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1. Introduction

1.1. Orthogonal polynomials

We consider polynomials in one complex variable of the form

P (z)= cnz
n+cn−1z

n−1+...+c0, (1.1)

where c0, c1, ..., cn are complex numbers. If cn ̸=0, we say that P has degree n, and call

cn the leading coefficient. We denote the (n+1)-dimensional space of all polynomials of

the form (1.1) by Poln+1. Given a positive Borel measure µ with infinite support on the

complex plane C, with finite moments∫
C
|z|2kdµ(z)<∞, 0⩽ k⩽N, (1.2)

for some positive integer N , we define the system {Pn(z)}Nn=0 of normalized orthogo-

nal polynomials (ONPs) with respect to µ recursively by applying the Gram–Schmidt

algorithm to the sequence {zn}Nn=0 of monomials. Equivalently, the orthogonal polyno-

mial Pn is the unique element in Poln+1 of unit norm in L2(C, µ) with positive leading

coefficient cn>0, such that for all lower-degree polynomials q∈Poln we have∫
C
Pn(z)q(z) dµ(z)= 0.

When the measure µ=µm depends on a parameter m, the orthogonal polynomials will

be denoted by Pm,n, where the first index is the parameter for the measure, and the

second is the degree of the polynomial.

For additional definitions and notation we refer the reader to §1.9.

1.2. Carleman–Szegő asymptotics

The 1920s witnessed a rapid development in the understanding of orthogonal polynomials

and related kernel functions. Among the pioneers were Gabor Szegő, Stefan Bergman

and Torsten Carleman. One of the early results is that of Szegő [55] (see also [56]),

who considered the orthogonal polynomials in L2(Γ, ds), where Γ is a real-analytically

smooth Jordan curve in the complex plane C supplied with normalized arc length measure

ds=(2π)−1|dz|. Let C\Γ=Ω∪Ωe be the decomposition of the complement into disjoint

connected components, where Ω is bounded and Ωe is unbounded, and denote by ϕ the

conformal mapping of the exterior domain Ωe onto the exterior disk De :={z∈C:|z|>1},
which fixes the point at infinity with positive derivative. Szegő’s theorem asserts that

Pn(z)=
√
ϕ′(z)[ϕ(z)]n(1+O(ρn)), z ∈Ωe, (1.3)
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where ρ is some number with 0<ρ<1. Due to the real-analytically smooth boundary,

the conformal mapping ϕ extends conformally past the boundary ∂Ω. With the extended

mapping still denoted by ϕ, the asymptotic formula (1.3) remains valid in a neighborhood

of Ωe∪Γ.
Slightly later, Carleman [13], [14]—inspired by the work of Szegő—considered in-

stead the orthogonal polynomials in L2(Ω, dA), where dA=(2πi)−1dz∧dz̄ denotes the

normalized area element and Ω is a simply connected domain with real-analytic boundary

curve Γ. He found an analogous asymptotic formula for the planar orthogonal polyno-

mials, which holds in a neighborhood Ω̃e of the closure of the exterior domain Ωe and is

expressed in terms of the conformal mapping ϕ:

Pn(z)= (n+1)1/2ϕ′(z)[ϕ(z)]n(1+O(ρn)), z ∈ Ω̃e , (1.4)

for some ρ with 0<ρ<1. In the 1960s, Suetin extended Carleman’s result to domains

whose boundary has a lower-degree of smoothness, as well as to weighted cases, at the

expense of substantially worse error terms (see the monograph [54]). We should also men-

tion the more recent work of Dragnev and Miña–Dı́az ([18], [19], [43]), which strengthens

Carleman’s theorem on orthogonal polynomials, and gives information on the asymptotic

distribution of the zeros. In the work [35], which expands on ideas developed here, we

derive a complete asymptotic expansion for the orthogonal polynomials in a weighted

Carleman setting. Earlier, only the first term of the expansion was known.

In the above asymptotic formulæ a Jacobian factor appears, it is (ϕ′)1/2 in the case

of Szegő’s theorem and ϕ′ in Carleman’s case. By inspection, the orthogonal polynomials

are asymptotically push-forwards of the monomials under the conformal mapping in the

relevant L2-space.

We wish to contrast the above-mentioned results with the more classical study of

orthogonal polynomials on the real line R. Here, the earliest work is associated with

Legendre, Jacobi, Chebyshev, Hermite, Laguerre, and Gegenbauer, with further contri-

butions by Markov, Stieltjes, Szegő, Bernstein, and Akhiezer. The structure of orthogonal

polynomials on the line is rather rigid with the appearance of a 3-term recursion relation,

which comes from the fact that multiplication by the independent variable is self-adjoint

on the weighted L2-space. Analogous rigidity applies to the orthogonal polynomials on

the unit circle T as well. These facts are basic in many of the standard approaches to

the asymptotics of orthogonal polynomials; see e.g. [51], [52]. Going beyond measures

supported on the line or the circle, the rigidity is lost, and in particular there are no

3-term recursions for regular measures on smooth Jordan curves except for ellipses [20].

For planar orthogonal polynomials, recursion formulæ are rare, even if we allow any finite

number of terms [45].
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1.3. Exponentially varying weights

For a C2-smooth function Q:C!R∪{+∞} called the potential, subject to the growth

bound

lim inf
z!∞

Q(z)

log |z|
> 1, (1.5)

and a real parameter m>0, we consider the weighted area measures of the form

dµ2mQ(z)= e−2mQ(z) dA(z), z ∈C (1.6)

where we recall that dA denotes the normalized planar area element. The condition

(1.5) guarantees that the measure µ=µ2mQ has finite moments (1.2), with upper range

given by N=Nm :=⌈(1+ϵ1)m⌉−2 for some ϵ1>0. Here, ⌈·⌉ denotes the standard ceiling

function. This allows us to consider the sequence {Pm,n}0⩽n⩽Nm
of ONPs with respect

to the measure dµ2mQ where n denotes the degree (cf. §1.1). Under certain additional

assumptions on the regularity of the weight Q, we will obtain an asymptotic expansion

of Pm,n valid as m and n tend to infinity with the ratio τ=n/m confined to an open

interval around τ=1.

The motivation for studying this particular class of orthogonal polynomials comes

from the theory of random normal matrix (RNM) ensembles, a particular instance of 2-

dimensional Coulomb gas. If m is a positive integer, the connection is that the eigenvalue

process associated with an m×m matrix from the RNM ensemble with potential Q is

determinantal with correlation kernel Km given by

Km(z, w)=Km(z, w)e−m(Q(z)+Q(w)) where Km(z, w)=

m−1∑
j=0

Pm,j(z)Pm,j(w); (1.7)

see §5.1 below for details. Analogous families of exponentially varying weights confined

to the real line appear in connection with the study of random Hermitian matrices. In the

1980s, successive progress was made towards understanding the asymptotics of weighted

ONPs on the real line, with important contributions by Freud, Nevai, Lubinsky, Mhaskar,

Saff, and Totik, to mention a few (see e.g. the monographs [42], [53], and [59]). A deeper

understanding came through the efforts of Fokas, Its, Kitaev, and Deift–Zhou, whose

work brought novel methods into play. Their approach analyzes the ONPs with respect

to rather general potentials Q on the real line in terms of solutions to matrix Riemann–

Hilbert problems; see, e.g., [16], [17], [23], [24].

In the work [39] of Its and Takhtajan a natural soft Riemann–Hilbert problem, or

matrix ∂̄-problem, is considered, whose solution would give us the orthogonal polynomial

Pm,n for the planar measure µ2mQ. However, unlike the 1-dimensional situation, it is
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not clear how to constructively solve these soft Riemann–Hilbert problems. The main

obstruction appears to be the complex conjugation of the matrix, which results from the

sesquilinearity of the inner product. While our analysis of the asymptotics of the ONPs

is different, we try to connect with the Its–Takhtajan approach later on in §7.

