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Approximations and examples of singular
Hermitian metrics on vector bundles

Genki Hosono

Abstract. We study singular Hermitian metrics on vector bundles. There are two main
results in this paper. The first one is on the coherence of the higher rank analogue of multiplier
ideals for singular Hermitian metrics defined by global sections. As an application, we show
the coherence of the multiplier ideal of some positively curved singular Hermitian metrics whose
standard approximations are not Nakano semipositive. The aim of the second main result is to
determine all negatively curved singular Hermitian metrics on certain type of vector bundles, for
example, certain rank 2 bundles on elliptic curves.

1. Introduction

The main purpose of this paper is to investigate properties of singular Hermi-
tian metrics on vector bundles on complex manifolds. In complex algebraic geom-
etry, singular Hermitian metrics on line bundles and their multiplier ideal sheaves
are very important and widely used. The higher rank analogue of these notions
in the vector bundle case are also considered and investigated in many papers (for
example, [2], [5], [9], [12], [13], [14], etc.). There are several nonequivalent defini-
tions for singular Hermitian metrics on vector bundles. Here we adopt the following
most general definitions ([2] and [13], see Definitions 3.1, 3.2). Let X be a complex
manifold and let E be a holomorphic vector bundle on X. A singular Hermitian
metric on E is a measurable function on X whose values are nonnegative Hermitian
forms. We say that h is negatively curved if |s|2h is plurisubharmonic for every local
holomorphic section s∈O(E), i.e. for every holomorphic section of E on each open
subset of X. We say that h is positively curved if the dual metric h∗ is well-defined
and negatively curved. In general, appropriate definition of curvature currents is
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not known for general singular Hermitian metrics on vector bundles. Thus we avoid
using a curvature current of a singular Hermitian metric to define the positivity and
the negativity here. Instead we use a characterization of Griffiths seminegativity of
smooth metrics (Lemma 2.2).

We have two main results in this paper. The first one is on the coherence of
a higher rank analogue of multiplier ideal sheaves. Let h be a singular Hermitian
metric on E. Following [5] and [9], we denote by E(h) the sheaf of locally square
integrable holomorphic sections of E with respect to h, i.e. E(h) is a sheaf of local
holomorphic sections s of E which satisfy |s|2h∈L1

loc. The coherence of these sheaves
is a basic problem, and the line bundle case was established by Nadel [11]. The first
main result is as follows.

Theorem 1.1. Let X be a complex manifold, E be a holomorphic vector bundle

on X, and s1, s2, ..., sN∈H0(X,E) be a global holomorphic section of E. Assume

that there exists a Zariski open set U such that, for each x∈U , a fiber Ex over x is

generated by {si(x)}i=1,2,...,N . Define a morphism of vector bundles

φ :X×C
N −→E

by sending (x, (a1, a2, ..., aN )) to
∑

aisi(x). Let h0 be a smooth Hermitian metric

on X×C
N and let h be the quotient metric of h0 induced by φ. Then, the sheaf E(h)

of locally square integrable sections of E with respect to h is a coherent subsheaf of

O(E).

Here we note that φ is surjective on a Zariski open set U of X by assumption,
thus h is well-defined pointwise on U. Therefore h is well-defined as a singular
Hermitian metric (see Section 3 for well-definedness of singular Hermitian metrics).

Thus we can solve the problem of coherence of E(h) for metrics of this particular
form. On the other hand, if locally there exists a sequence of smooth Hermitian
metrics {hj} satisfying hj↑h pointwise and Θhj>Nakγ⊗IdE for a fixed continuous
(1,1)-form γ, we have that E(h) is coherent ([5, Section 4]). For proving this, we use
Hörmander’s L2 estimate. The condition that Chern curvature is bounded below
in the sense of Nakano is important (although they can be weakened) for using L2

theory. For a more detailed discussion, see [13, Section 3]. We construct an example
of a singular Hermitian metric which has the form of Theorem 1.1, but its standard
approximation does not have uniformly bounded curvature in the sense of Nakano
(cf. Example 4.4).

Theorem 1.2. Let E=X×C
2 be a trivial vector bundle of rank two on X=C

2.

Let h0 be the standard Euclidean metric on E. We denote by (z, w) the standard

coordinate on X and let s1=(1, 0), s2=(z, w) be global sections of E. We define
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a singular Hermitian metric h on E as in Theorem 1.1 using s1, s2. Then, the

standard approximation defined by convolution of h does not have uniformly bounded

curvature from below in the sense of Nakano.

As a corollary of Theorem 1.1, we prove the coherence of E(h) even in this
situation.

Corollary 1.3. For h constructed in Theorem 1.2, we have that E(h) is co-

herent.

Thus Theorem 1.1 does not seem to be a consequence of the results in [5].
Our second main theorem is on the determination of singular Hermitian met-

rics on certain vector bundles. We are mainly interested in determining all singular
Hermitian metrics with certain curvature-positivity conditions on the vector bun-
dle in [8, Example 1.7]. First we explain this example. Let C be an elliptic curve
and let E be the vector bundle defined by the following non-splitting exact se-
quence:

0−→OC −→E−→OC −→ 0.

It is known that the bundle E satisfying this condition is unique. In [8, Exam-
ple 1.7], a line bundle L=OP(E)(1) on the projectivization P(E) is considered.
They determined all singular Hermitian metrics on L with positive curvature. In
this paper, we determine all negatively curved singular Hermitian metrics on E.
This is a parallel result with [8, Example 1.7], since singular Hermitian metrics on
L can be regarded as “singular Finsler metrics” on E. Our result is the follow-
ing:

Theorem 1.4. Let X be a compact complex manifold, L be a holomorphic line

bundle on X, and E,E′ be holomorphic vector bundles on X. Assume there is an

exact sequence

0−→L
i−→E

p−→E′ −→ 0.

Suppose that there are a holomorphic section f∈H0(X,L∗) and a negatively curved

singular Hermitian metric h on E with |i(s)|2h=|(f, s)|2 for each s∈L, where (·, ·)
is the natural pairing on L∗

x×Lx. Then, this exact sequence splits.

