifold (Y, ξ) has a canonical orientation de-
fined by the volume form α ∧ dα. Let (Yi, ξi), i = 1, 2, be two contact
3-manifolds given with the canonical orientation. A symplectic cobor-
dism from (Y1, ξ1) to (Y2, ξ2) is a symplectic 4-manifold with boundary
(W, ω) such that ∂W = Y2 − Y1 (here W is given with the canonical
orientation defined by ω∧ω), and that there exists a normal vectorfield
v in a neighborhood of ∂W where Lvω = ω, and ξi = ker(ivω|Yi) for
i = 1, 2.

Notice that every elliptic 3-manifold is diffeomorphic to S3/G, where
S3 ⊂ C2, for a finite subgroup G ⊂ U(2) acting freely on S3 (we shall
explain later in this section). The 3-manifold S3/G has a canonical
contact structure, i.e., the descendant of the distribution of complex
lines on S3 under the map S3 → S3/G. Furthermore, the canonical
orientation from the contact structure coincides with the one induced
from the canonical orientation on S3. With the preceding understood,
the following theorem is the main result of this paper.

Theorem 1.2. A symplectic s-cobordism from an elliptic 3-manifold

S3/G to itself is diffeomorphic to a product. Here G is a subgroup of

U(2) and S3/G is given with the canonical contact structure.

Thus, in order to prove Conjecture 1.1, it suffices to show, which is
the second step, that a smooth s-cobordism of an elliptic 3-manifold
to itself is symplectic if its universal cover is smoothly a product. We
shall explain next how this step fits naturally into Taubes’ program of
constructing symplectic structures on an oriented smooth 4-manifold
with b+

2 ≥ 1 from generic self-dual harmonic forms on the 4-manifold,
cf. [43].

The starting point of Taubes’ program is the observation that on an
oriented smooth 4-manifold with b+

2 ≥ 1, a self-dual harmonic form for
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a generic Riemannian metric has only regular zeroes, which consist of
a disjoint union of embedded circles in the 4-manifold. In the com-
plement of the zero set, the 2-form defines a symplectic structure, and
furthermore, given the almost complex structure in the complement
which is canonically defined by the metric and the self-dual 2-form,
Taubes showed that nontriviality of the Seiberg-Witten invariant of the
4-manifold implies existence of pseudoholomorphic subvarieties in the
complement which homologically bound the zero set. Having said this,
the basic idea of the program is to cancel the zeroes of the self-dual
2-form to obtain a symplectic form on the 4-manifold, by modifying it
in a neighborhood of the pseudoholomorphic subvarieties.

As illustrated in [43], it is instructive to look at the case where the
4-manifold is S1 × M3, the product of a circle with a closed, oriented
3-manifold. Let α be a harmonic 1-form on M3 with integral periods,
which has only regular zeroes for a generic metric. In that case, α = df
for some circle-valued harmonic Morse function f on M3. Given with
such a 1-form α, one can define a self-dual harmonic form ω on S1×M3

for the product metric by

ω = dt ∧ α + ∗3α,

where t is the coordinate function on the S1 factor, and ∗3 is the Hodge-
star operator on M3. The zero set of ω is regular, and can be easily
identified with ⊔{p|df(p)=0}S

1 × {p}. Moreover, the pseudoholomorphic
subvarieties in this case are nothing but the embedded tori or cylinders
in S1 × M3 which are of the form S1 × γ, where γ is an orbit of the
gradient flow of the Morse function f , either closed or connecting two
critical points of f . With these understood, Taubes’ program for the
4-manifold S1 × M3, if done S1-equivariantly, is nothing but to cancel
all critical points of a circle-valued Morse function on M3 to make a fi-
bration M3 → S1. It is well-known that there are substantial difficulties
in canceling critical points in dimension 3. This seems to suggest that
in general one may expect similar difficulties in implementing Taubes’
program in dimension 4 as well.

With the preceding understood, our philosophy is to consider Taubes’
program in a more restricted context where the 4-manifold is already
symplectic, so that one may use the existing symplectic structure as
a reference point to guide the cancellation of the zeroes of a self-dual
harmonic form. For a model of this consideration, we look at the case
of S1 × M3 where M3 is fibered over S1 with fibration f0 : M3 → S1.
Suppose the circle-valued Morse function f is homotopic to f0. Then a
generic path of functions from f to f0 will provide a guide to cancel the
critical points of f through a sequence of birth/death of critical points
of Morse functions on M3. Note that Taubes’ program in this restricted
sense will not help to solve the existence problem of symplectic struc-
tures in general, but it may be used to construct symplectic structures
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with certain special features, e.g., equivariant symplectic structures in
the presence of symmetry. (Note that this last point, when applied
to the case of S1 × M3, is related to the following conjecture which
still remains open: If S1 × M3 is symplectic, M3 must be fibered over
S1. Under some stronger conditions, the conjecture was verified in [13]
through a different approach.) Now we consider

Problem 1.3. Let G be a finite group acting smoothly on CP2 which
has an isolated fixed point p and an invariant embedded 2-sphere S
disjoint from p, such that S is symplectic with respect to the Kähler
structure ω0 and generates the second homology. Suppose ω is a G-
equivariant, self-dual harmonic form which vanishes transversely in the
complement of S and p. Modify ω in the sense of Taubes [43], away
from S and p, to construct a G-equivariant symplectic form on CP2.

A positive solution to Problem 1.3 will confirm Conjecture 1.1, as we
shall explain next.

Let W be a s-cobordism with boundary the disjoint union of elliptic
3-manifolds Y1, Y2. Clearly W is orientable. We note first that for
any orientations on Y1, Y2 induced from an orientation on W , there
exists an orientation-preserving homeomorphism from Y1 to Y2. Such a
homeomorphism may be obtained as follows. Let h : Y1 → Y2 be the
simple homotopy equivalence induced by the s-cobordism W . Then h is
easily seen to be orientation-preserving for any induced orientations on
Y1, Y2. On the other hand, as a simple homotopy equivalence between
geometric 3-manifolds, h is homotopic to a homeomorphism ĥ : Y1 → Y2

(cf. [44], and for a proof, cf. [29]), which is clearly also orientation-
preserving.

Next we recall the fact that every finite subgroup G ⊂ SO(4) which
acts freely on S3 is conjugate in O(4) to a subgroup of U(2). In order
to understand this, we fix an identification R4 = C2 = H, where C2 is
identified with the space of quaternions H as follows

(z1, z2) 7→ z1 + z2j.

Consequently, the space of unit quaternions S3 is canonically identified
with SU(2). Consider the homomorphism φ : S3 × S3 → SO(4) which
is defined such that for any (q1, q2) ∈ S3 × S3, φ(q1, q2) is the element
of SO(4) that sends x ∈ R4 = H to q1xq−1

2 ∈ H = R4. It is easily seen
that φ is surjective with kerφ = {(1, 1), (−1,−1)}, where we note that
the center of S3 consists of {±1}. Let S1 ⊂ S3 be the subset consisting
of elements of the form (z, 0) ∈ C2 = H. Then it is easily seen that
a subgroup of SO(4) acts complex linearly on C2 = H if it lies in the
image φ(S1 × S3). Note on the other hand that one can switch the two
factors of S3 in S3 × S3 by an element of O(4) which sends x ∈ R4 = H
to its conjugate x̄ ∈ H = R4. With these understood, it suffices to note
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that every finite subgroup of SO(4) which acts freely on S3 is conjugate
in SO(4) to a subgroup of either φ(S1 × S3) or φ(S3 × S1), cf. Theorem
4.10 in [39].

Now suppose W is a smooth s-cobordism of elliptic 3-manifolds Y1, Y2.
By combining the aforementioned two facts, it is easily seen that for any
fixed orientation on W , one can choose a normal orientation near ∂W
such that with respect to the induced orientations on Y1, Y2, there ex-
ist orientation-preserving diffeomorphisms f1 : Y1 → S3/G, f2 : Y2 →
S3/G, where S3 ⊂ C2 and G is a finite subgroup of U(2) acting freely on
S3, and S3/G is given with the canonical orientation. Call the regular
neighborhood of a component of ∂W the positive end (resp. nega-
tive end) of W if it is identified by an orientation-preserving map with
(−1, 0] × (S3/G) (resp. [0, 1) × (S3/G)).

Lemma 1.4. By further applying a conjugation in SO(4) to the G-

action on the negative end if necessary, one can fix an identification

R4 = C2 = H and regard G canonically as a subgroup of U(2), such

that there exists a 2-form ω on W , which is self-dual and harmonic with

respect to some Riemannian metric, and has the following properties.

(1) There are constants λ+ > λ− > 0 for which ω = λ+ω0 on the

positive end and ω = λ−ω0 on the negative end. Here ω0 is

the standard symplectic form on C2/G (i.e., the descendant of√
−1
2

∑2
i=1 dzi ∧ dz̄i on C2 ), and the two ends of W are identified

via f1, f2 to the corresponding neighborhoods of S3/G in C2/G.

(2) The 2-form ω has only regular zeroes.

With this understood, let W̃ be the universal cover of W and ω̃ be

the pull-back of ω to W̃ . Then ∂W̃ = S3 ⊔ S3 and ω̃ equals a constant

multiple of the standard symplectic form on C2 near ∂W̃ . In particular,

both ends of W̃ are of contact type with respect to ω̃, with one end
convex and one end concave. As ω̃ is invariant under the Hopf fibration

S3 → S2, we can close up W̃ by collapsing each fiber of the Hopf fibration
on the convex end and capping off the concave end with the standard
symplectic 4-ball B4. The resulting smooth 4-manifold X is a homotopy
CP2, with a smoothly embedded 2-sphere S representing a generator of
H2(X; Z) and a self-dual harmonic form ω†, which is G-equivariant with
respect to the obvious G-action on X, has only regular zeroes, and obeys
ω†|S > 0.

If, furthermore, the universal cover W̃ is smoothly a product, then the

4-manifold X is diffeomorphic to CP2, with a symplectic form ω†
0 such

that ω†
0|S > 0. It is clear now that a positive solution to Problem 1.3,

when applied to X, would yield a symplectic structure on W , making
it into a symplectic s-cobordism. By Theorem 1.2, W is smoothly a
product.
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Remark 1.5. We add a remark here about the smooth s-cobordism
Wr with r = 1 in the examples of Cappell and Shaneson [8, 9]. Ac-
cording to Akbulut’s theorem in [2], the universal cover of Wr with
r = 1 is smoothly a product. Thus Conjecture 1.1 suggests that the
s-cobordism itself is smoothly a product. It would be interesting to find
out by direct means such as in Akbulut [2] whether Wr with r = 1 has
an exotic smooth structure (it is known to be topologically a product
by the classification of Cappell and Shaneson [6, 7]).

We now turn to the technical aspect of this paper.

Despite the tremendous progress over the last two decades, topology
of smooth 4-manifolds is still largely obscure as far as classification is
concerned. In particular, there is lack of effective methods for deter-
mining the diffeomorphism type of a 4-manifold in a given homotopy
class. However, in some rare cases and under an additional assumption
that the 4-manifold is symplectic, Gromov in [18] showed us how to
recover the diffeomorphism type using certain moduli space of pseudo-
holomorphic curves (if it is nonempty). Later, Taubes showed in [42]
that in Gromov’s argument, the existence of pseudoholomorphic curves
may be replaced by a condition on the Seiberg-Witten invariant of the
4-manifold, which is something more manageable. As a typical example
one obtains the following theorem.

Theorem 1.6 (Gromov-Taubes). Let X be a symplectic 4-manifold

with the rational homology of CP2. Then X is diffeomorphic to CP2 if

the Seiberg-Witten invariant of X at the 0-chamber vanishes, e.g., if X
has a metric of positive scalar curvature.

Our proof of Theorem 1.2, in a nutshell, is based on an orbifold analog
of the above theorem.

More precisely, in order to prove Theorem 1.2 we extend in this pa-
per (along with the earlier one [11]) Gromov’s pseudoholomorphic curve
techniques and Taubes’ work on the Seiberg-Witten invariants of sym-
plectic 4-manifolds to the case of 4-orbifolds. (See [12] for an exposi-
tion.) In particular, we prove the following theorem (see Theorem 2.2
for more details).

Theorem 1.7 (Orbifold Version of Taubes’ Theorem “SW ⇒ Gr”).
Let (X, ω) be a symplectic 4-orbifold. Suppose E is an orbifold com-

plex line bundle such that the corresponding Seiberg-Witten invariant

(in Taubes chamber when b+
2 (X) = 1) is nonzero. Then for any ω-

compatible almost complex structure J , the Poincaré dual of c1(E) is

represented by J-holomorphic curves in X.

Remark 1.8.

(1) The proof of Theorem 1.7 follows largely the proof of Taubes in
[42]. However, we would like to point out that Taubes’ proof
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involves in a few places Green’s function for the Laplacian ∆ =
d∗d and a covering argument by geodesic balls of uniform size.
This part of the proof requires the assumption that the injective
radius is uniformly bounded from below, which does not generalize
to the case of orbifolds straightforwardly. Some modification or
reformulation is needed here.

(2) The situation of the full version of Taubes’ theorem “SW = Gr”
is more complicated for 4-orbifolds. In fact, the proof of “SW =
Gr” relies on a regularity result (i.e., embeddedness) of the J-
holomorphic curves in Taubes’ theorem “SW ⇒ Gr” for a generic
almost complex structure. While this is generally no longer true
for 4-orbifolds, how “regular” the J-holomorphic curves in Theo-
rem 1.7 could be depends, in a very interesting way, on what types
of singularities the 4-orbifold has. We plan to explore this issue
on a future occasion.

(3) There are only a few examples of 4-manifolds which are symplec-
tic and have a metric of positive scalar curvature. Hence the
4-manifold in Theorem 1.6 rarely occurs. On the other hand,
there are numerous examples of symplectic 4-orbifolds which ad-
mit positive scalar curvature metrics. In fact, there is a class of
normal complex surfaces, called log Del Pezzo surfaces, which are
Kähler orbifolds with positive first Chern class. (By Yau’s theo-
rem, these surfaces admit positive Ricci curvature metrics.) Unlike
their smooth counterpart, log Del Pezzo surfaces occur in bewil-
dering abundance and complexity (cf. e.g., [23]). Recently, these
singular surfaces appeared in the construction of Sasakian-Einstein
metrics on certain 5-manifolds (including S5). In particular, the
following question arose naturally in this context: What are the
log Del Pezzo surfaces that appear as the quotient space of a fixed
point free S1-action on S5? (See Kollár [24].) We believe that the
techniques developed in this paper would be useful in answering
this question.

We end this section with an outline for the proof of Theorem 1.2.
First of all, note that the case where the elliptic 3-manifold is a lens
space was settled in [11] using a different method. Hence, in this paper,
we shall only consider the remaining cases, where the elliptic 3-manifold
is diffeomorphic to S3/G with G being a non-abelian subgroup of U(2).

Let W be a symplectic s-cobordism as in Theorem 1.2. Note that near
the boundary the symplectic form on W is standard, and is invariant
under the obvious Seifert fibration on the boundary. We close up W
by collapsing each fiber of the Seifert fibration on the convex end of
W and capping off the concave end with a standard symplectic cone
— a regular neighborhood of {0 ∈ C2}/G in the orbifold C2/G which
is given with the standard symplectic structure. The diffeomorphism
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type of W can be easily recovered from that of the resulting symplectic
4-orbifold X. In order to determine the diffeomorphism type of X,
we compare it with the “standard” 4-orbifold X0, which is B4/G with
boundary S3/G collapsed along the fibers of the Seifert fibration. More
concretely, we consider the space M of pseudoholomorphic maps into X,
which corresponds, under the obvious homotopy equivalence X → X0,
to the family of complex lines in B4/G with boundary collapsed. Using
the pseudoholomorphic curve theory of 4-orbifolds developed in [11], one
can easily show that X is diffeomorphic to X0 provided that M 6= ∅,
from which Theorem 1.2 follows.

Thus the bulk of the argument is devoted to proving that M 6= ∅.
We follow the usual strategy of applying Taubes’ theorem “SW ⇒ Gr”.
More concretely, the proof of M 6= ∅ consists of the following three
steps.

(1) Construct an orbifold complex line bundle E such that the ho-
mology class of a member of M is Poincaré dual to c1(E). Note
that when X is smooth, a complex line bundle is determined by
its Chern class in H2(X; Z). This is no longer true for orbifolds.
In particular, we have to construct E by hand, which is given in
Lemma 3.6. The explicit construction of E is also needed in order
to calculate the contribution of singular points of X to the dimen-
sion d(E) of the Seiberg-Witten moduli space corresponding to E,
which is a crucial factor in the proof. (See Lemma 3.8.)

(2) Show that the Seiberg-Witten invariant corresponding to E is zero
in the 0-chamber. This follows from the fact that the 4-orbifold X
contains a 2-suborbifold C0 which has a metric of positive curva-
ture and generates H2(X; Q). Here C0 is the image of the convex
boundary component of W in X. (See Lemma 3.7.)

(3) By a standard wall-crossing argument, with the fact that d(E) ≥ 0,
the Poincaré dual of c1(E) is represented by J-holomorphic curves
by Theorem 1.7. The main issue here is to show that there is a
component of the J-holomorphic curves which is the image of a
member of M, so that M is not empty. When c1(E) · c1(E) is
relatively small, one can show that this is indeed the case by using
the adjunction formula in [11]. The key observation is that, when
c1(E)·c1(E) is not small, the dimension d(E) of the Seiberg-Witten
moduli space is also considerably large, so that one may break the
J-holomorphic curves from Theorem 1.7 into smaller components
by requiring them to pass through a certain number (equaling half
of the dimension d(E)) of specified points. It turns out that one
of the resulting smaller components is the image of a member of
M, so that M is also nonempty in this case. This part of the
proof is the content of Lemma 3.9, which is the most delicate one,
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often involving a case-by-case analysis according to the type of the
group G in S3/G.

The organization of this paper is as follows. In §2 we briefly go over
the Seiberg-Witten-Taubes theory for 4-orbifolds, ending with a state-
ment of the orbifold version of Taubes’ theorem, whose proof is post-
poned to §4. The proof of the main result, Theorem 1.2, is given in §3.
There are three appendices. Appendix A contains a brief review of the
index theorem over orbifolds in Kawasaki [22], and a calculation for the
dimension of the relevant Seiberg-Witten moduli space. Appendix B is
concerned with some specific form of Green’s function for the Laplacian
∆ = d∗d on orbifolds, which is involved in the proof of Taubes’ theorem
for 4-orbifolds. In Appendix C, we give a proof of Lemma 1.4.

Acknowledgments. It is a great pleasure to acknowledge the gener-
ous help of SÃlawomir Kwasik on 3-manifold topology, the valuable con-
versations with him about 4-dimensional s-cobordism theory, and the
comments and suggestions after reading the draft version of this paper.
I am also very grateful to Cliff Taubes for the useful communications
regarding his work [40, 41, 42], and to Dagang Yang for helpful discus-
sions on some relevant aspects of Riemannian geometry. This work was
partially supported by NSF Grant DMS-0304956.

2. The Seiberg-Witten-Taubes theory for 4-orbifolds

In this section, we first go over the Seiberg-Witten theory for smooth
4-orbifolds, and then we extend Taubes’ work [40, 41, 42] on symplectic
4-manifolds to the orbifold setting. The discussion will be brief since
the theory is parallel to the one for smooth 4-manifolds.

Let X be an oriented smooth 4-orbifold. Given any Riemannian
metric on X, a Spin C structure is an orbifold principal Spin C(4) bundle
over X which descends to the orbifold principal SO(4) bundle of oriented
orthonormal frames under the canonical homomorphism Spin C(4) →
SO(4). There are two associated orbifold U(2) vector bundles (of rank
2) S+, S− with det(S+) = det(S−), and a Clifford multiplication which
maps T ∗X into the skew adjoint endomorphisms of S+ ⊕ S−.

The Seiberg-Witten equations associated to the Spin C structure (if
there is one) are equations for a pair (A, ψ), where A is a connection on
det(S+) and ψ is a section of S+. Recall that the Levi-Civita connection
together with A defines a covariant derivative ∇A on S+. On the other
hand, there are two maps σ : S+⊗T ∗X → S− and τ : End(S+) → Λ+⊗C
induced by the Clifford multiplication, with the latter being the adjoint
of c+ : Λ+ → End(S+), where Λ+ is the orbifold bundle of self-dual
2-forms. With these understood, the Seiberg-Witten equations read

DAψ = 0 and P+FA =
1

4
τ(ψ ⊗ ψ∗) + µ,



SMOOTH s-COBORDISMS OF ELLIPTIC 3-MANIFOLDS 423

where DA ≡ σ ◦ ∇A is the Dirac operator, P+ : Λ2T ∗X → Λ+ is the
orthogonal projection, and µ is a fixed, imaginary valued, self-dual 2-
form which is added in as a perturbation term.

The Seiberg-Witten equations are invariant under the gauge trans-
formations (A, ψ) 7→ (A − 2ϕ−1dϕ, ϕψ), where ϕ ∈ C∞(X; S1) are
circle valued smooth functions on X. The space of solutions modulo
gauge equivalence, denoted by M , is compact, and when b+

2 (X) ≥ 1
and nonempty, M is a smooth orientable manifold for a generic choice
of (g, µ), where g is the Riemannian metric and µ is the self-dual 2-form
of perturbations. Furthermore, M contains no classes of reducible solu-
tions (i.e., those with ψ ≡ 0), and letting M0 be the space of solutions
modulo the based gauge group, i.e., those ϕ ∈ C∞(X; S1) such that
ϕ(p0) = 1 for a fixed base point p0 ∈ X, then M0 → M defines a prin-
cipal S1-bundle. Let c be the first Chern class of M0 → M , d = dimM ,
and fix an orientation of M . Then the Seiberg-Witten invariant associ-
ated to the Spin C structure is defined as follows:

• When d < 0 or d = 2n + 1, the Seiberg-Witten invariant is zero.
• When d = 0, the Seiberg-Witten invariant is a signed sum of the

points in M .
• When d = 2n > 0, the Seiberg-Witten invariant equals cn[M ].

As in the case of smooth 4-manifolds, the Seiberg-Witten invariant of X
is well-defined when b+

2 (X) ≥ 2, depending only on the diffeomorphism
class of X (as orbifolds). Moreover, there is an involution on the set
of Spin C structures which preserves the Seiberg-Witten invariant up to
a change of sign. When b+

2 (X) = 1, there is a chamber structure and
the Seiberg-Witten invariant also depends on the chamber where the
pair (g, µ) is in. Moreover, the change of the Seiberg-Witten invariant
when crossing a wall of the chambers can be similarly analyzed as in
the smooth 4-manifold case.

For the purpose of this paper, we need the following wall-crossing
formula. Its proof is identical to the manifold case, and hence is omitted,
cf. e.g., [25].

Lemma 2.1. Suppose b1(X) = 0, b+
2 (X) = b2(X) = 1, and c1(S+) 6=

0. Then there are two chambers for the Seiberg-Witten invariant associ-

ated to the Spin C structure S+⊕S−: the 0-chamber where
∫
X

√
−1µ∧ωg

is sufficiently close to 0, and the ∞-chamber where
∫
X

√
−1µ∧ωg is suf-

ficiently close to +∞. Here ωg is a fixed harmonic 2-form with respect

to the Riemannian metric g such that c1(S+) · [ωg] > 0. Moreover, if the

dimension of the Seiberg-Witten moduli space M (which is always an

even number in this case) is non-negative, the Seiberg-Witten invariant

changes by ±1 when considered in the other chamber.

Now we focus on the case where X is a symplectic 4-orbifold. Let ω be
a symplectic form on X. We orient X by ω ∧ω, and fix a ω-compatible
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almost complex structure J . Then with respect to the associated Rie-
mannian metric g = ω(·, J ·), ω is self-dual with |ω| =

√
2. The set

of Spin C structures on X is nonempty. In fact, the almost complex
structure J gives rise to a canonical Spin C structure where the asso-
ciated orbifold U(2) bundles are S0

+ = I ⊕ K−1
X , S0

− = T 0,1X. Here
I is the trivial orbifold complex line bundle and KX is the canonical
bundle det(T 1,0X). Moreover, the set of Spin C structures is canon-
ically identified with the set of orbifold complex line bundles where
each orbifold complex line bundle E corresponds to a Spin C structure
whose associated orbifold U(2) bundles are SE

+ = E ⊕ (K−1
X ⊗ E) and

SE
− = T 0,1X ⊗ E. The involution on the set of Spin C structures which

preserves the Seiberg-Witten invariant up to a change of sign sends E
to KX ⊗ E−1.

As in the manifold case, there is a canonical (up to gauge equivalence)
connection A0 on K−1

X = det(S0
+) such that the fact dω = 0 implies

that DA0u0 = 0 for the section u0 ≡ 1 of I which is considered as the
section (u0, 0) in S0

+ = I ⊕ K−1
X . Furthermore, by fixing such an A0,

any connection A on det(SE
+) = K−1

X ⊗E2 is canonically determined by
a connection a on E. With these understood, there is a distinguished
family of the Seiberg-Witten equations on X, which is parametrized by
a real number r > 0 and is for a triple (a, α, β), where in the equtions,
the section ψ of SE

+ is written as ψ =
√

r(α, β) and the perturbation

term µ is taken to be −
√
−1(4−1rω) + P+FA0 . (Here α is a section

of E and β a section of K−1
X ⊗ E.) Note that when b+

2 (X) = 1, this
distinguished family of Seiberg-Witten equations (with r ≫ 0) belongs
to a specific chamber for the Seiberg-Witten invariant. This particular
chamber will be referred to as the Taubes chamber.

The following is the analog of the relevant theorems of Taubes in the
orbifold setting. (Its proof is postponed to §4.)

Theorem 2.2. Let (X, ω) be a symplectic 4-orbifold. Then the fol-

lowing are true.

