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The Steinberg linkage class for a reductive
algebraic group

Henning Haahr Andersen

Abstract. Let G be a reductive algebraic group over a field of positive characteristic and
denote by C(G) the category of rational G-modules. In this note, we investigate the subcategory of
C(G) consisting of those modules whose composition factors all have highest weights linked to the
Steinberg weight. This subcategory is denoted ST and called the Steinberg component. We give
an explicit equivalence between ST and C(G) and we derive some consequences. In particular, our
result allows us to relate the Frobenius contracting functor to the projection functor from C(G)
onto ST.

1. Introduction

Denote by k an algebraically closed field of characteristic p>0 and let G be
a reductive algebraic group over k. Then the category C(G) of rational represen-
tations of G splits into components associated to the linkage classes of dominant
weights. The Steinberg component ST associated to the linkage class for the Stein-
berg weight plays a key role in the representation theory of G and the aim of this
note is to investigate this special component. We prove that there is an equivalence
of categories (explicitly given in both directions) between ST and the category
C(G) itself. Moreover, we demonstrate that this equivalence carries the important
classes of simple modules, (co)standard modules, indecomposable tilting modules,
and injective modules in C(G) into the corresponding classes in this subcategory.

The above equivalence of categories gives of course an isomorphism between
the corresponding Grothendieck groups. The classes of the standard (or Weyl) mod-
ules in C(G) and those in ST constitute bases in the corresponding Grothendieck
groups and we make explicit how the classes in the Grothendieck groups of a given
module and its counterpart match up. In particular, when a module has a stan-
dard or costandard filtration then our equivalence gives rise to equalities among the
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number of occurrences of a standard or costandard module in the two equivalent
categories.

Among the applications, we point out the relation between our equivalence
functor and the Frobenius contracting functor studied by Gros and Kaneda in [8],
[9].

Acknowledgements: I thank M. Gros, J. E. Humphreys and M. Kaneda for
useful comments and corrections. I'm also grateful to the referees for several helpful
remarks.

2. The category of rational modules

In this section, we introduce notation and recall along the way some of the
basic facts on representations of G that we shall need. For details, we refer to [11].

2.1. Basic notation

Let T be a maximal torus in G and denote by X=X (T) its character group.
In the root system RC X for (G, T) we choose a set of positive roots RT and denote
by XTCX the corresponding cone of dominant characters. Then R™ defines an
ordering < on X. It also determines uniquely a Borel subgroup B whose roots are
the set of negative roots —R™.

Denote by S the set of simple roots in R*. Then we define the set of restricted
characters X1 CX by X;={ e X|0<(\,a")<p for all a€S}.

We set C(G) equal to the category of rational G-modules. It contains all finite
dimensional G-modules, and if M €C(G) then for each vector me M the orbit Gm
spans a finite dimensional submodule of M.

If K is a closed subgroup of G we write similarly C(K) for the category of
rational K-modules. The elements of X are the 1-dimensional modules in C(T") and
they all extend uniquely to B. So if A€ X we shall consider it as an object of C(T")
or of C(B) as the case may be.

The categories C(K) all have enough injectives. In particular, all objects of
C(T) are themselves injective. So if M eC(T) then M decomposes into a sum of
1-dimensional modules, i.e. elements of X. So we can write

M= EB M,y
AeX

where My={meM|tm=A(t)m for all t€T}. Asusual, we say that A€ X is a weight
of M if My#0 and we call M) the A-weight space in M. When M is finite di-
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mensional we set chM=Y",_, dim Mye* where ¢ is the bases element of Z[X]
corresponding to A\. We call this the (formal) character of M.

2.2. Induction, costandard and simple modules

The induction functor Ind%:C(B)—C(G) is a left exact functor which takes
finite dimensional B-modules into finite dimensional G-modules. We write H® for
the i-th right derived functor of Ind$. Then also each H'(E) is finite dimensional
whenever E€C(B) is finite dimensional. In particular, H 0:Indg.