Our technique is different from [8]. To make the argument clear, we consider
the simpler case that h is a smooth Hermitian metric (in particular, h is positive
definite on every point of X). In this case, |i(s)|2h=|(f, s)|2 �=0 for non-zero s∈L,
thus f is non-vanishing. Therefore L∗ must be isomorphic to the trivial line bundle
OX . In addition, for simplicity, we make additional assumption that E′ is also a
trivial line bundle. We will sketch the proof in this case.
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Let {Uα} be a covering of X such that each Uα is enough small. We can assume
E|Uα is isomorphic to a trivial vector bundle. Take a holomorphic frame (eα,1, eα,2)
of E satisfying i(1)=eα,1 and p(eα,2)=1. Then there is a holomorphic function hαβ

on Uα∩Uβ with eα,2−eβ,2=hαβeβ,1. Let γα :=〈eα,2, eα,1〉h, where 〈·, ·〉h denotes the
Hermitian inner product of h. Then we have

γα =hαβ+γβ .

By the negativity of h, we can show that γα is a holomorphic function on Uα (see
Proposition 5.2). Consider Čech 0-cochain (γα, Uα)α. Its differential is the Čech
1-cocycle (hαβ , Uαβ)α,β , which is identical to the extension class of the given exact
sequence. Thus the extension class is 0 in H1(X,OX) and the given sequence is
trivial.

The most important point is that negativity of h implies holomorphicity of γα.
The proof in the general case is similar to this argument, but it requires more
complicated calculation.

As a corollary of Theorem 1.4, we determine all negatively curved singular
Hermitian metrics on E.

Corollary 1.5. Let C be an elliptic curve, and E be a rank 2 bundle defined

by the non-splitting exact sequence

0−→OC −→E
p−→OC −→ 0.

Let h be a negatively curved singular Hermitian metric on E. Then h=p∗h′ holds

for a constant metric h′ on OC , where p∗h′ is defined by the formula |s(z)|p∗h′ :=
|p(s(z))|h′ for any z∈C and a section s of E.

The organization of the paper is as follows. In Section 2, we collect prelimi-
nary materials related to smooth Hermitian metrics on vector bundles and singular
Hermitian metrics on line bundles. Section 3 contains the definition of singular
Hermitian metrics on vector bundles and their properties described in [2], [5] and
[13]. This section also contains some examples of singular Hermitian metrics on
vector bundles. In Section 4 and 5, we prove the main theorems and make some
discussions.
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haru Takayama for his enormous support and insightful comments. He would also
like to thank Dr. Takayuki Koike for discussions and valuable comments. This work
is supported by the Program for Leading Graduate Schools, MEXT, Japan. This
work is also supported by JSPS KAKENHI Grant Number 15J08115.
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2. Hermitian metrics on vector bundles and singular Hermitian metrics
on line bundles

In this section, we review some classical notions such as smooth Hermitian
metrics on vector bundles and singular Hermitian metrics on line bundles. Basic
references for this section are [6] and [7].

Notation

Throughout this paper, X denotes a complex manifold and E denotes a holo-
morphic vector bundle on X. For x∈X, Ex denotes the fiber of E over x. We
use the notation s∈E for denoting a vector in some fiber of E, i.e. a point of the
total space of E. The sheaf of holomorphic sections of E is denoted by O(E). The
natural pairing E∗

x×Ex→C on each fiber is denoted by (·, ·). We denote by tA the
transpose of a matrix A.

2.1. Smooth Hermitian metrics on vector bundles

Let h be a Hermitian metric on E, i.e. h defines a positive definite Hermitian
inner product 〈·, ·〉h on each fiber Ex and, for any smooth local section s, t of E,
〈s, t〉h is a smooth function. We denote by |·|h the norm on E. If we fix a local
holomorphic frame (s1, s2, ..., sr) of E, we can identify s=

∑
cisi∈E with a column

vector t(c1, c2, ..., cr). Then h has a matrix representation defined by

〈s, t〉h = tsht.

The Chern curvature Θ of (E, h) is an End(E)-valued (1,1)-form locally defined
by Θ=∂̄(h−1

∂h). For s, t∈E and differential forms α, β, we introduce the following
notation

{s⊗α, t⊗β}h := 〈s, t〉hα∧β.

Here we recall the notion of the positivity.

Definition 2.1. Let Θ be a Hermitian form on E⊗TX .
(1) We say that Θ is Griffiths semipositive (resp. Griffiths positive) if Θ(s⊗ξ)≥

0 (resp. >0) for every local section s∈E, ξ∈TX .
(2) We say that Θ is Nakano semipositive (resp. Nakano positive) if Θ(

∑
si⊗

ξi)≥0 (resp. >0) for every local section si∈E, ξi∈TX , i=1, 2, ...,min(n, r).
We say that (E, h) is Griffiths semipositive if the Hermitian form Θ(s⊗ξ, t⊗

η):={Θs, t}h(ξ, η) on E⊗TX defined by its Chern curvature Θ is Griffiths semi-
positive. It is equivalent to the condition that i{Θs, s}h is a positive (1, 1)-form
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for every s∈E. When a Hermitian form Θ on E⊗TX is Griffiths (resp. Nakano)
semipositive, we write Θ≥Grif 0 (resp. ≥Nak0). For two Hermitian forms Θ1 and
Θ2, we write Θ1≥NakΘ2 when Θ1−Θ2≥Nak0.

If dimX=1 or rankE=1, Griffiths positivity and the Nakano positivity are
equivalent. Griffiths positivity has nice functorial properties. For example, it is
preserved under the quotient and the dual of a Griffiths positive vector bundle is
Griffiths negative. These properties do not hold for Nakano positivity. Nakano
positivity is often used to describe a condition for applying L2-methods.

We give the following characterization of Griffiths negativity. This will be used
as a definition in the singular case.

Lemma 2.2. ([13, Section 2]) Let h be a smooth Hermitian metric on E.

Then, the following conditions are equivalent.

(1) h is Griffiths seminegative (as in Definition 2.1).

(2) For every local holomorphic section s∈O(E), |s|2h=〈s, s〉h is plurisubhar-

monic.

(3) For every local holomorphic section s∈O(E), log |s|2h is plurisubharmonic.

2.2. Singular Hermitian metrics on line bundles and plurisubharmonic
functions

On a line bundle, a singular Hermitian metric is also important. We begin with
the definitions.

Definition 2.3. (Cf. [7]) Let L be a holomorphic line bundle on X. A singular
Hermitian metric h on L is a measurable metric on L with locally integrable weight
function, i.e. locally h has the form |·|2h=|·|2e−φ for some L1

loc function φ.

