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Maps in dimension one with infinite entropy

Peter Hazard

Abstract. For each real α, 0≤α<1, we give examples of endomorphisms in dimension
one with infinite topological entropy which are α-Hölder; and for each real p, 1≤p<∞, we also
give examples of endomorphisms in dimension one with infinite topological entropy which are
(1, p)-Sobolev. These examples are constructed within a family of endomorphisms with infinite
topological entropy and which traverse all α-Hölder and (1, p)-Sobolev classes. Finally, we also
give examples of endomorphisms, also in dimension one, which lie in the big and little Zygmund
classes, answering a question of M. Benedicks.

1. Introduction

1.1. Background

Adler, Konheim and McAndrew [1] defined the topological entropy of a continu-
ous self-mapping of a compact metric space as an analogue of the Kolmogorov-Sinai
metric entropy of a measure-preserving transformation of a measure space. Recall
that the topological entropy of a continuous self-mapping is a non-negative real num-
ber, possibly infinite, which is invariant under topological conjugacy. (See [7], [16]
for background.)

Determining what entropy values can be obtained by certain systems or classes
of systems is a classical problem. The case of infinite topological entropy is of
particular interest. Already in [1], an example of a map on a zero-dimensional space
for which the topological entropy is infinite – a full shift on infinitely many symbols
– was given. Later, in [10] further examples on symbol spaces were given which
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were strictly ergodic. A different approach was given in [9], where they constructed
minimal homeomorphisms of the Cantor set, again with infinite entropy, without
using methods from symbolic dynamics.

In [17], it was shown that even on smooth manifolds in higher dimensions there
exist examples of continuous self-mappings with infinite topological entropy. In fact,
a stronger statement was shown: for smooth compact manifolds of dimension two
or greater, a generic homeomorphism (with respect to the uniform topology) has
infinite topological entropy. In contrast, self-mappings with sufficient regularity
or smoothness must have finite topological entropy. More precisely [12, Theorem
3.2.9], if f is a Lipschitz self-mapping of the compact metric space (X, d) with finite
Hausdorff dimension D(X), we have the following inequality

(1.1) htop(f)≤D(X) log+ Lipd(f)

where htop(f) denotes the topological entropy of f , and Lipd(f) denotes the Lips-
chitz constant of f with respect to the metric d. (See also [3], [11].)

In [5], an investigation was started into what occurs between C0 and Lipschitz
regularity, in the case of homeomorphisms on smooth compact manifolds. The
notion of ‘between’ can be taken in several different directions. For compact subsets
of the real line, for example, given 0≤α<β<1, if Cα denotes the space of α-Hölder
self-maps and CZ and CLip denote the spaces of self-maps satisfying respectively
the Zygmund and Lipschitz conditions(1) then

(1.2) C0 ⊃Cα ⊃Cβ ⊃CZ ⊃CLip .

Similarly, if DAE denotes the space of continuous self-maps which are differentiable
(Lebesgue)-almost everywhere, AC denotes the space of continuous self-maps which
are absolutely continuous (with respect to Lebesgue), BV denotes the space of
continuous self-maps with bounded variation, and W

1,p, 1≤p≤∞, denotes the space
continuous self-maps satisfying the W 1,p-Sobolev condition, then

(1.3) C0 =UC ⊃DAE⊃BV⊃AC�W
1,1 ⊃W

1,p ⊃W
1,∞ �CLip .

With some care, (most of) these regularity classes, and the associated inclusions,
can be extended to higher dimensions, and even to general smooth manifolds. In [5]
an investigation into which values of entropy are possible in these two families of
inclusions was initiated. It was shown that for any α∈[0, 1) and p∈[1,∞), infinite
entropy was not only possible, but a generic property in certain spaces (suitably
topologised) of bi-α-Hölder homeomorphisms, and of bi-(1, p)-Sobolev homeomor-
phisms, on smooth manifolds of dimension two or greater. Note that the result

(1) See [19] or Sections 1.4 and 3 below for definitions and basic properties.
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in [5] is only for the closure of bi-Lipschitz maps in the appropriate topology. M.
Benedicks asked the following question:

Benedicks’ Question: Is there a mapping in the big Zygmund class with infinite
topological entropy? In the little Zygmund class?

Here we give an answer to these questions in the case of endomorphisms on
compact one-manifolds. Specifically, we will work on the closed unit interval, but
the generalisation to the circle case will follow immediately. (Note that homeomor-
phisms on compact one-manifolds must have zero entropy.)

Finally, we would like to bring the readers attention to the complementary
result in [2], where it is shown – using the construction in [9] – that every Cantor
minimal system can be realized as a minimal subsystem of a differentiable (though
not continuously differentiable) endomorphism of the interval and, moreover, the
derivative vanishes identically for this subsystem. In particular, the infinite entropy
examples in [9] can be realised by differentiable interval endomorphisms. (This
shows that, in particular, that in the class of differentiable maps the Margulis-
Ruelle inequality fails quite dramatically.) We thank the referee for bringing this
work to our attention.

1.2. Summary of results

First we construct examples of endomorphisms with infinite topological entropy
lying in a Hölder or Sobolev class.

Theorem A. There exists a continuous one-parameter family of endomor-

phisms fa∈C([0, 1], [0, 1]), a∈(0, 1], with the following properties

1. for all a∈(0, 1]
a) all fa are topologically conjugate

b) htop(fa)=+∞
c) fa is not expansive, h-expansive or asymptotically h-expansive

2. for a=1
a) fa has modulus of continuity ω(t)=t log(1/t)
b) fa is in the Sobolev class W 1,p for 1≤p<∞
c) Lebesgue measure is a measure of maximal entropy for fa (though there

are at least countably many such measures)

3. for a∈(0, 1)
a) fa is Cα if and only if α≤a.

b) fa is W 1,p if and only if p<(1−a)−1

c) Lebesgue measure is not preserved by fa, but there exist measures of max-

imal entropy for fa which are absolutely continuous with respect to Lebesgue.
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Moreover, this family can be chosen so that each fa is topologically transitive.

We note that, for the specific examples considered here, half of the work is
already done by Morrey’s inequality: namely, if fa lies in W 1,p then it automatically
follows that fa is Cα, where α=1− 1

p . However, we also give an explicit proof of
Theorem A(3)(a). The reason being that our construction is made using piecewise-
affine horseshoes as ‘model maps’ from which the construction is made. If the
model map which we start with is Hölder but not, for instance, differentiable almost
everywhere, then our construction and estimates, suitably modified, still apply.