If A€ X then its is well-known that H°(\)#£0 if and only if Ae XT. In the
following we often write V() instead of H(\) and (when A€ X*) we call this the
costandard module in C(G) with highest weight A. The socle of V() is simple. We
denote it L(\) and the family {L(\)} ex+ constitutes up to isomorphisms the set
of simple modules in C(G). Then for all A\e X+

L(A)A=V(A)x=k and V()), #0 implies pp <.

2.3. Actions of the Weyl group

The Weyl group W=N¢g(T)/T acts naturally on X: A—w(A),\e X, weW. If
MeC(G) then this action of W permutes the weights of M. More precisely, we
have dim My=dim M,,(y) for all A\ X,weW. For M finite dimensional this means
that chM e Z[X]|W.

We denote by /¢ the length function on W and write wg for the element in W
of maximal length.

In addition to the above action of W on X we shall also consider the so-called
“dot-action” given by: w-A=w(A+p)—p,weW, A€ X. Here p is half the sum of the
positive roots.

2.4. Duality and standard modules

If MeC(G) is finite dimensional we shall consider its dual DM =@, .y My,
where on the linear dual space M* we take the contragredient action composed
with the Chevalley automorphism on G, cf. [11]. Then D preserves characters. In
particular, this means that DL(A)~L(\) for all A\e X .

By Serre duality we have for each finite dimensional B-module E a (functorial)
isomorphism of G-modules H*(E)*~H"~{(E*®(—2p)). Here we take the contra-
gredient actions on the dual modules and N=dim G/B=|R"|={(wy).
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We define then A(A\)=H" (wg-)\). Then A(A\)=0 unless A€ X and we have
A(N)=DV()). Note that when A€ Xt the head of A(\) is L(\). We call A()) the
Weyl (or standard) module for G with highest weight A.

2.5. Filtrations and tilting modules

A module M €C(G) is said to have a A- (or a standard, or a Weyl) filtration if
it has submodules M* with

0=M°c M*C..Cc M,M"™/M"~A()) for some \; € X and M:UMi.

We define V (or costandard, or good, or dual Weyl) filtrations similarly.

A module M €C(G) is called tilting if it has both a A- and a V-filtration. The
first example of a tilting module is the trivial module k=A(0)=V(0). It turns out
that the subcategory of C(G) consisting of the tilting modules is a rich and very
interesting subcategory. For each A€ Xt there is a unique (up to isomorphisms)
indecomposable tilting module T'(\) with highest weight A (i.e. T(\)x=k and if
T(X),#0 then p<X). The Weyl module A()\) is a submodule of T'(\) while the
dual Weyl module V()) is a quotient. The composite of the inclusion A(X)—
T(A) and the quotient map T'(A)—V(A) is up to a constant the unique non-zero
homomorphism A(A)—V(A) (mapping A(M) onto L(A)CV(N)).

2.6. The Grothendieck group

We denote by K(G) the Grothendieck group of the finite dimensional modules
in C(G). This is the abelian group generated by the classes [M] of all finite dimen-
sional modules in C(G) with relations [M]=[M;]+[Mz] for all short exact sequences
0—M;—M— My—0.

Note that K(G) is free over Z with basis ([L(A)])xex+. Then for each finite
dimensional module M €C(G) we can write

(2.1) [M]= " [M:LO][LA)]
AEX T+

for unique non-negative integers [M:L(\)]. Then [M:L())] is the composition factor
multiplicity of L(A) in M. Note that these multiplicities are also determined by the
character of M. In particular,

(2.2) chM =chN iff [M: L(\)]=[N:L()\)] for all A& X iff [M]=[N].

So in particular, we have [A(A\)]=[V(\)] for all Ae X .
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As X is the unique highest weight of both A(X) and T'(\) we see that both of the
two families ([A(N)])aex+ and ([T'(A)])rex+ are also bases of K(G). If MeC(G) we
let the integers (M:A(X)), respectively (M:T(X)) be determined by the equation
in K(GQ)

(2.3) [M]= > (M:AM)AM)],

AexX+

respectively,

(2.4) [M]= > (M:TO)TN)].

