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LAGRANGIAN HOMOLOGY CLASSES WITHOUT
REGULAR MINIMIZERS

Jon Wolfson

Abstract

We show that there is an integral homology class in a Kähler–
Einstein surface that can be represented by a lagrangian two-
sphere, but that a minimizer of area among lagrangian two-spheres
representing this class has isolated singularities with non-flat tan-
gent cones.

1. Introduction

In this note we show that there is an integral homology class in a
Kähler–Einstein surface that can be represented by a lagrangian two-
sphere, but that a minimizer of area among lagrangian two-spheres rep-
resenting this class is singular. Note that we do not consider branch
points as singularities. Therefore, in the unconstrained case, this re-
sult is false since a minimizer of area in a homology class is a branched
immersion.

To put this result in context, recall the constrained variational theory
developed in [5]. Consider a homology class in a Kähler surface that can
be represented by a lagrangian map of a compact surface (a lagrangian
homology class) and minimize area among such maps. Then in [5], it
is shown that a lagrangian minimizer exists, that the map is Lipschitz
and is an immersion except at a finite number of isolated points that
are either (i) branch points, or (ii) singular points with non-flat tangent
cone. The tangent cones can be described precisely and it can be shown
that there is a Maslov index associated to each tangent cone (and hence
to each singular point). If the map is a minimizer, this index is ±1.
The sum of these indices equals the pairing of the first Chern class of
the Kähler surface with the homology class of the minimizer. Thus,
when this pairing is non-zero, a lagrangian minimizer must have singu-
lar points. However, if the Kähler surface is Kähler–Einstein, then this
pairing vanishes and it is possible that the minimizer is always regular.
More precisely, one could speculate that on a minimizer, a pair of sin-
gularities with indices 1 and −1 could be shown to “cancel”. This is
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formulated as a question in [4]. The examples of this paper show that
this is not the case.

2. Preliminaries

In this section, we review basic results in Kähler geometry and the
geometry of the K3 surfaces that will be used in the proof of our result.
For proofs, see [1] and [2].

Let X be a K3 surface, that is, X is a compact, complex, simply
connected surface with trivial canonical bundle. Let

L = −E8 ⊕−E8 ⊕ H ⊕ H ⊕ H,

define the intersection form on a vector space of real dimension 22. Set
LC = L ⊗ C with the intersection form extended complex linearly. For
any Ω ∈ LC, we denote [Ω] ∈ P(LC) the corresponding line. It is known
that H2(X, Z) is free of rank 22 and the intersection form on H2(X, Z)
is given by L. In particular, b2

+ = 3 and b2− = 19. A marking of X is a
choice of basis,

{α1, . . . , α8, β1, . . . , β8, ξ1, ξ2, ξ3, η1, η2, η3}
of H2(X, Z) that induces the intersection form L. Equivalently, a mark-
ing of X is the choice of an isometry φ : H2(X, Z) → L. The period
domain D of X is the projectivization of the set:

{Ω ∈ LC : Ω · Ω = 0, Ω · Ω > 0}.
The complex dimension of D equals 20. If Ω is a holomorphic (2, 0)-form
on X, then the identities Ω · Ω = 0 and Ω · Ω > 0 show that a marking
of X determines a point [Ω] ∈ D, called the period point of X. The first
main theorem we require is the weak Torelli theorem:

Theorem 2.1. Two K3 surfaces are isomorphic (as complex surfaces)
if and only if there are markings for them such that the corresponding
period points are the same.

The second main theorem we require is the surjectivity of the period
map:

Theorem 2.2. All points of the period domain D occur as period
points of marked K3 surfaces.

A class ω ∈ H1,1(X, R) that can be represented by a Kähler form is
called a Kähler class. Clearly, a Kähler class satisfies ω · ω > 0 and
ω · Ω = 0. Note that the set {x ∈ H1,1(X, R) : x · x > 0} consists
of two disjoint connected cones and that the Kähler classes, if they
exist, all belong to one of these two cones. This cone is called the
positive cone. Additional conditions on the Kähler classes arise from
the Picard lattice. Let j : H2(X, Z) → H2(X, R) and define the Picard
lattice SX = H1,1(X, R)∩ Imj(H2(X, Z)). An element σ ∈ SX is called
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divisorial if there exists a divisor D whose associated line bundle has
Chern class σ. Then σ is called effective if, in addition, D can be
chosen effective. The Kähler cone is defined to be the convex subcone
of the positive cone consisting of those classes that have positive inner
product with any effective class in SX . The Kähler cone contains all
Kähler classes. When X is a K3 surface, the characterization of the
Kähler cone becomes particularly simple. A non-singular curve γ in X
is called nodal if γ · γ = −2.