We note that two singular Hermitian metrics h, h′ are equal when φ=φ′ holds
for their local weight. In this definition, the assumption that φ is locally integrable
ensures the existence of the curvature current. Formally we have Θ=−∂∂̄ log h=
∂∂̄φ. Since φ is locally integrable, the right-hand side can be defined in the sense
of currents. We can also show that the right-hand side is independent of the choice
of trivialization, thus the curvature current is globally well-defined.

A singular Hermitian metric h on a line bundle L is said to be positively curved
if its curvature current Θh satisfies Θh≥0 in the sense of currents. Note that h is
positively curved if and only if its local weight φ is plurisubharmonic.

For a plurisubharmonic function φ, the associated multiplier ideal sheaf I(φ)
is defined by

I(φ)(U)= {f ∈O(U); |f |2e−φ ∈L1
loc(U)}.
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For a positively curved singular Hermitian metric h=e−φ, I(φ) is independent of a
choice of local trivialization. Therefore I(h):=I(φ) is well-defined. The coherence
of I(h) is obtained by Nadel using L2-methods:

Theorem 2.4. ([7, Proposition 5.7] and [11]) For any plurisubharmonic func-

tion φ, I(φ) is coherent. It follows that, for any positively curved singular Hermitian

metric h, I(h) is coherent.

This theorem is obtained by using L2-methods. The higher rank analogue of
this theorem also holds under the assumption on the Nakano curvature condition
which ensures that we can use L2-methods (see Proposition 3.4).

3. Definition and examples of Singular Hermitian metrics on vector
bundles

In this section, we introduce the notion of a singular Hermitian metric on
a holomorphic vector bundle. By de Cataldo, metrics approximated by smooth
metrics in C2-topology on an open set are considered [5]. This approach is suitable
to consider the Nakano positivity condition to use L2-methods. A more general
concept is given by Berndtsson and Paun in [2], where all measurable metrics are
considered. We follow this approach and consider curvature conditions similar to
[5] when applying L2-methods.

Definition 3.1. ([2, Section 3] and [13, Section 1, Definition 1]) Let X be a
complex manifold, and E be a holomorphic vector bundle on X. A singular Her-
mitian metric h on E is a collection of nonnegative Hermitian forms hx on Ex for
almost every x∈X such that, for every holomorphic section s, t of E, 〈s, t〉h is a
measurable function. In this paper, we admit the case deth≡0.

We also admit the case h(sx)=∞ for some sx∈Ex. In this case, we assume that
the set {x∈X;h(sx)=∞ for some sx∈Ex} has zero measure. Here, a Hermitian
metric on a complex vector space V with values in [0,∞] is defined as follows:
there exists a subspace V0⊂V which satisfies that h|V0 is a nonnegative ordinary
Hermitian metric and h(s)=∞ for all s∈V \V0.

Two singular Hermitian metrics h, h′ are said to be equal if h=h′ a.e.

Because this definition is too general to deal with, we should restrict our inter-
est to singular Hermitian metrics with appropriate curvature condition. However,
it seems difficult to define Chern curvature forms or currents for general singular
Hermitian metrics (see Section 3 in [13]). Thus, alternatively, we use the charac-
terization described in Lemma 2.2 to define the curvature condition of a singular
Hermitian metric in the sense of Griffiths.
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Definition 3.2. ([2, Definition 3.1] and [13, Section 1, Definition 2]) Let h be a
singular Hermitian metric on a holomorphic vector bundle E.

(1) h is negatively curved (or Griffiths seminegative) if |s|2h is plurisubharmonic
for every local holomorphic section s of E.

(2) h is positively curved (or Griffiths semipositive) if the dual metric h∗ is
well-defined and negatively curved.

Note that, in our definition, the dual metric of h is well-defined as a singular
metric if det h �=0 a.e. Therefore we define the notion of a positively curved metric
only for singular metrics with det h �=0 a.e. We can also define a Nakano negative
singular Hermitian metric (cf. [13]) although we will not use the Nakano negativity
in this paper. If L is a line bundle with a singular Hermitian metric h, the positivity
conditions in Definition 3.2 and after Definition 2.3 coincide.

As a higher rank analogue of multiplier ideal sheaves, we define a subsheaf
E(h) of O(E) as follows.

Definition 3.3. ([5], Definition 2.3.1) For a singular Hermitian metric h on E,
E(h) denotes the sheaf of locally square integrable holomorphic sections of E with
respect to h, i.e. holomorphic sections s∈O(E) such that |s|2h∈L1

loc.

If L is a line bundle, L(h)=L⊗I(h). In the line bundle case, I(h) is coherent
for positively curved h (Theorem 2.4). In the vector bundle case, we also have that
E(h) is coherent under an assumption related to Nakano positivity. The precise
statement is as follows.

Proposition 3.4. ([5], Proposition 4.1.3) Let h be a singular Hermitian metric

on E. Assume that locally there exists a sequence of smooth Hermitian metrics

{hj} satisfying hj↑h pointwise and Θhj>Nakγ⊗IdE , where γ is a fixed continuous

(1,1)-form. Then we have that E(h) is coherent.

This proposition also holds under the weaker assumption that the curvature of
hj is uniformly bounded from below in the sense of Nakano, i.e. hj≥Nak−Cω for
some constant C and a Hermitian form ω on X.

To construct positively (or negatively) curved metrics, the following lemma is
useful.

Lemma 3.5. Let E,F be vector bundles on X, and let φ:O(E)→O(F ) be a

sheaf homomorphism.

(1) Let h be a negatively curved singular Hermitian metric on F . Then, a

singular Hermitian metric φ∗h on E defined by

〈s, t〉φ∗h = 〈φ(s), φ(t)〉h
is also negatively curved.
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(2) If φ:O(E)→O(F ) is surjective on an open set U of full Lebesgue measure

and h is a singular Hermitian metric on E, then the quotient metric on F is well-

defined as a singular Hermitian metric. Moreover, if h is positively curved, so is

the quotient metric.

Proof. (1) For a holomorphic section s of E, we have that φ(s) is a holomorphic
section of F . Since h is negatively curved, |s|φ∗h=|φ(s)|h is plurisubharmonic.