AeXx+

Note that whereas the numbers [M:L(A)] all are non-negative the numbers
(M:A(N)) and (M:T'()\)) may well be negative. However, if M has either a A- or
a V-filtration then (M:A())) equals the number of occurrences of A(X) or V(A) in
this filtration, see part 2 of Remark 1 below. Also, if M is tilting then (M:T'(X))
counts the number of occurrences of the indecomposable summand T'(\) in M.

—

Remark 1. 1. Let £(G) denote the “completion” of K(G), i.e. the abelian
group consisting of all elements which may be expressed as (possibly infinite)
sums of the form , vy na[L(A)] with ny€Z. Then all those elements M in
C(G) which have finite composition factor multiplicities give well-defined classes

—

[M]€K(G). This allows us to give sense to the above numbers [M:L(\)], (M:A(X))
and (M:T'(N\)) for all such M e€C(G). In the following, we shall often tacitly pass

from KC(G) to E(E) whenever relevant.
2. The fundamental vanishing theorem

(2.5) Ext}, &) (A(A), V(1)) =0 unless A=peXtand j=0

(

implies that (M:A(A))=3;(~1)7 dim Ext},  (A(A), M) for all MeC(G). It also
implies that (M:A()))=dim Home gy (A(X), M) if M has a V filtration, in which
case it therefore counts the number of times that V(X) occurs in a V filtration of M.
3. To determine the change of bases matrix ((L(A):A(p)))x,uex+ is the subject
of the famous Lusztig conjecture [13] which is known to hold for very large primes [5]
and known to fail for a range of small and not so small primes [16]. At least for p>
2h—2 (h being the Coxeter number for R) this matrix can be deduced from a small
part of the change of bases matrix ((T'(A):A(u)))xuex+. Recent developments
determine this matrix in terms of the so-called p-canonical bases, see [6], [7], [15].
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2.7. Frobenius twist and Steinberg’s tensor product theorem

We denote the Frobenius endomorphism on G (as well as on subgroups) by F'
and its kernel by Gy (respectively T, B, ...). Then G is a normal subgroup scheme
of G with G/G1~G.

Let MeC(G). When we compose the action by G on M by F we get the
so-called Frobenius twist of M which we denote M (Y. Conversely, if the restriction
to Gy on VEC(G) is trivial then there exist M €C(G) such that V=M®). In this
case, we also write M=V (1.

Let Ae Xt. Then we write A=\+pu for unique \°c X; and p€X*. With
this notation the Steinberg tensor product theorem says

(2.6) L)~ L)@ L(p)W.

2.8. Linkage

Let a€S. Then s, €W is the corresponding reflection given by s,(A)=A—
(A, a¥)a, Ae X. When neZ we denote by s, ,, the affine reflection

Sa,n(>‘) = Sa(/\) +npa.

The affine Weyl group W, is the group generated by all 54 n,0€S,n€Z. Note
that in the Bourbaki convention this is the affine Weyl group corresponding to the
dual root systen RV.

The linkage principle [1] says that whenever L(A) and L(u) are two composition
factors of an indecomposable module M €C(G) then peW,-\. It follows that C(G)
splits into components according to the orbits of W), in X. More precisely, if we set
A={XeX|0<(A+p,a¥)<p for all € R}, the bottom dominant alcove, then the
closure A={\eX|0<(A+p,a¥)<p for all ac Rt} is a fundamental domain for the
“dot”-action of W, on X. If A€ A then the component corresponding to A is the
subcategory B(A)={M eC(G)|[M:L(p)]#0 for some p€X then peW,-A}. In this
notation, we have C(G)=@,. 5 B(A). If A€ A and peW,-A we write B(n)=B(\).

In this note, we assume (p—1)p€X and we will focus on the Steinberg compo-
nent ST defined as follows

(2.7) ST={M eC(Q)|[M : L(1)] #0 implies p=(p—1)p (mod pX}.