Theorem 2.3. For a K3 surface, the Kähler cone consists of the
classes ω ∈ H1,1(X, R) that satisfy:

(i) ω · ω > 0,
(ii) ω · Ω = 0 and
(iii) ω · γ > 0, for all nodal curves γ in X.

It is a consequence of the surjectivity of the refined period map (see
[1] for details) that every class in the Kähler cone is a Kähler class.
Consequently, Yau’s theorem on the existence of Ricci flat metrics on
K3 surfaces can be stated as:

Theorem 2.4. Let (X, ω) be a K3 surface where ω ∈ H1,1(X, R) lies
in the Kähler cone. Then there is a unique Ricci flat metric g on X
whose Kähler form represents the class ω.

The Ricci flat metric g is hyperkähler. That is, there is a two-sphere of
complex structures on X, the hyperkähler line of g, such that each com-
plex structure together with g determines a Kähler form. The Kähler
forms are parameterized by the two-sphere determined by ω, Re Ω and
Im Ω.

If X is a Kähler surface and Σ is a possibly singular holomorphic
curve of genus g in X the adjunction formula is:

Σ · Σ ≥ c1(X) · Σ + 2g − 2,

with equality when Σ is non-singular. When X is a K3 surface, this
becomes:

Σ · Σ ≥ 2g − 2 ≥ −2.

If X is a K3 surface, we say a (singular) holomorphic curve Σ is a
(−2)-curve if Σ · Σ = −2 (equivalently, if its Poincare dual α satisfies
α · α = −2). From the adjunction formula, it follows that if Σ is a
(−2)-curve then Σ is a non-singular rational curve.

We conclude this section with some results on lagrangian station-
ary submanifolds of Kähler–Einstein manifolds (see [5]). Let N be a
Kähler–Einstein manifold and Σ be a lagrangian submanifold. We call
Σ lagrangian stationary if the volume is stationary for arbitrary smooth
variations through lagrangian submanifolds.
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Theorem 2.5. A closed immersed lagrangian submanifold in a Käh-
ler–Einstein manifold is a classical minimal submanifold if and only if
it is lagrangian stationary.

Consequently,

Corollary 2.6. A closed, immersed, lagrangian stationary subman-
ifold in a Calabi–Yau manifold N is a special lagrangian submanifold.
In particular, if N is a K3 surface with a hyperkähler metric g, then a
closed, lagrangian stationary branched immersion Σ is a J-holomorphic
curve with respect to a complex structure J on the hyperkähler line of g.

Note that these results require regularity of the lagrangian stationary
submanifold.

3. The Result

We begin with:

Lemma 3.1. There is an Ω in the period domain (i.e., Ω ·Ω = 0 and
Ω · Ω̄ > 0) such that Ω is an irrational class and therefore, the complex
structure J determined by Ω has no nodal curves.

Proof. Let a marking of X be given by,

{α1, . . . , α8, β1, . . . , β8, ξ1, ξ2, ξ3, η1, η2, η3}.
Recall that ξi · ξj = 0, ηi · ηj = 0, for all i, j, that ξi · ηj = 0 for i �= j
and that ξi · ηi = 1 for all i. Therefore, (ξi − ηi) · (ξj + ηj) = 0 for all i, j
and (ξi − ηi)2 = −2, (ξi + ηi)2 = 2 for all i.

Define the period point Ω as follows:

Ω · αk = ak, for k = 1, . . . , 8,

Ω · βk = ibk, for k = 1, . . . , 8,

Ω · (ξj − ηj) = sj + itj, for j = 1, 2, 3,

Ω · (ξj + ηj) = σj + iτj , for j = 1, 2, 3,

where the ak, bk, sj , tj , σj , τj are non-zero real scalars. Assume that the
vectors:

s = (s1, s2, s3), t = (t1, t2, t3),
and

σ = (σ1, σ2, σ3), τ = (τ1, τ2, τ3).
satisfy s · t = 0 and σ · τ = 0. Then Re Ω · Im Ω = 0. Choosing |σ| and
|τ | sufficiently large implies that Re Ω · Re Ω > 0 and Im Ω · Im Ω > 0.
Therefore, Ω · Ω̄ > 0. Scaling either Re Ω or Im Ω, we can assume
Re Ω · Re Ω = Im Ω · Im Ω and therefore, Ω · Ω = 0. Choose the {ak},
{sj} and {σj} so that no rational linear combination of them vanishes
and similarly choose the {bk}, {tj} and {τj} so that no rational linear
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combination of them vanishes. By the Torelli theorem, Ω defines a com-
plex structure. Since the pairing of Ω with any integral homology class
is non-zero, no integral homology class can be represented by a holo-
morphic curve. (Note that the vectors σ and τ have the property that
no rational linear combination of their components vanishes. For tech-
nical use below, we require that, in addition, the vector ρ = (ρ1, ρ2, ρ3)
satisfying σ · ρ = τ · ρ = 0 and |ρ| = 1 also has this property.) q.e.d.