Remark 1.1. Similar examples were already constructed in [6]. However, the
construction there made determining the possible conjugacy between different fa
difficult. Our approach here simplifies this, while also giving the additional dynam-
ical information in Theorem A above.

Following this we also construct examples of endomorphisms with infinite topo-
logical entropy satisfying the stronger Zygmund condition. Namely, the following
is shown.

Theorem B. There exists f∈C([0, 1], [0, 1]) with the following properties

1. a) f is not topologically conjugate to the examples in Theorem A

b) htop(f)=+∞
c) f is not expansive, h-expansive or asymptotically h-expansive

2. f satisfies the little Zygmund condition

Remark 1.2. Observe that Theorem B gives an affirmative answer to Benedicks’
question stated above.

1.3. Structure of the paper

In Section 1.4, we set up notation and terminology for the rest of the paper,
and recall some basic facts. In Section 2 we give a proof of Theorem A. First we
construct the one-parameter family fa from which it will be clear that properties
1(a)–1(c) of Theorem A hold for all parameters a∈(0, 1]. After this an elementary
proof of properties 2(a)–2(c), i.e., for a=1, of Theorem A is given. Following this we
prove some auxiliary propositions that are then used to prove properties 3(a)–3(b).
In Section 3, after recalling some basic definitions we give a proof of Theorem B.
Finally, in Section 4 we end with some remarks and open problems.
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1.4. Notation and terminology

Throughout this article, we use the following notation. We denote the Eu-
clidean norm in R by |·|R or |·| when there is no risk of ambiguity. We denote the
Euclidean distance by d(·, ·). Given real-valued functions f and g, defined on a sub-
set of the real numbers accumulating on zero, we write f(t)=O(g(t)) if there exists
C>0 such that, for |t| sufficiently small, |f(t)|≤C|g(t)|. We also write f(t)=o(g(t))
if limt→0

|f(t)|
|g(t)| =0.

1.4.1. Hölder mappings

Let α∈(0, 1). Given a subset Ω of R, let Cα(Ω,R) denote the set of real-valued
functions f on Ω satisfying the α-Hölder condition

(1.4) [f ]α,Ω
def= sup

x,y∈Ω;x�=y

d(f(x), f(y))
d(x, y)α <∞ .

When the domain of f is clear we will write [f ]α instead of [f ]α,Ω. The set Cα(Ω,R)
has a linear structure and [ · ]α,Ω defines a semi-norm(2), which we call the Cα-semi-
norm. Consequently

(1.5) ‖f‖Cα(Ω,R)
def= ‖f‖C0(Ω,R)+[f ]α,Ω

defines a complete norm on Cα(Ω,R).
For the same subset Ω of R let CLip(Ω,R) denote the set of real-valued functions

f on Ω satisfying the Lipschitz condition

(1.6) [f ]lip,Ω
def= sup

x,y∈Ω;x�=y

d(f(x), f(y))
d(x, y) <∞ .

As before, this defines a semi-norm on the linear space CLip(Ω,R). We denote the
corresponding norm by ‖ · ‖CLip(Ω,R). Then, as above, this defines a Banach space
structure on CLip(Ω,R).

1.4.2. Sobolev mappings

Given an open subset Ω of R, the Sobolev class W 1,p(Ω) consists of measurable
functions f : Ω→R for which the first distributional partial derivative is defined and
belongs to Lp(Ω). Then W 1,p(Ω) is a Banach space with respect to the norm

(1.7) ‖u‖1,p = ‖u‖Lp +‖Du‖Lp .

(2) This also induces a pseudo-distance which we will call the Cα-pseudo-distance.
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Define the space

(1.8) W
1,p(Ω,R)=W 1,p (Ω,R)∩C0 (Ω,R

)
.

For f∈W1,p(Ω,R) define

(1.9) [f ]W 1,p,Ω =
(∫

Ω
|Df(x)|p dx

) 1
p

.

Observe that W1,p(Ω,R) is a linear space and that [ · ]W 1,p,Ω defines a semi-norm
which we call the W 1,p-semi-norm. Setting

(1.10) ‖f‖W1,p(Ω,R) = ‖f‖C0(Ω,R)+[f ]W 1,p,Ω ,

this defines a norm on W
1,p(Ω,R) which is complete, and thus W1,p(Ω,R) is endowed

with the structure of a Banach space.

1.4.3. Topological entropy and expansivity

Let (X, d) be a compact metric space. Let f be a continuous self-map of (X, d).
For each n∈N define the distance function

(1.11) dfn(x, y)= max
0≤k<n

d(fk(x), fk(y)) .

Given sets E,F⊂X, we say that the set E (n, δ)-spans the set F with respect to f

if for any x∈F , there exists y∈E such that dfn(x, y)<δ. Let

rf (n, δ;F )=min
{
#E : E (n, δ)-spans F with respect to f

}
.(1.12)

(Note that: (i) if F is compact then rf (n, δ;F )<∞; (ii) rf (n, δ;F ) increases as δ

decreases.) For each compact set K⊂X, define(3)

(1.13) rf (δ;K)= lim sup
n→∞

1
n

log rf (n, δ;K)

and

(1.14) h(f ;K)= lim
δ→0

rf (δ;K) .

Since X is compact we can define

(1.15) h(f, δ)=h(f, δ;X) .

(3) Here we depart from the notation originally due to Bowen [4].
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The topological entropy of f is defined by

(1.16) htop(f)= lim
δ→0

h(f, δ)= sup
K

h(f ;K) .

For each ε>0 and x∈X define

(1.17) Φε(x)=
⋂
n≥0

f−nBε(fn(x))= {y : d (fn(x), fn(y))≤ ε, ∀n≥ 0} .

Recall that f is expansive if there exists ε>0 with the following property: given any
x, y∈X, if d(fk(x), fk(y))<ε, for all k∈N, then x=y. Define

(1.18) h∗
f (ε)= sup

x∈X
h(f ; Φε(x)) .

Then f is h-expansive if h∗
f (ε)=0 for some ε>0; and is asymptotically h-expansive

if limε→0 h
∗
f (ε)=0.