If we use the “dot-multiplication” of Z on X defined by n-A=n(A+p)—p, n€Z,
A€X then ST consists of those M eC(G) whose composition factors have highest
weights belonging to p-X. We shall call p- X the set of special points in X. In this
notation ST=@D, B(v) where the sum is taken over all special points v in A.
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3. The equivalence theorem and some consequences

In this section we shall assume that G is semisimple of adjoint type so that
X=ZR. Then ST=B((p—1)p)(=B(—p)). This simplifies our statements and it is
easy to extend our results to more general G, cf. part (3) in Remark 3 below.

3.1. The equivalence

Consider now the following two functors
F:C(GQ) — ST given by FM =Sto MY, M €C(G)

and
F':ST —C(G) given by F'N =Homg, (St, N)"Y, NeST.

Theorem 3.1. 1. The functor F:C(G)—ST is an equivalence of cate-
gories with inverse functor F'.

2. F and F' are adjoint functors (left and right). They commute with the
duality functor D.

3. F takes simples to simples, (dual) Weyl modules to (dual) Weyl modules,
indecomposable tilting, respectively injective, modules in C(G) to indecomposable
tilting, respectively injective, modules in ST . In formulas this is

(A =L(p-A), FAN)=A(p-A), FVQA)=V(p-A),
N =T(p-A), and FIN)=I(p-))

FL
(3.1)
FT
for all \e X+. Here I(11) denotes the injective envelope in C(G) of L(u), pe X,

Proof. Let M eC(G) and NeST.

1. First F/(Ste MM)=Homg, (St, St M) ~Homg, (St, St) "D ®
M~M, hence F'oF~Idey. To prove that FoF'~Idsr we need to prove that
St@Homg, (St, N)~N. If N is simple, i.e. N=L(p-\) for some A€ X™, then
by Steinberg’s tensor product theorem (2.6) N~St®@L(\)). So, in this case,
Homg, (St, N)~L(\)M) and (FoF')N~N. Now the functor Homg, (St, —) is exact
(St is projective as a Gi-module) and therefore induction on the length of N (as
G-module) proves the statement in general.

2. We have Homg(FM, N)=Homg(St@ MM, N)~Homg(M™, Homg, (St,
N))=Homg(M,F'N), i.e. F is left adjoint to F’'. Right adjointness follows then
from 1. Since DSt~St we easily see that D(FM)~F(DM). As F' is the inverse
of F we get also Do F'=F'oD.

3. When it comes to simple modules it is part of Steinberg’s tensor product
theorem that F takes L(A) into L(p-A). It is a special case of the Andersen-Haboush
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theorem (see [2] and [10]) that FV(A\)=~V(p-A). It then follows that the exact
functor F will take tiltings to tiltings. Moreover, being an equivalence F also takes
indecomposables to indecomposables. Hence FT(A\)~T(p-\). Finally, F clearly
takes injectives to injectives. [

3.2. First consequences

As immediate consequences of this theorem we get the following two corollaries.

Corollary 3.2. Let M eC(G). Then we have

1. M is semisimple iff St M) is.

2. M is indecomposable iff St MM is.

3. M has a Weyl (respectively dual Weyl) filtration iff St M) does.
4. M is tilting iff St MM is.

5. M is injective iff Sto M) is injective.

The “only if” statement in (1) of this corrollary is an immediate consequence
of Steinberg’s tensor product theorem. Likewise the “only if” statements in (3) and
(4) are consequences of the main theorem in [2]. Finally, the “if” statement in (2)
is obvious.

Corollary 3.3. The entries in the change of bases matrices for the three bases
for K(G) described in Section 2.6 and the corresponding ones in K(ST) match up
as follows

(3.2) [AN): L(p)] = [Ap-A) : Lp- )], (T(A) : A(p) = (T(p-A) : Alp- 1))
for all X\, pe X+.

Here the first equality could also be seen by combining the Steinberg tensor
product theorem and the main result in [2].

3.3. Projection onto the Steinberg component

Let M €C(G). Then we have M=, c 1M (n) where M(n) is the largest sub-
module of M belonging to B(n). We also write M (n)=pr, (M) where pr, denotes
the projection functor C(G)—B(n). Note that pr, is adjoint to the inclusion functor
from B(n) into C(G).