(1) The Seiberg-Witten invariant associated to the canonical Spin C

structure equals ±1. (When b+
2 (X) = 1, the Seiberg-Witten in-

variant is in Taubes chamber.) Moreover, when b+
2 (X) ≥ 2, the

Seiberg-Witten invariant corresponding to the canonical bundle

KX equals ±1, and for any orbifold complex line bundle E, if

the Seiberg-Witten invariant corresponding to E is nonzero, then

E must satisfy

0 ≤ c1(E) · [ω] ≤ c1(KX) · [ω],

where E = I or E = KX when either equality holds.

(2) Let E be an orbifold complex line bundle. Suppose there is an

unbounded sequence of values for the parameter r such that the
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corresponding Seiberg-Witten equations have a solution (a, α, β).
Then for any ω-compatible almost complex structure J , there are

J-holomorphic curves C1, C2, . . . , Ck in X and positive integers

n1, n2, . . . , nk such that c1(E) =
∑k

i=1 niPD(Ci). Moreover, if a

subset Ω ⊂ X is contained in α−1(0) throughout, then Ω ⊂ ∪k
i=1Ci

also.

(Here PD(C) is the Poincaré dual of the J-holomorphic curve C. See §3
of [11] for the definition of J-holomorphic curves in an almost complex

4-orbifold and the definition of Poincaré dual of a J-holomorphic curve

in the 4-orbifold.)

Remark 2.3. There are two typical sources for the subset Ω in
the theorem. For the first one, suppose p ∈ X is an orbifold point
such that the isotropy group at p acts nontrivially on the fiber of E
at p. Then p ∈ α−1(0) for any solution (a, α, β), and consequently
p ∈ ∪k

i=1Ci. For the second one, suppose the Seiberg-Witten invari-
ant corresponding to E is nonzero and the dimension of the moduli
space M is d = 2n > 0. Then for any subset of distinct n points
p1, p2, . . . , pn ∈ X, and for any value of parameter r, there is a solution
(a, α, β) such that {p1, p2, . . . , pn} ⊂ α−1(0). Consequently, we may re-
quire the J-holomorphic curves C1, C2, . . . , Ck in the theorem to contain
any given subset of less than or equal to n points in this circumstance.
(The proof goes as follows. Observe that the map (a, α, β) 7→ α(p)
descends to a section sp of the complex line bundle associated to the
principal S1 bundle M0 → M , where M0 is the moduli space of so-
lutions modulo the based gauge group with base point p. Moreover,
there are submanifolds Σ1, Σ2, . . . ,Σn of codimension 2 in M such that
each Σi is Poincaré dual to the first Chern class c of M0 → M and is
arbitrarily close to s−1

pi
(0). Now if there were no solution (a, α, β) such

that {p1, p2, . . . , pn} ⊂ α−1(0), which means that s−1
p1

(0)∩ s−1
p2

(0)∩ · · ·∩
s−1
pn

(0) = ∅, then one would have Σ1 ∩ Σ2 ∩ · · · ∩ Σn = ∅. But this
contradicts the assumption that cn[M ], the Seiberg-Witten invariant, is
nonzero.)

3. Proof of the main result

We begin by recalling the classification of finite subgroups of GL(2, C)
without quasi-reflections, which is due to Brieskorn [5]. The following
is a list of the non-abelian ones up to conjugations in GL(2, C).

• 〈Z2m, Z2m; D̃n, D̃n〉, where m is odd, n ≥ 2, and m, n are relatively
prime.

• 〈Z4m, Z2m; D̃n, C2n〉, where m is even, n ≥ 2, and m, n are rela-
tively prime.

• 〈Z2m, Z2m; T̃ , T̃ 〉, where m and 6 are relatively prime.
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• 〈Z6m, Z2m; T̃ , D̃2〉, where m is odd and is divisible by 3.

• 〈Z2m, Z2m; Õ, Õ〉, where m and 6 are relatively prime.

• 〈Z2m, Z2m; Ĩ , Ĩ〉, where m and 30 are relatively prime.

Here Zk ⊂ ZL(2, C) is the cyclic subgroup of order k in the center of

GL(2, C), Ck ⊂ SU(2) is the cyclic subgroup of order k, and D̃n, T̃ , Õ,

Ĩ ⊂ SU(2) are the binary dihedral, tetrahedral, octahedral and icosahe-
dral groups of order 4n, 24, 48 and 120 respectively, which are the double
covers of the corresponding subgroups of SO(3) under the canonical ho-
momorphism SU(2) → SO(3). As for the notation 〈H1, N1; H2, N2〉,
it stands for the image under (h1, h2) 7→ h1h2 of the subgroup of
H1 × H2, which consists of pairs (h1, h2) such that the classes of h1

and h2 in H1/N1 and H2/N2 are equal under some fixed isomorphism
H1/N1

∼= H2/N2. (In the present case, the group does not depend on the
isomorphism H1/N1

∼= H2/N2, at least up to conjugations in GL(2, C).)
We shall assume throughout that the elliptic 3-manifolds under con-

sideration are diffeomorphic to S3/G for some finite subgroup G ⊂
GL(2, C) listed above. (Note that a finite subgroup G ⊂ U(2) acts
freely on S3 if and only if G is a subgroup of GL(2, C) containing no
quasi-reflections.)

Next we begin by collecting some preliminary but relevant informa-
tion about the elliptic 3-manifold S3/G. First of all, note that G contains
a cyclic subgroup of order 2m, Z2m, which is the subgroup that preserves
each fiber of the Hopf fibration on S3. Evidently, the Hopf fibration in-
duces a canonical Seifert fibration on S3/G, which can be obtained in
two steps as follows. First, quotient S3 and the Hopf fibration by the
subgroup Z2m to obtain the lens space L(2m, 1) and the S1-fibration on
it. Second, quotient L(2m, 1) and the S1-fibration by G/Z2m to obtain
S3/G and the Seifert fibration on S3/G. It follows immediately that the
Euler number of the Seifert fibration is

e =
|Z2m|

|G/Z2m| =
4m2

|G| .

The Seifert fibration has three singular fibers, and the normalized Seifert
invariant

(b, (a1, b1), (a2, b2), (a3, b3)), where 0 < bi < ai, ai, bi relatively prime,

can be determined from the Euler number e and the induced action of
G/Z2m on the base of the S1-fibration on L(2m, 1). We collect these
data in the following list.

• 〈Z2m, Z2m; D̃n, D̃n〉, 〈Z4m, Z2m; D̃n, C2n〉: (a1, a2, a3) = (2, 2, n),
and b, b1, b2 and b3 are given by b1 = b2 = 1, m = (b + 1)n + b3.

• 〈Z2m, Z2m; T̃ , T̃ 〉, 〈Z6m, Z2m; T̃ , D̃2〉: (a1, a2, a3) = (2, 3, 3), and
b, b1, b2 and b3 are given by b1 = 1, m = 6b + 3 + 2(b2 + b3).
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• 〈Z2m, Z2m; Õ, Õ〉: (a1, a2, a3) = (2, 3, 4), and b, b1, b2 and b3 are
given by b1 = 1, m = 12b + 6 + 4b2 + 3b3.

• 〈Z2m, Z2m; Ĩ , Ĩ〉: (a1, a2, a3) = (2, 3, 5), and b, b1, b2 and b3 are
given by b1 = 1, m = 30b + 15 + 10b2 + 6b3.

Now let ω0 =
√
−1
2

∑2
i=1 dzi ∧ dz̄i. We consider the Hamiltonian

S1-action on (C2, ω0) given by the complex multiplication, with the
Hamiltonian function given by µ(z1, z2) = 1

2(|z1|2 + |z2|2). It commutes

with the action of G on C2, hence a Hamiltonian S1-action on the sym-
plectic orbifold (C2, ω0)/G results, with the Hamiltonian function µ′

equaling 1
2m times the descendant of µ to C2/G. Given any r > 0, con-

sider the subset (µ′)−1([0, r]) ⊂ C2/G. According to [30], we can col-
lapse each fiber of the S1-action in (µ′)−1(r) ⊂ (µ′)−1([0, r]) to obtain a
closed symplectic 4-dimensional orbifold, which we denote by Xr. The
symplectic 4-orbifold Xr contains (µ′)−1([0, r)) as an open symplectic
suborbifold, and also contains a 2-dimensional symplectic suborbifold
C0 ≡ (µ′)−1(r)/S1. Note that (µ′)−1(r) → C0 is the canonical Seifert
fibration on S3/G we mentioned earlier. Moreover, the Euler number of
the normal bundle of C0 in Xr equals the Euler number of the Seifert
fibration on S3/G.

Suppose we are given with a symplectic s-cobordism W of the elliptic
3-manifold S3/G to itself. Fixing a sufficiently large r > 0, there are
0 < r1, r2 < r such that a neighborhood of the convex end of W is sym-
plectomorphic to a neighborhood of the boundary of (µ′)−1([0, r1]) and
a neighborhood of the concave end is symplectomorphic to a neighbor-
hood of the boundary of Xr \ (µ′)−1([0, r2)). We close up W by gluing
Xr \ (µ′)−1([0, r1)) to the convex end and gluing (µ′)−1([0, r2]) to the
concave end. We denote the resulting symplectic 4-orbifold by (X, ω).
Note that X inherits a 2-dimensional symplectic suborbifold C0 from
Xr \ (µ′)−1([0, r1)), whose normal bundle in X has an Euler number
equaling that of the Seifert fibration on S3/G. We fix a ω-compatible
almost complex structure J on X such that C0 is J-holomorphic and J
is integrable in a neighborhood of each singular point of X. (Note that
the latter is possible because of the equivariant Darboux’ theorem.)

The 4-orbifold X has 4 singular points. One of them, denoted by
p0, is inherited from (µ′)−1([0, r2]) and has a neighborhod modeled by
that of {0 ∈ C2}/G. The other three, denoted by p1, p2 and p3, are all
contained in C0, and are of type (a1, b1), (a2, b2) and (a3, b3) respectively,
where {(ai, bi) | i = 1, 2, 3} is part of the normalized Seifert invariant
of the Seifert fibration on S3/G. (Here a singular point is said of type
(a, b) if the isotropy group is cyclic of order a and the action on a
local uniformizing system is of weight (1, b).) The Betti numbers of X
are b1(X) = b3(X) = 0 and b2(X) = b+

2 (X) = 1. In fact, we have
H2(X; Q) = Q · [C0], and using the intersection product C0 ·C0, we may
identify H2(X; Q) with H2(X; Q) = Q · [C0] canonically. Finally, using
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the normalized Seifert invariant and the adjunction formula (cf. [11],
Theorem 3.1), we obtain

C0 · C0 =
4m2

|G| and c1(KX) · C0 = −4m(m + 1)

|G| ,

where KX is the canonical bundle of (X, J), and m is one half of the
order of the subgroup Z2m of G which preserves each fiber of the Hopf
fibration.

With the preceding understood, we now introduce the relevant moduli
space of pseudoholomorphic curves. To this end, let Σ be the orbifold
Riemann sphere of one orbifold point z∞ = ∞ of order 2m. (Recall
that 2m is the order of the cyclic subgroup Z2m ⊂ G which preserves
each fiber of the Hopf fibration.) Note that Σ has a unique complex
structure. The group of automorphisms of Σ, denoted by G, is easily
identified with the group of linear translations on C.

We shall consider the space M of J-holomorphic maps f : Σ → X
such that

(1) The homology class [f(Σ)] ∈ H2(X; Z) obeys [f(Σ)] · C0 = 1.
(2) f(z∞) = p0, and in a local representative (f∞, ρ∞) of f at z∞,

ρ∞(µ2m) = µ2mI ≡
(

µ2m 0
0 µ2m

)
∈ Z2m, where µk ≡ exp(

√
−1

2π

k
).

Here the notion of maps between orbifolds is as defined in [10]. For
the terminology used in this paper in connection with J-holomorphic
maps or curves, the reader is specially referred to the earlier paper [11].
With these understood, we remark that G acts on M by reparametriza-
tion.

The following proposition is the central technical result of this section.

Proposition 3.1. The space M is nonempty, and is a smooth 6-
dimensional manifold. Moreover, the quotient space M/G is compact.

The proof of Proposition 3.1 will be given through a sequence of
lemmas. We begin with the Fredholm theory for pseudoholomorphic
curves in a symplectic 4-orbifold (X, ω).

Let (Σ, j) be an orbifold Riemann surface with a fixed complex struc-
ture j. Consider the space of Ck maps [Σ; X] from Σ to X for some fixed,
sufficiently large integer k > 0. By Theorem 1.4 in Part I of [10], the
space [Σ; X] is a smooth Banach orbifold, which we may simply assume
to be a smooth Banach manifold for the sake of technical simplicity,
because the relevant subset M in the present case is actually contained
in the smooth part of [Σ;X]. There is a Banach bundle E → [Σ; X],
with a Fredholm section L defined by

L(f) = df + J ◦ df ◦ j, ∀f ∈ [Σ; X].
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The zero locus L−1(0) is the set of J-holomorphic maps from (Σ, j) into
X. In the present case, M is contained in L−1(0) as an open subset
with respect to the induced topology.

The index of the linearization DL at f ∈ L−1(0) can be computed
using the index theorem of Kawasaki [22] for elliptic operators on orb-
ifolds, see Appendix A for a relevant review. To state the general index
formula for DL (cf. Lemma 3.2.4 of [14]), let (Σ, j) be an orbifold Rie-
mann surface with orbifold points zi of order mi, where i = 1, 2, . . . , l,
and let f : Σ → X be a J-holomorphic map from (Σ, j) into an almost
complex 4-orbifold (X, J). If a local representative of f at each zi is
given by (fi, ρi) where ρi(µmi) acts on a local uniformizing system at
f(zi) by ρi(µmi) · (z1, z2) = (µ

mi,1
mi z1, µ

mi,2
mi z2), with 0 ≤ mi,1, mi,2 < mi

(here µk ≡ exp(
√
−12π

k )), then the index of DL at f is 2d with

d = c1(TX) · [f(Σ)] + 2 − 2g|Σ| −
l∑

i=1

mi,1 + mi,2

mi
,

where g|Σ| is the genus of the underlying Riemann surface of Σ. In the
present case, for each f ∈ M, one half of the index of DL at f is

d =
m + 1

m
+ 2 − 1 + 1

2m
= 3.

Thus M is a 6-dimensional smooth manifold provided that it is non-
empty and L is transversal to the zero section at M.

Transversality of the Fredholm section L at its zero locus can be
addressed in a similar fashion as in the case when X is a manifold. For
the purpose of this paper, we shall use the following regularity criterion,
which is the orbifold analog of Lemma 3.3.3 in [35].

Lemma 3.2. Let f : Σ → X be a J-holomorphic map from an orb-

ifold Riemann surface into an almost complex 4-orbifold. Suppose at

each z ∈ Σ, the map fz in a local representative (fz, ρz) of f at z is em-

bedded. Then f is a smooth point in the space of J-holomorphic maps

from Σ into X provided that c1(TΣ)(Σ) > 0 and c1(TX) · [f(Σ)] > 0.

Proof. Let E → Σ be the pull back of TX via f . Since fz is embedded
for each z ∈ Σ, TΣ is a subbundle of E, and one has the decomposition
E = TΣ ⊕ (E/TΣ). Then a similar argument as in Lemma 3.3.3 of
[35] shows that DL is surjective at f if both (−c1(TΣ) + c1(KΣ))(Σ)
and (−c1(E/TΣ)+ c1(KΣ))(Σ) are negative. (Here KΣ is the canonical
bundle of Σ.) The lemma follows easily. q.e.d.

Note that the conditions c1(TΣ)(Σ) > 0 and c1(TX) · [f(Σ)] > 0 in
the previous lemma are met by each f ∈ M: c1(TΣ)(Σ) = 1 + 1

2m > 0,

and c1(TX) · [f(Σ)] = m+1
m > 0. Thus for the smoothness of M, it

suffices to verify that for each f ∈ M, fz is embedded, ∀z ∈ Σ. This
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condition is verified in the next lemma. But in order to state the lemma,
it proves convenient to introduce the following:

Definition. Let C be a J-holomorphic curve in X which contains
the singular point p0, and is parametrized by f : Σ → X. We call C a
quasi-suborbifold if the following are met.

• f induces a homeomorphism between the underlying Riemann sur-
face and C,

• f is embedded in the complement of the singular points in X,
• a local representative (fz, ρz) of f at each z ∈ Σ where f(z) is a

singular point obeys
(i) fz is embedded,
(ii) ρz is isomorphic if f(z) 6= p0, and if f(z) = p0, ρz (which is

injective by definition) maps onto the maximal subgroup of G
that fixes the tangent space of Im fz at the inverse image of p0

in the local uniformizing system at p0.

We remark that in terms of the adjunction formula (cf. Theorem 3.1
of [11])

g(C) = gΣ +
∑

{[z,z′]|z 6=z′,f(z)=f(z′)}
k[z,z′] +

∑

z∈Σ

kz,

a J-holomorphic curve C is a quasi-suborbifold if and only if k[z,z′] = 0

for all [z, z′], kz = 0 for any z such that f(z) 6= p0, and kz0 = 1
2m0

( |G|
m0

−1)

where f(z0) = p0. Here m0 is the order of z0 ∈ Σ. (Compare Corollary

3.3 in [11], and note that 1
2m0

( |G|
m0

− 1) is the least of the possible values

of kz0 .)
Now in the lemma below, we describe what the members of M look

like.

Lemma 3.3. Each f ∈ M is either a (multiplicity-one) parametriza-

tion of a J-holomorphic quasi-suborbifold intersecting C0 transversely at

a smooth point, or a multiply covered map onto a J-holomorphic quasi-

suborbifold intersecting C0 at a singular point, such that the order of the

singular point equals the multiplicity of f . Moreover, even in the latter

case, the map fz in a local representative (fz, ρz) of f at z is embedded

for all z ∈ Σ.

Proof. Set C ≡ Im f . We first consider the case where f is not
multiply covered. Under this assumption, we have

C · C =
|G|
4m2

and c1(KX) · C = −m + 1

m
,

which implies that the virtual genus

g(C) =
1

2

( |G|
4m2

− m + 1

m

)
+ 1 =

|G|
8m2

− m + 1

2m
+ 1.
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On the other hand, the orbifold genus gΣ = 1
2(1 − 1

2m) and kz∞ ≥
1

4m( |G|
2m − 1). It follows easily from the adjunction formula that C is a

quasi-suborbifold and C intersects C0 transversely at a smooth point.
Now consider the case where f is multiply covered. Let s > 1 be the

multiplicity of f . Clearly C, C0 are distinct, hence by the intersection
formula (cf. [11], Theorem 3.2),

1

s
= C · C0 =

3∑

i=1

ki

ai
,

where ai is the order of the singular point pi, and ki ≥ 0 is an integer
which is nonzero if and only if pi ∈ C ∩C0. It follows immediately that
s ≤ ai

ki
if ki 6= 0. From the possible values of (a1, a2, a3), one can easily

see that C intersects C0 at exactly one singular point.
Suppose C, C0 intersect at pi for some i = 1, 2 or 3. Let f̂ : Σ̂ → X

be a (multiplicity-one) parametrization of C by a J-holomorphic map

such that f factors through a map ϕ : Σ → Σ̂ to f̂ , and let f̂(ẑ0) = pi

for some ẑ0 ∈ Σ̂ whose order is denoted by m̂0. Set ẑ∞ ≡ ϕ(z∞). First,

by the intersection formula, we get 1
s ≥ ai/m̂0

ai
= 1

m̂0
. Hence s ≤ m̂0. On

the other hand, let z0 ∈ Σ be an inverse image of ẑ0 under ϕ. Then m̂0

is no greater than the degree of the branched covering ϕ at z0, which is
no greater than the total multiplicity s. This implies that s = m̂0. Now
we look at the point ẑ∞. Let m∞ be the degree of the branched covering
ϕ at z∞. Then (1) the order of ẑ∞, denoted by m̂∞, is no greater than
2mm∞, and (2) m∞ ≤ s = m̂0. In particular, m̂∞ ≤ 2mm̂0.

Now in the adjunction formula for C, the virtual genus

g(C) =
|G|

8m2m̂2
0

− m + 1

2mm̂0
+ 1,

and on the right hand side,

gΣ̂ ≥ 1

2

(
1 − 1

m̂0

)
+

1

2

(
1 − 1

m̂∞

)
,

kẑ0 ≥ 1

2m̂0

(
ai

m̂0
− 1

)
,

kẑ∞ ≥ 1

2m̂∞

( |G|
m̂∞

− 1

)
.

If 2mm̂0 > m̂∞, then the adjunction formula for C gives rise to

|G|
4mm̂0

< 1,

which is impossible because

1 ≤ |G|
4mai

<
|G|

4mm̂0
.
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Hence 2mm̂0 = m̂∞. With this in hand, the adjunction formula further
implies that ai = m̂0 and C is a quasi-suborbifold, and the multiplicity
of f equals the order of the singular point where C, C0 intersect.

It remains to check that fz is embedded for all z ∈ Σ. But this
follows readily from (1) C is a quasi-suborbifold, and (2) ϕ : Σ → Σ̂ is
a cyclic branched covering of degree s, branched at z0, z∞, and m̂0 = s,
m̂∞ = 2ms. q.e.d.

Up to this point, we see that M is a 6-dimensional smooth manifold
provided that it is nonempty. Next we show

Lemma 3.4. The quotient space M/G is compact.

Proof. According to the orbifold version of the Gromov compact-
ness theorem proved in [14], for any sequence of maps fn ∈ M, there
exists a subsequence which converges to a cusp-curve after suitable
reparametrization. More concretely, after reparametrization if neces-
sary, there is a subsequence of fn, which is still denoted by fn for
simplicity, and there are at most finitely many simple closed loops
γ1, . . . , γl ⊂ Σ containing no orbifold points, and a nodal orbifold Rie-
mann surface Σ′ = ∪ωΣω obtained by collapsing γ1, . . . , γl, and a J-
holomorphic map f : Σ′ → X, such that (1) fn converges in C∞ to
f on any given compact subset in the complement of γ1, . . . , γl, (2)
[f(Σ′)] = [fn(Σ)] ∈ H2(X; Q), (3) if zω ∈ Σω, zν ∈ Σν are two dis-
tinct points (here Σν = Σω is allowed) with orders mω, mν respectively,
such that zω, zν are the image of the same simple closed loop collapsed
under Σ → Σ′, then mω = mν , and there exist local representatives
(fω, ρω), (fν , ρν) of f at zω, zν , which obey ρω(µmω) = ρν(µmν )−1, and
(4) if f is constant over a component Σν of Σ′, then either the under-
lying surface of Σν has nonzero genus, or Σν contains at least 3 special
points, where a special point is either an orbifold point inherited from
Σ or any point resulted from collapsing a simple closed loop in Σ. Re-
garding the last point about constant components, since in the present
case Σ is an orbifold Riemann sphere with only one orbifold point z∞,
any constant component in the limiting cusp-curve must be obtained by
collapsing at least 2 simple closed loops, and if z∞ is not contained, by
collapsing at least 3 simple closed loops.

With the preceding understood, note that there are two possibilities:
(1) none of the simple closed loops {γi} are null-homotopic in the com-
plement of z0, z∞ in Σ where fn(z0) ∈ C0 and fn(z∞) = p0, or (2) there
is a simple closed loop γ ∈ {γi} such that γ bounds a disc D in the
complement of z0, z∞ in Σ, such that D contains none of the simple
closed loops γ1, . . . , γl.

Case (1). Under this assumption, it is easily seen that there are no
constant components in the limiting cusp-curve. Moreover, there is a



SMOOTH s-COBORDISMS OF ELLIPTIC 3-MANIFOLDS 433

component Σω such that fω ≡ f |Σω : Σω → X obeys the following
conditions:

• There exists an orbifold point w∞ ∈ Σω of order 2m inherited
from Σ (i.e., w∞ = z∞) such that fω(w∞) = p0, and a local repre-
sentative of fω at w∞ obeys the second condition in the definition
of M.

• f−1
ω (C0) consists of only one point w0, which is necessarily ob-

tained from collapsing one of the simple closed loops γ1, . . . , γl.
• All points in Σω \ {w0, w∞} are regular, i.e., of order 1 in Σω.

First of all, we show that w0 is actually a regular point of Σω. In order
to see this, we only need to consider the case where fω(w0) is a singular
point, say pi, for some i = 1, 2 or 3. (Note that w0 is automatically a
regular point if fω(w0) is a smooth point.) Let (w1, w2) be holomorphic
coordinates on a local uniformizing system at pi, where C0 is locally
given by w2 = 0, and the singular fiber of the Seifert fibration at pi is
defined by w1 = 0, |w2| ≡ constant. The local Zai-action is given by
µai · (w1, w2) = (µaiw1, µ

bi
ai

w2). (Here (ai, bi) is the normalized Seifert
invariant at pi.) Let m0 ≥ 1 be the order of w0, and let (f0, ρ0) be
a local representative of fω at w0, where ρ0(µm0) = µr

m0
with 0 ≤

r < m0, r, m0 relatively prime, and f0(w) = (c(wl1 + · · · ), wl2 + · · · )
(note that Im fω 6= C0). By a Zm0-equivariant change of coordinates

w′ ≡ w(1+ · · · )1/l2 near w = 0, we may simply assume f0(w) = (c(wl1 +
· · · ), wl2). Furthermore, l2 ≡ bir (mod m0), so that l2, m0 are relatively
prime. With these understood, note that the image of the link of w0

in Σω under fω is parametrized in the local uniformizing system by
f0(ǫ exp(

√
−1 2π

m0
θ)), 0 ≤ θ ≤ 1. Through ft(w) ≡ (c(1 − t)(wl1 +

· · · ), wl2), 0 ≤ t ≤ 1, it is homotopic to (0, ǫl2 exp(
√
−12πl2

m0
θ)) in the

complement of C0. It follows easily that the link of w0 in Σω under fω

is homotopic in S3/G to l2ai
m0

times of the singular fiber of the Seifert

fibration at pi, whose homotopy class in π1(S
3/G) = G has order 2mai.