2. Examples in Hölder and Sobolev classes

We construct a family of endomorphisms fa of the unit interval, depending
upon the parameter a∈(0, 1], such that each fa satisfies htop(fa)=∞, it is not
expansive, h-expansive or even asymptotically h-expansive, and such that all the
fa are topologically conjugate. The main part of the work will then be in showing
each fa has some intermediate regularity between C0 and Lipschitz.

Remark 2.1. On compact one-manifolds, a theorem of Misiurewicz [14] states
that positive topological entropy, and thus infinite topological entropy, must come
from some iterate possessing a horseshoe. More precisely, if htop(f)>0, then there
exist sequences of positive integers kn and sn such that, for each n, fkn possesses
an sn-branched horseshoe(4) and

(2.1) lim
n→∞

1
kn

log sn =htop(f) .

Thus examples given below, which are constructed so that certain iterates possess
horseshoes, are somehow indicative of the general case.

It will be useful to first consider an auxiliary family ga,b of interval maps defined
as follows. First fix a positive integer b. Given an arbitrary interval J , let AJ

denote the unique orientation-preserving affine bijection from J to [0, 1]. Subdivide

(4) A map g possesses an s-branched horseshoe if there is an interval J with s pairwise
disjoint subintervals J1, J2, ..., Js, such that g(Jj)⊆J for j=1, 2, ..., s.
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the interval [0, 1] into b closed intervals Jb,0, Jb,1, ..., Jb,b−1 of equal length, ordered
from left to right. Let Ab,k=AJb,k

for each k=0, 1, ..., b−1. Let ν denote the unique
orientation-reversing affine bijection of [0, 1] to itself. For each k=0, 1, ..., b−1,
define

(2.2) g1,b(x)= νk ¨Ab,k(x), ∀x∈Jb,k .

More explicitly

(2.3) g1,b(x)=
{
bx−k x∈Jb,k, k even
(k+1)−bx x∈Jb,k, k odd .

Observe that g1,b is continuous on [0, 1]. Also, [0, 1] possesses a g1,b-invariant subset
on which g1,b acts as the unilateral shift on b symbols. In fact, htop(g1,b)=log b (see
e.g. [12, Section 3.2.c]).

Next, take a continuous one-parameter family ϕa, a∈(0, 1], of orientation-
preserving homeomorphisms of [0, 1], with ϕ1=id, and define

(2.4) ga,b =ϕa ¨ g1,b ¨ϕ
−1
a .

For example, we could take ϕa equal to qa(x)=xa, the power function of exponent
a. (Observe that in this case ga,b is Ca but not Cα for any α>a, provided that
b≥2.) Then ga,b is continuous on [0, 1]. As topological entropy is invariant under
topological conjugacy, we also have htop(ga,b)=log b, for each a∈(0, 1] and each
positive integer b. We call b the number of branches of ga,b and a the order of
singularity.

We now define the family fa as follows. For each positive integer n define the
interval In=(2−n, 2−n+1] and let fa be given by

(2.5) fa(x)=
{
A−1

In
¨ga,2n+1¨AIn(x) x∈In, n=1, 2, ...

0 x=0 .

Observe that, since ga,2n+1 fixes the endpoints of [0, 1] and is continuous, the map
fa is also continuous. Also, since, for each fixed b, all the functions ga,b, a∈(0, 1],
are topologically conjugate, it follows that all the functions fa, a∈(0, 1], are also all
topologically conjugate. Namely, fa=ψ−1

a ¨f1¨ψa where

(2.6) ψa(x)=A−1
In

¨ϕa ¨AIn(x) ∀x∈ In, ∀n∈N .

Notice that the closure of each interval In is totally invariant. Since the topological
entropy of a map is the supremum of the topological entropy of its restriction to
all closed invariant subsets, since topological entropy is invariant under topological
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conjugacy (see e.g. [12, Section 3.1.b]) and, as was stated above, htop(ga,b)=log b
for all b, it follows that

(2.7) htop(fa) ≥ sup
n

htop(fa|In) = sup
n

htop(ga,2n+1)=+∞ .

Next, observe that, as fa has arbitrarily small invariant subsets (namely the intervals
In) the function fa cannot be expansive. In fact, since h(fa, In)=log(2n+1) for each
n, it follows that

(2.8) lim
ε→0

h∗
fa(ε) ≥ lim

n→∞
h(fa; In) = +∞ .

Thus fa is neither h-expansive nor asymptotically h-expansive. Therefore properties
1(a)–1(c) of Theorem A hold.

Remark 2.2. That fa is not asymptotically h-expansive could also be shown
using topological conditional entropy in the following way. By [13, Proposition 3.3]
infinite topological entropy htop(fa) implies infinite topological conditional entropy
h∗(fa). However, by [13, Corollary 2.1(b)] fa is asymptotically h-expansive if and
only if h∗(fa)=0.

Proof of Theorem A 2(a)–2(c). For each positive integer n, define the subin-
tervals In,k=A−1

In
(J2n+1,k) of In for k=0, 1, ..., 2n. These denote the maximal closed

subintervals of In on which fa is monotone.

(a) Take distinct points x, y∈[0, 1]. There are three cases to consider.
(x∈In, y∈Im, n>m) Since Im and In are both f -invariant, f(x)∈In and f(y)∈

Im. Moreover, observe that

(2.9) |f(x)−f(y)| ≤ |2−n−2−m+1|< 2−m+1

together with

(2.10) |x−y| ≥ |2−n+1−2−m| ≥ 2−m−1

implies that

(2.11) |f(x)−f(y)|
ω(|x−y|) ≤ 2−m+1

2−m−1 log 2m+1 = 4
(m+1) log 2 .

(x=0, y∈Im) Applying the same argument as in the previous case and observ-
ing that f(x)=x=0 we find that

(2.12) |f(x)−f(y)|
ω(|x−y|) ≤ 2−m+1

2−m−1 log 2m+1 = 4
(m+1) log 2 ≤ 2

log 2 .
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Figure 1. The graph of the Hölder interval endomorphism f1 with infinite topological entropy.

(x∈In, y∈Im, n=m) If x and y do not lie in the same branch of f |Ik , then
there exists y′, in the same branch as x, satisfying f(y)=f(y′) and |x−y|>|x−y′|.
Moreover,

(2.13) |x−y′| ≤ |Im|
2m+1 = 1

2m(2m+1) .