The projection functor onto the ST is also denoted prgs. This functor is given
by

Proposition 3.4. Let M eC(G). Then prgr(M)=St@Homg, (St, M).
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Proof. Since prg(M)eST it follows from Theorem 3.1 that prg,(M)=5t®
N for some module N €C(G). But then NV =Homg, (St, Sto N(M)=Homg, (St,
prsy(M))=Homg, (St, M). Here the last equality comes from the fact that
Homg, (St,V)=0 if V belongs to a component in C(G) different from S7. O

3.4. Relations with induction and with Frobenius contraction

The following result gives the relation between the above equivalence of cate-
gories and the derived functors of induction from B to G. We denote by Fp the
endofunctor on C(B) given by FgE=EM @ (p—1)p, E€C(B).

Theorem 3.5. We have FoRIInd$G=R/IndGoFp and R/IndG=F"o R Ind$e
Fp for all j. In particular, if N X then we have St@HI(\)MN=HI(p-\) and
HI(X\)=Homg, (St, HI (p-\))=1).

Proof. The first identity comes from [2]. The second one follows from the
first since F’ is the inverse of F. The special case results from applying these two
identities to the B-module A\. [

Recall that Gros and Kaneda [8], [9] have introduced the Frobenius contract-
ing functor ¢ on C(G). This is a right adjoint of the Frobenius twisting functor
M—M® on C(G) composed with tensoring twice with St. As a T-module ¢ is
determined by (¢M ) =DM, for all Ae X.

Proposition 3.6. The Frobenius contracting functor ¢ on C(QG) is the com-
posite F'oprgso[St@—].

Proof. By Theorem 2.1 in [9] (attributed to S. Donkin) we have ¢M=
Homg, (St, St M)=1 M eC(G). As observed above we have Homg, (St, —)=
Homg, (St, prgro—) and the proposition therefore follows from Theorem 3.1. [

Remark 2. Gros and Kaneda define the Frobenius contracting functor by
passing to the algebra of distributions on GG. For our purposes in this paper it may
be more natural to define ¢ as the endofunctor Homg, (St, St®—)(= on C(G) (this
was the characterisation we explored in the proof of Theorem 3.6). The functor and
its quantum analogue play a key role in the work on (algebraic) Frobenius splitting,
see e.g. [12].

The following corollary is Theorem 3.1 in [9]

Corollary 3.7. If MeC(G) has a Weyl filtration, respectively a dual Weyl
filtration, so does oM.
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Proof. If M has a filtration of one of the types in the corollary then so does
St@M (because St is a selfdual Weyl module). This property is then inherited by
the direct summand prg,(St®@M). Finally F' preserves this property, see Theo-
rem 3.1. Hence the corollary is an immediate consequence of Proposition 3.6. [

3.5. Further remarks

Remark 3. 1. Let FT=FoFo...oF denote the composite of F by itself r
times, 7€Z>¢. Also write St,=L((p"—1)p). Then by the Steinberg tensor product
theorem we see that F" M =St, @ M) McC(G). Here (") denotes twist by the r-th
Frobenius F". Denote by ST, the subcategory of C(G) consisting of all modules
whose composition factors have the form L(p"-\) with A€ X*. Then we have a
chain of subcategories

W CST,CST -1 C...CST1=8T CSTo=C(G).

We have that ST is a summand in C(G). More precisely, C(G)=ST &R where
R is the subcategory consisting of those modules, which have composition factors
with highest weights in X T\ p-XT. The restriction of F to ST gives an equivalence
between ST and ST (with inverse the restriction of 7’ to ST32). Iterating this we
see that in the above chain all the subcategories are equivalent to C(G) and for each
r we have C(G)=8T,®R, where R, consists of all modules whose composition
factors are in X+\p"- XT.