On the other hand, the link of w0 in Σω under fω is homotopic in W
to the image of the inverse of the link of w∞ in Σω under fω. The
latter’s homotopy class in G is µ−1

2mI ∈ Z2m, which implies that the
former’s homotopy class is an element of order 2m in Z2m (in fact, it is

µ−1
2mI ∈ Z2m, cf. Lemma 3.5 below). This gives l2ai

m0
· 2m = 2mail for

some l > 0, which contradicts the fact that l2, m0 are relatiely prime
unless m0 = 1. Therefore w0 is a regular point of Σω.

Now note that fω : Σω → X satisfies all the conditions in the defini-
tion of M except for the first one, i.e., [fω(Σω)] ·C0 = 1, which we prove

next. To see this, let f̂ω : Σ̂ω → X be the multiplicity-one parametriza-
tion of Cω ≡ Im fω obtained by factoring fω through a branched cov-
ering map ϕ : Σω → Σ̂ω of degree s. (If fω is not multiply covered, we

simply let Σ̂ω ≡ Σω, f̂ω ≡ fω, and s = 1.) Set ŵ0 ≡ ϕ(w0) ∈ Σ̂ω, and
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let m̂0 ≥ 1 be the order of ŵ0 in Σ̂ω. Then by the intersection formula,
we get

1

s
≥ 1

s
· [fω(Σω)] · C0 = Cω · C0 ≥ ai/m̂0

ai
=

1

m̂0
.

Hence s ≤ m̂0. On the other hand, m̂0 is no greater than the degree
of the branched covering ϕ at w0, which is no greater than the total
multiplicity s. This implies that s = m̂0 and Cω · C0 = 1

s . Hence
[fω(Σω)] ·C0 = s ·Cω ·C0 = 1. It is clear that f = fω ∈ M in this case.

Case (2). Let Σω be the component obtained from the disc D that
γ bounds, and let z0 ∈ Σω be the point which is the image of γ under
D → Σω. Note that f is nonconstant over Σω. Set fω ≡ f |Σω and
Cω ≡ Im fω. Since fn(D) is disjoint from C0, either f−1

ω (C0) consists
of only one point z0, or Cω = C0. However, the latter case can be ruled
out for the following reason. Note that Σω contains at most one orbifold
point, and hence is simply connected as an orbifold. Consequently, the

degree of the map fω : Σω → Cω = C0 is at least |G|
2m , which is the

order of G/Z2m, the orbifold fundamental group of C0. It follows that

[fω(Σω)] · C0 ≥ |G|
2m · 4m2

|G| = 2m > 1, which is a contradiction.

Let f̂ω : Σ̂ω → X be the multiplicity-one parametrization of Cω

obtained by factoring fω through a map ϕ : Σω → Σ̂ω of degree s. (If

fω is not multiply covered, we simply let Σ̂ω ≡ Σω, f̂ω ≡ fω, and s = 1.)

Set ẑ0 ≡ ϕ(z0) ∈ Σ̂ω, and let m0 be the order of ẑ0 in Σ̂ω.
Note that in this case Σω is necessarily not the only component of Σ′

over which f is nonconstant. Consequently Cω ·C0 < 1, and fω(z0) is a
singular point of X on C0, say pi for some i = 1, 2 or 3. Let z1, z2 be the
holomorphic coordinates on a local uniformizing system at pi, with local
group action given by µai ·(z1, z2) = (µaiz1, µ

bi
ai

z2), such that C0 is locally

given by z2 = 0 and the singular fiber of the Seifert fibration on S3/G
at pi is given by z1 = 0, |z2| ≡ constant. (Here (ai, bi) is the normalized

Seifert invariant at pi.) Let (f0, ρ0) be a local representative of f̂ω at ẑ0,
where we write f0(z) = (c(zl1 + · · · ), zl2) (note that Cω 6= C0). Then by
the intersection formula, we have

1

s
≥ Cω · C0 =

(ai/m0) · l2
ai

=
l2
m0

.

On the other hand, by a similar argument, we see that the link of pi in
Cω is homotopic to l2ai

m0
times the singular fiber of the Seifert fibration

at pi, whose homotopy class in G is of order 2mai. Since S3/G → W is
a homotopy equivalence, and fn(γ), which bounds a disc fn(D) ⊂ W ,

is homotopic to s times the link of pi in Cω, we have s · l2ai
m0

= 2mail

for some l > 0. But this contradicts the inequality 1
s ≥ l2

m0
we obtained

earlier.
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Hence Case (2) is impossible, and therefore the quotient space M/G
is compact. q.e.d.

It remains to show, in the proof of Proposition 3.1, that M is non-
empty. This will be achieved in the following three steps:

(1) Construct an orbifold complex line bundle E → X such that c1(E)·
C0 = 1.

(2) Show that the associated Seiberg-Witten invariant is nonzero in
Taubes chamber.

(3) Apply Theorem 2.2 (2) to produce a J-holomorphic curve C such
that C = Im f for some f ∈ M.

For Step (1), we derive a preliminary lemma first. To state the lemma,
let h : S3/G → S3/G be the simple homotopy equivalence induced by

the s-cobordism W . Then there is a pair (ĥ, ρ̂) : (S3, G) → (S3, G)

where ĥ : S3 → S3 is ρ̂-equivariant and descends to h : S3/G → S3/G.

The pair (ĥ, ρ̂) is unique up to conjugation by an element of G.

Lemma 3.5. The restriction of ρ̂ to Z2m ⊂ G is the identity map.

Proof. Recall the double cover φ : S3 × S3 → SO(4), which is defined
by sending (q1, q2) ∈ S3 × S3 to the matrix in SO(4) that sends x ∈
R4 = H to q1xq−1

2 ∈ H = R4. Regard G as a subgroup of φ(S1 × S3).
Note that as a simple homotopy equivalence, h : S3/G → S3/G is

homotopic to a diffeomorphism (cf. [44], and for a proof, [29]). On the
other hand, any diffeomorphism between elliptic 3-manifolds is homo-
topic to an isometry, cf. e.g., [34], hence h is homotopic to an isometry.

It follows easily that ĥ : S3 → S3 is ρ̂-equivariantly homotopic to an
isometry ξ ∈ SO(4). In particular, ρ̂(g) = ξgξ−1.

Now let ξ = φ(q, q′) and g = φ(x, y). Then ρ̂(g) = φ(qxq−1, q′y(q′)−1).
Note that for any g ∈ Z2m ⊂ G, g = φ(x, 1) with x = (µl

2m, 0),
0 ≤ l ≤ 2m − 1. If we let q = (w1, w2), then

qxq−1 = (|w1|2µl
2m + |w2|2µ−l

2m, w1w2(µ
−l
2m − µl

2m)).

Note that when m = 1, qxq−1 = x so that the lemma holds trivially.
For the case where m 6= 1, the fact that qxq−1 ∈ S1 implies that either
w1 or w2 must be zero. Clearly, for any g ∈ Z2m, ρ̂(g) = g iff w2 = 0
and ρ̂(g) = g−1 iff w1 = 0.

It remains to show that ρ̂(g) = g−1, ∀g ∈ Z2m, is impossible. Here

we need to use the assumption that W is symplectic. Let W̃ be the
universal cover of W . Note that the canonical bundle KfW

is trivial.

This gives rise to a representation θ : G = π1(W ) → S1, which obeys
θ = θ ◦ ρ̂. Let g ∈ Z2m be the matrix µ2mI. Then θ(g) = µ2

2m, which
implies µm = µ−1

m if ρ̂(g) = g−1. But this is impossible unless m = 2,

which occurs only when G = 〈Z4m, Z2m; D̃n, C2n〉. But even in this
case, ρ̂(g) 6= g−1 because otherwise, we would have q = (0, w2), which
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implies that ρ̂(µ4mα) = µ−1
4mq′α(q′)−1 for any α ∈ D̃n whose class is

nonzero in D̃n/C2n. But θ(µ4mα) = µ2m and θ(µ−1
4mq′α(q′)−1) = µ−1

2m,
which contradicts θ = θ ◦ ρ̂ and m = 2. Hence the lemma. q.e.d.

Now back to Step (1) of the proof. In the following lemma, we give
an explicit construction of the orbifold complex line bundle E.

Lemma 3.6. There exists a canonically defined orbifold complex line

bundle E → X such that c1(E) · C0 = 1.

Proof. Note that X is decomposed as N
⋃

W
⋃

N0, where N is a
regular neighborhood of C0, which is diffeomorphic to the unit disc
bundle associated to the Seifert fibration on S3/G, and N0 = B4/G is
a regular neighborhood of the singular point p0. The orbifold complex
line bundle E will be defined by patching together an orbifold complex
line bundle on each of N, W and N0, which agree on the intersections.

The bundle on N is defined as follows. Take the complex line bundle
on the complement of the singular points p1, p2 and p3 in N , which is
Poincaré dual to a regular fiber of N . (The regular fibers of N are so
oriented that the intersection with C0 has a + sign.) This bundle is
trivial on the link of each pi in N , so we can simply extend it over to
the whole N trivially to obtain the orbifold complex line bundle on N .

The restriction of the bundle on N to ∂N = S3/G is Poincaré dual
to a regular fiber of the Seifert fibration. By Lemma 3.5, there exists a
map ψ : S1 × [0, 1] → W such that ψ(S1 × {0}) is a regular fiber of the
Seifert fibration on ∂N = S3/G, and ψ(S1 × {1}) is the image of the
boundary of a generic unit complex linear disc in B4 under the quotient
map ∂B4 = S3 → S3/G. We let the bundle on W be the Poincaré dual
of ψ(S1 × [0, 1]).

It remains to construct an orbifold complex line bundle E0 on N0 =
B4/G such that the restriction of E0 on ∂B4/G is Poincaré dual to
ψ(S1 ×{1}). The resulting orbifold complex line bundle E → X clearly
obeys c1(E) · C0 = 1.

To this end, note that given any representation ρ : G → S1, there
exists an orbifold complex line bundle on N0, which is given by the
projection (B4×C, G) → (B4, G) on the uniformizing system, where the
action of G on B4 × C is given by g · (z, w) = (gz, ρ(g)w), ∀(z, w) ∈
B4 ×C, g ∈ G. With this understood, the definition of E0 → N0 for the
various cases of G is given below.

• 〈Z2m, Z2m; D̃n, D̃n〉: ρ(h) = µ2n
2m, ρ(x) = (−1)n, and ρ(y) = 1,

where h = µ2mI ∈ Z2m, and x, y are the generators of D̃n with
relations x2 = yn = (xy)2 = −1.

• 〈Z4m, Z2m; D̃n, C2n〉: ρ(h2) = µ2n
2m, ρ(hx) = (−µ2m)n, ρ(y) = 1,

where h = µ4mI ∈ Z4m, and x, y are the generators of D̃n with
relations x2 = yn = (xy)2 = −1.
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• 〈Z2m, Z2m; T̃ , T̃ 〉: ρ(h) = µ12
2m, ρ(x) = 1, and ρ(y) = 1, where

h = µ2mI ∈ Z2m, and x, y are the generators of T̃ with relations
x2 = y3 = (xy)3 = −1.

• 〈Z6m, Z2m; T̃ , D̃2〉: ρ(h3) = µ12
2m, ρ(x) = 1, and ρ(hy) = µ4

2m,

where h = µ6mI ∈ Z6m, and x, y are the generators of T̃ with
relations x2 = y3 = (xy)3 = −1.

• 〈Z2m, Z2m; Õ, Õ〉: ρ(h) = µ24
2m, ρ(x) = 1, and ρ(y) = 1, where

h = µ2mI ∈ Z2m, and x, y are the generators of Õ with relations
x2 = y4 = (xy)3 = −1.

• 〈Z2m, Z2m; Ĩ , Ĩ〉: ρ(h) = µ60
2m, ρ(x) = 1, and ρ(y) = 1, where

h = µ2mI ∈ Z2m, and x, y are the generators of Ĩ with relations
x2 = y5 = (xy)3 = −1.

The verification that the restriction of E0 → N0 to ∂N0 is Poincaré
dual to ψ(S1×{1}) goes as follows. Fixing a generic vector u = (u1, u2) ∈
C2, we let fu be the linear function on C2 defined by

fu(z1, z2) ≡ u1z1 + u2z2.

The action of g ∈ G as a 2× 2 complex valued matrix on fu is given by
g∗fu = fug, where ug = (u1, u2)g is the row vector obtained from mul-
tiplying by g on the right. With this understood, consider the epimor-
phism π : G → Γ ≡ G/Z2m, where Γ is isomorphic to the corresponding
subgroup (dihedral, tetrahedral, octahedral, or icosahedral) in SO(3).
For any γ ∈ Γ, we fix a γ̂ ∈ G such that π(γ̂) = γ. Then consider the
product

f(z) ≡
∏

γ∈Γ

fuγ̂(z), ∀z ∈ C2.

The claim is that for any g ∈ G, z ∈ C2, f(gz) = ρ(g)f(z), so that
z 7→ (z, f(z)) is an equivariant section of the G-bundle B4 × C → B4,
which descends to a section s of the orbifold complex line bundle E0 →
N0. The zero locus of s in ∂N0 is the image of f−1

u (0) ∩ S3 under S3 →
S3/G = ∂N0, which can be so arranged that it is actually ψ(S1 × {1}).

So it remains to verify the claim that for any g ∈ G, z ∈ C2, f(gz) =
ρ(g)f(z). This is elementary but tedious, so we shall only illustrate it
by a simple example but also with some general remarks. The details
for all other cases are left out to the reader.

Consider the case G = 〈Z2m, Z2m; D̃3, D̃3〉. The dihedral group D3 is
generated by α, β with relations α2 = β3 = (αβ)2 = 1, while the binary

dihedral group D̃3 is generated by x, y with relations x2 = y3 = (xy)2 =

−1. Clearly x 7→ α, y 7→ β under D̃3 → D3. Set h ≡ µ2mI ∈ Z2m. In
this case, we may take

f ≡ fufuyfuy2fuxfuyxfuy2x.
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One can easily check that f(hz) = µ6
2mf(z),

f(xz) = fux(z)fuyx(z)fuy2x(z)fux2(z)fuyx2(z)fuy2x2(z) = (−1)3f(z),

and similarly f(yz) = (−1)2f(z) = f(z).
As for the general remarks, the dihedral case can be similarly handled

as in the above example. For the tetrahedral case, the order of the group
Γ = G/Z2m is 12, so it is not terribly complicated. For the octahedral
case, the trick is to fix an explicit identification between the octahedral
group O and the symmetric group S4, e.g., α 7→ (12), β 7→ (1234) where
α, β are generators of O with relations α2 = β4 = (αβ)3 = 1, and use
the identification between O and S4 to guide the manipulation of the

words generated by α̂ and β̂, where α̂, β̂ ∈ Õ are some fixed choice

of elements which obey α̂ 7→ α, β̂ 7→ β under Õ → O. The case of
the icosahedral group is actually quite simple. The observation is that

H1(S
3/Ĩ; Z) is trivial, so that any representation ρ′ : G → S1 obtained

from f(gz) = ρ′(g)f(z) has to satisfy ρ′(g) = 1, ∀g ∈ Ĩ, because ρ′

factors through H1(S
3/G; Z). q.e.d.

Next for Step (2), we show that the Seiberg-Witten invariant corre-
sponding to E is nonzero in Taubes chamber. First of all, we observe
the following lemma.

Lemma 3.7. The Seiberg-Witten invariant corresponding to E is

zero in the 0-chamber.

Proof. Decompose X as X1
⋃

X2 where X1 is a regular neighborhood
of C0. Note that X1 is diffeomorphic to the unit disc bundle associated
to the Seifert fibration on S3/G.

The lemma follows readily from the fact that X1 has a Riemannian
metric of positive scalar curvature which is a product metric near ∂X1.
Accept this fact momentarily, and suppose that the Seiberg-Witten in-
variant is nonzero in the 0-chamber. Then one can stretch the neck
along ∂X1 = ∂X2, such that any solution of the Seiberg-Witten equa-
tions on X will yield a solution (A, ψ) on X̂1 ≡ X1 ∪ [0,−∞) × ∂X1,
where |ψ| converges to zero exponentially fast along the cylindrical

end of X̂1. Since the natural metric on X̂1 is of positive scalar cur-
vature, we must have ψ ≡ 0 by the Weitzenböck formula. But this
implies that P+FA = 1

4τ(ψ ⊗ ψ∗) ≡ 0, which contradicts the fact that√
−1
2π

∫
C0

FA = c1(E
2 ⊗ K−1

X ) · C0 6= 0.
As for the fact that X1 has a metric of positive scalar curvature, here

is a proof. Note that X1 = ((S3/G) × D2)/S1, where the S1-action
on S3/G defines the Seifert fibration, and where D2 is the unit 2-disc
with the S1-action given by complex multiplication. Give (S3/G) ×
D2 a product metric such that on the factor S3/G, it is the metric
of constant curvature which is clearly invariant under the S1-action,
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and on the factor D2, it is an S1-invariant metric with nonnegative
curvature which is a product metric near the boundary. Now observe
that the orthogonal complement of the vector field generated by the
S1-action on (S3/G)×D2 is an S1-equivariant subbundle of the tangent
bundle of (S3/G)×D2, which canonically defines a Riemannian metric
on X1 through the projection (S3/G) × D2 → X1, making it into a
Riemannian submersion in the sense of O’Neill [36]. It follows easily
from the calculation therein that the metric on X1 has positive scalar
curvature. q.e.d.

Observe that c1(KX) · C0 < 0, so that c1(S
E
+) · [ω] = c1(K

−1
X × E2) ·

[ω] > 0. By the wall-crossing formula in Lemma 2.1, the Seiberg-Witten
invariant corresponding to E is nonzero in Taubes chamber provided
that the dimension of the corresponding moduli space of the Seiberg-
Witten equations is nonnegative, which is shown in the next lemma.

Lemma 3.8. The dimension of the Seiberg-Witten moduli space cor-

responding to E, denoted by d(E), is given for the various cases of G
in the following list.

• 〈Z2m, Z2m; D̃n, D̃n〉 or 〈Z4m, Z2m; D̃n, C2n〉: d(E) = δ + 2 +
1
2((−1)δ − 1) if m < n, where n = δm+ r with 0 ≤ r ≤ m− 1, and

d(E) = 2 if m > n.

• 〈Z2m, Z2m; T̃ , T̃ 〉 or 〈Z6m, Z2m; T̃ , D̃2〉: d(E) = 2 if m 6= 1, and

d(E) = 8 if m = 1.

• 〈Z2m, Z2m; Õ, Õ〉: d(E) = 2 if m 6= 1, and d(E) = 14 if m = 1.

• 〈Z2m, Z2m; Ĩ , Ĩ〉: d(E) = 2 if m 6= 1, 7, d(E) = 4 if m = 7, and

d(E) = 32 if m = 1.

The proof of Lemma 3.8 is given in Appendix A.

Now the last step, where we apply Theorem 2.2 (2) to produce a
J-holomorphic curve C such that C = Im f for some f ∈ M.

Lemma 3.9. The space M is nonempty.

The proof of Lemma 3.9 is given at the end of this section. Accepting
it for now, and hence Proposition 3.1, we shall prove Theorem 1.2 next.

Proof of Theorem 1.2. The group G acts on M smoothly (see the gen-
eral discussion at the end of §3.3, Part I of [10]). Moreover, the ac-
tion is free at any f ∈ M which is not multiply covered. At a mul-
tiply covered f ∈ M with multiplicity a > 1, the isotropy subgroup
is {(µl

a, 0) | l = 0, 1, . . . , a − 1} ⊂ G up to conjugations in G. Here
G is canonically identified with the group of linear translations on C,
{(s, t) | s ∈ C∗, t ∈ C}. Clearly, M → M† ≡ M/G is a smooth orbifold
principle G-bundle over a compact 2-dimensional orbifold.

Recall that the domain of each f ∈ M is the orbifold Riemann sphere
Σ of one orbifold point z∞ ≡ ∞ of order 2m. We identify Σ \ {z∞}
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canonically with C such that the action of G on Σ \ {z∞} is given by
linear translations on C. We introduce the associated orbifold fiber
bundle Z ≡ M×G (Σ\{z∞}) → M†. Then as shown in our earlier paper
[11], there is a canonically defined smooth map of orbifolds in the sense
of [10], Ev : Z → X, such that the induced map between the underlying
spaces is the evaluation map [(f, z)] 7→ f(z), ∀f ∈ M, z ∈ Σ \ {z∞}.

The map Ev : Z → X is a diffeomorphism of orbifolds onto X \
{p0}. In fact, as in the proof of Lemma 4.3 in [11], one can show that
the differential of Ev is invertible and that the induced map between
the underlying spaces is onto X \ {p0}. It remains to see that the
induced map of Ev between the underlying spaces is injective. This is
because: (1) for each f ∈ M, the J-holomorphic curve Im f is a quasi-
suborbifold, and (2) for any f1, f2 ∈ M which have different orbits in
M† ≡ M/G, the J-holomorphic curves Im f1, Im f2 intersect only at
p0. The former is proved in Lemma 3.3. To see the latter, suppose
for simplicity that f1, f2 ∈ M are not multiply covered. Then by the
intersection formula, the contribution of p0 to the intersection product
Im f1 · Im f2 is at least

|G|
2m · |G|

2m

|G| =
|G|
4m2

= c1(E) · c1(E),

which implies that Im f1, Im f2 can not intersect at any other point.
The discussion for the remaining cases is similar, so we leave the details
to the reader. Hence the claim.

Let M0 ≡ Ev−1(C0) be the inverse image of C0 in Z. Then M0 is a
suborbifold in Z. Moreover, since for each f ∈ M, the J-holomorphic
curve Im f intersects C0 at exactly one point, we see that M0 is a smooth
section of the orbifold fiber bundle Z → M†. Consequently, we may
regard Z as an orbifold complex line bundle over M0. Note that under
Ev : Z → X, M0 is mapped diffeomorphically onto C0 ⊂ X.

One can show, by an identical argument as in [11], that there exists
a regular neighborhood N0 of the singular point p0 in X, such that for
any f ∈ M, ∂N0 intersects Imf transversely at a simple closed loop.
It follows easily that X \ int (N0) is diffeomorphic to the associated
unit disc bundle of Z → M0 via the inverse of Ev, under which C0 is
mapped diffeomorphically onto the 0-section M0. Now observe that the
s-cobordism W is diffeomorphic to X \ int (N0) with a regular neigh-
borhood of C0 removed. It follows easily that W is diffeomorphic to the
product (S3/G) × [0, 1]. q.e.d.

Proof of Lemma 3.9. The basic observation here is that if a component
Ci in the Poincaré dual of c1(E) has a relatively small self-intersection
Ci · Ci, then one can easily show that Ci = Im f for some f ∈ M.

In particular, M is nonempty when c1(E) · c1(E) = |G|
4m2 is sufficiently
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small. On the other hand, in the cases where c1(E) · c1(E) = |G|
4m2 is

not small, it turns out that d(E), the dimension of the Seiberg-Witten
moduli space, is also considerably large, which allows us to break the
Poincaré dual of c1(E) into smaller pieces by requiring it to pass through
a certain number of specified points (cf. Remark 2.3).

Case 1. |G| < 4m2. Let {Ci} be the set of J-holomorphic curves
obtained by applying Theorem 2.2 (2) to E. The assumption |G| < 4m2

has the following immediate consequences: (1) C0 is not contained in

{Ci} because C0 · C0 = 4m2

|G| > 1 and c1(E) · c1(E) = |G|
4m2 < 1, and (2)

if we let Ci = ri · c1(E) for some 0 < ri ≤ 1, then the virtual genus

g(Ci) =
1

2
(r2

i · c1(E) · c1(E) + ri · c1(KX) · c1(E)) + 1

=
1

2

(
r2
i ·

|G|
4m2

− ri ·
m + 1

m

)
+ 1 < 1.

As corollaries of (2), we note that for any fi : Σi → X parametrizing
Ci, g|Σi| = 0 because g|Σi| ≤ gΣi ≤ g(Ci) < 1. (Here g|Σi| is the
genus of the underlying Riemann surface of Σi.) Furthermore, note that
p0 ∈ ∪iCi because in the present case, the representation ρ : G → S1

defined in Lemma 3.6 is nontrivial, cf. Remark 2.3. If C ∈ {Ci} is a
compoment containing p0, then f−1(p0) consists of only one point for
any f : Σ → X parametrizing C. This is because for any z′ ∈ f−1(p0)
with order m′ ≥ 1, the contribution from z′ to gΣ is 1

2(1 − 1
m′ ), and

kz′ ≥ 1
2m′ (

|G|
m′ − 1) ≥ 1

2m′ . Hence the contribution from each point in

f−1(p0) to the right hand side of the adjunction formula for C least 1
2 .

If there were more than one point in f−1(p0), the right hand side of the
adjunction formula would be no less than 1, which is a contradiction to
g(C) < 1.

With these understood, note that d(E) ≥ 2 by Lemma 3.8, so that
we may require that ∪iCi also contains a smooth point p ∈ C0. It
follows easily, since C0 is not contained in {Ci}, that {Ci} consists of
only one component, denoted by C, which contains both p ∈ C0 and p0.
Let f : Σ → X be a parametrization of C. Then as we argued earlier,
f−1(p0) consists of only one point, say z∞. Moreover, f−1(C0) also
consists of only one point, say z0, because C, C0 intersect at a smooth
point p and C · C0 = 1. It follows easily that the link of p in C is
homotopic in S3/G to a regular fiber of the Seifert fibration, which has
homotopy class µ−1

2mI ∈ Z2m. On the other hand, g|Σ| = 0, so that the
link of p in C is homotopic in W to the inverse of the link of p0 in C.
Hence the link of p0 in C must have homotopy class µ2mI ∈ Z2m (cf.
Lemma 3.5), from which it is easily seen that f ∈ M. This proves that
M is nonempty when |G| < 4m2.
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Case 2. |G| > 4m2. The proof will be done case by case according to
the type of G.

(1) G = 〈Z2m, Z2m; D̃n, D̃n〉 or 〈Z4m, Z2m; D̃n, C2n〉. In this case, note
that |G| > 4m2 is equivalent to m < n. We start with the following

Sublemma 3.10. Let C be a J-holomorphic curve which intersects

C0 at only one singular point. If furthermore (1) C · C0 < 1 when the

singular point in C ∩ C0 is of order 2, and (2) C contains p0 when the

singular point in C ∩C0 is of order n, then C is the image of a member

of M.