(2) We have that the quotient (singular) metric is well-defined on F |U . Since
U is an open set with full measure, we have a singular Hermitian metric on F . If h
is positively curved, we have that the dual metric h∗ is a negatively curved singular
Hermitian metric on E∗. The quotient metric coincides with the dual of (φ∗)∗h∗,
where φ∗ :O(F ∗)→O(E∗) is the dual of φ. It follows that the quotient metric is
positively curved by (1). �

Example 3.6. We can construct a positively curved singular Hermitian metric
using given global sections of a vector bundle. Let s1, s2, ..., sN∈H0(X,E) be global
sections of a vector bundle E on a complex manifold X. Then we have the following
morphism of bundles

φ :X×C
N −→E

sending (x, (a1, a2, ..., aN )) to
∑

aisi(x). We assume that there exists a Zariski
open set U on which these {si} generate each fiber of E (we refer to this condition
as that these {si} generically generate E). Then that φ is surjective on U . Thus,
by Lemma 3.5, the quotient metric h of the standard metric on C

N is a positively
curved singular Hermitian metric on E.

In Proposition 4.1, we prove that E(h) is coherent. Note that we do not know
that h can be approximated by smooth metrics with Nakano positive curvature (or
metrics which have Nakano curvature bounded from below). In Example 4.4, we
will show an example of this kind of metric which does not seem to satisfy Nakano
curvature condition. This type of singular Hermitian metrics is also investigated in
[14, Example 3.6].

Example 3.7. We shall show that there are positively curved singular Hermitian
metrics on tangent bundles of toric varieties.

Let X be a toric manifold. By definition, there is a inclusion (C∗)n⊂X and ac-
tion (C∗)n�X. Considering the differentiation of the family of actions (eiθ , 1, ..., 1)
at θ=0, we have a holomorphic vector field on X. Similarly, we have n=dimX

vector fields which generates TX on (C∗)n. Therefore, by Example 3.6, we can
construct a positively curved singular Hermitian metric on TX. Here, we can also
use toric Euler sequence (cf. [4, Theorem 8.1.6]) to construct such metrics on TX.
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In particular, we have a positively curved singular Hermitian metric on TX on
the one-point blow-up X=BlPP2 of P2 at P∈P2. Note that X is isomorphic to a
toric variety associated to a complete fan Σ defined by four rays R+(0, 1),R+(1, 1),
R+(1, 0),R+(−1,−1). This gives an example of a positively curved singular Her-
mitian metric on a vector bundle with no smooth Griffiths semipositive Hermitian
metrics. Indeed, the exceptional divisor C on X is a (−1)-curve. Then we have an
exact sequence

0−→TC −→TX |C −→NC/X −→ 0

on C. If there is a smooth Hermitian metric on TX with Griffiths semipositive
curvature, its restriction to C is also semipositive. Then we have a semipositive
metric on NC/X

∼=O(−1), which is a contradiction.

Example 3.8. Let E be a holomorphic vector bundle on X. We denote by P(E)
the projective bundle of hyperplanes of E and by O(1)=OP(E)(1) the tautological
line bundle on P(E). We denote O(k):=O(1)⊗k. Let h be a singular Hermitian
metric on a line bundle O(1). Assume that h|P(E)x is bounded for almost all x∈X.
Then we can construct a singular Hermitian metric h′ on E⊗detE as follows. First,
we define a vector space Fx, x∈X, by

Fx =H0
(
P(E)x,

(
O(r+1)⊗KP(E)/X

)∣∣
P(E)x

)
.

Then the collection {Fx}x∈X forms a holomorphic vector bundle F . By computation
of transition functions, we have that F is isomorphic to E⊗detE. We define a
singular Hermitian metric h′ on F by

〈s, t〉h′ =
∫
P(E)x

{s, t}hr+1

for s, t∈Fx. Here, we use the notation {·, ·} defined in Section 2.1. Recall that
when s⊗α is an E-valued p-form and t⊗β is an E-valued q-form, the product
{s⊗α, t⊗β}h is a (scalar-valued) (p+q)-form. In this situation, we consider s, t

as O(r+1)-valued (r−1, 0)-forms on the fiber P(E)x, then {s, t}hr+1 is an (r−1,
r−1)-form. Therefore we can integrate {s, t}hr+1 on the fiber P(E)x.

When h is smooth and semipositive, it is known that h′ is Nakano semipositive
(cf. [1] and [10]). We want to show that if h is a semipositive singular Hermitian
metric, we can locally approximate h′ by Nakano semipositive smooth Hermitian
metrics. Let U⊂X be a small open set. We assume that E is trivial on U , then we
can write E=U×C

r and P(E)=U×P
r−1. The line bundle O(1) admits a smooth

positive Hermitian metric on U×P
r−1. By the argument similar to the proof of

[3, Theorem 1], we can construct an approximation of h by smooth semipositive
metrics {hj} on V ×P

r−1, where V is a relatively compact subset of U . Each
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hj induces a smooth Hermitian metric h′
j on E⊗detE|V , which is known to be

Nakano semipositive. Thus we can construct a local approximation of h′ by Nakano
semipositive smooth Hermitian metrics.

4. Singular Hermitian metrics induced by global sections

In this section, we study singular Hermitian metrics on vector bundles which
are induced by holomorphic sections (Example 3.6).

Proposition 4.1. Let X be a complex manifold, E be a holomorphic vector

bundle on X, and s1, s2, ..., sN∈H0(X,E) be holomorphic sections. Assume that

there exists an open dense set U such that, for every x∈U , a fiber Ex over x is

generated by these {si(x)}i. Define a morphism of vector bundles

φ :X×C
N −→E

by sending (x, (a1, a2, ..., aN )) to
∑

aisi(x). By assumption, φ is surjective on a

Zariski open set. Let h0 be a smooth Hermitian metric on C
N and h be the quotient

metric of h0 induced by φ (When h0 is the standard Euclidean metric on C
N , it

is constructed in Example 3.6). Then, the sheaf E(h) of locally square integrable

sections of E with respect to h is a coherent subsheaf of O(E).

Remark 4.2. By Proposition 3.4, E(h) is coherent if h can be approximated
by smooth metrics {hj} such that the curvature is uniformly bounded below in the
sense of Nakano (i.e. there is a constant C>0 satisfies

Θhj ≥Nak −Cω⊗IdE ,

where ω denotes a fixed Hermitian form on X). Here, some metrics defined in
Example 3.6 seem hard to approximate in such a manner. See Example 4.4 after
the proof.