1.4. The boundary universality conjecture

We return to the study of random normal matrix ensembles with the associated corre-

lation kernel Km. Macroscopically, the situation is well understood. For instance, in

the limit as m!+∞ the eigenvalues condensate to a certain compact set S1, called the

droplet, or alternatively spectral droplet (see §5.1 below). For simplicity, we assume below

that Q is C2-smooth with positive Laplacian ∆Q>0 in a neighborhood of S1. An inter-

esting question is how the process behaves at the microscopic level, which we express in

rescaled coordinates as follows. For a point z0∈C with ∆Q(z0)>0 and a direction n∈T,
we let

zm(ξ)= z0+n
ξ√

2m∆Q(z0)
(1.8)

where ∆z=∂z∂̄z denotes the (quarter) Laplacian, and consider

ρm(ξ)=
1

2m∆Q(z0)
Km(zm(ξ), zm(ξ)). (1.9)

We introduce the notation E� for the interior and �E for the closure of a subset E⊂C, while
Ec=C\E denotes the complement. Near any bulk point z0, i.e., a point in the interior S�1
of the droplet, there exists a full asymptotic expansion of the kernel Km; see e.g. [3], [4].

In this case, limm ρm(ξ)=1, uniformly on compact subsets. Away from the droplet, i.e.

for z0∈Sc1 , we instead have limm ρm(ξ)=0. It remains to analyze the boundary points

z0∈∂S1. An illustration of this blow-up procedure for a boundary point in the context

of RNM ensembles is supplied in Figure 1.2.

A natural simplifying assumption is that the boundary ∂S1 is smooth near z0, in

which case we let n be the outer normal to S1 at z0. It is not known what is the limit of

the density ρm, but the following universal behavior is expected.

Conjecture 1.1. (boundary universality) Let z0∈∂S1 and assume that ∂S1 is smooth

in a neighborhood of z0. Then the density ρm converges as m!∞ to the limit

ρ(ξ)= erf(2Re ξ).

Here, we write erf for the complex error function

erf(z)=
1√
2π

∫ ∞

z

e−t
2/2 dt,
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Figure 1.1. The Berezin density Km(z0, z0)−1|Km(z, z0)|2 with Q(z)= 1
2
|z|2 for the boundary

point z0=1 and m=30 (left). The orthogonal polynomial density |Pm,n(z)|2e−2mQ(z) for

n=25, m=20, and Q(z)= 1
2
|z|2−Re(tz2), where t=0.2 (right).

where the integral is taken along a suitable contour from z to the origin and then from

the origin to ∞ along the positive real line. This conjecture, which has circulated in the

community at least since 2008, may have appeared in print for the first time in Riser’s

thesis [46]. It has been verified in some specific cases, and partial results have appeared

recently. In connection with this, we want to mention the work by Ameur, Kang, and

Makarov [5] who used a limiting form of the Ward identities to show that if ρ(ξ) is a

priori known to only depend on Re ξ, then it must necessarily be of the form predicted

by Conjecture 1.1. The full conjecture however remains open. In the setting of Kähler

manifolds, a similar problem appears in the context of partial Bergman kernels defined by

vanishing to high order along a divisor. Under the assumption of S1-invariance around

the divisor, Ross and Singer [48] obtain the error function asymptotics near the emergent

interface around the divisor (see also the work of Zelditch and Zhou [63]). In recent work,

Zelditch and Zhou [62] find that this is a universal edge phenomenon along interfaces in

the context of partial Bergman kernels defined by a quantized Hamiltonian.

Let us briefly motivate why the interface asymptotics for the RNM ensembles should

be approached via the orthogonal polynomials. The standard methods to obtain the

asymptotics of Bergman kernels are local in nature, both the peak section approach of

Tian (see [58]) as well as the microlocal approach of Boutet de Monvel and Sjöstrand, as

explained by Berman, Berndtsson, and Sjöstrand [9] (see also [28]). The same applies to

older work of Hörmander [37] and Fefferman [22]. One reason to expect the boundary

universality conjecture to be difficult is the apparent nonlocality of the correlation ker-

nel. To illustrate this, we consider the Berezin density of [2], associated with secondary

quantization and complementary to the Palm measure, cf. [12], given by

B⟨z0⟩
m (z)=Km(z0, z0)

−1|Km(z, z0)|2e−2mQ(z).

We find numerically that for boundary points z0∈∂S1, this probability density develops

a noticeable ridge with slow decay along the whole boundary of the spectral droplet (see
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Figure 1.2. The RNM process associated with a quadratic potential (the Ginibre ensemble)

with blow-up at a boundary point (courtesy of Nam-Gyu Kang).

Figure 1.1 (left)). For this reason we focus our analysis on the orthogonal polynomials,

which have an even more pronounced non-local behavior (see Figure 1.1 (right)). Indeed,

for rather general potentials Q, the mean field approximation of the random normal ma-

trix model [3], [4] supplies information regarding the individual orthogonal polynomials,

and gives the weak-star convergence of measures

|Pm,n|2e−2mQ
!ϖ( · , Ĉ\S1,∞),

as n,m!∞ with n=m+O(1). Here, the left-hand side is the density of a probability

measure, and the right-hand side expression ϖ( · , Ĉ\S1,∞) stands for harmonic measure

of the domain Ĉ\S1 evaluated at the point at infinity, which has the interpretation of

hitting probability of Brownian motion starting at∞. We observe that harmonic measure

is concentrated to the boundary, so that the above convergence may be interpreted as

boundary concentration. Within the random normal matrix model, the addition of a new

particle has the net effect of adding a term |Pm,n|2e−2mQ of highest degree. This means

that the net effect of adding a particle is felt primarily along the droplet boundary. As a

consequence, we obtain a growing chain of spectral droplets Sτ , so that the probability

wave |Pm,n|2e−2mQ concentrates along ∂Sτ as m,n!∞ with n=mτ .

Finally, we mention that the orthogonal polynomial approach has proven to be

successful in several special cases. For instance, when

Q(z)= 1
2 |z|

2+aRe(z2)

with a>0, Lee and Riser [41] obtain the orthogonal polynomials in explicit form, and

verify Conjecture 1.1 in this case. Along the same lines, in [7], Balogh, Bertola, Lee, and

McLaughlin consider potentials Q which are perturbations of the standard quadratic

potential of the form

Q(z)= 1
2 |z|

2−c log |z−a|2,

for some a∈R, c>0. For this Q, they obtain an asymptotic expansion of the orthogonal

polynomials. For parameters a and c such that the droplet Sτ does not divide the plane,
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the expansion is expressed in terms of the properly normalized conformal mapping of

the complement Scτ onto the exterior disk De, denoted ϕτ . After some rewriting, their

formula reads

Pm,n(z)=
(m
2π

)1/4√
ϕ′τ (z)[ϕτ (z)]

nemQτ (z)(1+O(m−1)), (1.10)

valid in a neighborhood of the closed exterior of the droplet for n/m=τ+O(m−1), where

Qτ is the bounded holomorphic function on Scτ , with real part equal to Q on the boundary

∂Sτ , extended analytically across the boundary. Using the asymptotics (1.10), they

verify Conjecture 1.1 for the given collection of potentials. The analysis in [7] is based

on Riemann–Hilbert problem methods, which are accessible due to a miraculous identity

which transforms the Hermitian orthogonality over the plane into bilinear orthogonality

relations along curves. The latter approach should be compared with the work of Bleher

and Kuijlaars [11] in the context of a cubic potential.

At the physical level, it is understood that the asymptotic formula (1.10) should hold

for the wider class of potentials of the form Q(z)= 1
2 |z|

2+H(z), where H is harmonic in

a neighborhood of the droplet (the so-called Hele–Shaw potentials) [1], [57], [60]. The

higher-order-correction terms appear not to have been pursued.

1.5. Summary of the results

We study the orthogonal polynomials with respect to exponentially varying weights

e−2mQ in the complex plane. The potential Q is assumed admissible in the sense of

the definition below. To prepare the ground, we need some notions from potential the-

ory. Under C2-smoothness and some growth assumption on Q, we consider for τ>0 the

coincidence set

S⋆τ := {z ∈C : Q̂τ (z)=Q(z)},

where Q̂τ solves the obstacle problem

Q̂τ (z)= sup{q(z) : q ∈Subhτ (C) and q⩽Q on C}.