Proof. Let f : Σ → X be a parametrization of C.
First, consider the case where the singular point in C∩C0, say p1, has

order 2. Note that C ·C0 < 1 implies that f−1(C0) consists of only one
point, say z0 ∈ Σ, which has order 2 in Σ, and in a local representative
(f0, ρ0) of f at z0, ρ0(µ2) = µ2 and f0(z) = (a(zl + · · · ), z) with l
odd if a 6= 0. In particular, the link of p1 in C is homotopic in S3/G
to the singular fiber of the Seifert fibration at p1. Now recall that
H1(S

3/G; Z) = Zm ⊕ Z2 ⊕ Z2 if n is even, and H1(S
3/G; Z) = Z4m

when n is odd, where, if we let x, y be the standard generators of D̃n

with relations x2 = yn = (xy)2 = −1, one of the factor in Z2 ⊕ Z2 in
the former case is generated by x and the other by y, and in the latter
case, the generator of Z4m is the class of µ2mx or µ4mx, depending on
whether m is odd or even. With this understood, note that the class in
H1(S

3/G; Z) of the link of p1 in C projects nontrivially to the Z2 factor
generated by x in the former case, and is a generator of Z4m in the latter
case. It follows easily that f−1(p0) is nonempty, and there must be a
z∞ ∈ f−1(p0), such that the pushforward of the link of z∞ in Σ under
f has a homology class in S3/G which projects nontrivially onto the Z2

factor generated by x in the former case, and is a generator of Z4m in
the latter case. In any event, the order of z∞ in Σ must be 4m or less,
and as argued in the proof of Lemma 3.3, C is a quasi-suborbifold, and
is easily seen to be the image of a member of M.

Next we suppose that the singular point in C ∩ C0 is p3, which has
order n. Note that m < n implies that the normalized Seifert invariant
at p3 is (n, m). Let (w1, w2) be a holomorphic coordinate system on
a local uniformizing system at p3, where C0 is given locally by w2 =
0, and the singular fiber of the Seifert fibration at p3 is defined by
w1 = 0, |w2| ≡ constant, and the Zn-action is given by µn · (w1, w2) =
(µnw1, µ

m
n w2). Let f−1(C0) = {zi | i = 1, 2, . . . , k} where each zi has

order mi ≥ 1, and let (fi, ρi) be a local representative of f at zi, where
ρi(µmi) = µri

mi
, with 0 ≤ ri < mi, ri, mi relatively prime, and fi(w) =

(ci(w
l′i + · · · ), wli) such that ci 6= 0 unless mi = n and li = 1. Note

that fi being ρi-equivariant implies that li ≡ mri (mod mi), and when
ci 6= 0, l′i ≡ ri (mod mi). By the intersection formula, the contribution
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from zi to C · C0 is (n/mi)li
n = li

mi
. Hence C · C0 =

∑k
i=1

li
mi

, and the
virtual genus of C is

g(C) =
k∑

i,j=1

lilj
mimj

· n

2m
−

k∑

i=1

li
mi

· m + 1

2m
+ 1.

Evidently, the contribution to g(C) from each zi is

Li ≡
l2i
m2

i

· n

2m
− li

mi
· m + 1

2m
,

and the contribution from each unordered pair [zi, zj ], i 6= j, is

L[i,j] ≡
lilj

mimj
· n

m
.

On the other hand, the contribution of each zi to the right hand side of
the adjunction formula is

Ri ≡
1

2

(
1 − 1

mi

)
+ kzi ,

and the contribution of each unordered pair [zi, zj ], i 6= j, is

R[i,j] ≡ k[zi,zj ].

In order to estimate kzi and k[zi,zj ], we next recall some basic facts
about the local self-intersection number and local intersection number
of J-holomorphic curves, cf. [11] and the references therein.

• Let C be a holomorphic curve in C2 parametrized by f(z) =
(a(zl1 + · · · ), zl2), where f : (D, 0) → (C2, 0) is from a disc D ⊂ C
centered at 0 such that f |D\{0} is embedded. Then the local self-

intersection number C ·C ≥ 1
2(l1 −1)(l2 −1). Note that the above

inequality still makes sense even if a = 0 in the formula for f , in
which case l1 is undefined. This is because l2 = 1 by the assump-
tion that f |D\{0} is embedded.

• Let C, C ′ be distinct holomorphic curves in C2 parametrized by
f(z) = (a(zl1+· · · ), zl2) and f ′(z) = (a′(zl′1+· · · ), zl′2) respectively,
where f : (D, 0) → (C2, 0), f ′ : (D, 0) → (C2, 0) are from a disc
D ⊂ C centered at 0 such that f |D\{0}, f ′|D\{0} are embedded.
Then the local intersection number C · C ′ ≥ min(l1l

′
2, l2l

′
1). Here

l1 = ∞ (resp. l′1 = ∞) if a = 0 (resp. a′ = 0).

With the preceding understood and by the definition in [11], we have

kzi ≥
1

2mi

(
(li − 1)(l′i − 1) +

(
n

mi
− 1

)
lil

′
i

)
,

k[zi,zj ] ≥
1

n
· n

mi
· n

mj
· min(lil

′
j , ljl

′
i).
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(Note that the right hand side of the first inequality still makes sense
even when l′i is undefined, because in this case, li = 1 and n = mi must
be true.)

Next we shall compare Li with Ri and L[i,j] with R[i,j]. To this end,
we write l′i = ri + timi and mri = li + simi. Here ti ≥ 0, and si ≥ 0 if
li < mi. When li = mi, we must have li = mi = 1 and ri = 0. In this

case, si = −1 and l′i = ti ≥ 1. It follows easily that min(lil
′
j , ljl

′
i) ≥

lilj
m ,

hence R[i,j] ≥ L[i,j] for all i 6= j. To compare Li with Ri, we note that

kzi ≥
1

2mi

(
(li − 1)(l′i − 1) +

(
n

mi
− 1

)
lil

′
i

)

=
1

2mi

(
1 − li − (ri + timi) +

nli
mi

(
li + simi

m
+ timi

))

=
1

2mi
+

nl2i
2m2

i m
− li(m + 1)

2mim
+

nli − mi

2mim
(si + tim),

which easily gives Ri − Li ≥ 1
2 + nli−mi

2mim
(si + tim).

With the above estimates in hand, now observe that f−1(p0) is not
empty by the assumption, so that, as we argued earlier, the contribution
of f−1(p0) to the right hand side of the adjunction formula is at least 1

2 .

It follows easily that f−1(C0) contains only one point (i.e., k = 1), and
that either m1 = n with l1 = 1, or s1 + t1m = 0, which means either
s1 = t1 = 0, or m = t1 = −s1 = 1 with m1 = l1 = 1. Moreover, g|Σ| = 0,

and f−1(p0) contains only one point, say z∞, with the contribution from
z∞ to the right hand side of the adjunction formula being exactly 1

2 . The

last point particularly implies that the order of z∞ is 1
2 |G| = 2mn.

The case where s1 = t1 = 0 but nl1 6= m1 or l1 = m1 = 1 can be
ruled out as follows. Consider s1 = t1 = 0 but nl1 6= m1 first. Note that
l1 = mr1 must be true in this case. As we have seen earlier, the link
of p3 in C is homotopic in S3/G to l1 · n

m1
= r1mn

m1
times the singular

fiber of the Seifert fibration at p3, which has order 2mn. It is easily seen
that the order d of the link of p3 is either divisible by m1, in which case
r1 is even, or divisible by 2m1, in which case r1 is odd. In any event,
d < 2mn if nl1 6= m1. On the other hand, g|Σ| = 0 implies that the
link of p0 in C is homotopic, in the s-cobordism W and through C, to
the inverse of the link of p3 in C. But the homotopy class of the link
of p0 has the same order in π1(S

3/G) as the order of z∞, which is 2mn.
This is a contradiction. The discussion for the case where l1 = m1 = 1
is similar. In this case, the link of p3 is homotopic in S3/G to n times
of the singular fiber, hence has order at most 2m, which is less than
2mn. This is also a contradiction. Hence m1 = n and l1 = 1, and the
adjunction formula implies that C is a quasi-suborbifold. Moreover, it
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is easily seen that C is the image of a member of M. Hence Sublemma
3.10. q.e.d.

Now back to the proof. Let {Ci} be the J-holomorphic curves which

are obtained by applying Theorem 2.2 (2) to E. Set N ≡ d(E)
2 when m 6=

1 and N ≡ d(E)
2 − 1 when m = 1. Then by Remark 2.3, we can specify

any N distinct smooth points q1, . . . , qN ∈ X \ C0 and require that
q1, . . . , qN ∈ ∪iCi, and moreover, p0 ∈ ∪iCi. Now we let q1 ≡ q1,j be a
sequence of points converging to a smooth point q in C0, while keeping

q2, . . . , qN fixed, and let {C(j)
i } be the corresponding sequence of (sets

of) J-holomorphic curves. By passing to a subsequence if necessary, we

may assume that the number of components in {C(j)
i } is independent

of j, and each C
(j)
i is parametrized by a J-holomorphic map fi,j : Σi →

X from an orbifold Riemann surface independent of j (note that the
complex structure on Σi is allowed to vary). This follows readily from

the fact that C
(j)
i · C0 ≥ 1

n , and that the virtual genus g(C
(j)
i ), hence

the corresponding orbifold genus, is uniformly bounded from above. By
the Gromov compactness theorem (cf. [14]), each fi,j converges to a
cusp-curve f ′

i : Σ′
i → X. The upshot here is that we can always manage

to have C0 contained in ∪iIm f ′
i , or else M is nonempty. Accepting this

momentarily, we note as a consequence that

C · C0 ≤ 1 − C0 · C0 = 1 − m

n
,

where C ⊂ ∪iIm f ′
i is any component containing p0. By letting q2, . . .,

qN converge to a smooth point in C0 one by one, we have at the end

C · C0 ≤ 1 − N · m

n

for any component C in the limiting cusp-curve that contains p0. Now
observe that N ≥ δ+1

2 when m 6= 1, where n = δm + r with 0 ≤ r ≤
m − 1, and N ≥ n−1

2 when m = 1. It follows easily that C · C0 < 1
2

when m 6= 1 and C · C0 ≤ 1
2 + 1

2n when m = 1. Clearly, C can only
intersect C0 at one singular point, because otherwise, we would have
C · C0 ≥ 1

2 + 1
n . By Sublemma 3.10, M is nonempty.

It remains to show that C0 ⊂ ∪iIm f ′
i . Note that if the component

C(j) ∈ {C(j)
i } which contains q1,j intersect C0 at a singular point, which

is the case when C(j) · C0 < 1, then it is clear that C0 must be one of
the component in the limiting cusp-curve of {C(j)}. If C(j) intersects
C0 at a smooth point qj , then limj→∞ qj = q = limj→∞ q1,j must hold
if C0 is not contained in the limiting curve, and moreover, the limiting
curve must contain only one nonconstant component, which intersects
C0 at q transversely. In this case we let q ≡ qk be a sequence of smooth
points on C0 that converges to the singular point p3 ∈ C0 of order n.
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Let Ck be the corresponding J-holomorphic curves, which we assume
to be parametrized by fk : Σ → X from a fixed orbifold Riemann
surface without loss of generality. If the limiting curve f ′ : Σ′ → X
of {Ck} intersects C0 only at p3, then M is nonempty by Sublemma
3.10. If the limiting curve f ′ has a nonconstant component, denoted
by fν ≡ f ′|Σν : Σν → X, which intersects C0 at a singular point of
order 2, say p1, then there must be a simple closed loop γ ⊂ Σ collapsed
to p1 during the convergence. Note that there are two distinct points
zν , zω ∈ Σ′, where zν ∈ Σν with fν(zν) = p1, which are the images
of γ under the collapsing Σ → Σ′. Let Σω be the component of Σ′

which contains zω (here Σω = Σν is allowed). Then one of the following
must be true: (a) either f ′ is nonconstant on Σω, or f ′ is constant on
Σω but there exists a component Σ′

ω and a point z′ω 6= zν such that
f ′ is nonconstant on Σ′

ω and f ′(z′ω) = p1; (b) the simple closed loop γ
bounds a sub-surface Γ in Σ which contains no orbifold points and is of
nonzero genus, such that f ′ is constant on every component in the image
of Γ ⊂ Σ → Σ′. However, the latter case can be ruled out as follows.
According to the Gromov compactness theorem (cf. [14]), if we fix a
sufficiently small ǫ > 0, then there exists a regular neighborhood of γ
in Σ, identified with γ × [−1, 1], such that (1) γ × {−1} is mapped to
the link of zν of radius ǫ in Σν under Σ → Σ′, (2) fk converges to f ′

in C∞ on γ × {−1, 1}, (3) the diameter of fk(γ × [−1, 1]) is less than
ǫ when k is sufficiently large, and (4) because f ′ is constant on every
component in the image of Γ ⊂ Σ → Σ′, the diameter of fk(Γ\γ× [0, 1))
is also less than ǫ when k is sufficiently large. Let U(10ǫ) be the regular
neighborhood of p1 in X of radius 10ǫ. Then it is clear that when
k is sufficiently large, fk(Γ) ⊂ U(10ǫ) \ {p1} and fk(γ) = fk(∂Γ) is
homotopic in U(10ǫ) \ {p1} to the push-forward of the link of zν in Σν

under fν . But this is impossible because (1) fν is clearly not multiply
covered, and (2) the link of p1 in Im fν , which is the push-forward of
the link of zν in Σν under fν because of (1), is not null-homologous in
U(10ǫ) \ {p1} ∼= RP3 × (0, 1]. Hence the latter case (i.e., case (b)) is
ruled out. On the other hand, the former case (i.e., case (a)) is also
impossible if C0 is not contained in ∪iIm f ′

i . This is because each of
zν and zω (or z′ω) will contribute at least 1

2 to [f(Σ′)] · C0, and with
the contribution from p3, we would have [f(Σ′)] · C0 > 1, which is a
contradiction. Hence we can always manage to have C0 ⊂ ∪iIm f ′

i , or
else M is nonempty.

(2) G = 〈Z2m, Z2m; T̃ , T̃ 〉 or 〈Z6m, Z2m; T̃ , D̃2〉. Note that |G| > 4m2

is equivalent to m < 6, which means that m = 1 or 5 in the former case,
and m = 3 in the latter case.

First, observe that if C is a J-holomorphic curve parametrized by
f : Σ → X such that p0 ∈ C, then each z ∈ f−1(p0) will contribute at
least 1

2 + 1
6m to the right hand side of the adjunction formula. To see
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this, let m0 be the order of z. Then the total contribution of z is

1

2

(
1 − 1

m0

)
+ kz ≥ 1

2

(
1 − 1

m0

)
+

1

2m0

(
24m

m0
− 1

)

=
1

2
+

1

2m0

(
24m

m0
− 2

)
.

Note that m0 ≤ 6m. Hence the claim.

We consider the case where m = 3 or 5 first. Let {Ci} be the J-
holomorphic curves obtained by applying Theorem 2.2 (2) to E. Note
that p0 ∈ ∪iCi, and because d(E) = 2, we can specify a smooth point
q ∈ C0 and require that q ∈ ∪iCi. We claim that there exists a J-
holomorphic curve Ĉ such that Ĉ · C0 ≤ 1

2 and p0 ∈ Ĉ.

Let C ∈ {Ci} be a component containing p0. If C does not contain
q, then the component in {Ci} which contains q must be C0. As a
consequence, C · C0 ≤ 1 − C0 · C0 = 1 − m

6 ≤ 1
2 .

Now suppose q ∈ C. Then C must be the only component in {Ci},
and C, C0 intersect transversely at the smooth point q. We let q ≡ qk

be a sequence of smooth points on C0 converging to the singular point
p3 ∈ C0 of order 3, and let Ck be the corresponding J-holomorphic
curves, which we assume without loss of generality to be parametrized
by fk : Σ → X from a fixed orbifold Riemann surface. Note that
g|Σ| = 0 because g(Ck) = 5−m

2m + 1 ≤ 1 + 1
3 , and because Ck contains

p0 so that f−1
k (p0) contributes at least 1

2 to the right hand side of the

adjunction formula. Similarly, f−1
k (p0) contains at most two points. Let

z0 = f−1
k (qk). Note that z0 is a regular point of Σ.

By the Gromov compactness theorem, a subsequence of {fk}, after
reparametrization if necessary, will converge either in C∞ to f : Σ → X,
or to a cusp-curve f : Σ′ → X. If the convergence is in C∞, then f must
be multiply covered, because otherwise, we will have kz0 ≥ 1

2(3
1 −1) = 1,

and together with the contribution of f−1(p0) which is at least 1
2 , it

would imply that the right hand side of the adjunction formula is no
less than 1 + 1

2 , which is greater than the left hand side g(Im f) =
5−m
2m +1 ≤ 1+ 1

3 . This is a contradiction. For a multiply covered f , it is

clear that Ĉ ≡ Im f is a J-holomorphic curve which obeys Ĉ · C0 ≤ 1
2

and p0 ∈ Ĉ.

Now suppose fk converges to a cusp-curve f : Σ′ → X. For technical
convenience, we shall regard z0 as a marked point so that z0 will not lie
on a collapsing simple closed loop during the Gromov compactification
(cf. [14]). Let Σν be the component of Σ′ which contains z0. First,
we consider the case where f is nonconstant over Σν . Note that under
this assumption, if Im f |Σν 6= C0, one can easily show, because z0 ∈ Σν

is a regular point, that [f(Σν)] · C0 = 1. This implies that Σν is the



448 W. CHEN

only component of Σ′ over which f is nonconstant. In particular, p0 ∈
Im f |Σν because Σ′ is connected. Then as we argued in the preceding
paragraph, f must be multiply covered over Σν , and Im f |Σν is the
J-holomorphic curve that we are looking for. If Im f |Σν = C0, then

Ĉ · C0 ≤ 1 − m
6 ≤ 1

2 for any (nonconstant) component Ĉ in Im f that
contains p0. Now suppose f is constant over Σν . Then it follows easily,
because g|Σ| = 0 and because no simple closed loops bounding a disc
D ⊂ Σ will collapse if fk(D) lies in the complement of C0 and p0 (cf.
case (2) in the proof of Lemma 3.4), it follows easily that each f−1

k (p0)

contains exactly two points z
(1)
∞ , z

(2)
∞ , and there are simple closed loops

γ1, γ2 ⊂ Σ, each bounding a disc D ⊂ Σ, such that (1) D contains

exactly one of z
(1)
∞ , z

(2)
∞ but not z0, (2) no simple closed loops in D

collapsed, (3) D is mapped to a component Σω under Σ → Σ′ such that
f |Σω 6= constant. It is clear that one of these two components of Im f ,
which all contains p0, will have intersection product with C0 no greater
than 1

2 .

Let C be a J-holomorphic curve such that p0 ∈ C and C · C0 ≤ 1
2 ,

which we have just shown to exist, and let f : Σ → X be a parametriza-
tion of C. Note that g(C) < 1, so that g|Σ| = 0 and f−1(p0) consists

of only one point z∞. Moreover, it follows easily from C · C0 ≤ 1
2 that

f−1(C0) consists of only one point also, and either C ·C0 = 1
2 or 1

3 , and if
pi of order ai for some i = 1, 2 or 3 is the singular point where C, C0 in-
tersect, then the link of pi in C is homotopic in S3/G to the singular fiber
of the Seifert fibration at pi, which has order 2mai in π1(S

3/G) = G.
It implies that the order of z∞ is also 2mai because g|Σ| = 0, and the
adjunction formula implies that C is a quasi-suborbifold, which is easily
seen to be the image of a member of M.

It remains to consider the case where m = 1. We will show in this
case that there is also a J-holomorphic curve C such that p0 ∈ C and
C · C0 ≤ 1

2 . To see this, let {Ci} be the J-holomorphic curves obtained
by applying Theorem 2.2 (2) to E. Since d(E) = 8 in the present case,
we can specify any 3 distinct smooth points q1, q2, q3, where q1 ∈ C0

and q2, q3 ∈ X \ C0, and require that they are contained in ∪iCi, and
moreover, we require p0 ∈ ∪iCi also. Let q2 ≡ q2,j be a sequence of
points converging to a smooth point q′2 ∈ C0 such that q′2 6= q1, and we

denote by {C(j)
i } the corresponding sequence of J-holomorphic curves.

If C0 ∈ {C(j)
i }, then as we have seen earlier, the components containing

q2,j will converge to a cusp-curve during which a component will be

split off that goes to C0. At this stage, the component Ĉ in the limiting
cusp-curve which contains p0 obeys Ĉ · C0 ≤ 1 − 2C0 · C0. We claim

that this is also true even when C0 is not contained in {C(j)
i }. To see

this, note that under this assumption, there is only one component,
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denoted by C(j), in {C(j)
i }, which intersects C0 transversely at q1. Let

fj : Σ → X be a parametrization of C(j), which is from a fixed orbifold
Riemann surface by passing to a subsequence if necessary. Since q′2 =
limj→∞ q2,j 6= q1, fj has to converge to a cusp-curve f : Σ′ → X.
Let Σν be a component of Σ′ such that fν ≡ f |Σν is nonconstant and
q1 ∈ Im fν . Then since q1 is a smooth point, and Im f contains another
smooth point q′2 = limj→∞ q2,j 6= q1, we see that Im fν = C0 must be
true. If the degree of fν : Σν → X is at least 2, then the claim is
clearly true. Suppose fν : Σν → X is of degree 1. Then Σν contains
three orbifold points z1, z2, z3, with fν(zi) = pi for i = 1, 2, 3. Note
that z1, z2, z3 must be the result of collapsing 3 simple closed loops
under Σ → Σ′. Consequently, there are components Σi of Σ′, where
i = 1, 2 and 3, such that Σi 6= Σν and there are z′i ∈ Σi satisfying
f(z′i) = pi (here Σi = Σi′ is allowed). The key observation is that one

of C(i) ≡ Im fΣi must be either C0 or constant, because otherwise, one

has c1(E) · C0 ≥ ∑3
i=1 C(i) · C0 ≥ ∑3

i=1
1
ai

> 1 (here ai is the order of

pi, with a1 = 2, a2 = a3 = 3), which is a contradiction. But as we have

seen earlier, none of C(i) is constant. (Suppose C(i) is constant for some
i = 1, 2 or 3; then z′i must be the image of a collapsing simple closed
loop γ which bounds a sub-surface Γ ⊂ Σ such that for sufficiently large
j, fj(Γ) lies in a regular neighborhood of pi with pi removed, which is
diffeomorphic to the product of a lens space with (0, 1]. But on the other
hand, fj(γ) = fj(∂Γ) is homotopic in the punctured neighborhood of pi

to the link of pi in C0, which is not null-homologous in the punctured
neighborhood. This is a contradiction.) Hence one of C(i) is C0, and
the claim follows. Now we let q3 converge to a smooth point in C0,
and at the end, it follows easily that the component C in the limiting
cusp-curve which contains p0 obeys C · C0 ≤ 1 − 3C0 · C0 = 1

2 .

We shall prove that such a J-holomorphic curve C is the image of a
member of M also. Let f : Σ → X be a parametrization of C. We write
C = r

2 · c1(E) for some 0 < r ≤ 1. Then g(C) = 1
2(r2 · 6

4 − r · 1+1
2 ) + 1 ≤

1
4 + 1. Now observe that each z ∈ f−1(C0) will contribute at least
1
2(1 − 1

2) = 1
4 to the right hand side of the adjunction formula, and

each z′ ∈ f−1(p0) will contribute at least 1
2 + 1

6m = 1
2 + 1

6 . It follows

easily that f−1(p0) consists of only one point, and g|Σ| = 0. Finally,

observe that f−1(C0) also consists of only one point, because each point
in f−1(C0) will contribute at least 1

3 to C · C0. It is easily seen from
the adjunction formula that C is a quasi-suborbifold, and moreover, it
is the image of a member of M.

(3) G = 〈Z2m, Z2m; Õ, Õ〉. In this case, |G| > 4m2 implies that
m = 1, 5, 7 or 11. The proof is similar, although modification is needed
at a few places.
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First of all, observe that the largest order of an element in G is 8m,
so that if C is a J-holomorphic curve parametrized by f : Σ → X with
p0 ∈ C, then any point in f−1(p0) will contribute at least 1

2 + 1
4m to the

right hand side of the adjunction formula.

Consider the case where m 6= 1 first. Let {Ci} be the J-holomorphic
curves obtained by applying Theorem 2.2 (2) to E, where p0 ∈ ∪iCi,
and a specified smooth point q ∈ C0 is also contained in ∪iCi. This time
we claim that there exists a J-holomorphic curve Ĉ such that p0 ∈ Ĉ
and Ĉ · C0 ≤ 7

12 , which is clearly true when q is not contained in the
same component in {Ci} with p0.

Now suppose C ∈ {Ci} is a component containing both p0 and q.
Then C must be the only component in {Ci}, and C, C0 intersect trans-
versely at the smooth point q. We let q ≡ qk be a sequence of smooth
points on C0 converging to the singular point p3 ∈ C0 of order 4,
and let Ck be the corresponding J-holomorphic curves parametrized
by fk : Σ → X from a fixed orbifold Riemann surface. Note that this
time g|Σ| ≤ 1, because g(Ck) = 11−m

2m +1 ≤ 1+ 3
5 , and moreover, g|Σ| = 1

only when m = 5 and f−1(p0) consists of only one point. In general,
f−1

k (p0) contains at most two points. Let z0 = f−1
k (qk), which is a

regular point of Σ.