Thus
|f(x)−f(y)|
ω(|x−y|) ≤ |f(x)−f(y′)|

ω(|x−y′|) = (2m+1)|x−y′|
|x−y′| log(|x−y′|−1)(2.14)

≤ 2m+1
log 2m(2m+1)(2.15)

≤ 2
log 2 +1 .(2.16)

In each of these cases, for x, y∈[0, 1], x �=y,

(2.17) |f(x)−f(y)|
ω(|x−y|) ≤ 2

log 2 +1
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and hence f has modulus of continuity ω, which completes the proof of part (i).

(b) Observe that f is differentiable except at the endpoints of the intervals Ik,l.
Hence

(2.18) |f ′|In |=
|In|
|In,k|

=2n+1 .

Therefore, as the In form a measurable partition of [0, 1],
∫

[0,1]
|f ′|p dx=

∞∑
n=1

∫
In

|f ′|p dx=
∞∑

n=1
(2n+1)p

∫
In

dx(2.19)

=
∞∑

n=1
(2n+1)p2−k(2.20)

≤
∞∑

n=1
np2−(n−1)/2(2.21)

= 21/2
∞∑

n=1
np2−n/2 .(2.22)

However, this last series is convergent. Consequently the Sobolev norm of f is finite
and hence f∈W 1,p([0, 1]).

(c) First note that as g1,b preserves Lebesgue measure μ for each b, it follows trivially
that Lebesgue measure is invariant under f1. Since hμ(g1,b)=log b, it also follows
that Lebesgue measure is a measure of maximal entropy. Hence the theorem is
shown. �

For each positive integer n, by performing the same construction as above but
just on the union of the intervals In, In+1, ... we also get the following corollary.

Corollary 2.1. There exists a sequence fn∈C0([0, 1], [0, 1]) satisfying proper-

ties 2(a)–2(c) in Theorem A above and with the additional property that limn→∞ fn=
id where convergence is taken

• in the Cα-topology for any α∈(0, 1),
• in the W 1,p-topology for any p∈[1,∞).

We recall that maps with modulus of continuity t log(1/t) are in the Hölder
class Cα for every α∈[0, 1), but they are not necessarily Lipschitz. Moreover, the
map f1 is a Cα-limit of piecewise-affine maps. Hence it lies in the Cα-boundary of
the space of Lipschitz maps. When a �=1, the map fa does not satisfy this property.
The proof of Theorem A 3(a)–3(b) could be made using the argument presented
above in the proof of properties 2(a)–2(b) of Theorem A. However, we give a different
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proof below. For that we need the following gluing principle, which is essentially
an application of Jensen’s inequality.

Proposition 2.1. (Gluing Principle) Let ω be a continuous, monotone-in-

creasing function, locally concave at ω(0)=0. Let f be a continuous self-mapping

of the compact interval I. Let I1, I2, ... denote a collection of closed intervals with

pairwise disjoint interiors, covering I, and with the property that f |Ik has modulus

of continuity ω, for all k. Let Ck denote the ω-semi-norm of f |Ik .
(i) If

∑∞
k=1 Ck<∞ then f has modulus of continuity ω with ω-semi-norm

bounded by C=
∑∞

k=1 Ck.

(ii) If supk Ck<∞ and f |∂Ik =id for all k, then f has modulus of continuity ω

with ω-semi-norm bounded by C= diam(I)
ω(diam(I)) +2 supk Ck.

Proof. For notational simplicity, assume that the intervals Ik are ordered from
left to right. This does not affect the proof, but simplifies indexing.

Case (i). Take x, y∈I. Assume that x<y. Then there exist integers m<n such that
x∈Im, y∈In. Consequently

(2.23) xm =x<xm+1 < ...<xn <y=xn+1 ,

where the points xm+1, xm+2..., xn denote the left endpoints of the respective inter-
vals Im+1, Im+2, ..., In. Let Ck denote the ω-semi-norm of f |Ik , that is

(2.24) Ck = sup
z �=w∈Ik

d(f(z), f(w))
ω(d(z, w)) .

It follows that

d(f(x), f(y))≤
n∑

k=m

d(f(xk), f(xk+1))≤
n∑

k=m

Ckω (d(xk, xk+1)) .(2.25)

However, since Λ is concave, Jensen’s inequality implies that∑n
k=m Ckω (d(xk, xk+1))∑n

k=m Ck
≤ω

(∑n
k=m Ckd(xk, xk+1)∑n

k=m Ck

)
(2.26)

≤ω

(
max

m≤k≤n
Ck ·

∑n
k=m d(xk, xk+1)
maxm≤k≤n Ck

)
(2.27)

=ω (d(x, y)) .(2.28)

where, for the last equality we have used that the points xk are in the real line,
placed in increasing order. Combining inequalities (2.25) with (2.28) together with
the hypothesis that

∑∞
k=1 Ck<∞ gives the result by taking the supremum over all

possible x and y.



Maps in dimension one with infinite entropy 107

Case (ii). Take x, y and xm+1, ..., xn as before. Then

d(f(x), f(y))≤ d(f(x), f(xm+1))+d(f(xm+1), f(xn))+d(f(xn), f(y))(2.29)
≤Cmω(d(x, xm+1))+d(xm+1, xn)+Cnω(d(xn, y))(2.30)

≤
(

2 sup
k

Ck+ diam(I)
ω(diam(I))

)
ω(d(x, y)) .(2.31)

As this holds for all x and y, it follows that f has modulus of continuity ω, with
ω-semi-norm bounded by 2 supk Ck+diam(I)/ω(diam(I)), as required. �

We will also need the following estimates for the map ga,b with respect to
the Hölder and Sobolev semi-norms, in the case when ϕa is a general concave
orientation-preserving homeomorphism.

Lemma 2.1. (Auxiliary Lemma) Let ga,b be defined as above, where ϕa is an

arbitrary concave, orientation-preserving homeomorphism, so that it possesses an

extension to [0, 1+ 1
b ], which is also concave and a homeomorphism onto its image.