Here, Subhτ (C) denotes the convex body of subharmonic functions in the plane which

grow at most like τ log |z| at infinity. It follows that the function Q̂τ is automatically

C1,1-smooth and harmonic outside the set S⋆τ (see, e.g., [30]). Moreover, ifQ has sufficient

growth, S⋆τ is compact. For a subset E⊂C, we write 1E for the corresponding indicator

function. The support of the probability measure µτ given by

dµτ =2τ−11S⋆
τ
∆QdA
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Figure 1.3. Laplacian growth of the compacts Sτ for Q(z)= 1
2
|z|2−2−1/2 log |z+i | (boundary

curves indicated).

is denoted by Sτ and called the droplet. Clearly, Sτ⊂S⋆τ , and S⋆τ \Sτ is a null-set for

the measure |∆Q| dA. We note that µτ is the equilibrium measure for the weighted

logarithmic energy problem in the external field τ−1Q. More details are supplied in §2.1

below.

Definition 1.2. The potential Q:C!R is said to be τ -admissible at τ=τ0 (or, in

short, τ0-admissible) if Sτ0=S∗
τ0 and the following conditions are satisfied:

(i) Q is C2-smooth in the entire complex plane;

(ii) Q is real-analytic and strictly subharmonic (i.e. ∆Q>0) in a neighborhood of

the droplet Sτ0 ;
(iii) Q is grows sufficiently fast at infinity:

lim inf
|z|!+∞

Q(z)

log |z|
>τ0; (1.11)

(iv) the boundary ∂Sτ0 is a smooth Jordan curve.

Note that under these conditions, it follows that Q̂τ0(z)<Q(z) on Scτ0 . As a con-

sequence, we may exclude the immediate birth of additional components of Sτ as τ

increases from τ0.

In the sequel, we consider τ0=1, and assume that Q is τ -admissible at τ=1. As

observed in §1.3, the condition (1.11) with τ=1 guarantees that all polynomials of degree

up to ⌈(1+ϵ1)m⌉−2 belong to the space L2(C, e−2mQ dA), for some fixed small ϵ1>0.

As Q is assumed 1-admissible, the curve ∂S1 is smooth, simple and closed. By known

properties of Laplacian growth, this assumption implies that the same holds for the

boundaries ∂Sτ for τ∈Iϵ0 :=[1−ϵ0, 1+ϵ0] for some ϵ0>0 (cf. [33], [30]). By considering

a smaller ϵ0, we can make sure this property holds on the larger interval I2ϵ0 as well,

so that in particular Q grows at least like (1+2ϵ0) log |z|+O(1) at infinity. Moreover,

the assumption of 1-admissibility entails that the smooth curves ∂Sτ are actually real-

analytically smooth for τ∈Iϵ0 . This follows from the work of Sakai [50] on boundaries

with a 1-sided Schwarz function, as observed in [33].
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We now proceed to present our main theorem. To set things up, we denote for τ∈Iϵ0
by ϕτ the conformal mapping ϕτ :Scτ!De, normalized by ϕτ (∞)=∞ and ϕ′τ (∞)>0. As

a consequence of 1-admissibility, ϕτ extends to a conformal mapping Kcτ,0!De(0, ρ0,0),

where 0<ρ0,0<1 and Kτ,0⊂Sτ denotes an appropriate compact continuum. Here, we

use the notation De(0, r):={z∈C:|z|>r} for the exterior disk of radius r centered at the

origin. We let Qτ denote the bounded holomorphic function on Scτ whose real part equals

the potential Q along the boundary ∂Sτ , and whose imaginary part vanishes at infinity.

By possibly adjusting ρ0,0, we may ensure that Qτ extends holomorphically to Kcτ,0.
For a subset E⊂C, we use the notation distC(z, E)=infw∈E |z−w| for the Euclidean

distance from z to the set E .

Theorem 1.3. Assume that Q is 1-admissible. Given a positive integer κ, there

exist bounded holomorphic functions Bτ,j defined in a fixed neighborhood of Scτ such that

for any positive real A, the asymptotic formula

Pm,n(z)=m1/4[ϕ′τ (z)]
1/2[ϕτ (z)]

nemQτ (z)

( κ∑
j=0

m−jBτ,j(z)+O(m−κ−1)

)
,

holds, where the error term is uniform over all z∈C with

distC(z,Scτ )⩽A(m−1 logm)1/2

as n=τm!+∞ along the integers with τ∈Iϵ0 .

In other words, the orthogonal polynomials Pm,n enjoy an asymptotic expansion

Pm,n(z)∼m1/4[ϕ′τ (z)]
1/2[ϕτ (z)]

nemQτ (z)

(
Bτ,0(z)+

1

m
Bτ,1(z)+...

)
,

valid provided that distC(z,Scτ )⩽A(m−1 logm)1/2 as n=τm!+∞ and τ∈Iϵ0 , for any

given A>0.

Remark 1.4. (a) We derive Theorem 1.3 from an L2-version of the asymptotic ex-

pansion, given in Theorem 3.2 below. An advantage of the L2-version is that it holds in

a fixed ϵ-neighborhood of the exterior Scτ .
(b) It is curious to note that the expansion of Pm,n contains the factor (ϕ′τ )

1/2,

rather than ϕ′τ as one might expect from Carleman’s theorem. The square root is more

reminiscent of Szegő’s theorem. We have no satisfactory explanation for this fact, other

than appealing to heuristics based on the steepest descent method. Naturally, the ex-

pansion could be written with ϕ′τ as a factor, by adjusting the terms Bτ,j accordingly.

However, the term Bτ,0 takes on the simplest possible form with the former choice, as

shown in Theorem 1.5.
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In the context of Theorem 1.3, we would like to know the coefficient functions Bτ,j .
How to find them is explained in the following theorem. For the formulation, we need

the Szegő projection PH2
−,0

of L2(T) onto the conjugate Hardy space H2
−,0=L

2(T)⊖H2

(cf. §2.5 below). In addition, we need the effective weight Rτ which takes into account

the growth behavior of polynomials and a conformal change-of-variables. It is defined in

a neighborhood of 	De by

Rτ =(Q−�Qτ )�ϕ−1
τ , (1.12)

where we need to explain what is the function �Qτ . The solution Q̂τ to the obstacle

problem is a C1,1-smooth function which equals Q on Sτ , while it is strictly smaller

and harmonic in the exterior Scτ . As a consequence of the smoothness of Q and the

boundary curve ∂Sτ , the restriction Q̂τ |Sc
τ
to the exterior extends harmonically across

the boundary for each τ∈Iϵ0 . We denote the extended function by �Qτ .

Theorem 1.5. In the asymptotic expansion of Theorem 1.3, we have that

Bτ,0 =π−1/4eHQ,τ ,

where HQ,τ is bounded and holomorphic in Scτ and satisfies ImHQ,τ (∞)=0, as well as

ReHQ,τ =
1
4 log∆Q on ∂Sτ .

Moreover, if HRτ
denotes the bounded holomorphic function on De with

ReHRτ
= 1

4 log(4∆Rτ ) on T,

and ImHRτ
(∞)=0, then for j=1, 2, 3, ... , the coefficients Bτ,j have the form

Bτ,j = [ϕ′τ ]
1/2Bτ,j �ϕτ ,

where the functions Bτ,j are bounded and holomorphic in De, and given by

Bτ,j = cτ,je
HRτ −eHRτ PH2

−,0
[eH̄Rτ Fτ,j ]

for some real-analytic functions Fτ,j on the circle T and constants cτ,j∈R. The functions
Fτ,j as well as the constants cτ,j may be computed algorithmically in terms of the potential

Rτ and the functions Bτ,0, ..., Bτ,j−1, where Bτ,0=(4π)−1/4eHRτ .

Remark 1.6. (a) In the above theorem, all the functions Bτ,j and Bτ,j , as well as

HQ,τ and HRτ
, extend holomorphically across their respective boundaries.

(b) The functions HQ,τ and HRτ
are related by

HRτ �ϕτ =
1
2 log(2ϕ

′
τ )+HQ,τ .