The proof goes in the same way as in the preceding case, except at the
end we need to consider the following scenario caused by the possibility
that g|Σ| = 1. More concretely, let f : Σ′ → X be the limiting cusp-curve
of fk, and let Σν be the component of Σ′ containing z0. We need to
consider the situation where g|Σ| = 1 and f is constant on Σν . Note that
if f is constant on Σν , then one of the following must be true: (a) Σν is
an orbifold Riemann sphere obtained from collapsing two simple closed
loops in Σ, and (b) Σν is an orbifold torus obtained from collapsing one
simple closed loop in Σ. Let Σω be the component of Σ′ which contains
z∞. Then in the latter case, Σω is obtained by collapsing one simple
closed loop, and hence f must be nonconstant on Σω. It can be easily
shown that in this case there is a J-holomorphic curve C such that
p0 ∈ C and C ·C0 ≤ 7

12 . Now consider the former case. If f is constant
on Σω, then Σω must be obtained from collapsing two simple closed
loops, and it is easy to see that there will be at least two components of
Σ′ over which f is nonconstant. It is clear that one of these components
will give the J-holomorphic curve that we are looking for. Suppose f is
nonconstant on Σω. Then one can easily show that we are done in either
one of the following cases: there is a constant component other than Σν ,
in which case Σω is obtained from collapsing one simple closed loop, or
there is a nonconstant component other than Σω, which will break away
with at least 5

12 or 1
2 of the homology. So it remains to consider the case

where Σω is the only component of Σ′ other than Σν , in which case Σω is
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an orbifold Riemann sphere obtained from collapsing two simple closed
loops. We are done if fω ≡ f |Σω is multiply covered, so we assume
that fω is not multiply covered. Set Cω ≡ Im fω. Then note that

f−1
ω (C0) = {z(1)

0 , z
(2)
0 }, both of which are sent to p3 of order 4 under fω.

By the intersection formula as we have seen earlier, the contribution of

each z
(i)
0 , i = 1, 2, to Cω·C0 can be written as li

mi
, where mi is the order of

z
(i)
0 and li, mi are relatively prime. It is clear that either l1

m1
= l2

m2
= 1

2 ,

or one of them is 1
4 and the other is 3

4 , because Cω · C0 = 1. In the
former case, the right hand side of the adjunction formula receives at
least 2 for the contribution from f−1

ω (C0), which is more than the left
hand side g(Cω) = 11−m

2m + 1 = 1 + 3
5 . This is a contradiction. As for

the latter case, note that when m = 5, the normalized Seifert invariant
at p3 is (4, 1) (recall the relation m = 12b + 6 + 4b2 + 3b3). Assume

without loss of generality that l1
m1

= 3
4 . Then it follows easily that a

local representative (f1, ρ1) of fω at z
(1)
0 must obey ρ1(µ4) = µ3

4 and
f1(w) = (c(wl + · · · ), w3) for some c 6= 0 and some positive interger l
satisfying l ≡ 3 (mod 4). With this understood, it follows that

k
z
(1)
0

≥ 1

2m1
(l − 1)(3 − 1) ≥ 1

2
and

k
[z

(1)
0 ,z

(2)
0 ]

≥ 1

4
min(l, 3l′) ≥ 3

4
,

which is easily seen as a contradiction to the adjunction formula. In
any event, there exists a J-holomorphic curve C such that p0 ∈ C and
C · C0 ≤ 7

12 .

Next we show that such a J-holomorphic curve C is the image of
a member of M. First, note that if C, C0 intersect at more than one
point, then C ∩ C0 = {p2, p3} of order 3 and 4, and one can easily
show that this is impossible using the adjunction formula. (In this case,
g(C) = 1

2(( 7
12)2 · 12

m − 7
12 · m+1

m ) + 1 ≤ 127
120 , but the right hand side of

the adjunction formula is at least 1
2(1 − 1

3) + 1
2(1 − 1

4) + 1
2 + 1

4m > 29
24 .)

Second, suppose C, C0 intersect only at the singular point pi of order
ai. Then one can easily show, as we did earlier, that C is the image
of a member of M if C · C0 = 1

ai
. With this understood, it remains to

rule out the case where C, C0 intersect at p3 of order 4 but C ·C0 = 1
2 .

To this end, let f : Σ → X be a parametrization of C. Then there are
two possibilities: either f−1(p3) consists of two points, or it contains
only one point. In any case, one can easily show that the contribution
of f−1(p3) to the right hand side of the adjunction formula is at least
1
2 . With the contribution of at least 1

2 + 1
4m from f−1(p0), the right

hand side of the adjunction formula is greater than 1. But on the left
hand side, g(C) = 1

2((1
2)2 · 12

m − 1
2 · m+1

m ) + 1 = 5−m
4m + 1 ≤ 1, which is a
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contradiction. Hence C is the image of a member of M, and the case
where m 6= 1 is done.

Finally, consider the case of m = 1. Let {Ci} be the J-holomorphic
curves obtained by applying Theorem 2.2 (2) to E. This time d(E) =
14, so we can specify any 6 distinct smooth points q1, q2, . . . , q6, where
q1 ∈ C0 and q2, . . . , q6 ∈ X \ C0, and require that they are contained
in ∪iCi; and moreover, we require p0 ∈ ∪iCi also. We let q2, . . . , q6

converge to a smooth point q 6= q1 in C0 one by one, and as we have
argued earlier, we obtain at the end a J-holomorphic curve C such that
p0 ∈ C and C ·C0 ≤ 1−6C0·C0 = 1

2 . However, in order to show that such
a curve C is the image of a member of M, we actually need to obtain
a sharper estimate that C · C0 < 1

2 . To this end, for each k = 2, . . . , 6,

we let {C(k)
i } be the non-C0 components in the limiting cusp-curve as

qk converges to a smooth point in C0, and let αk ≡ ∑
i n

(k)
i C

(k)
i · C0,

where n
(k)
i is the multiplicity of C

(k)
i . If the said sharper estimate does

not hold, then we must have α2 = 10
12 , α3 = 9

12 , α4 = 8
12 , α5 = 7

12 , and

α6 = 6
12 = 1

2 . We will show that this is impossible. To see this, note

that α4 = 8
12 = 2

3 . It follows easily that every component in {C(4)
i } must

intersect C0 only at the singular point p2 of order 3. On the other hand,
as q5 converges to a smooth point in C0, there must be a component
Σν in the limiting cusp-curve f : Σ′ → X such that Im f |Σν = C0.
The key point here is that the degree of f |Σν : Σν → C0 is at least 2.
Suppose to the contrary that the degree is 1. Then Σν must contain
three orbifold points z1, z2, z3 such that f(zi) = pi for i = 1, 2 and 3.
Moreover, the points z1, z3, which are sent to the singular points p1, p3

of order 2 and 4 under the map f , must be the images of some collapsing
simple closed loops. This implies that for each of p1 and p3, there exists

a nonconstant component in {C(5)
i } which intersects C0 at it. But this

is impossible because it would imply that α5 ≥ 1
2 + 1

4 = 9
12 , which is

a contradiction. Hence there exists a J-holomorphic curve C such that
p0 ∈ C and C · C0 < 1

2 . It is easy to show that C is the image of a
member of M. Hence the case where m = 1.

(4) G = 〈Z2m, Z2m; Ĩ , Ĩ〉. In this case, |G| > 4m2 implies that m =
1, 7, 11, 13, 17, 19, 23 or 29. We shall divide them into three groups:
m ≥ 11, m = 7, and m = 1.

First of all, since each element of G has order no greater than 10m,
we see that for any J-holomorphic curve C parametrized by f , a point
in f−1(p0) will contribute at least 1

2 + 1
2m to the right hand side of the

adjunction formula.

Consider first the case where m ≥ 11. By a similar argument, one can
show that there exists a J-holomorphic curve C such that p0 ∈ C and
C · C0 ≤ 19

30 . The only part in the proof that is not so straightforward
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is to rule out the possibility, in the case where m = 11 or 13, of having
a J-holomorphic curve C ′ which obeys (1) p0 ∈ C ′, (2) C ′ · C0 = 1, (3)
C ′ is parametrized by f : Σ → X such that f−1(C0) = {z1, z2} with
both f(z1), f(z2) being the singular point p3 of order 5. First, suppose
m = 11. In this case, the normalized Seifert invariant at p3 is (5, 1). It
follows easily that a local representative (fi, ρi) of f at zi, where i = 1, 2,

must be of the form ρi(µ5) = µli
5 , fi(w) = (ci(w

l′i + · · · ), wli), where
l′i ≡ li (mod 5) when ci 6= 0, which is the case unless li = 1. Moreover,
l1 + l2 = 5 because C ′ · C0 = 1. With these data, one can easily show
that kz1 +kz2 ≥ 2

5 and k[z1,z2] ≥ 4
5 . Consequently, the right hand side of

the adjunction formula is at least 1
2(1− 1

5)+ 1
2(1− 1

5)+ 2
5 + 4

5 + 1
2 = 2+ 1

2 .

But the left hand side is g(C ′) = 1
2(30

m − m+1
m ) + 1 = 29−m

2m + 1 = 20
11 ,

which is a contradiction. As for the case where m = 13, the normalized
Seifert invariant at p3 is (5, 3). By a similar argument, one can show
that in this case, the right hand side of the adjunction formula is greater
than 2, which is also a contradiction.

The next order of business is to show that a J-holomorphic curve C
with p0 ∈ C and C ·C0 ≤ 19

30 must be the image of a member of M. First
of all, observe that C, C0 can not intersect at more than one point. This
is because if otherwise, the two points of intersection must be p2, p3 of
order 3 and 5 because C ·C0 ≤ 19

30 . But in this case, the right hand side

of the adjunction formula is greater than 1
2(1− 1

3)+ 1
2(1− 1

5)+ 1
2 = 1+ 7

30 ,

while the left hand side is g(C) = 1
2(( 8

15)2 · 30
m − 8

15 · m+1
m )+1 = 1+ 32

11 · 1
30 ,

which is a contradiction. Second, if C, C0 intersect only at the singular
point pi of order ai for some i = 1, 2 or 3 and C · C0 = 1

ai
, then

C is the image of a member of M as we argued earlier. With these
understood, it is easy to see that there are only two other possibilities
that we need to rule out: C · C0 = 2

5 or C · C0 = 3
5 , where in both

cases, C, C0 intersect only at p3. Let f : Σ → X be a parametrization
of C. First, it is fairly easy to rule out the possibility that f−1(p3)
and f−1(p0) may contain more than one point. Moreover, observe also
that g|Σ| = 0. Now let z0 = f−1(p3) and z∞ = f−1(p0). Note that

in both cases, the order of z0 is 5. If C · C0 = 2
5 , then as we have

seen earlier, the link of p3 in C is homotopic in S3/G to 2 times of the
singular fiber of the Seifert fibration at p3, which has order 10m in G.
This implies, since g|Σ| = 0, that the order of z∞ is no greater than 5m.
As a consequence, the right hand side of the adjunction formula is no
less than 1

2(1 − 1
5) + 1

2(1 − 1
5m) + 1

10m(120m
5m − 1) = 11

5m + 9
10 . But on

the left hand side, g(C) = 1
2((2

5)2 · 30
m − 2

5 · m+1
m ) + 1 = 11

5m + 4
5 , which

is a contradiction. The case where C · C0 = 3
5 is more involved. First,

let h ≡ µ2mI ∈ Z2m and let x, y be the generators of Ĩ with relations
x2 = y5 = (xy)3 = −1. Then the homotopy class of the singular fiber
of the Seifert fibration at p3 is represented by γ−1, where γ = h−tys for



454 W. CHEN

some positive integers s, t satisfying sm − 5t = 1. The action of γ on
C2 is given, in suitable coordinates, by γ · (z1, z2) = (µ10mz1, µ

k
10mz2)

with k ≡ −sm − 5t (mod 10m). With these understood, observe that
the link of p3 in C is homotopic in S3/G to 3 times of the singular fiber
of the Seifert fibration at p3, and consequently, since g|Σ| = 0, there
are holomorphic coordinates z1, z2 on a local uniformizing system at
p0, such that a local representative of f at z∞ is given by (f∞, ρ∞),
with ρ∞(µ10m) acting by ρ∞(µ10m) · (z1, z2) = (µ3

10mz1, µ
3k
10mz2), and

f∞(z) = (c1(z
l1 + · · · ), c2(z

l2 + · · · )), where both c1, c2 6= 0 because both
l1, l2 can not be 1. Because of this, we have relations l1 ≡ 3 (mod 10m)
and l2 ≡ 3k ≡ −3(sm + 5t) (mod 10m). The latter particularly implies
that l2 ≥ 3. With these understood, we have kz∞ ≥ 1

20m((3 − 1)(3 −
1)+(120m

10m −1) ·32) = 103
20m . With this estimate, it is easy to see that the

right hand side of the adjunction formula is at least 9
10 + 51

10m . However,

the left hand side is g(C) = 1
2((3

5)2 · 30
m − 3

5 · m+1
m )+1 = 51

10m + 7
10 , which

is a contradiction. This finishes the proof that a J-holomorphic curve
C with p0 ∈ C and C · C0 ≤ 19

30 must be the image of a member of M,
and the case where m ≥ 11 is done.

For the next case where m = 7, we begin with the following obser-
vation. Let Ci, i = 0, 1, . . . , k, be J-holomorphic curves with multi-

plicities ni such that
∑k

i=0 niCi · C0 = 1. Here Ci with i = 0 stands
for the distinguished J-holomorphic curve C0, and we allow n0 = 0,
which simply means that C0 is not included. Note that on the one
hand,

∑
i6=0 niCi ·C0 = 1− n0C0 ·C0 = 1− 7n0

30 , and on the other hand,∑
i6=0 niCi · C0 = c1

2 + c2
3 + c3

5 for some non-negative integers c1, c2, c3,

where at least one of them must be 0 because 1
2 + 1

3 + 1
5 > 1. It follows

easily that either n0 = 0, or n0 = 2 with
∑

i6=0 niCi · C0 = 1
3 + 1

5 . With

this understood, note that d(E) = 4 when m = 7, so that we can specify
any 2 distinct smooth points q1, q2, with q1 ∈ C0 and q2 ∈ X \C0, such
that q1, q2 are contained in the J-holomorphic curves {Ci} obtained by
applying Theorem 2.2 (2) to E, where we note that p0 ∈ ∪iCi also. It
follows easily from the preceding observation that as q2 converges to a
smooth point q′2 ∈ C0 where q′2 6= q1, {Ci} will have only one compo-
nent, which intersects C0 transversely at q1. Let C be the J-holomorphic
curve and let f : Σ → X be a parametrization of C. First, the virtual
genus of C is g(C) = 1

2(30
7 − 7+1

7 ) + 1 = 2 + 4
7 , from which it follows

that g|Σ| ≤ 2. However, we shall need a sharper estimate that g|Σ| ≤ 1,
which is obtained as follows. Observe that by the adjunction formula,
if g|Σ| = 2, then f−1(p0) must contain only one point, denoted by z∞,
which must have order 10m = 70. Moreover, if we let (f∞, ρ∞) be a
local representative of f at z∞, then f∞ must also be embedded. Now
suppose the action of ρ∞(µ70) on a local uniformizing system at p0 is
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given by ρ∞(µ70) · (z1, z2) = (µm1
70 z1, µ

m2
70 z2) in some holomorphic coor-

dinates z1, z2. Write f∞(z) = (c1(z
l1 + · · · ), c2(z

l2 + · · · )) where c1 6= 0
(resp. c2 6= 0) unless l2 = 1 (resp. l1 = 1). Then for any i = 1, 2, we
have li ≡ mi (mod 70) as long as ci 6= 0. It follows easily, since f∞ is
embedded, that one of m1, m2 must equal 1. On the other hand, the
index formula for the linearization DL at f gives rise to

c1(TX) · [f(Σ)] + 2 − 2g|Σ| −
m1 + m2

70

=
7 + 1

7
+ 2 − 2g|Σ| −

m1 + m2

70
∈ Z.

If we write ρ∞(µ70) = hkyl, then m1+m2
70 = k

7 because Ĩ ⊂ SU(2).

Here h = µ14I ∈ Z2m = Z14 and y ∈ Ĩ with eigenvalues µ10, µ
−1
10 , and

without loss of generality, we assume that 0 ≤ k ≤ 6. As a consequence,
we obtain k = 1 and ρ∞(µ70) = hyl. It follows easily that m1 ≡ 5 + 7l
(mod 70) and m2 ≡ 5−7l (mod 70), and from this one can easily check
that m1 6= 1, m2 6= 1 for any l. This is a contradiction, hence g|Σ| ≤ 1.
With this in hand, we let q2 ≡ q2,j be a sequence of points converging
to a smooth point q′2 6= q1 on C0, and denote by Cj the corresponding
J-holomorphic curves, and by fj : Σ → X a parametrization of Cj ,
which is assumed to be from a fixed orbifold Riemann surface without
loss of generality. As we argued earlier, fj will converge to a cusp-curve
f : Σ′ → X such that a component Σν of Σ′ is mapped to C0 under f ,
over which f is a map of degree at least 2. By the observation made at
the beginning of this paragraph, we see that the degree of f |Σν : Σν → X
is exactly 2, and moreover, the remaining component(s) in the limiting
cusp-curve must intersect C0 at exactly two singular points, p2 of order 3
and p3 of order 5, each contributing 1

3 and 1
5 to the intersection product.

Now we observe that since f |Σν : Σν → X is of degree 2, there must
be at least two orbifold points in Σν , one of order 3 and the other of
order 5, which are all obtained by collapsing simple closed loops in Σ.
Furthermore, if Σν contains exactly 2 orbifold points, then we must also
have g|Σν | 6= 0. Since g|Σ| ≤ 1, it is not hard to see that g|Σ| must equal

1 and each f−1
j (p0) consists of two points, and that there are exactly

two non-C0 components, denoted by C1, C2, in the limiting cusp-curve
Im f , such that p0 ∈ C1 ∩C2 and C1 ·C0 = 1

3 , C2 ·C0 = 1
5 (or the other

way). It follows easily that both C1, C2 are the image of a member of
M. Hence the case where m = 7.

Finally, we consider the case where m = 1. Since d(E) = 32, we can
specify any 15 distinct smooth points q1, q2, . . . , q15, where q1 ∈ C0 and
q2, . . . , q15 ∈ X \C0, such that the J-holomorphic curves {Ci} obtained
from Theorem 2.2 (2) contain these points as well as the singular point
p0. We then let qk, k = 2, . . . , 15, converge one by one to a smooth point
in C0 which is different than q1. If we denote by αk the intersection
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product with C0 of the non-C0 components (counted with multiplicity)
in the limiting cusp-curve at each stage, then we have, as in the previous
cases, that α2 ≤ 28

30 and αk − αk+1 ≥ 1
30 for k = 2, . . . , 14. The key

observation for the present case is that each αk =
c
(k)
1
2 +

c
(k)
2
3 +

c
(k)
3
5 for

some integers c
(k)
i ≥ 0, i = 1, 2, 3, where at least one of c

(k)
i is zero.

With this understood, note, for instance, that 23
30 can not be written in

the above form, and therefore it can not be realized as αk for any k. In
fact, a simple inspection like this shows that the following is the only
possibility for the values of αk:

α2 =
28

30
, . . . , α6 =

24

30
, α7 =

22

30
, . . . , α9 =

20

30
, α10 =

18

30
,

α11 =
16

30
, α12 =

15

30
, α13 =

12

30
, α14 =

10

30
and α15 =

6

30
=

1

5
.

(In fact, using the adjunction formula, one can explicitly recover the
process of degeneration of the J-holomorphic curves, i.e., understanding
how at each stage a component carrying the correct amount of homology
splits off during the convergence. But these details are not needed
here for the proof, so we leave them to the reader as an exercise.) In
particular, we obtain at the last stage a J-holomorphic curve C such
that p0 ∈ C and C · C0 = 1

5 . It follows easily that C is the image of a
member of M. Hence the case where m = 1.

The proof of Lemma 3.9 is thus completed. q.e.d.

4. Proof of Taubes’ theorems for 4-orbifolds

For the assertions in Theorem 2.2 (1), observe that Taubes’ proof (cf.
e.g., [21]) works in the orbifold setting without changing a word.

The rest of this section is occupied by a proof of Theorem 2.2 (2). We
shall follow the proof of Taubes in [42], indicating along the way where
modifications to Taubes’ proof are necessary in the orbifold setting, and
how to implement them.

Basic estimates. Section 2 in Taubes [42] is concerned with the fol-
lowing estimates:

• |α| ≤ 1 + zr−1

• |β|2 ≤ zr−1((1 − |α|2) + r−2)

• |P±Fa| ≤ (4
√

2)−1r(1 + zr−1/2)(1 − |α|2) + z
• |∇aα|2 + r|∇′

Aβ|2 ≤ zr(1 − |α|2) + z.

Here z > 0 is a constant solely determined by c1(E) and the Riemann-
ian metric, and r is sufficiently large. The principal tool for obtaining
these estimates is to apply the maximum principle to the various differ-
ential inequalities derived from the Seiberg-Witten equations. Another
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important ingredient is the total energy bound in Lemma 2.6 of [42]:
∣∣∣∣
r

4

∫

X
|1 − |α|2| − 2π[ω] · c1(E)

∣∣∣∣ ≤ zr−1.

These are all valid in the orbifold setting. However, in the estimate for
|P−Fa| (specifically (2.35) in the proof of Lemma 2.7 in [42]), Green’s
function for the Laplacian d∗d is also involved. Here additional care
is needed in the orbifold case because even on a compact, closed Rie-
mannian orbifold, the injectivity radius at each point is not uniformly
bounded from below by a positive constant due to the presence of orb-
ifold points.

Green’s function for the Laplacian on orbifolds is discussed in Appen-
dix B. Given that, let’s recall that the part in the proof of Lemma 2.7
in Taubes [42] which involves Green’s function is to derive the following
estimate (cf. (2.35) in [42]) for the function q′1:

q′1 ≤ z · R · sup(|P−Fa|)
r1/2

where q′1 satisfies 1
2d∗dq′1 + r

4 |α|2q′1 = R · sup(|P−Fa|) · |1 − |α|2|. In the
present case, we apply Theorem 1 in Appendix B to q′1,

q′1(x) = Vol (X)−1

∫

X
q′1 +

∫

X
G(x, ·)∆q′1.

Now observe that in the first term,
∫
X q′1 is bounded by

∫

X
|1 − |α|2|q′1 +

∫

X
|α|2q′1 ≤ z

(
sup(q′1)

r
+

R · sup(|P−Fa|)
r2

)

because | r4
∫
X |1− |α|2| − 2π[ω] · c1(E)| ≤ zr−1 and r

4

∫
X |α|2q′1 =

∫
X R ·

sup(|P−Fa|)·|1−|α|2|. As for the second term, suppose q′1(x0) = sup(q′1)
for some x0 ∈ X, and recall Theorem 1 (3) in Appendix B that one may
write G(x0, y) = G0(x0, y)+G1(x0, y). Thus

∫
X G(x0, ·)∆q′1 is bounded

by
∫

X
G0(x0, ·)(2R · sup(|P−Fa|) · |1 − |α|2|)

+

∫

X
G1(x0, ·)(2R · sup(|P−Fa|) · |1 − |α|2|).

The last term above is bounded by z·R·sup(|P−Fa|)
r , and for the first term,

recall that there is a uniformizing system (Û , G, π) such that G0(x0, y)

is supported in π(Û) and G0 ◦ π equals
∑

h∈G Ĝ0(h · x̂0, ŷ) for some

x̂0 ∈ π−1(x0) with Ĝ0(x̂0, ŷ) satisfying |Ĝ0(x̂0, ŷ)| ≤ z
d̂(x̂0,ŷ)2

. Moreover,

Û contains a closed ball of radius δ0 > 0 centered at x̂0. Now when
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r ≥ δ−4
0 , the first term

∫
X G0(x0, ·)(2R · sup(|P−Fa|) · |1 − |α|2|), which

equals ∫

bU
Ĝ0(x̂0, ·)((2R · sup(|P−Fa|) · |1 − |α|2|) ◦ π),

is bounded by

z · R · sup(|P−Fa|) · r−1/2 + z · R · sup(|P−Fa|) · r1/2

∫

X
|1 − |α|2|

by writing the integration over Û as the sum of integration over the

closed ball Bx̂0(r
−1/4) ⊂ Û of radius r−1/4 ≤ δ0 centered at x̂0, and its

complement in Û as in [42]. It is easily seen that the estimate for q′1
follows immediately for r sufficiently large.

Monotonicity formula and refined estimate for |P−Fa|. Recall that
the monotonicity formula in Section 3 of Taubes [42] is for the purpose of
estimating the growth rate of the local energy r

4

∫
B |1−|α|2|, where B is

a geodesic ball of radius s centered at a given point, against the radius of
the ball s. In this part of the argument, the radius s is required to satisfy
an inequality 1

2r1/2 ≤ s ≤ 1
z . Thus again, because the injectivity radius

has no positive uniform lower bound on the orbifold X, a reformulation
for the definition of local energy is needed.

More precisely, we shall fix the set U of finitely many uniformizing
systems and the constant δ0 > 0 as described in Theorem 1 (3) in
Appendix B. Given that, for any p ∈ X, we choose a uniformizing

system (Û , G, π) ∈ U for p as described therein, and define the local
energy at p to be

E(p, s) =
r

4

∫

B
|1 − |α|2|,

where B is the geodesic ball of radius s ≤ δ0 in Û centered at some

p̂ ∈ π−1(p), and by abusing the notation, the function |1−|α|2| ◦π on Û
is still denoted by |1− |α|2|. It is easily seen that E(p, s) is well-defined,

i.e., E(p, s) is independent of the choice of (Û , G, π) ∈ U and p̂ ∈ π−1(p).
With the preceding understood, the relevant argument in Taubes [42]

can be quoted to establish the corresponding estimates in the present
case:

• E(p, s) ≤ zs2 for all p ∈ X, and
• E(p, s) ≥ 1

z+1s2 when |α(p)| < 1/2,

where z > 0 is a constant depending only on c1(E) and the Riemannian
metric, r is sufficiently large, and 1

2r1/2 ≤ s ≤ 1
z . (cf. Prop. 3.1 in [42].)

Now we discuss the refined estimate for |P−Fa| (cf. Prop. 3.4 in
[42]). Here the argument involves Green’s function as well as a ball
covering procedure using geodesic balls. Hence Taubes’ original proof
in [42] needs to be modified in the present case.
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Recall that the key to the refinement is Lemma 3.5 in Taubes [42]
where a smooth function u on X is constructed which obeys

(1) |u| ≤ z,
(2) 1

2d∗du ≥ r where |α| < 1/2,
(3) |d∗du| ≤ z · r.