Proof. First, we consider the case that h0 is the standard Euclidean metric.
To prove the proposition, we calculate the value of |s|2h explicitly, and use the result
in the line bundle case. Since the statement is local, it is sufficient to show the
proposition on a small open set U . We assume that E is trivialized on U by a holo-
morphic frame e1, e2, ..., er on U . We regard each si=

∑
j fi,jej as a column vector

t(fi,1, fi,2, ..., fi,r). For s=t(f1, f2, ..., fr), we will show the following equation.

Lemma 4.3.

|s|2h =
∑

1≤i1<i2<...<ir−1≤N

∣∣det(s si1 si2 ...sir−1)
∣∣2∑

1≤j1<j2<...<jr≤N |det(sj1 sj2 ...sjr )|
2 .
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Proof. We recall that h is a quotient metric of the standard metric on X×C
N

induced by φ:X×CN→E. By considering the dual, h can be regarded as the dual
metric of the restriction of the standard metric via φ∗ :E∗→C

N . We denote the
dual of h by h∗. We have that φ∗(ξ)=(ξ(s1), ..., ξ(sN )) for ξ∈E∗. Therefore the
norm of ξ with respect to h∗ is

|ξ|2h∗ =
N∑
i=1

|ξ(si)|2,

thus the matrix representation of h∗ is as follows:

h∗
jk =

N∑
i=1

fi,jfi,k.

Since the dual metric h∗ can be represented as th−1, we have that

h−1
jk =

N∑
i=1

fi,jfi,k.

Now we shall prove that det(h−1) is the denominator of the right hand side of the
equation above. We have that

deth−1 =
∑
σ∈Sr

sgn(σ)
r∏

j=1
h−1
jσ(j)

=
∑
σ∈Sr

sgn(σ)
r∏

j=1

N∑
ij=1

fij ,jfij ,σ(j).

Extending the product, it follows that

=
N∑

i1,...,ir=1

∑
σ∈Sr

sgn(σ)fi1,1fi1,σ(1)...fir,rfir,σ(r).

When some two of i1, ..., ir are the same, cancellation occurs in the sum
∑

σ∈Sr
and

it becomes 0. Therefore

=
N∑

i1,...,ir=1
ij �=ik

∑
σ∈Sr

sgn(σ)fi1,1fi1,σ(1)...fir,rfir,σ(r)

=
N∑

i1,...,ir=1
ij �=ik

∑
σ∈Sr

sgn(σ)fi1,1fi1,σ(1)...fir,rfir,σ(r),
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because this sum is a real number. On the other hand, we have∑
1≤i1<i2<...<ir≤N

|det(si1 si2 ...sir)|
2

=
∑

i1<...<ir

[∑
σ∈Sr

sgn(σ)fi1,σ(1)...fir,σ(r)

][∑
τ∈Sr

sgn(τ)fi1,τ(1)...fir,τ(r)

]

=
∑

i1<...<ir

∑
σ∈Sr

∑
τ∈Sr

sgn(στ)fi1,σ(1)fi1,τ(1)...fir,σ(r)fir,τ(r),

We rearrange each term in this sum so that the sequence σ(1), ..., σ(r) becomes
1, 2, ..., r. Then we obtain

=
∑

i1<...<ir

∑
σ∈Sr

∑
τ∈Sr

sgn(στ)fiσ−1(1),1fiσ−1(1),τ(σ−1(1))...fiσ−1(r),r
fiσ−1(r),τ(σ−1(r))

=
N∑

i1,...,ir=1
ij �=ik

∑
σ∈Sr

sgn(τσ−1)fi1,1fi1,τ(σ−1(1))...fir,rfir,τ(σ−1(r)).

Here we use sgn(στ)=sgn(τσ−1).
Thus we have that

det(h−1)=
∑

1≤j1<j2<...<jr≤N

|det(sj1 sj2 ...sjr )|
2
.

By changing basis, it is sufficient to prove in the case s=(1, 0, ..., 0). In this case,
|s|h=h11 holds. We have to calculate h11, which can be written using (1,1)-cofactor
of h−1 and det(h−1). We can calculate this cofactor similarly as above, because
(1,1)-cofactor is the determinant of (n−1)×(n−1) submatrix. This completes the
proof. �

Now we continue the proof of Proposition 4.1. By the lemma, |s|2h is locally
integrable if and only if each term in the right hand side∣∣det(s si1 si2 ...sir−1)

∣∣2 /∑ |det(sj1 sj2 ...sjr )|
2

is locally integrable for all 1≤i1<i2<...<ir−1≤N . We define a multiplier ideal
sheaf J by using a weight φ=log

∑
|det(sj1 sj2 ...sjr)|

2, i.e.

J (U)=
{
f ∈O(U); |f |2∑

1≤j1<j2<...<jr≤N |det(sj1 sj2 ...sjr )|
2 ∈L1

loc

}
.

Then the condition s∈E(h) is equivalent to the condition that det(s si1 si2 ...sir−1)∈
J for each i1, i2, ..., ir−1. We have that J is coherent, because multiplier ideals are
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coherent. It follows that, for each i1, i2, ..., ir−1, the sheaf of sections s satisfying
det(s si1 si2 ...sir−1)∈J is coherent. Since E(h) is the intersection of all such sheaves,
we have that E(h) is coherent. Note that it is a finite intersection of coherent
sheaves.

Now we consider the general case. We denote by hEuc the standard metric
on C

N . Then locally we can write as

ChEuc ≤h0 ≤C ′hEuc

for some C,C ′>0. Therefore, taking quotient, we have that

Ch1 ≤h≤C ′h1,

where h1 denotes the quotient metric induced by hEuc. It follows that

C|s|h1 ≤ |s|h ≤C ′|s|h1

for any section s∈E. This shows that E(h1)=E(h) and E(h1) is coherent by the
preceding discussion. �

Here, for the next example, we will represent the curvature condition in Re-
mark 4.2 in the matrix form. In the following, we regard h as its representation
matrix. The Chern curvature of h is written as Θ=∂̄(h−1

∂h)=
∑

Θij dzi∧dzj ,
where Θij is a section of End(E). Then, the Hermitian form on E⊗TX induced by
Θ can be written as follows:

Θ(s⊗ξ, t⊗η)= {Θs, t}h(ξ, η)= (tstΘht)(ξ, η)

for s, t∈E and ξ, η∈TX . If we take ei⊗∂/∂zj (i=1, 2, ..., r, j=1, 2, ..., n) for the
frame of E⊗TX , the corresponding matrix representation of Θ(·, ·) is as follows:

ΘNak =

⎛
⎜⎜⎜⎜⎝

tΘ1,1h
tΘ1,2h ... tΘ1,nh

tΘ2,1h
tΘ2,2h ... tΘ2,nh

... ... ... ...
tΘn,1h

tΘn,2h ... tΘn,nh

⎞
⎟⎟⎟⎟⎠ .