Then

(2.32) [ga,b]Cα,[0,1] ≤ [ϕa]Cα,[0,1] ·bα+1
∫

[ 1b ,1+
1
b ]

∣∣(ϕ−1
a )′(t)

∣∣α dt

and

(2.33) [ga,b]pW 1,p,[0,1] ≤ [ϕa]W 1,p,[0,1] ·bp
⎛
⎝∫

[0,1]

∣∣∣∣ t

g1,b(t)

∣∣∣∣
p2(1−a)

p−1

dt

⎞
⎠

1− 1
p

.

Remark 2.3. As ϕa is monotone increasing it follows by Lebesgue’s Last The-
orem that it is differentiable Lebesgue-almost everywhere (see, e.g. [15]). Since it
is concave it follows from Alexandrov’s theorem that is it also twice-differentiable
Lebesgue-almost everywhere [8, Section 6.4].

Proof. Before starting the proof, we introduce the following notation and make
the following comments. For any t∈[0, 1] we use the notation

(2.34) t′ =ϕ−1
a (t) , t′′ = g1,b(ϕ−1

a (t)) .

First consider the Hölder estimate. Take k∈{0, 1, ..., b−1}. Let x, y∈Jb,k be arbi-
trary distinct points. Then, by telescoping the a-Hölder difference quotient, and
observing that g1,b is affine, we find that

|ga,b(x)−ga,b(y)|
|x−y|α = bα

|ϕa(x′′)−ϕa(y′′)|
|x′′−y′′|a

(
|ϕ−1

a (x)−ϕ−1
a (y)|

|x−y|

)α

.(2.35)
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Observe that x′′ and y′′ take values throughout [0, 1]. Therefore

(2.36) |ϕa(x′′)−ϕa(y′′)|
|x′′−y′′|α ≤ [ϕa]Cα,[0,1] .

Next, trivially x and y take values throughout Jb,k=[kb ,
k+1
b ]. Therefore, since the

function ϕ−1
a (t) is convex and increasing on the positive real line (and thus difference

quotients on Jb,k are maximised by the derivative at the right endpoint ∂+Jb,k),

(2.37) (ϕ−1
a )′(∂−Jb,k)≤

|ϕ−1
a (x)−ϕ−1

a (y)|
|x−y| ≤ (ϕ−1

a )′(∂+Jb,k) .

Consequently, by Proposition 2.1(i), together with the fact that (ϕ−1
a )′ is increasing

on the positive real line (so (ϕ−1
a )′ is minimised on Jb,k by its value at the left

endpoint ∂−Jb,k= k
b ) we have

[ga,b]Cα,[0,1] ≤
b−1∑
k=0

[ga,b]Cα,Jb,k
(2.38)

≤ [ϕa]Cα,[0,1] ·bα+1
b−1∑
k=0

∣∣(ϕ−1
a )′

(
k+1
b

)∣∣α · 1b(2.39)

= [ϕa]Cα,[0,1] ·bα+1
b−1∑
k=0

∣∣(ϕ−1
a )′

(
∂−Jb,k+1

)∣∣α ·|Jb,k+1|(2.40)

≤ [ϕa]Cα,[0,1] ·bα+1
∫

[ 1b ,1+
1
b ]

∣∣(ϕ−1
a )′(t)

∣∣α dt .(2.41)

Next, consider the Sobolev case. Observe that ga,b is differentiable everywhere
except a finite set of points. More precisely, ga,b has breaks at exactly the endpoints
of ϕa(Jb,k) for k=0, 1, ..., b−1. By the chain rule, at Lebesgue almost every point
x we have

|g′a,b(x)|= |ϕ′
a(g1,b(ϕ−1

a (x))| |g′1,b(ϕ−1
a (x))| |(ϕ−1

a )′(x)|(2.42)

= b

(
|g1,b(ϕ−1

a (x))|
|ϕ−1

a (x)|

)a−1

.(2.43)

Thus, by the change of variable formula for integrals

[ga,b]pW 1,p,ϕa(Jb,k) =
∫
ϕa(Jb,k)

|g′a,b(x)|p dμ(x)(2.44)

= bp
∫
ϕa(Jb,k)

∣∣∣∣g1,b(ϕ−1
a (x))

ϕ−1
a (x)

∣∣∣∣
p(a−1)

dμ(x)(2.45)
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= bp
∫
Jb,k

∣∣∣∣g1,b(t)
t

∣∣∣∣
p(a−1)

|ϕ′
a(t)| dμ(t) .(2.46)

Therefore

(2.47) [ga,b]pW 1,p,[0,1] =
b−1∑
k=0

[ga,b]pW 1,p,Jb,k
= bp

∫
[0,1]

∣∣∣∣ t

g1,b(t)

∣∣∣∣
p(1−a)

|ϕ′
a(t)| dμ(t) .

Therefore applying Hölder’s inequality gives the result. �

Corollary 2.2. Let b≥2. Let ϕa=qa for each a∈[0, 1]. Then there exist pos-

itive real numbers C(a, α) and K(a, p), depending only upon a and α and upon a

and p respectively, such that we have the following for each a∈[0, 1):
(i) ga,b is Cα for all α≤a and

[ga,b]Cα,[0,1] ≤ C(a, α)bα+1

(ii) ga,b is W 1,p for all p<(1−a)−1 and

[ga,b]pW 1,p,[0,1] ≤ K(a, p)bp(1−a)+1 .

Proof. (i) When ϕa=qa we find that qa,b is locally of the form |x|a about any
ga,b-preimage of 0 except 0 itself. (Observe that, as b≥2, such a preimage exists.)
Therefore ga,b cannot be Cα for any α>a. For α≤a, by inequality (2.32),

(2.48) [ga,b]Cα,[0,1] ≤ [ϕa]Cα,[0,1]
bα+1a1−α

α(1−a)+a

(
(1+ 1

b )
α( 1

a−1)+1−(1
b )

α( 1
a−1)+1

)

and thus there exists an extended positive real number C(a, α), depending upon a

and α only, such that C(a, α) is finite for 0≤α≤a, and is infinite for a<α≤1, and
for which

(2.49) [ga,b]Cα,[0,1] ≤C(a, α)bα+1 .

(ii) First, in the special case when k=0,

(2.50) [ga,b]pW 1,p,ϕa(Jb,0) = bp
∫ 1

b

0

∣∣∣∣1b
∣∣∣∣
p(1−a)

ϕ′
a(t) dt= ba(p−1) .