Here z > 0 is a constant depending only on c1(E) and the Riemannian
metric. The strategy for the present case is to follow the proof of Lemma

3.5 in Taubes [42] to construct, for each uniformizing system (Û , G, π) ∈
U , a function ubU

on X, and define u ≡ ∑
ubU

.

To be more concrete, let (Û , G, π) be any element in U . Recall that

(cf. Theorem 1 in Appendix B) Û is a geodesic ball of radius δ(pi),
the injectivity radius at pi for some pi ∈ X, and G = Gpi , the isotropy

group at pi. Moreover, the open subset Û ′ ⊂ Û is the concentric ball

of radius δi = N−1δ(pi), and if we denote by Û0 the concentric ball of

radius N−1δi = N−1 · radius(Û ′), then the set {π(Û0)} is an open cover
of X. Here N is a fixed integer no less than 12 = 3 · dimX.

With the preceding understood, let V be the region in Û0 where
|α| < 1/2. Then Lemma 3.6 in Taubes [42] is valid here. To be more

precise, there is a set {Bi} of geodesic balls in Û of radius r−1/2 ≤ δ0

having the following properties: (1) each Bi is centered at a point p̂i ∈ V ,

the region in Û0 where |α| < 1/2, (2) {Bi} covers V , (3) the number
of balls, #{Bi}, is bounded by z · r as r grows, (4) the concentric balls

of only half radius (i.e., 1
2r−1/2) are disjoint, and furthermore in the

present case, (5) the set of centers {p̂i} of the balls is invariant under
the action of G.

Now observe that Lemma 3.7 in Taubes [42] is valid for the set of

balls {Bi}. Thus there exists a set of concentric balls {B̃i} of radius

z · r−1/2 for some constant z > 1 such that Volume((Û \ V ′) ∩ B̃i) ≥
Volume(Bi), where V ′ is the region in Û where |α| < 3/4. Here we

choose r sufficiently large so that each B̃i is contained in the ball of

radius δ = δ0 + radius(Û0) which has the same center of Û0.
As in Taubes [42], we let si, s̃i be the characteristic functions of Bi

and (Û\V ′)∩B̃i. Then as in [42], there is a κi, with bound z−1 < κi < z,
such that

∫

bU
(si − κis̃i) = 0.

Note that the function
∑

i(si−κis̃i) on Û is invariant under the action of

G and is compactly supported in the ball of radius δ = δ0 + radius(Û0)

which has the same center of Û0. Thus
∑

i(si − κis̃i) descends to a

function fbU
on X by defining fbU

≡ 0 outside π(Û). With the preceding
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understood, the function ubU
is the unique solution to

1

2
d∗dubU

= r · fbU
and

∫

X
ubU

= 0.

(By suitably smoothing fbU
, as indicated in [42], one may arrange to

have ubU
smooth.)

The following properties of ubU
are straightforward as in [42]:

• |d∗dubU
| ≤ z · r.

• 1
2d∗dubU

≥ 0 where |α| < 1/2, and 1
2d∗dubU

≥ r in π(V ).

Thus to furnish Lemma 3.5 in Taubes [42] with u ≡ ∑
ubU

, it suffices
to show that

|ubU
| ≤ z

for a constant z > 0 which is independent of r.
To this end, we invoke Theorem 1 in Appendix B to obtain

ubU
(p) = 2r ·

∫

X
G(p, ·)fbU

= 2r ·
∫

X
G0(p, ·)fbU

+ 2r ·
∫

X
G1(p, ·)fbU

.

Note that G1(p, q) is C1 on X × X, so that

2r ·
∫

X
G1(p, ·)fbU

≤ z1 ·
2r

|G|
∑

i

Volume(B̃i) ≤ z1 ·
2r

|G| ·#{Bi} ·
z2

r2
≤ z3,

which is an r-independent constant. As for 2r ·
∫
X G0(p, ·)fbU

, note that∫
X G0(p, ·)fbU

= 0 if p ∈ X \ π(Û ′) because {q | G0(p, q) 6= 0} ⊆ {q |
d(p, q) ≤ (4 + 1)δ0} (cf. Theorem 1 in Appendix B). Hence by fixing a

p̂ ∈ π−1(p) for any given p ∈ π(Û ′), we have

2r ·
∫

X
G0(p, ·)fbU

=
∑

i

2r ·
∫

bU
Ĝ0(p̂, ·) · (si − κis̃i).

If we set ui(p̂) = 2r ·
∫

bU
Ĝ0(p̂, ·) · (si − κis̃i), then as in Taubes [42], ui

satisfies

|ui(p̂)| ≤ z when d̂(p̂, p̂i) ≤
z

r1/2
, and

|ui(p̂)| ≤ z

r3/2d̂(p̂, p̂i)3
when d̂(p̂, p̂i) >

z

r1/2
.

Recall that, here, p̂i ∈ V is the center of the ball Bi.
To complete the proof, we observe that Lemma 3.8 in Taubes [42] is

valid here, that is, for any p̂ ∈ Û ′, the number N(n) of balls in {Bi}
whose center p̂i satisfies d̂(p̂, p̂i) ≤ n · r−1/2 obeys N(n) ≤ z · n2. (Here
n is any positive integer.) If we let Ω(n) be the set of indices i for the

balls Bi whose center p̂i obeys (n− 1) · r−1/2 < d̂(p̂, p̂i) ≤ n · r−1/2, then
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as in [42],
∣∣∣∣2r ·

∫

X
G0(p, ·)fbU

∣∣∣∣ ≤
∑

i

|ui(p̂)| =
∑

n≥1

∑

i∈Ω(n)

|ui(p̂)|

≤ z1 +
∑

n≥1

z2 ·
N(n) − N(n − 1)

n3
≤ z3

for a constant z3 > 0 which is independent of r.

The local structure of α−1(0) and exponential decay estimates. The
discussion in Section 4 of Taubes [42] extends to the present case almost
word by word, except for the exponential decay estimates

|q(x)| ≤ z · r · exp

(
−1

z
r1/2d(x, α−1(0))

)

for q ∈ {r(1 − |α|2), r3/2β, Fa, r
1/2∇aα, r∇′

Aβ}, where d is the distance
function.

The part that needs modification is the construction of a comparison
function h (cf. (4.19) in [42]) which obeys

• 1
2d∗dh + r

32h ≥ 0 where d(·, α−1(0)) ≥ zr−1/2.

• h ≥ r where d(·, α−1(0)) = zr−1/2.

• h ≤ z1 · r · exp(− 1
z1

r1/2d(·, α−1(0))) where d(·, α−1(0)) ≥ zr−1/2.

Here z, z1 > 1 are r-independent constants.
Modification is needed here at least for one reason: the construction

of h(x) involves a ball covering argument by geodesic balls of radius

of size r−1/2, along with the local energy growth rate estimates, i.e.,
Prop. 3.1 in [42]. On the other hand, observe that the construction
of comparison function in [42] does not require the compactness of the
underlying manifold. The compactness enters only when the maximum
principle is applied. Hence Taubes’ argument in [42] should in principle
work here also.

More concretely, we shall construct for each uniformizing system

(Û , G, π) ∈ U (cf. Theorem 1 in Appendix B) a smooth function hbU
> 0

on X which obeys

• 1
2d∗dhbU

+ r
32hbU

≥ 0 where d(·, α−1(0) ∩ π(Û ′)) ≥ zr−1/2.

• hbU
≥ r where d(·, α−1(0) ∩ π(Û ′)) = zr−1/2.

• hbU
≤ z1 · r · exp(− 1

z1
r1/2d(·, α−1(0) ∩ π(Û ′))) where d(·, α−1(0) ∩

π(Û ′)) ≥ zr−1/2.

Here z, z1 > 1 are r-independent constants. Accepting this, we may
take h ≡ ∑

hbU
for the comparison function.

To define hbU
, use Lemma 3.6 in [42] to find a maximal set {p̂i} ⊂

α−1(0)∩ Û ′ such that (1) the geodesic balls with centers {p̂i} and radius
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r−1/2 are disjoint, (2) the set {p̂i} is invariant under the action of G.

Then set ĥ ≡ ∑
i Hi where

Hi(p̂) =
ρ(d̂(p̂, p̂i))

d̂(p̂, p̂i)2
exp

(
−1

c
r1/2 · d̂(p̂, p̂i)

)
+ c · exp

(
− δ0

2c
r1/2

)
.

Here d̂ is the distance function on Û , ρ(t) is a fixed cut-off function which

equals 1 for t ≤ δ0
2 and equals zero for t ≥ δ0. Moreover, r is sufficiently

large, and c > 1 is a fixed, sufficiently large, r-independent constant (cf.

(4.17) in [42]). Note that ĥ ≡ ∑
i Hi is smooth, positive, and invariant

under the action of G, and is constant outside a compact subset in Û .
Hence ĥ descends to a smooth, positive function on X, which is defined
to be hbU

. The claimed properties of hbU
follow essentially as in Taubes

[42]. (Cf. Lemma 4.6 and (4.18) in [42].)

Convergence to a current (Section 5 of Taubes [42]). First of all, note
that generalization of the basic theory of currents on smooth manifolds
(cf. e.g., [15]) to the orbifold setting is straightforward. In particular,
note that a differential form or a differentiable chain in an orbifold (as
introduced in [11]) naturally defines a current.

Having said this, for any given sequence of solutions (an, αn, βn) to the
Seiberg-Witten equations with the values of the parameter r unbounded,
we define as in Taubes [42] a sequence of currents Fn by

Fn(η) =

√
−1

2π

∫

X
Fan ∧ η, ∀η ∈ Ω2(X).

As in [42], the mass norm of {Fn} is uniformly bounded, thus there
is a subsequence, still denoted by {Fn} for simplicity, which weakly
converges to a current F , namely,

F(η) = lim
n→∞

Fn(η), ∀η ∈ Ω2(X).

The current F is closed, and is Poincaré dual to c1(E) in the sense that

F(η) = c1(E) · [η]

for all closed 2-forms η.
As for the support of F , which, by definition, is the intersection of

all the closed subsets of X such that the evaluation of F on any 2-form
supported in the complement of the closed subset is zero, we proceed
as follows. We fix the set U of finitely many uniformizing systems in

Theorem 1 of Appendix B, and for each (Û , G, π) ∈ U , we run Taubes’

argument on Û . More concretely, for each integer N ≥ 1 and each
index n with rn > z2 · (256)N , we find a maximal set Λ′

n(N)bU
of disjoint

geodesic balls in Û with centers in α−1
n (0) ∩ closure (Û ′) and radius

16−N such that the centers of the balls in Λ′
n(N)bU

are invariant under

the action of G, and for any two uniformizing systems (Ûi, Gi, πi) ∈ U ,
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i = 1, 2, the centers of the balls in Λ′
n(N)bUi

which are in the domain

or range of a transition map between the two uniformizing systems are
invariant under the transition map. Then proceeding as in Taubes [42],

we find a nested set {U(N)bU
}N≥1 for each (Û , G, π) ∈ U , which satisfies

d̂
(
U(N + 1)bU

, Û \ U(N)bU

)
≥ 3

2
16−N .

We define CbU
≡ ⋂

N U(N)bU
, and define C to be the set of orbits of⊔

CbU
⊂ ⊔

Û in X. It is clear as in [42] that the support of F is
contained in C, and F is of type 1 − 1.

As for the Hausdorff measure of C, first of all, we say that a subset of
X has a finite m-dimensional Hausdorff measure if for every uniformiz-
ing system of X, the inverse image of the subset in that uniformizing
system has a finite m-dimensional Hausdorff measure. Equivalently, a
subset of X has a finite m-dimensional Hausdorff measure if the in-
verse image of the subset in Û ′ for each (Û , G, π) ∈ U has a finite
m-dimensional Hausdorff measure. Having said this, the subset C has a
finite 2-dimensional Hausdorff measure because each CbU

does, as argued
in Taubes [42].

Finally, the local intersection number. We simply apply the relevant

definition and discussion in Taubes [42] to CbU
in Û for each (Û , G, π) ∈

U .

Representing F by J-holomorphic curves. Section 6 of Taubes [42]
deals with the regularity of the subset C in the manifold case, where the
main conclusions are: (1) each regular point in C has a neighborhood
which is an embedded, J-holomorphic disc (cf. Lemma 6.11 in [42]),
(2) the singular points in C are isolated (cf. Lemmas 6.17, 6.18 in
[42]), and their complement in C is diffeomorphic to a disjoint union
of [1,∞)× S1 when restricted in a small neighborhood of each singular
point (courtesy of Lemma 6.3 in [42]). The arguments for these results

are local in nature, hence applicable to CbU
⊂ Û for each (Û , G, π) ∈ U .

With the preceding understood, particularly that the subset CbU
∩ Û ′

has the said regularity properties for each (Û , G, π) ∈ U , we now analyze

the subset C of X, which is the set of orbits of
⊔

CbU
⊂ ⊔

Û in X. To

this end, note that the isotropy subgroup Gp̂ of a point p̂ ∈ Û falls into
two types: type A if Gp̂ fixes a complex line through p̂ (which is in
fact a J-holomorphic submanifold), or type B if Gp̂ only fixes p̂ itself.
By the unique continuation property of J-holomorphic curves (cf. e.g.,

[35]), it follows easily that there is a subset CbU,s
⊂ CbU

∩ Û ′ of isolated

points, such that the complement of CbU,s
, denoted by CbU,r

, consists

of regular points and is modeled on a disjoint union of [1,∞) × S1 in
a small neighborhood of each point in CbU,s

, and furthermore, CbU,r
is
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the disjoint union of C
(1)
bU,r

and C
(2)
bU,r

, where C
(1)
bU,r

consists of points of

trivial isotropy subgroups and C
(2)
bU,r

consists of points of type A isotropy

subgroups. In particular, CbU,r
is a J-holomorphic submanifold in Û . It

is easy to see that the quotient space CbU,r
/G ⊂ X has the structure

of an open Riemann surface with a set of isolated points removed, and

since {π(Û ′)} is an open cover of X, there is a subset C0 ⊂ C which has
the structure of a closed Riemann surface with a set of isolated, hence
finitely many (since C is compact) points removed. The restriction
of the inclusion C →֒ X to each component C0,i of C0 extends to a
continuous map fi : Σi → X, none of which is multiply covered, where
Σi is the closed Riemann surface obtained by closing up C0,i. We define
Ci ≡ fi(Σi). Clearly C = ∪iCi. Note that C0 is the disjoint union of

C
(1)
0 and C

(2)
0 , where the former is covered by {C(1)

bU,r
} and the latter

by {C(2)
bU,r

}. The set {Ci} is correspondingly a disjoint union of two

subsets, {C(1)
i } and {C(2)

i }. We will show next that {C(1)
i } are type I

J-holomorphic curves and {C(2)
i } are type II J-holomorphic curves (in

the sense of [11]). Moreover, there are positive integers ni such that

c1(E) =
∑

i

ni · PD(Ci).

(Note that for a type II J-holomorphic curve, the Poincaré dual PD(C)
differs from the usual one by a factor, see [11] for details.)

To this end, consider the étale topological groupoid Γ that defines

the orbifold structure on X whose space of units is
⊔

Û ′. There is a
canonical orbispace structure on each C0,i, making it into a suborbispace
f ′

i : C0,i →֒ X, which is obtained by restricting Γ to
⊔

CbU,i
, where CbU,i

is the inverse image of C0,i under π : Û ′ → Û ′/G (cf. [10]). Because

CbU,r
(the inverse image of C0 in Û ′) is modeled on a disjoint union of

[1,∞) × S1 in a small neighborhood of each point in CbU,s
(the inverse

image of C \ C0 in Û ′), it is easily seen that the orbispace structure on
C0,i extends uniquely to define an orbifold structure on Σi, making it
into an orbifold Riemann surface. Moreover, the map f ′

i : C0,i →֒ X

extends uniquely to a map f̂i : Σi → X between orbifolds in the sense of
[10], which is J-holomorphic and defines Ci as a J-holomorphic curve

in X in the sense of [11]. Clearly {C(1)
i } are of type I and {C(2)

i } are of
type II according to the definitions in [11].

The positive integers ni are assigned to Ci as follows. At each point

p̂ ∈ CbU,i
, there is an embedded J-holomorphic disc D in Û which inter-

sects CbU,i
transversely at p̂. It is shown in [42] that limn→∞

√
−1
2π

∫
D Fan ,
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denoted by n(p̂), exists and is a positive integer. Moreover, n(p̂) is lo-
cally constant, hence it depends on Ci only. We define ni ≡ n(p̂),
∀p̂ ∈ CbU,i

. (cf. Prop 5.6 and the discussion before Lemma 6.9 in [42].)

With ni so defined, now for any 2-form η on X, we write η =
∑

ηbU

by a partition of unity subordinate to the cover {π(Û)}, and observe
that

F(η) = lim
n→∞

Fn(η) = lim
n→∞

(∑ 1

|G|

∫

bU ′

√
−1

2π
Fan ∧ ηbU

)

=
∑

i

ni ·
(

∑ 1

|G|

∫

C bU,i

ηbU

)
=

∑

i

ni ·
∫

Σi

f̂∗
i η.

Thus c1(E) =
∑

i ni · PD(Ci).
Finally, as in Taubes [42], if a subset Ω ⊂ X is contained in α−1

n (0)
for all n, then Ω is contained in C = ∪iCi also.

Appendix A. Dimension of the Seiberg-Witten Moduli Space

We begin with a brief review on the index theorem in Kawasaki [22].
Let X be an orbifold (compact and connected), and P be an elliptic

operator over X. In order to state the index theorem, we first introduce

the space X̃ ≡ {(p, (g)Gp) | p ∈ X, g ∈ Gp}, where Gp is the isotropy
group at p, and (g)Gp is the conjugacy class of g in Gp. The following

properties of X̃ are easily verified (cf. [22], compare also [14]).

• X̃ has a canonical orbifold structure, with a canonical map i :

X̃ → X: let (Vp, Gp) be a local uniformizing system at p ∈ X; then
(V g

p , Zp(g)), where V g
p ⊂ Vp is the fixed-point set of g ∈ Gp and

Zp(g) ⊂ Gp is the centralizer of g, is a local uniformizing system at

(p, (g)Gp) ∈ X̃, and the map i : X̃ → X is defined by the collection
of embeddings {(V g

p , Zp(g)) →֒ (Vp, Gp) | p ∈ X, g ∈ Gp}.
• X̃ is a disjoint union of compact, connected orbifolds of various di-

mensions, containing the orbifold X as the component {(p, (1)Gp) |
p ∈ X}: X̃ =

⊔
(g)∈T X(g) with X(1) = X, where T = {(g)} is the

set of equivalence classes of (g)Gp with the equivalence relation
∼ defined as follows: (h)Gq ∼ (g)Gp if q is contained in a local
uniformizing system centered at p and h 7→ g under the natural
injective homomorphism Gq → Gp which is defined only up to
conjugation by an element of Gp.

We remark that the orbifold structure on X̃ is in a more general sense
that the group action in a local uniformizing system is not required to
be effective. For such an orbifold, we shall use the following convention:
the fundamental class of the orbifold, whenever it exists, equals the
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fundamental class of the underlying space divided by the order of the
isotropy group at a smooth point (cf. [14] and §2 in [11]).

Next we describe the characteristic classes involved in the index the-
orem. Let u = [σ(P )] be the class of the principal symbol of the elliptic
operator P in the K-theory of TX. Then the pullback of u via the
differential of the map i : X(g) → X, denoted by u(g), is naturally de-
composed as ⊕0≤θ<2πu(g),θ where u(g),θ is the restriction of u(g) to the

exp(
√
−1θ)-eigenbundle of g ∈ (g). We set

ch(g)u(g) ≡
∑

θ

exp(
√
−1θ)ch u(g),θ ∈ H∗

c (TX(g); C).

On the other hand, the normal bundle Ng
p of V g

p →֒ Vp patches up
to define an orbifold vector bundle N(g) → X(g), and the decomposi-

tion Ng
p = Ng

p (−1) ⊕0<θ<π Ng
p (θ), where Ng

p (−1), Ng
p (θ) are the (−1)-

eigenspace and exp(
√
−1θ)-eigenspace of g respectively, defines a nat-

ural decomposition of orbifold vector bundles N(g) = N(g)(−1) ⊕0<θ<π

N(g)(θ).
Now let R, Sθ be the characteristic classes over C of the orthogonal

group and unitary group, which are defined by the power series

{
∏

i

(
1 + expxi

2

) (
1 + exp(−xi)

2

)}−1

,

{
∏

i

(
1 − exp(yi +

√
−1θ)

1 − exp(
√
−1θ)

) (
1 − exp(−yi −

√
−1θ)

1 − exp(−
√
−1θ)

)}−1

respectively. We set

I(g) ≡ R(N(g)(−1))
∏

0<θ<π

Sθ(N(g)(θ))τ(TX(g) ⊗R C)

det(1 − (g)|N(g)
)

∈ H∗(X(g); C),

where τ =
∏

i xi(1−exp(−xi))
−1 is the Todd class, and det(1−(g)|N(g)

)

is the constant function on X(g) which equals det(1−g|Ng
p
) at (p, (g)Gp) ∈

X(g). Note that when X is almost complex, N(g) is an orbifold com-
plex vector bundle, and there is a compatible decomposition N(g) =
⊕0<θ<2πN(g)(θ). In this case, it is easily seen that

I(g) =
∏

0<θ<2π

Sθ(N(g)(θ))τ(TX(g) ⊗R C)

det(1 − (g)|N(g)
)

∈ H∗(X(g); C).

Theorem (Kawasaki [22]).

index P =
∑

(g)∈T

(−1)dim X(g)〈ch(g)u(g) · I(g), [TX(g)]〉
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where u = [σ(P )]. (Here the orientation for the fundamental class

[TX(g)] is given according to the (now standard) convention in Atiyah-

Singer [3].)

For the rest of the appendix, we shall consider specifically the case
where X is an almost complex 4-orbifold (which is in the classical sense
that the local group actions are effective), and where P is either the
Dirac operator associated to a Spin C structure on X, or the de Rham
operator, or the signature operator.

First, the index of the Dirac operator associated to a Spin C structure
on X. Recall that the almost complex structure of X defines a canonical
Spin C structure S+⊕S−, S+ = I⊕K−1

X , S− = TX, where I is the trivial
orbifold complex line bundle, KX is the canonical bundle, and TX is
the tangent bundle which, with the given almost complex structure, is
viewed as an orbifold C2-bundle. Any other Spin C structure has the
form (S+ ⊕ S−) ⊗ E for an orbifold complex line bundle E over X.

Let P = PE
Dirac : C∞(S+⊗E) → C∞(S−⊗E) be the Dirac operator.

We shall determine the contribution to the index of P from each compo-

nent X(g) of X̃. Let l = dimC X(g). Then l = 0, 1, 2, where X(g) = p/Gp

for a singular point p ∈ X when l = 0, X(g) is 2-dimensional, pseudo-
holomorphic when l = 1, and X(g) = X(1) = X when l = 2. In any
event, the orbifold principal U(2)-bundle associated to the almost com-
plex structure reduces to an orbifold principal U(l) × U(2 − l)-bundle
when restricted to X(g) via the map i : X(g) → X, and there is an orb-
ifold principal H-bundle F over X(g), H ≡ U(l)×U(2−l)×U(1) ⊂ U(3),

such that TX(g) = F ×H Cl and E|X(g)
= F ×H C, where Cl, C are H-

modules via Cl = Cl × {0} ⊂ C3 and C = {0} × C ⊂ C3. Moreover, let
M+ = (I⊕Λ2C2)⊗C, M− = C2⊗C be the H-modules where I is the 1-
dimensional trivial module, C2 = C2×{0} ⊂ C3 and C = {0}×C ⊂ C3.
Then S+ ⊗ E|X(g)

= F ×H M+ and S− ⊗ E|X(g)
= F ×H M−, so that

u(g), the pullback of the symbol class of P via the differential of the map
i : X(g) → X, is an elliptic symbol class associated to the H-structure
(cf. Atiyah-Singer [3]).

There is a linear action of g ∈ (g) on M+ and M− associated to the
bundles TX|X(g)

, E|X(g)
. Let M+ = ⊕0≤θ<2πM+,θ, M− = ⊕0≤θ<2πM−,θ

be the corresponding decompositions into exp(
√
−1θ)-eigenspaces. Let

ψ : H∗(X(g); C) → H∗
c (TX(g); C) be the Thom isomorphism. Then the

contribution to the index of P from X(g) is

(−1)2l〈ch(g)u(g) · I(g), [TX(g)]〉
= (−1)l〈ψ−1(ch(g)u(g)) · I(g), [X(g)]〉

= (−1)l

∑
θ(exp(

√
−1θ)ch M+,θ − exp(

√
−1θ)ch M−,θ)

x1 · · ·xl
(F )I(g)[X(g)]
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where x1 · · ·xl = 1 when l = 0.
In the above formula, the symbol class of the Dirac operator con-

tributes through the modules M+, M−. Similarly, in order to determine
the index formulae for the other geometric differential operators on X,
it suffices to write down the corresponding modules.

Let’s look at the de Rham operator d + d∗, whose index is the Euler
characteristic χ(X). The modules are N+ = (I ⊕ Λ2R4 ⊕ Λ4R4) ⊗R C
and N− = (R4 ⊕Λ3R4)⊗R C. Because of the almost complex structure,

R4⊗R C = C2⊕C
2
, and if we set W = Λ2(C1⊕C2) where C2 = C1⊕C2,

then we may rewrite N+ = 4I⊕Λ2C2⊕Λ2C
2⊕W⊕W , N− = 2(C2⊕C

2
).

For the signature operator whose index is sign(X), the signature of
X, the modules are Q+ = Λ2

+R4 ⊗R C and Q− = Λ2
−R4 ⊗R C. With the

almost complex structure, we may rewrite Q+ = I ⊕ Λ2C2 ⊕ Λ2C
2

and
Q− = I ⊕ W ⊕ W .