Here, each tΘijh is an r×r matrix and then ΘNak is an nr×nr matrix. Then the
condition that the curvature of h is bounded from below in the sense of Nakano is
equivalent to the condition that the following matrix is nonnegative:

ΘNak+C ·(ωijh)i,j ,

where we write ω=
∑

ωiji dzi∧dzj .
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Example 4.4. Take X=C
2. Let E=X×C

2 be a trivial rank two bundle. Let
(z, w) be the standard coordinate on X. We choose sections s1=(1, 0), s2=(z, w).
Then the metric induced by s1, s2 on E can be written as

h= 1
|w|2

(
|w|2 −wz

−zw |z|2+1

)
.

Every entry of h is smooth on C
2\{w=0}. The dual of h is

hdual = th−1 =
(
|z|2+1 zw

wz |w|2
)
.

We approximate h in two ways, and calculate eigenvalues of ΘNak+C ·(ωijh)i,j .
As the consequence, we will see both the approximations do not have bounded
curvature below in the sense of Nakano. In particular, we will show that the Nakano
eigenvalue of the approximation of h obtained by convolution is not bounded below.

We consider the following two approximations of hdual:

hdual,ε =
(
|z|2+1 zw

wz |w|2+ε

)
=hdual+ε

(
0 0
0 1

)

h′
dual,ε =

(
|z|2+1+ε zw

wz |w|2+ε

)
=hdual+ε

(
1 0
0 1

)

Let hε and h′
ε be the dual metrics of hdual,ε and h′

dual,ε, respectively.
Note that h′

dual,ε is obtained by convolution of hdual by an appropriate smooth
kernel function. Indeed, let χ be a smooth function with compact support on C

2

such that χ depends only on |(z, w)|=|z|2+|w|2 and
∫
C2 χdλ=1. Let f(z, w):=|z|2.

We will show that χ∗f=f+εχ, where εχ>0 is a constant. Let x, p∈C2. Then we
have

χ∗f(x) =
∫
C2

χ(p)f(x−p) dλ(p)

= 1
2

∫
C2

χ(p)f(x−p) dλ(p)+ 1
2

∫
C2

χ(p)f(x−p) dλ(p)

= 1
2

∫
C2

χ(p)f(x−p) dλ(p)+ 1
2

∫
C2

χ(−p)f(x+p) dλ(p)

=
∫
C2

χ(p)1
2(f(x−p)+f(x+p)) dλ(p),
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because χ is symmetric under p �→−p. We have that f(x−p)+f(x+p)=2|x1|2+
2|p1|2, where x=(x1, x2), p=(p1, p2). Thus,

χ∗f(x)=
∫
C2

χ(p)(|x1|2+|p1|2) dλ(p)

= |x1|2+
∫
C2

χ(p)|p1|2 dλ(p)

= f(x)+εχ.

Similarly we have χ∗|w|2=|w|2+εχ with the same constant εχ (because χ is sym-
metric under (z, w) �→(w, z)).

For a function g=zw, we have χ∗g=g by similar calculation using an equation
g(z−p1, w−p2)+g(z+p1, w−p2)+g(z−p1, w+p2)+g(z+p1, w+p2)=4g(z, w).

We denote by ΘNak,ε and Θ′
Nak,ε the corresponding matrix representation of

the Hermitian form on E⊗TX induced by hε and h′
ε, respectively. By calculating

this matrix, we have that ΘNak,ε=− ε
(ε|z|2+|w|2+ε)3M , where M is a matrix

⎛
⎜⎜⎜⎝

−
(
|w|2+ε

)2
w

(
|w|2+ε

)
z w

(
|w|2+ε

)
z −w2 z2

w
(
|w|2+ε

)
z −|w|2 |z|2 −

(
|w|2+ε

) (
|z|2+1

)
w z

(
|z|2+1

)
w

(
|w|2+ε

)
z −

(
|w|2+ε

) (
|z|2+1

)
−|w|2 |z|2 w z

(
|z|2+1

)
−w2 z2 w z

(
|z|2+1

)
w z

(
|z|2+1

)
−
(
|z|2+1

)2

⎞
⎟⎟⎟⎠ ,

and Θ′
Nak,ε=− ε(ε+1)

(ε|z|2+ε|w|2+|w|2+ε2+ε)3M
′, where M ′ is a matrix

⎛
⎜⎜⎜⎝

−
(
|w|2+ε

)2
w

(
|w|2+ε

)
z w

(
|w|2+ε

)
z −w2 z2

w
(
|w|2+ε

)
z −|w|2 |z|2 −

(
|w|2+ε

) (
|z|2+ε+1

)
w z

(
|z|2+ε+1

)

w
(
|w|2+ε

)
z −

(
|w|2+ε

) (
|z|2+ε+1

)
−|w|2 |z|2 w z

(
|z|2+ε+1

)

−w2 z2 w z
(
|z|2+ε+1

)
w z

(
|z|2+ε+1

)
−
(
|z|2+ε+1

)2

⎞
⎟⎟⎟⎠ .

We claim that, for every constant C>0, there is ε>0 which does not satisfy
ΘNak,ε≥−Cω⊗IdE . We take ω=i dz∧dz+idw∧dw. Then the matrix representa-
tions of ω⊗IdE as a Hermitian form on E⊗TX are

(
hε 0
0 hε

)
, or

(
h′
ε 0
0 h′

ε

)
, respectively.