In the general case, applying the standard L1-estimate to inequality (2.33) gives

(2.51)
bp min

Jb,k

|ϕ′
a|
∫
Jb,k

∣∣∣∣ t

g1,b(t)

∣∣∣∣
p(1−a)

dt ≤ [ga,b]pW 1,p,ϕa(Jb,k)

≤ bp max
Jb,k

|ϕ′
a|
∫
Jb,k

∣∣∣∣ t

g1,b(t)

∣∣∣∣
p(1−a)

dt .
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But

∫
Jb,k

∣∣∣∣ t

g1,b(t)

∣∣∣∣
p(1−a)

dt=

⎧⎪⎪⎨
⎪⎪⎩

∫
Jb,k

∣∣∣ t
bt−k

∣∣∣p(1−a)
dt k even∫

Jb,k

∣∣∣ t
k+1−bt

∣∣∣p(1−a)
dt k odd

.(2.52)

Making an appropriate change of variables this can also be written in the form

∫
Jb,k

∣∣∣∣ t

g1,b(t)

∣∣∣∣
p(1−a)

dt=

⎧⎪⎪⎨
⎪⎪⎩

∫
[0,1]

∣∣1+ k
u

∣∣p(1−a)
b1−p(1−a) du k even∫

[0,1]

∣∣1− k+1
u

∣∣p(1−a)
b1−p(1−a) du k odd

.(2.53)

Combining with (2.51), this shows that ga,b is not W 1,p for p≥(1−a)−1. For p<

(1−a)−1, since the power function tσ, where σ=p(1−a), is concave we find that
∫

[0,1]

(
1+ k

u

)σ

du≤ kσ
∫

[0,1]
u−σ du+σkσ−1

∫
[0,1]

u1−σ du(2.54)

= kσ

1−σ
+ σkσ−1

2−σ
,(2.55)

while

(2.56)
∫

[0,1]

(
k+1
u

−1
)σ

du≤
∫

[0,1]

(
k+1
u

)σ

du= (k+1)σ

1−σ
.

Therefore, by (2.51) we arrive at the following inequalities

(2.57) [ga,b]pW 1,p,ϕa(Jb,k) ≤

⎧⎨
⎩

a
(
b
k

)1−a
kp(1−a)

(
1

1−p(1−a) + p(1−a)
k(2−p(1−a))

)
k even

a
(
b
k

)1−a (k+1)p(1−a) 1
1−p(1−a) k odd

.

Consequently, there exist positive real numbers K0(a, p) and K(a, p), depending
upon a and p only, such that

[ga,b]pW 1,p,[0,1] =
b−1∑
k=0

[ga,b]pW 1,p,ϕa(Jk,b)(2.58)

≤K0(a, p)b1−a
b−1∑
k=0

k(p−1)(1−a)(2.59)

≤K(a, p)bp(1−a)+1 .(2.60)

This completes the proof. �
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Proof of Theorem A 3(a)–3(c). (a) Since the function ga,b is not Cα for any
α>a, and as the α-Hölder condition is preserved under affine rescaling, it follows
that fa is also not Cα for any α>a. Let us show that fa lies in Ca. By the Hölder
rescaling principle [5, Proposition 2.2]

[fa]Ca,In ≤ [A−1
In

]Lip [ga,2n+1]Ca,[0,1] [AIn ]aLip(2.61)
= |In|1−a [ga,2n+1]Ca,[0,1](2.62)

≤ 2−n(1−a)C(a, a)(2n+1)1+a .(2.63)

By the Proposition 2.1(ii), with ω(x)=xa, since fa fixed the endpoints of In for
each n, we find that

[fa]Ca,[0,1] ≤ sup
n

[fa]Ca,In ≤ C(a, a) sup
n

2−n(1−a)(2n+1)1+a < ∞(2.64)

where, for the second inequality, we used Corollary 2.2(i).

(b) Since fa|In =A−1
In

¨ga,2n+1¨AIn an affine rescaling of a map differentiable
Lebesgue-almost everywhere we find that, for Lebesgue-almost every x∈In,

(2.65) |fa(x)|= |g′a,2n+1(AIn(x))| .

This, together with the change of variables formula for integrals and the observation
that |A′

In
|=|In|−1, gives

[fa]pW 1,p,In
=
∫
In

|f ′
a(x)|p dx(2.66)

= |In|
∫
In

|g′a,2n+1(AIn(x))|p|A′
In(x)| dx(2.67)

= |In|
∫
AIn (In)

|g′a,2n+1(u)|p du(2.68)

≤ |In| [ga,2n+1]pW 1,p,[0,1] .(2.69)

This, together with Corollary 2.2(ii), implies that

[fa]pW 1,p,[0,1] =
∞∑

n=1
[fa]pW 1,p,In

(2.70)

≤
∞∑

n=1
|In| [ga,2n+1]pW 1,p,[0,1](2.71)

≤
∞∑

n=1
2−nK(a, p)(2n+1)p(1−a)+1 .(2.72)

This last series is convergent. Thus fa is W 1,p for 1≤p<(1−a)−1, as required.
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(c) Observe that ϕa and ϕ−1
a are Ca, but they are not Cα for any α>a. By the

Hölder rescaling principle [5, Proposition 2.2]

(2.73) [ψa]Cα,In ≤ [A−1
In

]Lip[ϕa]Cα,[0,1][AIn ]αLip = |In|1−α[ϕa]Cα,[0,1]

and a similar estimate holds for [ψ−1
a ]Cα,In . Therefore, observing that for each

a∈(0, 1], we have ψa|∂In≡id, it follows that we may apply Proposition 2.1(ii).
Hence, for all α≤a, ψa is a bi-α-Hölder homeomorphism. Since fa=ψ−1

a ¨f1¨ψa and
f1 preserves Lebesgue measure μ, it follows that the pullback ψ∗

aμ is an invariant
measure for fa. As the functions ϕa are absolutely continuous with respect to
Lebesgue measure, it follows that ψa is also absolutely continuous. �

Proof of Theorem A (Transitivity). Finally, we show how to modify fa so that
the resulting maps are transitive. We actually embed fa into a continuous family
fa,ε, ε∈(0, 1

2 ), where fa,ε is transitive for ε �=0.
We modify the model maps ga,b as follows. Let

(2.74) ga,b,ε =A−1
[−ε,1+ε] ¨ ga,b , g−a,b,ε =A−1

[−ε,1] ¨ ga,b .