With these preparations, we give a formula in the following propo-
sition for the dimension d(E) of the moduli space of Seiberg-Witten
equations associated to the Spin C-structure given by an orbifold com-
plex line bundle E.

Proposition. d(E) = 2 · index PE
Dirac − 1

2(χ(X) + sign(X)) = I0 +
I1 + I2 where

I0 =
∑

{(g)|dimC X(g)=0}

2(exp(
√
−1θE,(g)) − 1)

(1 − exp(−
√
−1θ1,(g)))(1 − exp(−

√
−1θ2,(g)))

[X(g)]

I1 =
∑

{(g)|dimC X(g)=1}

(
2 exp(

√
−1θE,(g))c1(E)

1 − exp(−
√
−1θ(g))

+
(exp(

√
−1θE,(g)) − 1)c1(TX(g))

1 − exp(−
√
−1θ(g))

−
2 exp(−

√
−1θ(g))(exp(

√
−1θE,(g)) − 1)c1(N(g))

(1 − exp(−
√
−1θ(g)))2

)
[X(g)]

and

I2 = (c2
1(E) − c1(E)c1(KX))[X].

In the above equations, exp(
√
−1θE,(g)) denotes the eigenvalue of g ∈ (g)

acting on the orbifold complex line bundle E|X(g)
, exp(

√
−1θ1,(g)) and

exp(
√
−1θ2,(g)) denote the eigenvalues of g ∈ (g) acting on the normal

bundle N(g) of X(g) when dimC X(g) = 0, and exp(
√
−1θ(g)) denotes the

eigenvalue of g ∈ (g) acting on N(g) when dimC X(g) = 1. Moreover,

X(g) and X are given with the canonical orientation as almost complex

orbifolds.
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Proof. We first consider the case when the orbifold complex line bun-
dle E = I is trivial, and show that 2· index P I

Dirac− 1
2(χ(X)+sign(X)) =

0.
To this end, set M0

+ = I ⊕ Λ2C2 and M0
− = C2, and let M0

+ =
⊕0≤θ<2πM0

+,θ and M0
− = ⊕0≤θ<2πM0

−,θ be the decompositions into

exp(
√
−1θ)-eigenspaces. Then the contribution to 1

2(χ(X) + sign(X))
that comes from X(g) is

(−1)l

∑
θ(exp(

√
−1θ)chM0

+,θ − exp(
√
−1θ)chM0

−,θ)

x1 · · ·xl
(F0)I(g)[X(g)]+

(−1)l

∑
θ(exp(−

√
−1θ)chM0

+,θ − exp(−
√
−1θ)ch M0

−,θ)

x1 · · ·xl
(F0)I(g)[X(g)],

where l = dimC X(g), and F0 is the orbifold principal U(l) × U(2 − l)-
bundle over X(g) which is the reduction when restricted to X(g) of the
orbifold principal U(2)-bundle over X associated to the almost complex
structure.

Observe that only the terms of degree 2l in
∑

θ

(exp(
√
−1θ)ch M0

+,θ − exp(
√
−1θ)ch M0

−,θ)

could possibly make a contribution, which is invariant under xi 7→ −xi.
Moreover, θ 7→ −θ under (g) 7→ (g−1), and I(g) = I(g−1) under the
identification X(g) = X(g−1). Hence the following two expressions

(−1)l

∑
θ(exp(−

√
−1θ)chM0

+,θ − exp(−
√
−1θ)ch M0

−,θ)

x1 · · ·xl
(F0)I(g)[X(g)],

(−1)l

∑
θ(exp(

√
−1θ)ch M0

+,θ − exp(
√
−1θ)ch M0

−,θ)

x1 · · ·xl
(F0)I(g−1)[X(g−1)]

are equal, from which it follows easily that

2 · index P I
Dirac −

1

2
(χ(X) + sign(X)) = 0.

For the general case, notice that

2 · index PE
Dirac −

1

2
(χ(X) + sign(X)) = 2(index PE

Dirac − index P I
Dirac).

The formula follows easily from direct evaluation of the right hand side.
q.e.d.
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Proof of Lemma 3.8. The dimension d(E) of the Seiberg-Witten moduli
space corresponding to E equals

2 · index PE
Dirac −

1

2
(χ(X) + sign (X)).

According to the proposition, it is the sum of c1(E) · c1(E) − c1(KX) ·
c1(E) with a term contributed by the singular point p0, which can be
written as 1

|G|
∑

g∈G,g 6=1 χ(g), with

χ(g) =
2(ρ(g) − 1)

(1 − exp(−
√
−1θ1,g))(1 − exp(−

√
−1θ2,g))

,

where ρ : G → S1 is the representation given in Lemma 3.6, and
exp(

√
−1θi,g), i = 1, 2, are the two eigenvalues of g ∈ G ⊂ U(2). The

evaluation of this term constitutes the main task in the proof, which
will be done case by case according to the type of G.

(1) G = 〈Z2m, Z2m; D̃n, D̃n〉. Let h = µ2mI ∈ Z2m, and let x, y be

generators of D̃n satisfying x2 = yn = (xy)2 = −1. Then G\{1} = Λ1⊔
Λ2 ⊔Λ3, where Λ1 = ⊔n−1

l=0 Λ
(l)
1 with Λ

(l)
1 = {hkyl | k = 1, 2, . . . , 2m− 1},

Λ2 = {hkxyl | k = 0, 1, . . . , 2m − 1, l = 0, 1, . . . , n − 1}, and Λ3 = {yl |
l = 1, 2, . . . , n − 1}. Note that χ(g) = 0 for any g ∈ Λ3.

We first calculate
∑

g∈Λ1
χ(g). To this end, we set, for each s =

1, 2, . . . , 2n, Sl,s(t) ≡
∑2m−1

k=1
(µk

2mµ−l
2n)s

1−µ−k
2mµ−l

2nt
. Introduce [s] such that s ≡ [s]

(mod 2m), 0 ≤ [s] ≤ 2m − 1. Then

Sl,s(t) =
2m−1∑

k=1

(µk
2mµ−l

2n)s
∞∑

j=0

(µ−k
2mµ−l

2n)jtj

=
∞∑

j=0

µ−ls−lj
2n

2m−1∑

k=1

(µs−j
2m )ktj

= −
∞∑

j=0

µ−ls−lj
2n tj + 2mµ

−ls−l[s]
2n t[s]

∞∑

j=0

(µ−l
2nt)2mj

= − µ−ls
2n

1 − µ−l
2nt

+ 2m
µ
−ls−l[s]
2n t[s]

1 − (µ−l
2nt)2m

.
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We consider separately when l = 0 or l 6= 0.

2n∑

s=1

S0,s(1) =

2n∑

s=1

S0,s(t)|t=1 =

2n∑

s=1

(
− 1

1 − t
+

2mt[s]

1 − t2m

) ∣∣∣
t=1

=
2n∑

s=1

−∑2m−1
i=0 ti + 2mt[s]

1 − t2m

∣∣∣
t=1

=
2n∑

s=1

−∑2m−1
i=0 i + 2m[s]

−2m

=
2n∑

s=1

(
1

2
(2m − 1) − [s]

)
.

For each l 6= 0, note that
∑2n

s=1(µ
−l
2n)s = 0, so that

∑2n
s=1 Sl,s(1) =

∑2n
s=1

2mµ
−ls−l[s]
2n

1−(µ−l
2n)2m

. Introduce js which is uniquely defined by 0 ≤ js ≤
n − 1 and s + [s] + 2mjs ≡ 0 (mod 2n). Then

S(t) ≡
2n∑

s=1

n−1∑

l=1

µ
−ls−l[s]
2n

1 − µ−2ml
2n t

=
2n∑

s=1

n−1∑

l=1

∞∑

j=0

(µ−2ml
2n )jtj

=
2n∑

s=1

∞∑

j=0

n−1∑

l=1

(
µ
−(s+[s]+2mj)
2n

)l
tj =

2n∑

s=1




∞∑

j=0

−tj + ntjs

∞∑

j=0

tnj




=
2n∑

s=1

(
− 1

1 − t
+

ntjs

1 − tn

)
.

Similarly, S(1) =
∑2n

s=1(
1
2(n − 1) − js), and

n−1∑

l=1

2n∑

s=1

Sl,s(1) = 2mS(1) =
2n∑

s=1

(m(n − 1) − 2mjs).

With these preparations, now observe that if we set Sl ≡ 1
2

∑
g∈Λ

(l)
1

χ(g),

then

Sl =

2m−1∑

k=1

(µk
2mµ−l

2n)2n − 1

(1 − µ−k
2mµ−l

2n)(1 − µ−k
2mµl

2n)

=
2n∑

s=1

2m−1∑

k=1

(µk
2mµ−l

2n)s

1 − µ−k
2mµ−l

2n

=
2n∑

s=1

Sl,s(1).

Hence

∑

g∈Λ1

χ(g) = 2

n−1∑

l=0

Sl =

2n∑

s=1

((2mn − 1) − 2([s] + 2mjs)).
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Next we calculate
∑

g∈Λ2
χ(g). First of all,

∑

g∈Λ2

χ(g) =
n−1∑

l=0

2m−1∑

k=0

2((µk
2m)2n(−1)n − 1)

(1 − µ−k
2m

√
−1)(1 − µ−k

2m(
√
−1)−1)

=
2n∑

s=1

n−1∑

l=0

2m−1∑

k=0

2(µk
2m

√
−1)s

1 − µ−k
2m

√
−1

.

Set Ss(t) ≡
∑2m−1

k=0
(µk

2m

√
−1)s

1−(µ−k
2m

√
−1)t

, s = 1, 2, . . . , 2n. Then

Ss(t) =
2m−1∑

k=0

(µk
2m

√
−1)s

∞∑

j=0

(µ−k
2m

√
−1)jtj

=
∞∑

j=0

2m−1∑

k=0

(µs−j
2m )k(

√
−1)s+jtj

= 2m
∞∑

j=0

(
√
−1)s+[s]+2mj · t[s]+2mj

=
2m(

√
−1)s+[s] · t[s]

1 − (
√
−1 · t)2m

,

and
∑

g∈Λ2

χ(g) = n
2n∑

s=1

2Ss(1) = 2mn
2n∑

s=1

(
√
−1)s+[s].

In order to evaluate
∑

g∈Λ1
χ(g) and

∑
g∈Λ2

χ(g), we consider the
cases where m > n and m < n separately.

Suppose m > n. In this case, we have [s] = s for any s = 1, 2, . . . , 2n.
Furthermore, s = [s] and m, n being relatively prime imply that s 7→
js is a surjective, two to one correspondence from {1, 2, . . . , 2n} to
{0, 1, . . . , n − 1}. It then follows easily from these observations that

∑

g∈Λ1

χ(g) = 4n(m − n − 1),
∑

g∈Λ2

χ(g) = 0.

Hence

d(E) = c1(E) · c1(E) − c1(KX) · c1(E) +
1

|G|
∑

g 6=1

χ(g)

=
n

m
+

m + 1

m
+

1

4mn
· 4n(m − n − 1) = 2.

Now consider the case where m < n. We introduce δ, r satisfying
n = δm + r, 0 ≤ r ≤ m − 1. Then a simple inspection shows that

∑

g∈Λ2

χ(g) = 2mn((−1)δ − 1).
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In order to evaluate
∑

g∈Λ1
χ(g), we introduce, for each s = 1, 2, . . . , 2n,

ks which obeys s + [s] + 2mjs = 2nks. Then one can easily check that
ks satisfies 1 ≤ ks ≤ m. Now observe that for any l = 0, 1, . . . , 2δ − 1,
s 7→ ks is injective, hence surjective, if lm + 1 ≤ s ≤ lm + m. Summing
up the equations s + [s] + 2mjs = 2nks from s = 1 to s = 2δm, we have

2δm∑

s=1

([s] + 2mjs) =
2δm∑

s=1

2nks −
2δm∑

s=1

s = δm(2nm + 2r − 1).

If m 6= 1, we need to consider the rest of the values of s, s = 2δm +
1, . . . , 2δm+2r. For this part, observe that jr = 0, j2r = δ, and for any
1 ≤ s ≤ r− 1, we have the relation 2m(js + j2r−s) = 2n(ks + k2r−s − 2),
which implies that js + j2r−s = n. Thus

2n∑

s=2δm+1

([s] + 2mjs) = r(2r + 1) + 2m(rn − n + δ).

Putting things all together, we have
∑

g∈Λ1

χ(g) = 4mn − 4n(r + 1).

Finally, when m < n, we have

d(E) =
n

m
+

m + 1

m
+

1

4mn
(4mn − 4n(r + 1) + 2mn((−1)δ − 1))

= δ + 2 +
1

2
((−1)δ − 1).

(2) G = 〈Z4m, Z2m; D̃n, C2n〉. Let h = µ4mI ∈ Z4m, and let x, y

be generators of D̃n satisfying x2 = yn = (xy)2 = −1. Introduce
h̄ = h2, x̄ = hx, and ȳ = y. Then G \ {1} = Λ1 ⊔ Λ2 ⊔ Λ3, where
Λ1 = {h̄kȳl | k = 1, 2, . . . , 2m− 1, l = 0, 1, . . . , n− 1}, Λ2 = {h̄kx̄ȳl | k =
0, 1, . . . , 2m − 1, l = 0, 1, . . . , n − 1}, and Λ3 = {ȳl | l = 1, 2, . . . , n − 1}.
Again, we have χ(g) = 0 for any g ∈ Λ3.

Note that
∑

g∈Λ1
χ(g) is the same as in the previous case, so we only

need to evaluate
∑

g∈Λ2
χ(g), for which a similar calculation shows that

∑

g∈Λ2

χ(g) = 2mn
2n∑

s=1

µ
s−[s]
4m (

√
−1)s+[s].

A simple inspection, with the fact that m is even this time, shows that∑
g∈Λ2

χ(g) = 0 when m > n, and when m < n,
∑

g∈Λ2

χ(g) = 2mn((−1)δ − 1), where n = δm + r, 0 ≤ r ≤ m − 1.

By the same calculation, d(E) = 2 if m > n, and d(E) = δ + 2 +
1
2((−1)δ − 1) if m < n.
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(3) G = 〈Z2m, Z2m; T̃ , T̃ 〉. Let h = µ2mI ∈ Z2m, and let x, y be

generators of T̃ satisfying x2 = y3 = (xy)3 = −1. Then
∑

g 6=1 χ(g) =

S0 + S1 + S2, where S0 =
∑2m−1

k=1 χ(hk),

S1 =
∑

g=y,xy,x−1yx,yx

2∑

l=1

2m−1∑

k=0

χ(hkgl),

and

S2 =
∑

g=x,y−1xy,y−2xy2

2m−1∑

k=0

χ(hkg).

Let [s] be defined by s ≡ [s] and 0 ≤ [s] ≤ 2m − 1. Then a similar
calculation shows that

S0 =
12∑

s=1

(2m − 1 − 2[s])

S1 = 16m
2∑

l=1

12∑

s=1

µ
(s+[s])l
6

1 − µml
3

S2 = 6m
12∑

s=1

µ
s+[s]
4 .

When m > 6, we have S0 = 24(m − 7), S1 = S2 = 0, so that

d(E) =
6

m
+

m + 1

m
+

1

24m
· 24(m − 7) = 2.

When m < 6, then either m = 1 or m = 5. For m = 1, S0 = S1 = S2 =
0, and d(E) = 8. For m = 5, S0 = 12, S1 = 0, and S2 = −60, which
gives d(E) = 2.

(4) G = 〈Z6m, Z2m; T̃ , D̃2〉. Let h = µ2mI ∈ Z2m, and let x, y be

generators of T̃ satisfying x2 = y3 = (xy)3 = −1. Introduce h̄ = h3,
x̄ = x, and ȳ = hy. Then

∑
g 6=1 χ(g) = S0 + S1 + S2, where S0 =∑2m−1

k=1 χ(h̄k),

S1 =
∑

g=ȳ,x̄ȳ,x̄−1ȳx̄,ȳx̄

2∑

l=1

2m−1∑

k=0

χ(h̄kgl),

and

S2 =
∑

g=x̄,ȳ−1x̄ȳ,ȳ−2x̄ȳ2

2m−1∑

k=0

χ(h̄kg).
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A similar calculation, with the fact that m is divisible by 3, shows that

S0 =
12∑

s=1

(2m − 1 − 2[s])

S1 = 16m
2∑

l=1

12∑

s=1

µ
(s+[s])l
6 µ

(s−[s])l
6m

1 − µ−l
3

S2 = 6m

12∑

s=1

µ
s+[s]
4 .

When m > 6, we have S0 = 24(m − 7), S1 = S2 = 0, so that d(E) = 2.
When m < 6, then m = 3, and in this case, S0 = S2 = 0 and S1 = −96,
which also gives d(E) = 2.

(5) G = 〈Z2m, Z2m; Õ, Õ〉. Let h = µ2mI ∈ Z2m, and let x, y be gener-

ators of Õ satisfying x2 = y4 = (xy)3 = −1. Recall that Õ is the union of
three cyclic subgroups of order 8 generated by y, xyx and y2x, four cyclic
subgroups of order 6 generated by xy, yx, y3xy2 and y2xy3, and six cyclic
subgroups of order 4 generated by x, yxy3, y2xy2, y3xy2x, xy2xy3 and
y2xy3x, where these subgroups only intersect at {1,−1}. Consequently,

we have
∑

g 6=1 χ(g) = S0 + S1 + S2 + S3, where S0 =
∑2m−1

k=1 χ(hk),

S1 =
∑

g

3∑

l=1

2m−1∑

k=0

χ(hkgl), where g has order 8

S2 =
∑

g

2∑

l=1

2m−1∑

k=0

χ(hkgl), where g has order 6

S3 =
∑

g

2m−1∑

k=0

χ(hkg), where g has order 4.

A similar calculation shows that

S0 =
24∑

s=1

(2m − 1 − 2[s])

S1 = 12m

3∑

l=1

24∑

s=1

µ
(s+[s])l
8

1 − µml
4

S2 = 16m
2∑

l=1

24∑

s=1

µ
(s+[s])l
6

1 − µml
3
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S3 = 12m
24∑

s=1

µ
s+[s]
4 .

When m > 12, S0 = 48(m − 13) and S1 = S2 = S3 = 0, so that
d(E) = 2. When m < 12, then m = 1, 5, 7 or 11. A direct calculation
shows that d(E) = 2 in all this cases except for m = 1, for which
d(E) = 14. Below we list the results of S0, S1, S2 and S3 for the sake of
records.

• m = 1: S0 = S1 = S2 = S3 = 0.
• m = 5: S0 = 16, S1 = −240, S2 = −160, and S3 = 0.
• m = 7: S0 = 20, S1 = 84, S2 = −224, and S3 = −168.
• m = 11: S0 = 36, S1 = 132, S2 = 0, and S3 = −264.

(6) G = 〈Z2m, Z2m; Ĩ , Ĩ〉. Let h = µ2mI ∈ Z2m, and let x, y be

generators of Ĩ satisfying x2 = y5 = (xy)3 = −1. Then
∑

g 6=1 χ(g) =

S0 + S1 + S2 + S3, where S0 =
∑2m−1

k=1 χ(hk), and

S1 =
∑

g

4∑

l=1

2m−1∑

k=0

χ(hkgl), g is one of the six elements of order 10

S2 =
∑

g

2∑

l=1

2m−1∑

k=0

χ(hkgl), g is one of the ten elements of order 6

S3 =
∑

g

2m−1∑

k=0

χ(hkg), g is one of the fifteen elements of order 4.

A similar calculation shows that

S0 =
60∑

s=1

(2m − 1 − 2[s])

S1 = 24m
4∑

l=1

60∑

s=1

µ
(s+[s])l
10

1 − µml
5

S2 = 40m
2∑

l=1

60∑

s=1

µ
(s+[s])l
6

1 − µml
3

S3 = 30m
60∑

s=1

µ
s+[s]
4 .

When m > 30, S0 = 120(m − 31) and S1 = S2 = S3 = 0, so that
d(E) = 2. When m < 30, then m = 1, 7, 11, 13, 17, 19, 23 or 29. A
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direct calculation shows that d(E) = 2 for all cases except for m = 1,
in which case d(E) = 32, and for m = 7, in which case d(E) = 4. We
record the calculation for S0, S1, S2 and S3 below.

• m = 1: S0 = S1 = S2 = S3 = 0.
• m = 7: S0 = 32, S1 = −672, S2 = −560, and S3 = 0.
• m = 11: S0 = 64, S1 = −1584, S2 = −880, and S3 = 0.
• m = 13: S0 = 128, S1 = −1248, S2 = −1040, and S3 = 0.
• m = 17: S0 = 156, S1 = −816, S2 = 0, and S3 = −1020.
• m = 19: S0 = 308, S1 = 912, S2 = −1520, and S3 = −1140.
• m = 23: S0 = 420, S1 = 0, S2 = 0, and S3 = −1380.
• m = 29: S0 = 108, S1 = 1392, S2 = 0, and S3 = −1740.

q.e.d.

Appendix B. Green’s Function for the Laplacian on Orbifolds

We shall follow the relevant discussion in Chapter 4 of Aubin [4] for
Green’s function on compact Riemannian manifolds.

Let (X, g) be a compact, closed, oriented n-dimensional Riemannian
orbifold. For any p, q ∈ X, we define the distance between p and q, de-
noted by d(p, q), to be the infinimum of the lengths of all piecewise C1

paths connecting p and q. Then (X, d) is a complete metric space. More-
over, there is a geodesic γ between p, q such that d(p, q) = length(γ).
(A C1 path f : [a, b] → X is called a (parametrized) geodesic in X if f
is locally lifted to a geodesic in a uniformizing system.) Observe that
when p, q are both in a uniformized open subset U and the geodesic γ
with d(p, q) = length(γ) is also contained in U , then γ may be lifted to

a geodesic in Û , where (Û , G) uniformizes U . This implies that in the
said circumstance,

d(p, q) = min
{h1,h2∈G}

d̂(h1 · p̂, h2 · q̂)

where p̂, q̂ are any inverse image of p, q in Û , and d̂ is the distance func-

tion on Û (note that Û has a Riemannian metric canonically determined
by g). On the other hand, for each p ∈ X, there is a δ(p) > 0, called
the injectivity radius at p, such that for any 0 < δ ≤ δ(p), the set

Up(δ) = {q ∈ X | d(p, q) < δ} is uniformized by (Ûp(δ), Gp) where Ûp(δ)
is a convex geodesic ball of radius δ centered at the inverse image of p

and Gp is the isotropy group at p acting linearly on Ûp(δ). We point
out that δ(p) → 0 as p → q for any q with |Gq| > |Gp|. In particular,
there is no positive uniform lower bound for the injectivity radius on an
orbifold with a nonempty orbifold-point set.

Theorem 1. Let ∆ = d∗d be the Laplacian on (X, g) and let n ≡
dimX ≥ 2. There exists G(p, q), a Green’s function for the Laplacian

which has the following properties:
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(1) For all C2 functions ϕ on X,

ϕ(p) = Vol(X)−1

∫

X
ϕ +

∫

X
G(p, ·)∆ϕ,

where Vol(X) is the volume of X.

(2) G(p, q) is a smooth function on X × X minus the diagonal.

(3) There exists a decomposition G(p, q) = G0(p, q) + G1(p, q) such

that

– G1(p, q) is continuous in both variables and C2 in q.
– There exist a δ0 > 0 and a set U of finitely many uniformizing

systems on X with the following significance: For any p ∈
X, there is a uniformizing system (Û , G, π) ∈ U and a G-

invariant open subset Û ′ ⊂ Û , such that (i) p ∈ π(Û ′), (ii)

the support of the function q 7→ G0(p, q) is contained in π(Û)
(more precisely, {q | G0(p, q) 6= 0} ⊆ {q | d(p, q) ≤ (n + 1)δ0),

and (iii) Û contains the closed ball of radius δ0 centered at any

p̂ ∈ π−1(p). Moreover, the function G0(p, q) is the descendant

of
∑

h∈G Ĝ0(h · p̂, q̂) for some function Ĝ0(p̂, q̂), which is, (i)

continuous on Û ′ × Û minus the subset {(p̂, q̂) | p̂ = q̂}, (ii) C2

in q̂, (iii) invariant under the diagonal action of G, and (iv)
satisfying the following estimates for a constant z > 0:

|Ĝ0(p̂, q̂)| ≤ z(1 + | log d̂(p̂, q̂)|) for n = 2 and

|Ĝ0(p̂, q̂)| ≤ z

d̂(p̂, q̂)n−2
for n > 2, with

|∇q̂Ĝ0(p̂, q̂)| ≤ z

d̂(p̂, q̂)n−1
,

|∇2
q̂Ĝ0(p̂, q̂)| ≤ z

d̂(p̂, q̂)n
.

(Here d̂ is the distance function on Û .)
(4) There exists a constant C such that G(p, q) ≥ C. Green’s func-

tion is defined up to a constant, so one may arrange so that

G(p, q) ≥ 1.
(5) The map q 7→

∫
X G(p, q) is constant. One may choose to have∫

X G(p, q) = 0.
(6) Green’s function is symmetric: G(p, q) = G(q, p).

Proof.