(c) We point out that Theorems 1.3 and 1.5 together imply that for large enough

m, and for τ=n/m∈Iϵ0 , all the zeros of the polynomial Pm,n(z) lie inside Sτ , and stay

away from the boundary curve ∂Sτ by a distance of at least A(m−1 logm)1/2.
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While Theorem 1.5 gives the asymptotic structure of the orthogonal polynomials,

it remains to specify how to algorithmically obtain the real-analytic functions Fτ,j and

the constants cτ,j , for j=1, 2, 3, ... . For k=0, 1, 2, ... , let Lk be the differential operator

given by

Lk[f ] =

3k∑
ν=k

(−1)ν−k2−ν

ν!(ν−k)![∂2rRτ (reiθ)]ν
∂2νr

([
Rτ−

1

2
(r−1)2∂2rRτ (e

iθ)

]ν−k
f(reiθ)

)
. (1.13)

This is a differential operator of order 6k, acting on a smooth function f defined in

a neighborhood of the unit circle. We are specifically interested in the restriction

Lk[f ](re
iθ)|r=1, which expression only involves derivatives of order at most 2k. The

operator Lk results from the asymptotic analysis of definite integrals using Laplace’s

method, as in Proposition 2.10 below. Later on, in Lemma 4.1, we show the existence of

differential operators Mk with the property that∫
T
eilθ(∂2rRτ (re

iθ))−1/2Lk[r
1−lf(reiθ)]|r=1 dθ=

∫
T
eilθMk[f ](e

iθ)] dθ,

for l=1, 2, 3, ... . We use these operators to rid the left-hand side of any unwanted depen-

dence on the parameter l. In terms of the operators Lk and Mk, we may now express

Fτ,j and cτ,j as follows:

Fτ,j(θ)=

j∑
k=1

Mk[Bτ,j−k](e
iθ), j⩾ 1, (1.14)

and the real constants cτ,j are given by cτ,0=(4π)−1/4 while, for j=1, 2, 3, ... ,

cτ,j =−1

2
(4π)1/4

∑
(i,k,l)∈תj

∫
T
Mk[Bτ,i
Bτ,l](e

iθ) ds(eiθ), (1.15)

where ,j={(iת k, l)∈N3 :i, l<j, k⩾0, and i+k+l=j} and N:={0, 1, 2, ... }. The way this

algorithm works is that we start with the known function Bτ,0, which in its turn gives

the function Fτ,1 and the constant cτ,1 via (1.14) and (1.15), respectively. This then

gives Bτ,1 from the expression in Theorem 1.5. In the next round, we obtain Fτ,2 and

cτ,2 followed by Bτ,2 in a similar fashion. An inductive procedure gives Fτ,j , cτ,j , and

Bτ,j for all j⩾2 as well. Knowing Bτ,j then gives the coefficient function Bτ,j as well, by
Theorem 1.5.

As a direct consequence of Theorems 1.3 and 1.5, we resolve the boundary univer-

sality conjecture (Conjecture 1.1) for 1-admissible potentials. For the convenience of the

reader, we recall some notation. For z0∈∂S1 we denote by n the outward unit normal to

∂Sτ at z0, and write zm(ξ) for the rescaled variable around z0 given by (1.8).
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Corollary 1.7. Assume that Q is 1-admissible, and denote by km the rescaled

kernel

km(ξ, η)=
1

2m∆Q(z0)
Km(zm(ξ), zm(η)).

Then, there exist unimodular continuous functions cm:C!T such that we have the con-

vergence

lim
m!∞

cm(ξ)c̄m(η)km(ξ, η)=k(ξ, η),

locally uniformly on C2, where the limiting kernel is the Faddeeva plasma kernel

k(ξ, η)= eξη̄−(|ξ|2+|η|2)/2 erf(ξ+η̄).

The terminology Faddeeva plasma kernel comes from the plasma dispersion function,

which was tabulated by Faddeeva and Terent′ev in [21].

Remark 1.8. The above kernel convergence has an interpretation in terms of de-

terminantal point processes in the plane. More precisely, the blow-up of the eigenvalue

process for the RNM ensemble around z0 converges to the Faddeeva plasma point field,

with correlation kernel k(ξ, η). The unimodular continuous functions cm are irrelevant,

as they do not affect determinantal point processes.

To complement the present exposition on planar orthogonal polynomials, we explain

in [34] how the ideas developed here also apply to give a full asymptotic expansion of

the Bergman kernel for exponentially varying weights when one of the variables is away

from the corresponding droplet. In that setting, holes in the droplet typically arise from

the repulsive effect of patches where ∆Q<0. This result gives error function transition

behavior along smooth loops of the droplet boundary.

In the follow-up work [36], we intend to explore further the implications of Theo-

rems 3.2 and 1.5 for the theory of random normal matrices. In particular, we analyze the

asymptotics of the free energy logZm,Q, where Zm,Q denotes the partition function of

the RNM ensemble, and relate the analysis to the planar analogue of the classical Szegő

limit theorem on Toeplitz determinants.

1.6. Sketch of the main ideas

The first step towards obtaining Theorem 1.3 is the construction of a family of approxi-

mately orthogonal quasipolynomials, defined outside a compact subset Kτ of the interior

of the droplet Sτ . This family of functions have the property that they are approxi-

mately orthogonal to the collection of lower-degree polynomials, have the correct poly-

nomial growth at infinity, but need not be well-defined globally (i.e. on Kτ ). In a second
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step, these quasipolynomials may be corrected to true polynomials using Hörmander’s

∂̄-estimates. The actual construction depends on our key lemma (Lemma 3.9) which

establishes the existence of what we call the orthogonal foliation flow.

We turn to the underlying ideas for the orthogonal foliation flow. Our approach will

take a slightly different point of view than what is used later on. It has the advantage

of being more intuitively direct. The approach begins with the following disintegration

formula: let {γm,n,t}t denote a smoothly varying family of closed simple curves, which

foliate a region Ωm,n when t runs through an interval Jm. If ν(z) denotes the scalar

normal velocity of the curve flow as it passes through the point z, then for a suitably

integrable function F we have

∫
Ωm,n

F (z)e−2mQ(z) dA(z)= 2

∫
Jm

∫
γm,n,t

F (z)e−2mQ(z)ν(z) ds(z) dt. (1.16)

We consider the weighted arc length measure e−2mQν ds restricted to the curve γm,n,t,

and the associated orthogonal polynomial Pm,n,t of degree n. We would like to find

a foliation {γm,n,t}t of the region Ωm,n such that Pm,n,t=c(t)Pm,n,0, where Pm,n,0 is

independent of the flow parameter t and c(t) is an appropriate positive constant. As a

consequence of (1.16), the polynomial Pm,n,0 is then orthogonal to Poln, with respect

to the measure 1Ωm,n
e−2mQ dA. Now, if the foliation covers a sufficiently large enough

region Ωm,n, then the resulting normalized orthogonal polynomial ought to be close to

Pm,n itself. In other words, the 2-dimensional orthogonality relations foliate into lower-

dimensional orthogonality relations along a curve family {γm,n,t}t.

The stationarity condition Pm,n,t=c(t)Pm,n,0 is quite demanding, and in fact we do

not know that such a foliation exists, at least if we require it to foliate the entire plane.

Instead, we obtain the foliation in an approximate sense, up to any given precision,

so that Ωm,n covers a band around ∂Sτ of width ≍m−1/2 logm. We remark that the

stationarity condition may be thought of as a Hele–Shaw flow condition (see [27], [33])

for the curves γm,n,t, with respect to the weight |Pm,n,0|2e−2mQ. Hele–Shaw flows are

notorious for singularity formation, after which the foliation flow cannot be continued.

The requirement not to develop such singularities puts a strong requirement on the weight

|Pm,n,0|2e−2mQ. This is used in an approximate fashion in §6 to devise an algorithm to

construct Pm,n,0 together with the foliation iteratively in a self-improving manner. For

technical reasons, we work with the flow curves Γm,n,t=ϕτ (γm,n,t) after applying the

conformal mapping ϕτ , and consider quasipolynomials rather than polynomials.
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1.7. An outline of the presentation

In §2, we introduce some auxiliary material which will be needed later on. In particular,

we discuss some aspects of weighted logarithmic potential theory and obstacle problems,

and introduce the concept of weighted Laplacian growth. Moreover, we collect some

results on Hörmander-type L2-estimates for the ∂̄-operator, and the asymptotic analysis

of integrals based on Laplace’s method.