We will show that for every fixed C>0, ΘNak,ε+Cω⊗IdE (resp. Θ′
Nak,ε+Cω⊗IdE)

has a negative eigenvalue for sufficiently small ε. By direct computation, one of
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the eigenvalues of ΘNak,ε+Cω⊗IdE (resp. Θ′
Nak,ε+Cω⊗IdE) at (z, w)=(0, 0) is as

follows:

(ε+1)C−
√

(1−ε)2C2+4
2ε for ΘNak,ε,

(2ε+1)C−
√
C2+4

2ε2+2ε for Θ′
Nak,ε.

For a fixed C>0, these eigenvalues go to −∞ as ε→0. Therefore, the Chern curva-
ture of the approximations of hε, h

′
ε are not bounded below in the sense of Nakano.

5. Existence of negatively curved singular Hermitian metrics on
bundles given by extensions

We consider an extension of vector bundles 0→L→E→E′→0 with a line bun-
dle L. We will show that the existence of a negatively curved singular Hermitian
metric on E with some conditions on L implies splitting of this sequence. Using
this, we can determine all negatively curved singular Hermitian metrics on certain
vector bundles.

Theorem 5.1. Let X be a compact complex manifold, L a holomorphic line

bundle on X, and let E,E′ be holomorphic vector bundles on X. Assume that there

is an exact sequence

0−→L
i−→E

p−→E′ −→ 0.

Suppose that there are a holomorphic section f∈H0(X,L∗) and a negatively curved

singular Hermitian metric h on E with |i(s)|2h=|(f, s)|2 for each s∈L, where (·, ·)
is a natural pairing on L∗

x×Lx. Then, the exact sequence above splits.

We begin the proof of Theorem 5.1 with local consideration.

Proposition 5.2. Let U be a (small) ball in C
n and let h be a singular

Hermitian metric on U×C
r. We assume the representation matrix of h has the

form

h=
(
|f |2 B

B C

)
,

where f is a holomorphic function and B,C are measurable function valued 1×
(r−1) and (r−1)×(r−1) matrix on U (r≥2). Assume that h is negatively curved.

Then, there are holomorphic functions gi∈OU with Bi=fgi.

To prove Proposition 5.2, we use the following lemma.
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Lemma 5.3. Let φ, ψ be locally integrable functions on U⊂C
n. Assume that

tφ+ψ is plurisubharmonic for every t>0. Then, ψ equals to a plurisubharmonic

function almost everywhere.

Proof. When t→0, tφ+ψ converges to ψ as currents, so we have i∂∂̄(tφ+ψ)→
i∂∂̄ψ as currents. By assumption i∂∂̄(tφ+ψ) is a positive current for any t>0.
Therefore the limit i∂∂̄ψ is also positive, so we have ψ equals to a plurisubharmonic
function almost everywhere. �

Proof of Proposition 5.2. We can assume r=2 and we denote B1=B,C1,1=C.
First, we assume f is a constant function f≡1 and prove B=g for some holomorphic
function g.

Let u∈C be a constant. Then,

(
u 1

)( 1 B

B C

)(
u

1

)
= |u|2+uB+uB+C

is plurisubharmonic. Since |u|2 is constant, uB+uB+C is also plurisubharmonic.
Taking u∈R and u∈iR, we have that 2tReB+C and 2t ImB+C are plurisubhar-
monic for every t∈R. Then, 2ReB+ 1

tC and 2ImB+ 1
tC are plurisubharmonic for

t �=0 and Lemma 5.3 shows that B is a (complex-valued) pluriharmonic function.
It follows that B can locally be written as a sum of a holomorphic function and an
antiholomorphic function, namely B=g1+g2.

Since g1 is holomorphic, we have that for any u∈C
(
u g1

)( 1 g1+g2
g1+g2 C

)(
u

g1

)
= |u|2+u|g1|2+ug1g2+u|g1|2+ug1g2+|g1|2C

is plurisubharmonic. The term |u|2 is constant, and ug1g2, ug1g2 are pluriharmonic
since they are holomorphic and antiholomorphic respectively. Thus we have u|g1|2+
u|g1|2+|g1|2C is plurisubharmonic for every u∈C. Lemma 5.3 shows that |g1|2 is
pluriharmonic. Therefore we have

i∂∂̄|g1|2 = i∂g1∧∂̄g1 =0,

which implies that ∂g1=0. Thus g1 is constant and B=g1+g2 is antiholomorphic,
hence the proposition holds when f=1.

For the general case, we can similarly show that B/f is antiholomorphic on
{f �=0} using sections (u/f, 1), (u/f, g1) instead of (u, 1), (u, g1). Since h is non-
negative, we have deth=|f |2C−|B|2≥0, thus |B/f |2≤C. Since C=|(0, 1)|2h is
plurisubharmonic, C is locally bounded from above. Therefore, |B/f | is locally
bounded. Riemann’s extension theorem implies that B/f is an antiholomorphic
function on U . �
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Proof of Theorem 5.1. Let rankE=r. Let {Uα} be a covering of X by suffi-
ciently small open sets. We assume that given bundles are trivial on each Uα. We
denote a trivializing section of L on Uα by sα and a holomorphic frame of E′ on Uα

by e′α,2, e
′
α,3, ..., e

′
α,r. We take a holomorphic frame eα,1, eα,2, ..., eα,r of E satisfying

i(sα)= eα,1,

p(eα,i)= e′α,i (i=2, ..., r).

The transition function of L and E′ are denoted by gαβ and g′αβ,i,j as follows:

sα = gαβsβ ,

e′α,i =
∑

2≤j≤r

g′αβ,i,je
′
β,j (i=2, ..., r).

Then we have that p(eα,i−
∑

j g
′
αβ,i,jeβ,j)=0, thus there exist holomorphic functions

hαβ,i on Uα∩Uβ , i=2, ..., r, satisfying

eα,i−
∑

2≤j≤r

g′αβ,i,jeβ,j =hαβ,ieβ,1.

In this notation, the transition function of E can be written as

eα,1 = gαβeβ,1,

eα,i =hαβ,ieβ,1+
∑

2≤j≤r

g′αβ,i,jeβ,j (i=2, ..., r).

Let s be a section of E. When we write s=a1eα,1+...+areα,r=b1eβ,1+...+breβ,r,
the transition function is as follows:⎛

⎜⎜⎜⎝
b1
b2
...
br

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝
gαβ hαβ,2 ... hαβ,r

0 g′αβ,2,2 ... g′αβ,r,2
... ... ... ...
0 g′αβ,2,r ... g′αβ,r,r

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
a1
a2
...
ar

⎞
⎟⎟⎟⎠ .