Choose finitely many points pi ∈ X such that X =
⋃

i Upi(N
−1δi)

with δi ≡ N−1δ(pi), where δ(pi) is the injectivity radius at pi and N
is any fixed integer which is no less than 3n (recall n = dimX). The
set U is chosen to be the set of uniformizing system of Upi(δ(pi)). Set
δ0 ≡ mini δi.
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Now given any p ∈ X, suppose p is contained in U ′ ≡ Upi(δi) for

some i. We denote by (Û ′, G′, π′) the uniformizing system of U ′, and by

(Û , G, π) the uniformizing system of U ≡ Upi(δ(pi)), which is an element
of U by definition. Note that G′ = G = Gpi . With these understood,

we define a function Ĥ0(p̂, q̂) on Û ′ × Û for p̂ 6= q̂, such that

Ĥ0(p̂, q̂) = −(2π)−1ρ(r) log r for n = 2 and

Ĥ0(p̂, q̂) = [(n − 2)ωn−1]
−1ρ(r)r2−n for n > 2,

where r = d̂(p̂, q̂), ρ(r) is a fixed cut-off function which equals zero when
r ≥ δ0, and ωn−1 is the volume of the unit sphere in Rn. It is clear that

Ĥ0(p̂, q̂) is invariant under the diagonal action of G. We define

Ĥ(p̂, q̂) =
∑

h∈G

Ĥ0(h · p̂, q̂),

which is invariant under the action of G×G. Let H(p, q) be the descen-

dant of Ĥ(p̂, q̂), which is defined on U ′×U for p 6= q. We extend H(p, q)
over q ∈ X by zero. Now observe that if we use a different element of
{Upi(δi)} for U ′, we end up with the same function q 7→ H(p, q). Hence
we obtain a function H(p, q) on X × X minus the diagonal. Note that
{q | H(p, q) 6= 0} ⊆ {q | d(p, q) ≤ δ0}.

Define Γ1(p, q) = −∆qH(p, q) and for each 1 ≤ j ≤ n define induc-
tively

Γj+1(p, q) =

∫

X
Γj(p, ·)Γ1(·, q).

We note that {q | Γj(p, q) 6= 0} ⊆ {q | d(p, q) ≤ j · δ0}. Now suppose

p ∈ U ′. If we let Γ̂1(p̂, q̂) = −∆q̂Ĥ0(p̂, q̂) and for each 1 ≤ j ≤ n, define

Γ̂j+1(p̂, q̂) =

∫

bU
Γ̂j(p̂, ·)Γ̂1(·, q̂)

inductively, then each Γ̂j is invariant under the diagonal action of G.

Moreover, each Γj(p, q) is the descendant of
∑

h∈G Γ̂j(h · p̂, q̂).

As in Aubin [4] (cf. Prop. 4.12 in [4]), Γ̂n+1(p̂, q̂) is C1 on Û ′ × Û .
Hence Γn+1(p, q) is C1 on X×X. Fix each p ∈ X, we solve the Laplacian
equation

∆qF (p, q) = Γn+1(p, q) − Vol (X)−1.

(Note that for each p ∈ X,
∫
X(Γn+1(p, ·) − Vol (X)−1) = 0, cf. [4].)

Then we define

G(p, q) = H(p, q) +
n∑

j=1

∫

X
Γj(p, ·)H(·, q) + F (p, q),
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and by adding an appropriate constant to F (p, q), we arrange to have
for all p ∈ X ∫

X
G(p, ·) = 0.

One can argue as in Aubin [4] that G(p, q) is a Green’s function
for the Laplacian which has the properties described in the theorem.
Particularly, in the decomposition

G(p, q) = G0(p, q) + G1(p, q)

in Thoerem 1 (3), we have G0(p, q) = H(p, q) +
∑n

j=1

∫
X Γj(p, ·)H(·, q)

and G1(p, q) = F (p, q). (Note that {q | G0(p, q) 6= 0} ⊆ {q | d(p, q) ≤
(n + 1)δ0.) Moreover, for any p ∈ U ′, G0(p, q) is clearly the descendant

of
∑

h∈G Ĝ0(h · p̂, q̂) where

Ĝ0(p̂, q̂) = Ĥ0(p̂, q̂) +
n∑

j=1

∫

bU
Γ̂j(p̂, ·)Ĥ0(·, q̂).

The estimates

|Ĝ0(p̂, q̂)| ≤ z(1 + | log d̂(p̂, q̂)|) for n = 2 and

|Ĝ0(p̂, q̂)| ≤ z

d̂(p̂, q̂)n−2
for n > 2, with

|∇q̂Ĝ0(p̂, q̂)| ≤ z

d̂(p̂, q̂)n−1
,

|∇2
q̂Ĝ0(p̂, q̂)| ≤ z

d̂(p̂, q̂)n

in Thoerem 1 (3) follow immediately from the definition of Ĥ0(p̂, q̂).
q.e.d.

Appendix C. Proof of Lemma 1.4

Various transversality theorems for harmonic forms on a compact,
closed Riemannian manifold were proved in Honda [20]. The machinery
developed therein can be properly adapted to deal with the present
situation.

First of all, we recall the relevant discussion in [20] regarding the case
of self-dual harmonic forms on a (compact, closed) 4-manifold. Suppose
M is a smooth 4-manifold with b+

2 (M) 6= 0. Let Metl(M) be the space
of C l-Hölder metrics on M for a sufficiently large non-integer l, let Q+

be the space of pairs (ω, g) where g ∈ Metl(M) and ω is a nontrivial

self-dual g-harmonic form, and let
∧2,+ → Metl(M)×M be the vector

bundle whose fiber at (g, x) is
∧2,+

g (T ∗
xM), the space of 2-forms at x

which is self-dual with respect to g. Then the transversality of the
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following evaluation map

ev : Q+ × M →
2,+∧

, ((ω, g), x) 7→ (ω(x), (g, x))

to the zero section was studied in [20]. The relevant results are sum-
marized below. For any ((ω, g), x) ∈ Q+ × M where ω(x) = 0, it was
shown that the differential

(evx)∗ : T(ω,g)Q
+ →

2,+∧

g

(T ∗
xM), (v, h) 7→ v(x)

is surjective. Here T(ω,g)Q
+ is the tangent space of Q+ at (ω, g), which

consists of pairs (v, h), where h ∈ C l(Sym2(T ∗M)) and v is a 2-form,
self-dual at x with respect to g and satisfying the equation

∆gv +
d

dt
(∆g+th)|t=0ω = 0.

(Here ∆g is the Laplacian associated to a metric g.) As a consequence,
for a generic metric a nontrivial self-dual harmonic form has only regular
zeroes, which consist of a disjoint union of embedded circles in M .

In order to adapt the argument to the present situation, we recall
some relevant details about the surjectivity of (evx)∗ : T(ω,g)Q

+ →∧2,+
g (T ∗

xM). Suppose (v, h) ∈ T(ω,g)Q
+ and v is orthogonal to the space

of g-harmonic 2-forms. Then one can solve for v from h by

v(x) = −(∆g)
−1

(
d

dt
(∆g+th)|t=0ω

)
(x)

= ±
∫

M
〈dd∗Gg(x, y), ∗(Dh∗)ω(y)〉g,

where Gg(x, y) is the Green’s function for ∆g, and Dh∗ is shorthand

for d
dt(∗g+th)|t=0. (Here the Hodge star ∗ and the integration are with

respect to the metric g.) For any x ∈ M with ω(x) = 0, one considers

the map Ψx : C l(Sym2(T ∗M)) → ∧2,+
g (T ∗

xM) where

Ψx : h 7→ v(x) = ±
∫

M
〈dd∗Gg(x, y), ∗(Dh∗)ω(y)〉g.

Then it is clear that the surjectivity of (evx)∗ is a consequence of that
of Ψx.

To explain the basic ingredients in the proof of surjectivity of Ψx, we
first introduce some notations. For any 0 6= u ∈ R4, let Ru : R4 → R4

be the reflection in u, and let
∧2 Ru :

∧2(R4) → ∧2(R4) be the induced
isomorphism. For any skew-symmetric 4 × 4 matrix A and symmetric
4× 4 matrix H, let iA(H) = HA + AH − 1

2 tr(H) ·A. Then the proof of
surjectivity of Ψx goes roughly as follows.
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• Assume g is flat. Then for any y 6= x nearby, a direct calculation
shows that 〈dd∗Gg(x, y), ·〉g = C

|y−x|4 ·
∧2 Ry−x for a constant C 6=

0, and that ∗(Dh∗)ω(y) = iω(y)(h) where ω(y), h are regarded
canonically as a skew-symmetric and a symmetric 4 × 4 matrix
respectively. Moreover, one can verify that

∧2 Ru :
∧2,±(R4) →∧2,∓(R4), and that when ω(y) 6= 0 and is self-dual, the image

of iω(y) is the space of anti-self-dual 2-forms. The surjectivity of
Ψx follows in this case by letting h be a δ-function like element
centered at y.

• In general, use the asymptotic expension of the Green’s function
Gg(x, y) near the diagonal, whose leading term is the Green’s func-
tion for a flat metric, to reduce the proof to the previous case.

With these preparations, we now give a proof of Lemma 1.4.

Let W be an oriented smooth s-cobordism of elliptic 3-manifolds as in
Lemma 1.4. We attach a semi-cylinder [0, +∞)× (S3/G) to the positive
end of W and cone-off the negative end by B4/G. The resulting space,

denoted by Ŵ , is an orbifold with one isolated singular point p0 and a
cylindrical end over S3/G. We shall fix a Riemannian metric g0 on Ŵ ,
which is flat near p0 and is the product metric dt2 + h0 on the semi-
cylinder [0, +∞) × (S3/G). Here h0 stands for the standard metric on
S3/G which has a constant sectional curvature of 1. Fixing a T > 1 and

a sufficiently large non-integer l, we will consider Metl
T (Ŵ ), the space

of C l-Hölder metrics on Ŵ which equals g0 on [T, +∞) × (S3/G).
We fix an identification R4 = C2 = H so that G as a subgroup of

φ(S1 × S3) is canonically regarded as a subgroup of U(2). Let z1, z2

be the standard coordinates on C2, and let α̃ be the pull-back of the
1-form

√
−1

∑2
i=1(zidz̄i − z̄idzi) to S3. Then it is easy to check that

α̃ obeys dα̃ = 2(∗α̃) with respect to the standard metric on S3, and
consequently, d(exp(2t)α̃) is a self-dual 2-form on R × S3 with respect
to the corresponding product metric. Note that α̃ is invariant under the
action of G. Let α be the descendant of α̃ to S3/G.

Proposition. For each g ∈ Metl
T (Ŵ ), there is a unique self-dual

g-harmonic 2-form ωg which has the following properties.

(1) On [T, +∞)×(S3/G), ωg−d(exp(2t)α) = dαt where αt is a 1-form

on S1/G such that αt and d
dtαt converge to zero exponentially fast

as t → +∞.

(2) For a generic g, ωg has only regular zeroes in the complement of

the singular point p0 and [T, +∞) × (S3/G).
(3) For a generic g which is sufficiently close to g0 near p0, ωg(p0) 6= 0.

Assuming the validity of the proposition, we obtain the 2-form ω
claimed in Lemma 1.4 as follows. Consider the g0-harmonic 2-form
ωg0 first. Since ωg0 − d(exp(2t)α) converges to zero exponentially fast
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as t → +∞, and note that d(exp(2t)α) is a symplectic form, there is a
τ0 > 0 such that ωg0 is symplectic on [τ0, +∞)×(S3/G). We fix a T ≥ τ0;

then for all g ∈ Metl
T (Ŵ ) sufficiently close to g0, ωg is symplectic on

[T, +∞) × (S3/G). We pick such a g which is generic. Then by (2)
and (3) of the proposition, ωg has only regular zeroes, which are in the
complement of p0 and [T, +∞)× (S3/G). In particular, ωg(p0) 6= 0. Let
ω̂g be the 2-form obtained from ωg by replacing ωg = d(exp(2t)α + αt)

with d(exp(2t)α+(1−ρτ )αt) on the cylindrical end of Ŵ , where ρτ is a
cut-off function for a sufficiently large τ ≥ T +2 which equals 1 on t ≥ τ
and equals 0 on t ≤ τ−1. Then ω̂g = d(exp(2t)α) on the cylindrical end

of Ŵ where t ≥ τ , and ω̂g(p0) = ωg(p0) 6= 0, so that by the equivariant
Darboux’ theorem ω̂g is equivalent near p0 to the standard symplectic
form on B4/G. It is clear that ω̂g yields a 2-form ω on the s-cobordism
W as described in Lemma 1.4.

Proof of Proposition. For any g ∈ Metl
T (Ŵ ), we denote by

∧2,+
g and∧1

g the associated bundle of self-dual 2-forms and 1-forms on Ŵ respec-

tively. Consider the subspaces Eg, Fg of the (weighted) Sobolev spaces

H2
1 (

∧2,+
g ), H2

0 (
∧1

g), where Eg is the closure of self-dual 2-forms which
equal dt∧αt + ∗3αt on the cylindrical end with d∗3αt = 0 for t ≥ T , and
Fg is the closure of co-closed 1-forms which can be written as ftdt + βt

on the cylindrical end with ft = 0 and d∗3βt = 0 when t ≥ T . (Here ∗3

is the Hodge star and d∗3 is the co-exterior differential on S3/G, both
with respect to the standard metric h0.) Then the differential operator
∗gd : Eg → Fg, which is of form d

dt −∗3d3 on the cylindrical end, defines
a Fredholm operator, cf. [32]. (Note that there exist no harmonic 1-
forms on S3/G, so that we can choose δ = 0 in the weight factor exp(δt)
of the weighted Sobolev spaces.)

Lemma 1. ∗gd : Eg → Fg has a trivial kernel and cokernel.

Assuming the validity of Lemma 1, we obtain the self-dual g-harmonic
form ωg for each g ∈ Metl

T (Ŵ ) as follows. Let β be a self-dual 2-form on

Ŵ obtained by multiplying d(exp(2t)α) with a cut-off function which
equals 1 on t ≥ 1. Then ∗gdβ ∈ Fg, and hence there exists a ug ∈ Eg

such that ∗gdug = − ∗g dβ. We set ωg ≡ ug + β. It is clear that ωg is
self-dual g-harmonic. To show that ωg has the property in (1) of the
proposition, we note that on [T, +∞) × (S3/G), ∗gdug = − ∗g dβ = 0,
which implies that there is a αt, with ωg−d(exp(2t)α) = ug = dαt, such

that αt and d
dtαt converge to zero exponentially fast as t → +∞ (see

the proof of Lemma 1 below). Finally, observe that such a ωg is unique.
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To prove (2) and (3) of the proposition, we consider the evaluation
maps

evq : (ωg, g) 7→ ωg(q) ∈
2,+∧

g

(T ∗Ŵq), where q ∈ Ŵ \ [T, +∞) × (S3/G).

Suppose ωg(q) = 0. Then as in [20], the differential of evq is given by

(evq)∗(h) = v(q) ∈ ∧2,+
g (T ∗Ŵq), where (v, h) obeys

∆gv +
d

dt
(∆g+th)|t=0ωg = 0.

We shall prove first that for any q 6= p0, (evq)∗ is surjective, which gives
(2) of the proposition by a standard argument.

To this end, for any τ > T + 2, we set Wτ ≡ Ŵ \ (τ, +∞) × (S3/G),
and let DWτ be the double of Wτ , which is given with the natural metric
and orientation. Denote by ∆τ = d∗d+d∗d the Laplacian on DWτ , and
let γτ be the first eigenvalue of ∆τ on the space of L2 self-dual 2-forms
on DWτ . We will need the following lemma.

Lemma 2. There exist a τ0 > T + 2 and a constant c > 0 such that

γτ ≥ c for all τ ≥ τ0.

Assuming the validity of Lemma 2, we fix a τ ≥ τ0 + 10, and de-
compose v = v1 + v2 with v1 ≡ (1 − ρτ )v and v2 ≡ ρτv, where ρτ

is a cut-off function which equals 1 on t ≥ τ . Then we have ∆gv1 =

− d
dt(∆g+th)|t=0ωg − ∆gv2. Note that h is supported in Ŵ \ (T, +∞) ×

(S3/G), so that the above equation may be regarded as an equation
on DWτ because ∆gv2 = ∆gv = 0 on t ≥ τ . Moreover, |∆gv2| ≤
c · exp(−δτ) for some constants c > 0 and δ > 0, where c is a multiple

of the C0-norm of v on Ŵ \ (T, +∞) × (S3/G), hence is bounded by a
multiple of the norm of h via the standard elliptic estimates. Therefore
|∆gv2| ≤ C · exp(−δτ) · ||h||. Letting Gτ be the Green’s function for the
Laplacian ∆τ on DWτ (the existence of the Green’s function Gτ on the
orbifold DWτ is a straightforward generalization of that in the compact
manifold case, cf. e.g., [37]), then for any q ∈ Ŵ \ [T, +∞) × (S3/G),

v(q) = v1(q) = ±
∫

DWτ

〈dd∗Gτ (q, y), ∗(Dh∗)ωg(y)〉g − (∆τ )
−1(∆gv2),

where Dh∗ = d
dt(∗g+th)|t=0. By Lemma 2 and the standard elliptic

estimates, the last term (∆τ )
−1(∆gv2) in the above equation is bounded

by a multiple of exp(−δτ) · ||h||, and hence can be neglected by taking
τ sufficiently large. The surjectivity of (evq)∗ : h 7→ v(q) for q 6= p0

follows from the surjectivity of

Ψq : h 7→ ±
∫

DWτ

〈dd∗Gτ (q, y), ∗(Dh∗)ωg(y)〉g
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as in [20], which we have recalled at the beginning.
It remains to prove (3) of the proposition, i.e., for a generic metric

g which is sufficiently close to g0, ωg does not vanish at the singular
point p0. To this end, we consider g0 first, and assume ωg0(p0) = 0
(otherwise the claim is trivially true). Identify a local uniformizing
system at p0 with (B4, G), which is given with a flat metric. Then
the bundle of self-dual 2-forms has a local basis ω0, ω1, ω2, where ω0 =√
−1

∑
i dzi∧dz̄i, ω1 = Re (dz1∧dz2) and ω2 = Im (dz1∧dz2). Note that

ω0 is invariant under the action of G. With this understood, we claim
that for g0, (evp0)∗ is transverse to the subspace spanned by ω1, ω2. To
see this, we pick a y sufficiently close to p0 such that ωg0(y) 6= 0, and
denote by y0, y1, . . . , yN the inverse images of y in B4. Then according
to [20] as we recalled earlier, there exists a h0 ∈ Sym2R4 such that∧2 Ry0 ◦ iωg0 (y0)(h0) = ω0. Let hi, i = 0, 1, . . . , N , be the orbit of h0

under the action of G; then because ω0 is invariant under the action of
G, we have

∧2 Ryi ◦ iωg0 (yi)(hi) = ω0 for i = 0, 1, . . . , N . Now observe

that (evp0)∗ : h 7→ v(p0) is given by the equation (with τ ≫ 0)

(evp0)∗(h) = ±
∫

DWτ

〈dd∗Gτ (p0, y), ∗(Dh∗)ωg0(y)〉g0 − (∆τ )
−1(∆g0v2).

It is clear that we can use {hi} to define a G-equivariant section h ∈
C∞(Sym2T ∗B4), which is supported in a small neighborhood of {yi},
such that the projection of (evp0)∗(h) to the ω0 factor is nonzero. Hence
for g0, (evp0)∗ is transverse to the subspace spanned by ω1, ω2, so is it
for any g sufficiently close to g0. As a corollary, let Z be the subbundle
spanned by ω1, ω2 over a sufficiently small, G-invariant neighborhood of
0 ∈ B4. Then for any generic metric g sufficiently close to g0, ω−1

g (Z) is

a 3-dimensional manifold in B4 which is invariant under the action of G.
If 0 ∈ ω−1

g (Z), then the tangent space of ω−1
g (Z) at 0 ∈ B4 is invariant

under the action of G, which is possible only when G = {1,−1}. Hence
when G 6= {1,−1}, ωg(p0) is not contained in Z, and therefore ωg(p0) 6=
0.

When G = {1,−1}, note that all ω0, ω1, ω2 are invariant under the
action of G. The above argument then shows that (evp0)∗ is surjective
for g0. It follows easily that for a generic metric g which is sufficiently
close to g0, if ωg(p0) = 0, then one of the components of ω−1

g (0) in Ŵ
is a compact 1-dimensional manifold with boundary, whose boundary
consists of the singular point p0. This is a contradiction. Hence the
proposition. q.e.d.

The rest of the appendix is occupied by the proofs of Lemma 1 and
Lemma 2.
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Proof of Lemma 1. We first prove that the kernel of ∗gd : Eg → Fg is
trivial. By elliptic regularity, it suffices to show that if ω ∈ Eg is smooth
and satisfies ∗gdω = 0, then ω = 0.

First of all, note that ω = dt ∧ αt + ∗3αt on the cylindrical end with
d∗3αt = 0 for t ≥ T . Moreover, the equation ∗gdω = 0 is equivalent to
d
dtαt−∗3d3αt = 0. If we write αt =

∑
i fi(t)αi, where {αi} is a complete

set of eigenforms for the self-adjoint operator ∗3d3 on the space of L2

co-closed 1-forms on S3/G, with ∗3d3αi = λiαi, then the functions fi(t)
satisfy f ′

i(t) − λifi(t) = 0. It follows easily, since ω has a bounded L2-
norm, that each fi(t) = ci exp(λit) for some constant ci with λi < 0.
Set δ ≡ mini |λi| > 0. Then |αt| ≤ c exp(−δt) for a constant c > 0.

Since H2
dR(Ŵ ) = 0, ∗gdω = 0 implies that there exists a 1-form γ on

Ŵ such that dγ = ω. We write γ = ftdt + gt on the cylindrical end,
then ft, gt satisfy

d

dt
gt = d3ft + αt and d3gt = ∗3αt.

Set f̄t ≡
∫ t
t0

fsds and ᾱt ≡
∫ t
t0

αsds. Then gt = d3f̄t + ᾱt + constant.
With this understood, we have

0 =

∫

Ŵ
d∗dγ ∧ ∗γ =

∫

Ŵ
dγ ∧ ∗dγ ± lim

t→+∞

∫

{t}×(S3/G)
dγ ∧ γ,

where dγ ∧ γ = ∗3αt ∧ gt = ∗3αt ∧ (d3f̄t + ᾱt + constant). Since αt → 0
exponentially fast along the cylindrical end, and ∗3αt = d3gt, it follows
easily that limt→+∞

∫
{t}×(S3/G) dγ ∧ γ = 0, which implies ω = dγ = 0.

Next we show that the cokernel of ∗gd : Eg → Fg is trivial. To this
end, note that the formal adjoint of ∗gd is d+. By elliptic regularity, it
suffices to prove that for any smooth 1-form θ ∈ Fg, d+θ = 0 implies
θ = 0. Note that on the cylindrical end, θ = ftdt + βt where ft = 0 and
d∗3βt = 0 when t ≥ T . Thus d+θ = 0 implies that d

dtβt + ∗3d3βt = 0.
Similarly, there exists a δ > 0, such that |θ| = |βt| ≤ c exp(−δt) for
some constant c > 0. As a consequence, since d+θ = 0, we have

∫

Ŵ
dθ ∧ ∗dθ = −

∫

Ŵ
dθ ∧ dθ = − lim

t→+∞

∫

{t}×(S3/G)
θ ∧ dθ = 0,

and hence dθ = 0. Now H1
dR(Ŵ ) = 0 implies that θ = df for some

smooth function f on Ŵ . On the cylindrical end, θ = df = ∂f
∂t ·dt+d3f ,

so that when t ≥ T , ∂f
∂t = 0. This implies that f is bounded on Ŵ , and

therefore ∫

Ŵ
|df |2 =

∫

Ŵ
〈d∗df, f〉 =

∫

Ŵ
〈d∗θ, f〉 = 0,

which implies θ = df = 0. This proves the lemma. q.e.d.
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Proof of Lemma 2. Suppose to the contrary that there exists a sequence
τn → +∞ for which γτn → 0. Let ωn be a corresponding sequence of
self-dual 2-forms on DWτn such that ∆τnωn = γτnωn.

To fix the notation, we identify the cylindrical neck of DWτn with
[T, 2τn − T ] × (S3/G). We denote by W1, W2 the two components of
DWτn \ (T +1, 2τn −T − 1)× (S3/G). With this understood, we rescale
each ωn and pass to a subsequence if necessary, so that the following
conditions hold: ∫

W2

|ωn|2 ≤
∫

W1

|ωn|2 = 1.

By the interior elliptic estimates and the fact that ∆τnωn = γτnωn with
γτn bounded, there exists a constant M0 > 0, such that |ωn| ≤ M0 holds
on W1 \ (T + 1

2 , T ]× (S3/G) and W2 \ [2τn−T −1, 2τn−T − 1
2)× (S3/G).

On the other hand, if we write ωn = dt ∧ αn,t + ∗3αn,t and set

fn(t) ≡
∫

{t}×(S3/G)
|ωn|2 =

∫

S3/G
|αn,t|2

on the cylindrical neck [T, 2τn − T ] × (S3/G), then ∆τnωn = γτnωn

implies that

− d2

dt2
αn,t + ∆3αn,t = γτnαn,t

(here ∆3 = d∗3d3 + d3d
∗
3 is the Laplacian on S3/G), and consequently,

we have

d2fn

dt2
=

∫

S3/G

d2

dt2
|αn,t|2

= 2

(∫

S3/G

〈
d2

dt2
αn,t, αn,t

〉
+

∫

S3/G

∣∣∣∣
d

dt
αn,t

∣∣∣∣
2
)

= 2

(∫

S3/G
〈(∆3 − γτn)αn,t, αn,t〉 +

∫

S3/G

∣∣∣∣
d

dt
αn,t

∣∣∣∣
2
)

> 0

for sufficiently large n > 0. By the maximum principle, fn will at-
tain its maximum at the end point t = T or 2τn − T . This implies
that for any a ∈ [T, 2τn − T − 1], the integral

∫
[a,a+1]×(S3/G) |ωn|2 is

uniformly bounded, hence by the interior elliptic estimates, |ωn| ≤ M1

for some constant M1 > 0 on the cylindrical neck of DWτn . Setting
M ≡ max(M0, M1), then |ωn| ≤ M on DWτn .

By the standard elliptic estimates, there exists a subsequence of ωn

(still denoted by ωn for simplicity), and a self-dual 2-form ω on Ŵ , such

that ωn → ω in C∞ on any given compact subset of Ŵ . In particular,
the 2-form ω obeys (1)

∫
Ŵ\[T+1,+∞)×(S3/G) |ω|2 = 1, and (2) ∆gω = 0

and |ω| ≤ M on Ŵ . The lemma is proved by observing that (2) above
implies that ω = 0, which contradicts (1) above. q.e.d.
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