2. Consider the quantum group U, corresponding to G at a complex root of
unity g. Let ¢ denote the order of ¢. Then we have a quantum analogue F,:C(G¢)—
ST, of the above equivalence (in the obvious notation) given by F,(M)=St,® M!d.
Here [9 denotes the Ug-module obtained by precomposing the representation of G
on M by the quantum Frobenius homomorphism; see [14].

Recall that the category C(Gc) is semisimple (each dominant weight A de-
termines a component whose only simple module is L¢(A)). Hence ST is also
semisimple and we have for each A€ X

Ly(-N) = Ag(£-X\) = Vo (£-X) =T, (£-\).

Note that in this case we have no “higher” Steinberg subcategories (we cannot
iterate the quantum Frobenius nor can we take powers of F,). However, if instead of
taking a complex root of unity (or more generally a root of unity in a characteristic
0 field) we let ¢ be a root of unity in a characteristic p field then we do have a similar
sequence as in 1. above. This time the first term is ST, (involving the quantum
Frobenius) and the higher Steinberg subcategories are obtained via the Frobenius
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endomorphism on GG. We leave the details to the reader. In particular, special care
has to be taken if ¢ is not prime to the entries in the Cartan matrix of the root
system for G (the bottom alcove is defined a bit differently in this case as is the
Steinberg weight, see e.g. [4]).

3. Our assumption that G is adjoint implies that all special points are in the
same orbit under the action by W), (in fact already under the action of the subgroup
pZR=pX CW,). If we relax the assumption that G is adjoint and only assume that
G is semisimple then there may be several different orbits of special points, namely
one for each special point in A. If we choose a set of representatives {11, 2y ooy fim }
of the cosets X/ZR and define C;(G) to be the subcategory of C(G) consisting
of all modules with weights in u;+ZR then C(G)=®!",C;(G). Our equivalence
F:C(G)—ST then carries C;(G) to the appropriate summand B(v;) (choose v; to be
the unique special point in A belonging to the orbit Wp-p- ;). So the results in this
section generalizes to general semisimple groups giving corresponding statements
for each summand of ST .

We define “higher” components B,.(v;) by taking the images of 7" on C;(G).
In this way also the results in (1) generalizes.

4. Formulae in the Grothendieck groups

In [3], we proved some character formulae. Here, we start by giving the corre-
sponding formulae in K(G).

Proposition 4.1. Let M €C(QG) be finite dimensional. Then we have

] = 30 (0 (-1 dim My ) [A)]
AEXT weWw
(4.1) => (Z(—n‘(w dim My .0 ) [A(M)
AEXT weWw

More generally, we have for all weights pe€X™

(42) AeM= 32 (3 () dim M) [AO)]

rex+ weWw

Proof. In the first formula, the second equality comes from the fact that
dim M, =dim My, for all p€X and z€W. That the last term equals [M] is
the content of Corollary 3.6 in [3]. By additivity, it is enough to verify that if
peX™ then Zwew(*l)z(w) dim A(p)x—w.0=06,x. This in turn is a special case of
Proposition 4.3 in [3].
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To check the second identity it is again by additivity enough to check it for
M=A(v),veX™T. In this case, the formula is equivalent to the equation found in
the last Remark in [3]. O

We are especially interested in the above identities when the weights in question
belong to the W-orbit of the Steinberg weight (p—1)p. Here we have

Corollary 4.2. Let MeC(G) be finite dimensional. Then we have

(StoM:A(p-A) =Y (—=1)“™) dim My
weWw

for all N\e X,

Proof. This comes from the second part of Proposition 4.1 by taking u=(p—1)p
and noting that w-p-A—(p—1)p=pw-A. O

Remark 4. If in the above corollary we take M=NU for some NeC(G)
then we get (St@N®) :A(pv\)):zwew(fl)z(“’) dim Ny,.». By Proposition 4.1 this
equals (N:A())) consistent with our equivalence from Theorem 3.1.

Proposition 4.3. Let MeC(G) have finite composition factor multiplicities.
Then in K(G) we have [Homg, (St, M)(’l)]:z/\e)ﬁ(M:A(pv\))[A()\)}.