Define fa,ε by

(2.75) fa,ε(x)=

⎧⎨
⎩

A−1
I1

¨g−a,b,ε¨AI1(x) x∈I1
A−1

In
¨ga,b,ε¨AIn x∈In, n=2, 3, ...

0 x=0
.

(using that for each interval J , AJ extend affinely to R). Note that we have modified
fa on the interval I1 differently to the other intervals In, n=2, 3, ..., to ensure that
f([0, 1])=[0, 1]. It is clear from the preceding arguments that fa,ε satisfies properties
(1)–(3) of Theorem A. It just remains to show transitivity.

Observe that the intervals I1, I2, ... are no longer invariant. The interval I1
contains a single maximal open interval G1,1,a,ε=G1,1 for which fa,ε(G1,1)⊂I2 and,
in fact, fa,ε(G1,1) is a closed neighbourhood of the repelling fixed point 2−1. For
n=2, 3, ... we have that

• the interval In contains pairwise disjoint maximal open intervals

Gn,1,−, Gn,2,−, ..., Gn,n,−

such that, for k=1, 2, ..., n, fa,ε(Gn,k,−)⊂In−1 and, in fact, fa,ε(Gn,k,−) is a closed
right-neighbourhood of the repelling fixed point 2−n+1.

• the interval In contains pairwise disjoint maximal open intervals

Gn,1,+, Gn,2,+, ..., Gn,n,+

such that, for k=1, 2, ..., n, fa,ε(Gn,k,+)⊂In+1 and, in fact, fa,ε(Gn,k,+) is a closed
left-neighbourhood of the repelling fixed point 2−n.
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The key property of the maps ga,b,ε that we will now use is the following: for any
fixed point x, for any closed neighbourhood V of x there exists a positive integer
� and a closed neighbourhood U⊂V of x such that g
a,b,ε(U)=[0, 1]. This property
implies that for any positive integers m and n, for neighbourhoods U in In and V in
Im there exists a positive integer r such that fr

a,ε(U)∩V . Hence fa,ε is topologically
transitive. �

For a �=1, the above analysis can also be applied to the construction when re-
stricting to the union of the intervals In, In+1, ..., just as in the case of Corollary 2.1.
Thus, analogously to that corollary, we also get the following result.

Corollary 2.3. For each a∈(0, 1), there exists a sequence fa,n∈C0([0, 1], [0, 1])
satisfying properties 3(a)–3(c) in Theorem A above and with the additional property

that limn→∞ fn=id where convergence is taken

• in the Cα-topology for any α∈(0, a),
• in the W 1,p-topology for any p∈

[
1, (1−a)−1).

3. Examples in the little Zygmund class

As was previously remarked, the function f1 constructed in Theorem A above
has modulus of continuity t log(1

t ), and hence is α-Hölder for every α∈[0, 1), but
it is not Lipschitz. Further, it does not satisfy either the big or little Zygmund
conditions. Recall that a continuous function f of the interval [0, 1] satisfies the big
Zygmund condition if, for all x in (0, 1),

(3.1) |f(x+t)+f(x−t)−2f(x)|=O(t)

and the little Zygmund condition if, for all x in (0, 1),

(3.2) |f(x+t)+f(x−t)−2f(x)|= o(t) .

Observe that this condition only makes sense at interior points. We will denote the
sets of functions satisfying the big and little Zygmund conditions respectively by
CZ([0, 1],R) and Cz([0, 1],R). Observe that these are both linear spaces. Define
the Zygmund semi-norm by

(3.3) [f ]Z,[0,1] = sup
t:x±t∈[0,1]

sup
x∈[0,1]

|f(x+t)+f(x−t)−2f(x)|
|t| .

Then

(3.4) ‖f‖CZ([0,1],R) = ‖f‖C0([0,1],R)+[f ]Z,[0,1]
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defines a complete norm on CZ([0, 1],R), which we call the Zygmund norm. With
this topology, Cz([0, 1],R) is a closed subspace of CZ([0, 1],R).

The Zygmund classes strictly (in fact compactly) contain the Lipschitz class
and are contained in the α-Hölder class for each α∈[0, 1). Moreover, by a theorem
of Zygmund [19], functions in the big Zygmund class have modulus of continuity
t log(1

t ). (See [19] for more on these classes.) The reason that the example f given
above is not in either Zygmund class is that, at a turning point x of a b-branched
horseshoe, for all t sufficiently small,

(3.5) |(f(x+t)−f(x))−(f(x)−f(x−t))| ≥ 2bt .

One might think that, by replacing piecewise-affine with smooth horseshoes and
possibly changing the lengths of the intervals, one may be able to improve the
regularity, say to the big Zygmund class. However, this is not possible as, for any
b-branched horseshoe, there is some turning point x and some t so that

(3.6) |(f(x+t)−f(x))−(f(x)−f(x−t))| ≥ bt .

(To see this, let Ib be the domain of the horseshoe and take the pairwise disjoint
subintervals Ib,1, Ib,2, ..., Ib,b of maximal size on which f is monotone. Take Ib,k of
minimal length. Let x be either of the endpoints of Ib,k. Let Ib,
 be the other interval
sharing x as an endpoint. Let t=|Ib,k|. Since f changes from monotone increasing to
monotone decreasing or vice versa going from Ib,k to Ib,
, we have |(f(x+t)−f(x))−
(f(x)−f(x−t))|≥max {|f(x+t)−f(x)|, |f(x)−f(x−t)|}≥|Ib|≥b|Ib,k|=bt. The last
inequality follows as Ib,k was chosen to have minimal length.)

Remark 3.1. It will be clear from the construction below that piecewise-affine
(with countably many pieces, as in the preceding example) can also be constructed
but, necessarily, these can only lie in the big Zygmund class.

Before describing the construction, we introduce the following notation. Given
oriented closed intervals I and J denote by AI,J the unique orientation-preserving
affine bijection from J to I, and A−

I,J the unique orientation-reversing affine bijection
from J to I. Given a positive integer n, let gn : [0, 1]→[0, 1

n ] be defined by

(3.7) gn(x)= 1
2n (1−cos(2πnx)) .

Observe that, for each n, gn maps the interval [0, 1] onto [0, 1
n ] in a 2n-to-1 manner.