In §3, we introduce the notion of quasipolynomials, and state our key lemma on the

orthogonal foliation flow (Lemma 3.9). Using Hörmander-type ∂̄-techniques we get the

L2-analogue of the main theorem (Theorem 3.2) from the key lemma. The main theorem

(Theorem 1.3) then follows from Theorem 3.2 by a weighted Bernstein–Walsh lemma.

In §4, we obtain Theorem 1.5, which identifies the coefficient functions in the asymp-

totic expansion. The proof is based on steepest descent analysis. The starting point is the

existence of the expansion of Theorem 1.3 which tells us that the probability distribution

|Pm,n|2e−2mQ is approximately a Gaussian ridge centered around ∂Sτ , so by composing

with the conformal mapping ϕτ we obtain a Gaussian ridge around the unit circle. By

writing the relevant integrals in polar coordinates and applying Laplace’s method in the

radial direction, this structure allows us to collapse the orthogonality conditions into

integral equations on the unit circle. The collapsed orthogonality conditions then reduce

to inhomogeneous Toeplitz kernel equations. The algorithm arises when we solve those

equations.

In §5, we supply more details on determinantal point processes, and give the proof

of Corollary 1.7 on boundary universality in the random normal matrix model for 1-

admissible potentials.

In §6, we supply the proof of key lemma on the existence of the orthogonal foliation

flow. The proof is based on an algorithm, which determines both the flow and the

asymptotic expansion of the approximately orthogonal quasipolynomials in an iterative

and intertwined fashion. An outline of the algorithm is provided in §6.2 and §6.4.

Finally, in §7, we connect our orthogonal foliation flow with the Its and Takhtajan

approach involving soft Riemann–Hilbert problems (2×2 matrix ∂̄-problems).
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1.9. Notation and conventions

We denote by ∂z and ∂̄z the standard Wirtinger derivatives, given by

∂z =
1
2 (∂x−i∂y) and ∂̄z =

1
2 (∂x+i∂y), z=x+iy. (1.17)

When the dependence on z is clear, we will omit the subscript and simply write ∂ and ∂̄.

The Laplacian factorizes as ∆=∂∂̄ (notice that this is a quarter of the usual Laplacian).

The Riemann sphere is denoted by Ĉ, and we identify it with the extended complex

plane Ĉ=C∪{∞} via stereographic projection. If Γ is a bounded Jordan curve, and

Ωe denotes the unbounded component of C\Γ, then the domain Ωe is simply connected

if regarded as a domain on the Riemann sphere Ĉ. As a consequence, the Riemann

mapping theorem guarantees that there exists a conformal mapping ϕ: Ωe!De onto the

exterior disk De. This mapping is uniquely determined if we require that

ϕ(∞)=∞ and ϕ′(∞)> 0. (1.18)

A conformal mapping of unbounded domains which is subject to the normalization

(1.18) at infinity is called orthostatic. Unless specified otherwise, a conformal mapping

ϕ: Ω1!Ω2 is tacitly assumed to be onto.

We use the standard Landau notation for control of asymptotic quantities. Namely, if

f(t) and g(t) denote two positive functions defined for t∈(0, 1], we say that f(t)=O(g(t))

as t!0 if there exists a constant C with 0<C<∞ such that f(t)⩽Cg(t) for all t>0

sufficiently small. Moreover, we say that f(t)=o(g(t)) as t!0 if limt!0 f(t)/g(t)=0.

Moreover, we use the notation f(t)≍g(t) to say that f(t)=O(g(t)) and g(t)=O(f(t)), as

t!0. Similar comparisons when f and g are functions defined on more general sets are

understood analogously.

For a positive Borel measure µ supported on the set Ω⊂C, we denote by L2(Ω, µ) the

standard L2-space of square integrable functions with respect to µ, with inner product

⟨f, g⟩µ=
∫
Ω

f(z)g(z) dµ(z).

For a domain Ω⊂C, we define the Bergman space A2(Ω, µ) as the subspace of L2(Ω, µ)

consisting of all f∈L2(Ω, µ) which are holomorphic on Ω. For an integer n and unbounded

Ω, we denote by L2
n(Ω, µ) and A

2
n(Ω, µ) the subspaces of functions f with

|f(z)|=O(|z|n−1), z ∈Ω, |z|!+∞.

If Ω=C is the entire complex plane, we drop it from the notation. Measures of the form

dµ=e−ϕ dA play a major role in our analysis, and for such measures we use the shorthand

notation A2
ϕ(Ω), L

2
ϕ(Ω), A

2
ϕ,n(Ω), and L2

ϕ,n(Ω) for the spaces discussed above. The L2

norm and inner products are denoted by ∥ · ∥µ and ⟨· , ·⟩µ, or simply by ∥ · ∥ϕ and ⟨· , ·⟩ϕ
in the case of measure of the form dµ=e−ϕ dA.
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Frequently used notation

For the convenience of the reader, we supply a list of frequently used notation.

C, R, T Complex plane, real line, and unit circle, respectively.

D, De Open unit disk D={z :|z|<1} and exterior disk De={z :|z|>1}, also
for arguments (z0, r) denoting center and radius of the boundary circle.

Z, N, Z+ Integers, natural numbers N={0, 1, 2, ... } and positive integers

Z+={1, 2, 3, ... }, respectively.
Ec, E�, �E Complement, interior, and closure of the set E . The complement is

understood as C\E , unless specified otherwise.

1E Indicator function for the set E .
∂z, ∂̄z Wirtinger derivatives, given by ∂z=

1
2 (∂x−i∂y), ∂̄z=

1
2 (∂x+i∂y),

where z=x+iy.

∆ Laplacian, which factorizes as ∆=∂∂̄. N.B.: this equals 1-quarter of

the usual Laplacian.

Poln Space of polynomials of degree at most n−1.

Q, Q̂τ The potential and the solution to obstacle problem with growth τ log |z|
at infinity, respectively.

�Qτ Harmonic extension of Q̂τ |Sc
τ
across ∂Sτ .

Q⊛
τ Bounded harmonic extension of Q|∂Sτ

to Scτ .
Qτ Holomorphic function on Scτ with ReQτ=Q

⊛
τ and ImQτ (∞)=0.

Sτ , S⋆τ The droplet and the coincidence set for the obstacle problem, respectively.

These are equal under the τ0-admissibility assumption, for |τ−τ0| small.

K0,τ , Kτ Compact subsets of S�τ related with the radii ρ0,0 and ρ0, respectively.

Iϵ0 Iϵ0=[1−ϵ0, 1+ϵ0] for a small parameter ϵ0>0.

ϕτ Conformal mapping ϕτ :Scτ!De with ϕτ (∞)=∞ and ϕ′τ (∞)>0.

Rτ The effective weight, given by (Q−�Qτ )�ϕ−1
τ .

χτ,0, χτ,1 Smooth cut-off functions related via χτ,0=χτ,1�ϕτ .

ϖ(E,Ω, z0) Harmonic measure of E relative to (Ω, z0).

H2, H2
−, H

2
−,0 Hardy spaces; cf. §2.5.

HΩ The Herglotz operator for a domain Ω containing the point at infinity.

PH2 , PH2
−

Orthogonal projection onto Hardy spaces.

,ת ,ס ,ט Z Index sets, appearing with various subscripts and superscripts.

See pp. 359, 360, 371, 377–383, 389–397.

Lk, Mk Differential operators arising in steepest descent calculations.

Bτ,j , Bτ,j Coefficient functions in asymptotic expansions of ONPs, related through

the conformal mapping ϕτ (see Theorem 1.5).

ψs,t, ψ̂j,l, bj Conformal mappings related to the orthogonal foliation flow, their Taylor

coefficients in (s, t), and bounded holomorphic coefficient functions.

Γm,n,t, Dm,n The curves of the orthogonal foliation and the foliated region, respectively.