Note that the complex structure J determined by the period point Ω
is non-algebraic. Fix two integral classes αj and βk with self-intersection
−2 and zero intersection. For simplicity, we will denote them α1 and
β1.

Lemma 3.2. There is a Kähler class ω in the Kähler cone of Ω (i.e.,
ω · ω > 0 and ω · Ω = 0) such that ω · α1 = 1, ω · β1 = 1 and such that
on every integral class γ not in the integral lattice of {α1, β1}, ω · γ is
irrational (and, in particular, ω · γ �= 0).

Proof. Define the Kähler class ω as follows:

ω · α1 = 1
ω · αk = Ak, k = 2, . . . , 8,

ω · β1 = 1
ω · βk = Bk, k = 2, . . . , 8,

ω · (ξj − ηj) = Cj , j = 1, 2, 3,

ω · (ξj + ηj) = λσj + µτj + νρj, j = 1, 2, 3,

where the vectors σ = (σ1, σ2, σ3), τ = (τ1, τ2, τ3), ρ = (ρ1, ρ2, ρ3) are
given above. Choose Ak, Bk, Cj such that every class δ in the integral
lattice of {α1, . . . , α8, β1, . . . , β8, ξ1 − η1, ξ2 − η2, ξ3 − η3} not of the form
{mα1 + nβ1; m, n ∈ Z} has the property that ω · δ is irrational. Choose
λ so that Re Ω · ω = 0 and µ so that Im Ω · ω = 0. Then, ω · Ω = 0.
Choose ν sufficiently large so that ω · ω > 0. Since there are no nodal
curves, the condition that ω · γ > 0 for all nodal curves is vacuous. It
follows that ω lies in the Kähler cone determined by Ω.

Using that no rational linear combination of the components of ρ
vanishes and the choice of Ak, Bk, Cj above, it is possible to choose an
appropriate irrational ν so that every integral class γ not in the integral
lattice of {α1, β1} has the property that ω · γ is irrational. q.e.d.

According to Yau’s theorem, the complex structure J and the Kähler
class ω determine a hyperkähler metric g on X whose Kähler form lies
in the class ω. We will abuse notation and denote the Kähler form ω.

The class α1 − β1 is a lagrangian class for the Kähler form ω (that
is, ω(α1 − β1) = 0). Moreover, because of the irrationality condition
on ω, the only integral lagrangian classes for ω are integral multiples of
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α1 − β1. Since X is simply connected, α1 − β1 is a spherical class and
there is a smooth immersion f : S2 → X that represents α1 −β1. Using
that α1 − β1 is a lagrangian class there is a smooth homotopy of f to a
lagrangian immersion � : S2 → X. In particular, there is an (immersed)
lagrangian two-sphere in X that represents α1 − β1.

The following theorem is our main result.

Theorem 3.3. There is some class in the integral lattice of {α1 −
β1} that has an area minimizer among lagrangian two-spheres (for the
hyperkähler metric g) that is not regular (i.e., has singular points with
non-flat tangent cones).

Proof. Suppose, to the contrary, that every area minimizer among la-
grangian two-spheres is regular. (Recall that branch points are allowed.)
Consider an area minimizing sequence of lagrangian two-spheres that
represent α1 − β1. First, suppose that it converges to a lagrangian area
minimizing two-sphere C without bubbling. Then C represents α1−β1.
By assumption, C is regular so it is both minimal and lagrangian [5]
and therefore there is a a complex structure J ′ on the hyperkähler line
for which C is J ′-holomorphic. But,

C · C = (α1 − β1) · (α1 − β1) = −4,

and this contradicts the adjunction formula. Next, suppose that the
sequence converges with bubbling. Each bubble B is a lagrangian two-
sphere that minimizes area among lagrangian two-spheres in some la-
grangian homology class. Therefore, by assumption, B is regular. Also
[B] = p(α1 − β1), where p ∈ Z and p �= 0, since these are the only
non-trivial lagrangian homology classes. As above, since B is regular
and a lagrangian area minimizer, there is a a complex structure J ′ on
the hyperkähler line for which B is J ′-holomorphic. But,

B · B = p(α1 − β1) · p(α1 − β1) = −4p2 ≤ −4,

and this again contradicts the adjunction formula. The result follows.
q.e.d.

The author and Micallef adapted the technique used in their study of
area minimizers in a K3 to prove a version of Theorem 3.3 [3]. However,
the Kähler structure used in [3] is quite special. In particular, it lies
near the boundary of the moduli space of Calabi–Yau metrics. The
technique used here produces quite general Kähler structures that, in
particular, lie away from the boundary of moduli space. It is not yet
clear how to characterize the Kähler structures and lagrangian classes
in a K3 that have singular minimizers though the construction given
here suggests that they may be “generic” in a suitable sense.
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