Also, gn is Lipschitz with Lipschitz constant π, and is differentiable with vanishing
derivative at the endpoints. It also has the following important property.

Key Property: Let φ : [0, 1
n ]→[0, 1] be any homeomorphism. Then the composition

φ¨gn : [0, 1]→[0, 1] is a 2n-branched horseshoe.
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Figure 2. The graph of the little Zygmund interval endomorphism f on [0, 1] with infinite topo-
logical entropy (right) and an affine rescaling of the graph on the interval I′3∪J ′

3∪I′2 (left).

The construction is now the following. Take any continuous map f : [ 12 , 1]→
[0, 1

2 ] satisfying the following properties
1. f is an orientation-reversing homeomorphism which is little Zygmund, with

little Zygmund inverse,
2. f ′(1

2 ) exists and is zero,
3. f ′(1) exists (in the extended sense) and equals −∞,
4. There exist pairwise disjoint open subintervals I1, I2, ...⊂[ 12 , 1], ordered from

left to right, which converge to {1} and have the property that, for all n∈N,

(3.8) |f(In)|
|In|

=n .

5. Let J0, J1, J2, ...⊂[0, 1] denote the pairwise disjoint closed intervals which are
connected components of [ 12 , 1]\

⋃∞
n=1 In, again ordered from left to right. Then,

there exists a positive real number K so that, for all n∈N,

(3.9) |In|+|Jn|
|f(Jn)| ≤K .

Remark 3.2. Observe that such functions are easy to construct. For example,
if we start with the function φ : [0, 1

e ]→[0, 1
e ] given by φ(x)=x log

( 1
x

)
, then φ has

infinite derivative at zero, a critical point at 1
e , and satisfies the Zygmund condition.

Moreover, so do any affine rescalings. Thus, setting

(3.10) f =A[
0,1e

]
,
[
0, 12

]
¨φ ¨A−[ 1

2 ,1
]
,
[
0, 1e

] ,
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we find that f satisfies properties (1)–(3). We can choose intervals In to be a small
neighbourhood about the unique point xn where f ′(xn)=−n, for each n, so that
(4) is satisfied. By taking |In| sufficiently small for each n, this will ensure that
|In|+|Jn|
|f(Jn)| ≤2 |Jn|

|f(Jn)| . As |f ′(y)| tends to infinity as y tends to 1, the property (5)
holds.

Next, extend f to a continuous map from [0, 1] to [0, 1] as follows. First,
however, we need the following notation. Recall that ν(x)=1−x is the unique
affine orientation-reversing map of [0, 1]. Define σ : [0, 1]→[0, 1] by

(3.11) σ(x)= 1
2 (1−cos(πx)) .

(More generally, σ can be any smooth orientation-preserving homeomorphism of
[0, 1] with bounded derivative and with critical points at 0 and 1.)

For each n, define I ′n=f(In) and J ′
n=f(In). Observe that, since f |[ 12 ,1] is an

orientation-reversing homeomorphism, the I ′n form a decreasing sequence of pairwise
disjoint subintervals, converging to {0}, and are interlaced by the J ′

n. We define f

on each I ′n and J ′
n separately, ensuring that the resulting map is continuous. First,

define f on I ′n, for each integer n≥1, by

(3.12) f(x)=A[0, 1
n ],In ¨ gn ¨AI′

n,[0,1](x) x∈ I ′n, n≥ 1 .

Observe that f is differentiable on each I ′n and has vanishing derivative at the
endpoints. Define f on

⋃∞
n=0 J

′
n so that f is differentiable on each J ′

n with vanishing
derivatives at the endpoints. Namely, we set

(3.13) f(x)=
{
A[0,1],In∪Jn

¨ν ¨σ¨AJ ′
n,[0,1](x) x∈J ′

n, n≥1
A[0,1],J0 ¨ν ¨σ¨AJ ′

0,[0,1](x) x∈J ′
0

.

Proof of Theorem B. Observe that f |I′
n

are differentiable with uniformly
bounded derivative over all n. In fact, for all n∈N,

(3.14) ‖f ′‖C0(I′
n,R) ≤π .

Also the f |J ′
n

are differentiable and, by inequality (3.9) above, the derivatives are
also uniformly bounded over all n �=0 since, for all integers n≥1,

(3.15) ‖f ′‖C0(J ′
n,R) = |In∪Jn|

|J ′
n|

‖σ′‖C0([0,1],R) ≤ Kπ/2 .

Since f |J0 is also differentiable, and on all intervals I ′n and J ′
n, f ′ vanishes at

the endpoints, it follows that f |(0, 12 ] is also differentiable. Hence f |[0, 12 ] is little
Zygmund. Next, as f |[ 12 ,1] is little Zygmund and f is differentiable from the left-
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and from the right at x= 1
2 (with zero derivative), it follows that f is little Zygmund

on [0, 1].
Let us now show that f has infinite topological entropy. Since f(In)=I ′n and

f(I ′n)=In it follows that I ′n is f2-invariant, for each n. Moreover f |In is a home-
omorphism from In to I ′n, and f |I′

n
is an affine rescaling of gn. Thus by the Key

Property stated above, f2|In is a 2n-branched horseshoe. Hence f2|In has topolog-
ical entropy at least log(2n). Consequently

(3.16) htop(f2) ≥ sup
n

htop
(
f2|I′

n

)
= sup

n
log(2n) = ∞ .

Finally, since it is known that for an arbitrary continuous self-map F of a compact
metric space the equality htop(F k)=khtop(F ) holds for any positive integer k, it
follows that htop(f)=+∞ as well. �

4. Concluding remarks

We finish with a number of open problems suggested by this work.
1. Do there exist one-dimensional endomorphisms with infinite topological en-

tropy which are asymptotically h-expansive, or even h-expansive? What is their
‘optimal’ regularity: can they be Hölder or Sobolev?

2. The Zygmund example has the property that its second iterate is no longer
Zygmund. (It is of the type given in Theorem A which, as remarked on in Section 3
cannot lie in the Zygmund class.) Does there exist a map in the (big or little)
Zygmund class with infinite topological entropy, and such that all iterates are also
in the (big or little) Zygmund class?

3. (Alby Fisher) Is there an ergodic example of a map with infinite entropy in
dimension-one? Within some Hölder, Sobolev or Zygmund class?
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