Πs,t, Π̂j,l The logarithmic density in the master equation and its Taylor coefficients

in (s, t); see §6.4.

Λm,n Canonical positioning operator; cf. §3.3.

F
⟨κ⟩
m,n, f

⟨κ⟩
m,n Quasipolynomial and analogous bounded function, related through Λm,n.

δm The number δm=m−1/2 logm.

Â(ϱ, σ) The 2σ-fattened diagonal annulus; cf. §6.1.

≺L, ≺OL Lexicographic and order-lexicographic orderings.

POL(·) Polynomial complexity classes; cf. §6.7.

Gµ,ν , Hµ,ν Non-linear differential expressions for Faà di Bruno’s formula.
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2. Preliminaries

2.1. An obstacle problem and logarithmic potential theory

In this section, we follow the presentation of [30]. The standard reference for the potential

theoretic aspects of this material is the monograph [49] by Saff and Totik.

For a positive real parameter τ , let Subhτ (C) denote the convex set of all subhar-

monic functions q:C!R∪{−∞} on the complex plane C which meet the growth bound

q(z)⩽ τ log |z|+O(1)

as |z|!∞. For lower semicontinuous potentials Q subject to the growth condition (1.11)

and for 0<τ⩽τ0, we let Q̂τ be the solution to the obstacle problem

Q̂τ (z) := sup{q(z) : q ∈Subhτ (C) and q⩽Q on C}, (2.1)

and observe that trivially Q̂τ⩽Q, and if we regularize Q̂τ on a set of logarithmic capacity

zero (and keep the same notation for the regularized function), then Q̂τ∈Subhτ (C) holds.
Suppose now that Q is C2-smooth. Standard regularity results then give that Q̂τ is C1,1-

smooth, so that the partial derivatives of order 2 of Q̂τ are locally bounded (in the sense

of distribution theory); see e.g. [10] for a simple argument to this effect. As a consequence

of the growth condition (1.11) on Q, the coincidence set defined by

S⋆τ := {z ∈C : Q̂τ (z)=Q(z)}

is compact, and moreover, a Perron-type argument shows that Q̂τ is harmonic off S⋆τ . It
now follows from the C1,1-smoothness that ∆Q̂τ=1S⋆

τ
∆Q holds in the sense of distribu-

tion theory (see [40, p. 53]).

The above obstacle problem has a direct relation with weighted potential theory.

The weighted logarithmic energy, with respect to a continuous weight function V :C!R,
of a compactly supported finite real Borel measure µ is defined as

IV [µ] =

∫
C×C

log
1

|z−w|
dµ(z) dµ(w)+2

∫
C
V (z) dµ(w).

With V =τ−1Q, we set out to minimize the energy Iτ−1Q[µ] over all compactly supported

Borel probability measures µ. There is a unique such minimizer, called the equilibrium

measure, which we denote by µτ . The connection with the obstacle problem is via the

relation

dµτ (z)= 2τ−1∆Q̂τ dA=2τ−11S⋆
τ
∆Q(z) dA. (2.2)
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As a consequence, we may recover the logarithmic potential for the equilibrium measure

from Q̂τ and a real constant FQ,τ :

Uµτ (z) :=

∫
C
log

1

|z−w|
dµτ (z)=−τ−1Q̂τ (z)+FQ,τ , z ∈C.

As µτ is a probability measure by definition, we see from (2.2) that ∆Q⩾0 a.e. on S⋆τ .
So, the coincidence set S⋆τ will avoid the open subset of the plane where ∆Q<0, which

may be non-empty. We call the support (as a distribution) of the equilibrium measure

µτ the droplet, and denote it by Sτ . We alternatively call it the spectral droplet, due

to the spectral interpretation as the accumulation set for the eigenvalues of random

matrices. In general this is a subset of the coincidence (or contact) set S⋆τ . However,

the difference set S⋆τ \Sτ is small, in the sense that it is a null set with respect to the

weighted area measure |∆Q| dA. In this presentation, we will assume throughout that

the potential Q is 1-admissible. Under this assumption, we have the equality Sτ=S⋆τ for

τ∈Iϵ0 :=[1−ϵ0, 1+ϵ0] with some small but positive ϵ0.

The function Q̂τ is C1,1-smooth, with Q̂τ=Q on the droplet Sτ , whereas in the

complement Scτ it is harmonic and determined by the boundary data that Q̂τ=Q on

∂Sτ and the growth Q̂τ (z)=τ log |z|+O(1) as |z|!+∞. We proceed to introduce some

further functions related to the potential Q.

Definition 2.1. Assume that Q is 1-admissible, and let τ∈Iϵ0 . Then,
(i) �Qτ is defined as the harmonic extension of the restriction of Q̂τ to Scτ across the

boundary ∂Sτ .
(ii) Q⊛

τ is the bounded harmonic harmonic function on Scτ which equals Q on ∂Sτ ,
extended harmonically across ∂Sτ .

(iii) Qτ is the bounded holomorphic function in Scτ such that ReQτ=Q
⊛
τ on Scτ with

ImQτ (∞)=0, extended analytically across ∂Sτ .

It is clear that the functions �Qτ and Q⊛
τ are related via

�Qτ = τ log |ϕτ |+Q⊛
τ . (2.3)

2.2. A weighted Bernstein–Walsh lemma

The significance of the set Sτ in relation to orthogonal polynomials is made clear by

Proposition 2.3 below. We begin with a useful lemma taken from [2]; see Lemma 3.2.

Lemma 2.2. Let u be holomorphic in a disk D(z,m−1/2δ). Then,

|u(z)|2e−2mQ(z) ⩽
meAδ

2

δ2

∫
D(z,m−1/2)

|u|2e−2mQ dA,

where A denotes the essential supremum of ∆Q on D(z,m−1/2δ).
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This lemma is used in [2] to obtain growth bounds for polynomials of degree at

most n. The approach works more generally, for functions of polynomial growth in the

space A2
2mQ(Kc) defined in §1.9, where K is a compact subset of the interior of the

droplet Sτ . The following result generalizes the classical Bernstein–Walsh lemma; see

e.g. [49, §III.2].

Proposition 2.3. Let τ=n/m, and suppose K is a compact subset of the interior

of Sτ . Then there exists a positive constant C such that for any u∈A2
2mQ(Kc) with the

polynomial growth control |u(z)|=O(|z|n) as |z|!∞, we have that

|u(z)|⩽Cm1/2∥u∥L2(Kc,e−2mQ)e
mQ̂τ (z), distC(z,K)⩾ δm−1/2.

Proof. Assume that z∈Sτ \K lies at a distance of at least m−1/2δ from K. By

Lemma 2.2, we have the estimate

|u(z)|2 ⩽ me2Aδ
2

δ2
e2mQ(z)∥u∥2L2(Kc,e−2mQ),

which yields the claim for z∈Sτ \K with the constant C=Cδ=δ
−1eAδ

2

. Next, suppose

that u has norm equal to 1, and let q(z) be the subharmonic function

q(z)=
1

2m
log

|u(z)|2

mC2
δ

, z ∈Kc.

It follows from the above estimate on |u(z)|2 that q(z)⩽Q for z∈Sτ \K, and the growth

bound on |u(z)| as |z|!∞ entails that q(z)⩽τ log |z|+O(1) as |z|!∞. Now, we consider

the difference q−Q̂τ and observe that it is harmonic in Scτ and that q−Q̂τ⩽0 holds on the

boundary ∂Sτ , since Q̂τ=Q there. Moreover, we see from the growth bound on q that the

difference q−Q̂τ is bounded from above in Scτ . It now follows from the maximum principle

for subharmonic functions that q(z)−Q̂τ (z)⩽0 throughout z∈Scτ , which completes the

proof.

In particular, Proposition 2.3 tells us that |Pm,n(z)|2e−2mQ decays exponentially

off the droplet Sτ if τ=n/m. As alluded to in the introduction, it is possible to also

locate the mass of the probability density |Pm,n(z)|2e−2mQ(z). We recall the notation

ϖ( · , Ĉ\St,∞) for the harmonic measure of Ĉ\St relative to the point at infinity. The

following is from [3].