We will denote this matrix by Gαβ .
We denote the local matrix representation of h by

hα =
(
Aα Bα
tBα Cα

)
,

where Aα is a scalar, Bα=(Bα,2, ..., Bα,r) is a 1×(r−1) matrix, and Cα is an (r−
1)×(r−1) matrix. We write the given section f∈H0(X,L∗) as f=fαs

−1
α , where fα

is a holomorphic function on Uα and s−1
α is a dual of sα. By sα=gαβsβ , we have fα=
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gαβfβ . By assumption |s|2h=|(f, s)|2h for s∈L, we have Aα=|eα,1|2h=|(f, eα,1)|2=
|fα|2. The transition function for hα is as follows:

hα = tGαβhβGαβ .

By calculating the first row, we have that

Bα,i = gαβAβhαβ,i+
∑

2≤j≤r

gαβBβ,jg′αβ,i,j

= |fβ |2gαβhαβ,i+
∑

2≤j≤r

gαβBβ,jg′αβ,i,j .

By dividing both sides by fα=gαβfβ , we have

Bα,i/fα = |fβ |2gαβhαβ,i

gαβfβ
+
∑

2≤j≤r gαβBβ,jg′αβ,i,j
gαβfβ

= fβhαβ,i+
∑
j

g′αβ,i,jBβ,j/fβ .

Let γα,i=Bα,i/fα, then γα,i satisfies

γα,i = fβhαβ,i+
∑
j

g′αβ,i,jγβ,j .

By Proposition 5.2, γα,i is a holomorphic function on Uα.
Let ξ′α,2, ..., ξ′α,r be the dual frame in (E′)∗ of e′α,2, ..., e′α,r. We consider a Čech

0-cochain
(∑

2≤i≤r γα,iξ
′
α,i⊗f−1, Uα

)
. Then, the differential of this cochain is

∑
2≤i≤r

γα,iξ
′
α,i⊗f−1−

∑
i

γβ,iξ
′
β,i⊗f−1 =

∑
i

hαβ,i

gαβ
ξ′α,isα.

Next we consider the extension class in H1(X,L⊗(E′)∗) of given exact sequence.
It is known that the extension class is the image of IdE′∈H0(X,E′⊗(E′)∗) by
the connecting homomorphism H0(X,E′⊗(E′)∗)→H1(X,L⊗(E′)∗) induced by the
following short exact sequence:

0−→L⊗(E′)∗ −→E⊗(E′)∗ −→E′⊗(E′)∗ −→ 0.

We can calculate this class using following diagram:

C0(Uα, L×(E′)∗) ��

��

C0(Uα, E×(E)∗) ��

��

C0(Uα, E
′×(E)∗)

��

C1(Uα, L×(E′)∗) �� C1(Uα, E×(E)∗) �� C1(Uα, E
′×(E)∗),
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where Ci(Uα, F ) denotes the space of Čech i-cochains. Then, we have the following:
∑r

j=2(eα,j⊗ξ′α,j)
� ��

�

��

∑r
j=2(e′α,j⊗ξ′α,j)

∑r
j=2

hαβ,j

gαβ
ξ′α,jsα

� ��
∑r

j=2(eα,j⊗ξ′α,j−eβ,j⊗ξ′β,j).

Calculating the map in the second row, we can show that the extension class is iden-
tical to the differential of the 0-cochain described above. Thus the extension class is
represented by a exact 1-cocycle, which implies that given extension is trivial. �

Example 5.4. Using Theorem 5.1, we can determine all negatively curved sin-
gular Hermitian metrics on a nontrivial rank two vector bundle on an elliptic curve,
which appeared in [8], Example 1.7. Let C be an elliptic curve. We define a vector
bundle E on C by the nontrivial exact sequence

0−→O1 −→E−→O2 −→ 0,

where O1=O2=OC . Note that dimH1(C,OC)=1, thus E is uniquely determined
up to isomorphism.

There is a more concrete description of E in [8]. We can obtain E as the
quotient E=C×C

2/Γ, where Γ=Z+τZ is a lattice for the elliptic curve E. Here,
an action of 1, τ∈Γ to the space C×C

2 is described by (x, z1, z2) �→(x+1, z1, z2) and
(x, z1, z2) �→(x+τ, z1+z2, z2).

Let h be a negatively curved singular Hermitian metric on E. Then the restric-
tion h|O1 is also negatively curved. A negatively curved metric on the trivial line
bundle corresponds to a subharmonic function on C via h �→|1|2h. Since any subhar-
monic function on a compact Riemann surface is constant, h|O1 is also constant and
we can write this constant by h|O1 =C0. If C0 �=0, the assumption of Theorem 5.1 is
satisfied and it follows that given exact sequence splits. It contradicts the definition
of E. Therefore, we have h|O1 =0. Moreover, we can show that h has the form
p∗(h′), where h′ is a metric on O2 which is negatively curved (Lemma 5.5). This
curvature condition implies h′ is constant.

In this example, we showed that deth≡0 for every singular Hermitian metrics
h on E. This is why we admit singular metrics with deth=0 everywhere.

Lemma 5.5. Let L,L′ be line bundles, 0→L→E
p→L′→0 be an exact se-

quence, and h be a singular Hermitian metric on E. Assume that h|L≡0. Then,

there exists a singular Hermitian metric h′ on L′ with h′(p(s))=h(s) for s∈E.

Moreover, if h is negatively curved, so is h′.
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Proof. Let s0, s
′
0 be trivializing sections of L,L′ respectively. We take a local

holomorphic frame e1, e2 of E with

e1 = i(s0), p(e2)= s′0,

where i : L→E. Then h(e1, e1)=0 by assumption. It follows that h(e1, e2)=0 by
the Cauchy-Schwarz inequality.

For each s′∈E′, take s which satisfies p(s)=s′ and define h′(s′) by h(s). Since
we have h(e1, e2)=0 in the local frame, this definition is independent of the choice
of s. Then we have for s∈E

(p∗h′)(s)=h′(p(s))=h(s),

here the second equality is by the definition of h′.
Assume that h is negatively curved. For holomorphic section s′∈O(E′), we

can find a holomorphic section s∈O(E) with p(s)=s′. Therefore h′(s′)=h(s) is a
plurisubharmonic function. This proves that h′ is also negatively curved. �
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