Proof. As Homg, (St, —) is exact, the left hand side is additive on exact se-
quences. So is the right hand side and hence it is enough to check the identity for
M=V (), peXt. Now if u¢p-X* then both sides are 0. On the other hand, if
p=p-\ for some A€ X+ then V(11)=St@V(\)M) and we get Homg, (St, V(1)) =
V(A) proving the formula. O

This proposition allows us to obtain a formula for the class of the Frobenius
contraction of a large class of modules in C(G) as (implicitly) observed also in [9].

Corollary 4.4. Let M eC(G) have finite composition factor multiplicities.
Then in K(G) we have

[pM]= Y (StaM:A(p-A))AN)].
AeX+
Proof. We note (as we did a couple of times in Section 3) that (St®@M:
A(p-N)=(prgr(St@M):A(p-X)). Then the corollary comes by combining Propo-
sitions 3.6 and 4.3. O

Remark 5. In the case where M =N the corollary says (when applying our
equivalence theorem) that [¢N()]=[N]. This is consistent with the fact that ¢
operates as untwisting when applied to a twisted module, cf. [9].



10.

11.

12.

13.

14.

15.

16.

The Steinberg linkage class for a reductive algebraic group 241

References

ANDERSEN, H. H., The strong linkage principle, J. Reine Angew. Math. 315 (1980),
53-59.

ANDERSEN, H. H., The Frobenius morphism on the cohomology of homogeneous vector
bundles on G/B, Ann. of Math. 112 (1980), 113-121.

ANDERSEN, H. H.; A new proof of old character formulas, Contemp. Math. 88 (1989),
193-207.

ANDERSEN, H. H., The strong linkage principle for quantum groups at roots of 1, J.
Algebra 260 (2003), 2-15.

ANDERSEN, H. H., JANTZEN, J. C. and SOERGEL, W., Representations of quantum
groups at a pth root of unity and of semisimple groups in characteristic p:
independence of p, Astérisque 220 (1994), 321.

AcCHAR, P. N., Makisumi, S., RICHE, S. and WILLIAMSON, G., Free-monodromic
mixed tilting sheaves on flag varieties, Preprint, 2017

Evrias, B. and LosEv, 1., Modular representation theory in type A via Soergel bimod-
ules, online available arXiv:1701.00560.

GRroOS, M. and KANEDA, M., Contraction par Frobenius de G-modules, Ann. Inst.
Fourier (Grenoble) 61 (2011), 2507-2542.

GROS, M. and KANEDA, M., Contraction par Frobenius et modules de Steinberg,
arXiv:1707.000916.

HaBousH, W., A short proof of the Kempf vanishing theorem, Invent. Math. 56
(1985), 109-112.

JANTZEN, J. C., Representations of Algebraic Groups, 2nd ed., Mathematical Surveys
and Monographs 107, Am. Math. Soc., Providence, 2003.

KUMAR, S. and LITTELMANN, P.; Algebraization of Frobenius splitting via quantum
groups, Ann. of Math. 155 (2002), 491-551.

LuszTiG, G., Some problems in the representation theory of finite Chevalley groups,
Proc. Sympos. Pure Math. 37 (1980), 313-317.

LuszTiG, G., Introduction to Quantum Groups, Reprint of the, 1994th ed., Springer,
Berlin, 2010.

RicHE, S. and WILLIAMSON, G., Tilting modules and the p-canonical basis, online
available arXiv:1512.08296.

WILLIAMSON, G., Schubert calculus and torsion explosion, online available
arXiv:1309.5055.

Henning Haahr Andersen
Aarhus

Denmark
h.haahr.andersen@gmail.com

Received September 1, 2017
in revised form December 27, 2017


http://arxiv.org/abs/arXiv:1701.00560
http://arxiv.org/abs/arXiv:1512.08296
http://arxiv.org/abs/arXiv:1309.5055
mailto:h.haahr.andersen@gmail.com

	The Steinberg linkage class for a reductive algebraic group
	1 Introduction
	2 The category of rational modules
	3 The equivalence theorem and some consequences
	4 Formulae in the Grothendieck groups
	References