Theorem 2.4. As m,n!∞ with τ=n/m=τ0+O(m−1) for some τ0 with 0<τ0⩽1,

we have the convergence

|Pm,n|2e−2mQ
!ϖ( · , Ĉ\Sτ0 ,∞),

in the sense of weak-star convergence of measures.

See Figure 1.1 (right) above for an illustration of this convergence.
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2.3. Weighted Laplacian growth

Weighted Laplacian growth (or weighted Hele–Shaw flow) describes the movement of the

boundary of a viscous fluid droplet in a porous medium, as fluid is injected into the

droplet. The weight appears as a result of the variable permeability of the medium, or,

alternatively, as a result of curved geometry. For the mathematical formulation, consider

a simply connected domain Ω0 on the Riemann sphere Ĉ:=C∪{∞} containing the point

at infinity. A smoothly increasing family {Ωt}t of domains is said to be a Hele–Shaw

flow with weight ω, relative to the injection point at infinity, if the infinitesimal change

of the measure 1Ωτ
ω(z) dA equals harmonic measure (the derivative is as usual taken in

the sense of distribution theory):

∂t(1Ωt
ω dA)= dϖ( · ,Ωt,∞). (2.4)

Alternatively, we can think in terms of the weak formulation, which amounts to the

requirement that ∫
Ωt\Ωs

hω dA=(t−s)h(∞), s< t,

holds for all bounded harmonic functions h on Ωt. At times, we prefer to think of

the flow of the boundary loops {∂Ωt}t rather than the flow of domains itself. A basic

reference on Hele–Shaw flow is the book [27] by Gustafsson, Teodorescu and Vasili′ev.

The weighted Hele–Shaw flow problem appears to have been treated first in the paper

[33] by Hedenmalm and Shimorin, where the weight was interpreted as a Riemannian

metric, motivated by considerations in the potential theory of clamped plates [29]. This

line of work is continued by [32], [31]. In this connection, we mention the work [47] by

Ross and Witt–Nyström, which deals with a less regular situation.

In the present work, weighted Laplacian growth appears for two distinct families

of weights that arise naturally. For instance, the complement Scτ evolves according to

Laplacian growth with the weight 2∆Q and injection point at infinity, with τ as backward

time. The second type of Laplacian growth occurs with the weight ω=|P |2e−2mQ, where

P is an approximation of the orthogonal polynomial Pm,n; see the discussion in §1.6.

The latter flow of loops is what we call the orthogonal foliation flow.

We will need the following lemma, about the movement of the loops ∂Sτ as τ varies.

Lemma 2.5. Fix τ∈Iϵ0=[1−ϵ0, 1+ϵ0]. Denote by nτ (ζ) the outer unit normal to

∂Sτ at a point ζ∈∂Sτ , and let nτ (ζ)R denote the straight line which contains nτ (ζ) and

the origin. Then, if for real ε the point ζε is closest to ζ in the intersection

(ζ−nτ (ζ)R)∩∂Sτ−ε,
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we have as ε!0 that

ζε= ζ−εnτ (ζ)
|ϕ′τ (ζ)|
4∆Q(ζ)

+O(ε2)

and the outer normal nτ−ε(ζε) satisfies

nτ−ε(ζε)=nτ (ζ)+O(ε).

Proof. We recall that the compact sets Sτ evolve according to weighted Laplacian

growth with respect to the weight 2∆Q, so that we have (2.4) with Ωτ=Scτ . For the

details, we refer to Theorem 5.22 and Proposition 6.10 in [30]. This means that

∂τ (1Sτ 2∆QdA)= dϖ( · ,Scτ ,∞)= |ϕ′τ | ds, (2.5)

where we recall that ϕτ is the (surjective) conformal mapping Scτ!De. Informally, the

boundary ∂Sτ moves at local speed (4∆Q)−1|ϕ′τ | in the exterior normal direction, where

the number 4 appears in place of 2 as a result of the different normalizations associated

with ds and dA. It is known by [33, Theorem 6.2], which is based on the Nishida–

Nirenberg version of the Cauchy–Kovalevskaya theorem, that the loops ∂Sτ deform real-

analytically as τ varies. In view of this fact and the evolution equation (2.5), the claimed

assertions follow from Taylor’s formula.

2.4. Polynomial ∂̄-methods

Let ϕ be a strictly subharmonic function on C. Hörmander’s classical result states that

the inhomogeneous ∂̄-equation

∂̄u= f

can be solved for any datum f∈L2
loc(C) with the estimate∫

C
|u|2e−ϕ dA⩽

∫
C
|f |2 e

−ϕ

∆ϕ
dA.

Taking this as a starting point, in [2], Ameur, Hedenmalm, and Makarov investigate the

case when the solution u is constrained by an additional polynomial growth condition at

infinity. We now describe this result. Recall from §1.9 that L2
ϕ,n(C) denotes the subspace

of L2
ϕ(C) subject to the growth restraint

f(z)=O(|z|n−1)

near infinity. The polynomial growth Bergman space A2
ϕ,n(C) is analogously defined

there. We will consider these spaces with ϕ=2mQ.

The following is a direct consequence of [2, Theorem 4.1].
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Proposition 2.6. Let f∈L∞(C) be supported on Sτ . Then, the L2
2mQ,n(C)-minimal

solution u0,n to the problem

∂̄u0,n= f

satisfies ∫
C
|u0,n|2e−2mQ dA⩽

1

2m

∫
Sτ

|f |2 e
−2mQ

∆Q
dA, (2.6)

provided that the right-hand side is finite.

Proof. We apply [2, Theorem 4.1] with T =Sτ , ϕ=2mQ, ϱ=0, and

ϕ̂=2m
(
1− ε

τ

)
Q̂τ+εm log(1+|z|2).

Then all conditions except (ii) are trivially satisfied with a, b=o(1) as ε!0+. To see why

(ii) holds, it is enough to observe that

ϕ̂(z)= 2mτ
(
1− ε

τ

)
log |z|+2εm log |z|+O(1)= log(|z|2n)+O(1)

as |z|!∞. Hence, the inclusion A2
ϕ̂
⊂Poln follows. Letting ε!0+ for fixed m and n

completes the proof.

Remark 2.7. In [2, Theorem 4.1], there is an additional freedom to modify the

weight with a function ϱ, which we set to equal ϱ=0 in the above. The conditions on ϱ

are such that there is flexibility in the interior direction inside the droplet, but none in

the exterior or along the boundary. As ϱ is used to control the norm-minimal solution

to the ∂̄-equation, this flexibility tells us that decay of the datum f in the interior of

the droplet translates to a corresponding decay of the solution u0,n. On the other hand,

decay of the datum near a boundary point in the tangential direction will not necessarily

have the same effect.

2.5. Holomorphic boundary value problems and Toeplitz operators

For the reader’s convenience, we include some elementary facts from the theory of Her-

glotz kernels and Hardy spaces. Let f be holomorphic in the unit disk D with continuous

extension to the boundary. The classical Herglotz integral formula [25, pp. 52] asserts

that

f(z)=

∫
T

ζ+z

ζ−z
Re(f(ζ)) ds(ζ)+Im(f(0)), z ∈D.

If F∈L1(T) is real-valued, this allows us to solve the boundary value problem

Re f |T =F,
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where f is holomorphic in the disk by the integral formula

f(z)=HDF (z) :=

∫
T

ζ+z

ζ−z
F (ζ) ds(ζ), z ∈D.

Moreover, the solution is unique up to an additive imaginary constant. For us, it is

more natural to work in the exterior disk. By reflection in the unit circle, we obtain the

formula

f(z)=HDeF (z) :=

∫
T

z+ζ

z−ζ
F (ζ) ds(ζ), z ∈De,

which we refer to as the Herglotz transform of F . If F is L2(T)-integrable, its Herglotz

transform is in the conjugate Hardy space H2
−. If we assume slightly more smoothness,

e.g. that F is C1-smooth, then its Herglotz transform is continuous and bounded in the

closed exterior disk 	De. Analogously, if we have a lot of smoothness, e.g. F is Cω-smooth,

then its Herglotz transform extends to a bounded analytic function on a slightly bigger

exterior disk De(0, ρ) with ρ<1. We recall the definition of the Hardy space H2=H2(D)
mentioned above. A function f is in H2 if it is holomorphic in D with

sup
0<r<1

∫
T
|f(rζ)|2 ds(ζ)<+∞.

Alternatively, in terms of the boundary values, H2 is the closed subspace of L2(T) defined
by the property that the Fourier coefficients with negative index all vanish. The conjugate

Hardy space H2
− consists of all functions of the form f̄ , where f∈H2, which may also be

viewed as the Hardy space on the exterior disk De. In a similar fashion, the standard

Hp-spaces can be defined as well. For instance, for p=∞ the space H∞ consists of the

bounded holomorphic functions in the unit disk D equipped with the supremum norm.

Associated with the Hardy and conjugate Hardy subspaces of L2(T) there are the

orthogonal projections PH2 :L2(T)!H2 and PH2
−
:L2(T)!H2

−. These are associated

with the Szegő integral kernel:

PH2f(z)=

∫
T

f(ζ)

1−zζ̄
ds(ζ), z ∈D,

and

PH2
−
f(z)=

∫
T

zf(ζ)

z−ζ
ds(ζ), z ∈De.

We will also be interested in the subspace H2
−,0 of H2

− consisting of all functions that

vanish at infinity (or equivalently, have average zero on the unit circle). The associated

projection is

PH2
−,0
f(z)=

∫
T

ζf(ζ)

z−ζ
ds(ζ), z ∈De.
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It is clear from the above concrete formulæ that the Herglotz transform HDe
can be

expressed in terms of projections: HDe
=PH2

−
+PH2

−,0
. For an L∞(T)-function Θ, we

define the (exterior) Toeplitz operator TΘ:H
2
−!H

2
− by

TΘf =PH2
−
[Θf ], f ∈H2

−.

The nullspace (kernel) of this operator consists of all solutions in H2
− to TΘf=0. Assum-

ing that Θ is non-zero almost everywhere on the circle T, it follows that the condition

that f belongs to the nullspace is equivalent to f∈H2
−∩Θ−1H2

0 , where H
2
0 consists of the

functions in H2 with mean zero. If we implicitly define the function ϑ by Θ(z)=zϑ(z),

we may rephrase this condition as

f ∈H2
−∩ϑ−1H2, (2.7)

which we refer to as a homogeneous (exterior) Toeplitz kernel condition. For a function

F in the space L2(T), we also consider the related condition

f ∈H2
−∩ϑ−1(−F+H2), (2.8)

which we refer to as an inhomogeneous Toeplitz kernel condition. In terms of Toeplitz

operators, this condition may be written as Tzϑf+PH2
−
[zF ]=0. The following proposi-

tion provides the structure of solutions to the homogeneous and inhomogeneous Toeplitz

kernel conditions for sufficiently regular symbols ϑ.

Proposition 2.8. Suppose that ϑ can be written in the form ϑ=eu+v̄, where u and

v are in H∞, and let F be a function in L2(T). Then, f solves

f ∈H2
−∩ϑ−1(−F+H2)

if and only if

f =Ce−v̄−e−v̄PH2
−,0

[e−uF ],

for some constant C.

Proof. That f∈H2
−∩ϑ−1(−F+H2) is equivalent to having

e v̄f ∈ e v̄H2
−∩(−e−uF+e−uH2)=H2

−∩(−e−uF+H2). (2.9)

Since e v̄f∈H2
−, an application of the projection PH2

−,0
gives

PH2
−,0

[e v̄f ] = e v̄f−C
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for some constant C. On the other hand, since e v̄f∈−e−uF+H2 holds by (2.9), it is

immediate that

PH2
−,0

[e v̄f ] =−PH2
−,0

[e−uF ],

since H2 projects to {0}. It follows that

e v̄f =C+PH2
−,0

[e v̄f ] =C−PH2
−,0

[e−uF ],

as claimed.

Remark 2.9. The Toeplitz kernel equation (2.9) may be viewed as a scalar Riemann–

Hilbert problem with jump from the inside D to the outside De equal to e−uF . Later, we

will use the conformal mapping from the complement of the droplet Scτ to the exterior

disk De, and the interpretation of the Toeplitz kernel equation in that context is as a

scalar Riemann–Hilbert problem on the Schottky double of Scτ .

2.6. Steepest descent analysis

For our computational algorithm in §4, we will need the following result ([38], p. 220,

Theorem 7.7.5). The formulation requires some notation. For an open subset Ω of R, we
let Ck(Ω) denote the space of k times differentiable functions on Ω, and for a compact

subsetK of R, we let Ck0 (K) denote the space k times differentiable, compactly supported

functions on R whose support is contained in K. The norm in the space Ck(Ω) is defined

as

∥u∥Ck(Ω) =

k∑
j=0

∥u(j)∥L∞(Ω),

and the norm in Ck0 (K) is analogously defined.

Proposition 2.10. Let K⊂R be a compact interval, Ω an open neighborhood of K,

x0 an interior point of K, and k a positive integer. If u∈C2k
0 (K), V ∈C3k+1(Ω) and

V ⩾0 in Ω, V ′(x0)=0, V ′′(x0)>0, and V ′ ̸=0 in K\{x0}, then, for ω>0, we have

∣∣∣∣eωV (x0)

∫
K

u(x)e−ωV (x)dx−
(

2π

ωV ′′(x0)

)1/2 k−1∑
j=0

ω−jLju(x0)

∣∣∣∣⩽Cω−k∥u∥C2k(K). (2.10)

Here, C is bounded when V stays in a bounded set in C3k+1(Ω), and |x−x0|/|V ′(x)| has
a uniform bound. With

Wx0
(x) :=V (x)−V (x0)− 1

2 (x−x0)
2V ′′(x0),
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we have

Lju(x) :=
∑
(k,l)

l−k=j
2l⩾3k

(−1)k2−l

k! l! [V ′′(x0)]l
∂2lx (W k

x0
u)(x).

In the definition of the above differential operator Lj , it is implicit that the sum-

mation takes place over non-negative integers k and l. The differential operator (1.13)

mentioned in connection with Theorem 1.5 is obtained from this formula.

The following proposition is tailored to our needs, based on Proposition 2.10.

Proposition 2.11. Let three reals ρ0, ρ1, and ρ2 be given, with 0<ρ0<1<ρ1<ρ2.

Assume that V : [ρ0,∞)!R is C3k+1-smooth, and that V has a unique minimum at 1,

with V (1)=V ′(1)=0. Suppose furthermore that

(a) the convexity bound V ′′⩾α on (ρ0, ρ2) for some real α>0;

(b) V has a bound from below of the form V (x)⩾ϑ log x on the interval [ρ1,∞), for

some real constant ϑ>0.

If the function u: (ρ0,∞)!C is bounded and continuous throughout, and in addition

u is C2k-smooth on the interval [0, ρ2] and vanishes on [0, ρ0], then we have

∫ ∞

ρ0

u(x)e−ωV (x)dx=

(
2π

ωV ′′(1)

)1/2 k−1∑
j=0

ω−jLj [u](1)+E,

where the error term E=E(ω, k, u, ϑ, ρ0, ρ1, ρ2) enjoys the bound

|E|⩽C1ω
−k∥u∥C2k([ρ0,ρ2])+∥u∥L∞([ρ1,∞))ρ

−ωϑ+1
1 ,

provided that ω>2/ϑ, where C1 remains uniformly bounded when V stays in a bounded

set of C3k+1([ρ0, ρ2]).

Sketch of proof. Let χ be a smooth cut-off function with 0⩽χ⩽1 throughout, which

equals 1 on the interval [ρ0, ρ1], and vanishes on [ρ2,∞). We use the cut-off function to

split the integral∫ ∞

ρ0

u(x)e−ωV (x) dx=

∫ ρ2

ρ0

χ(x)u(x)e−ωV (x) dx+

∫ ∞

ρ1

(1−χ(x))u(x)e−ωV (x) dx.

The first integral gives the main contribution, which is estimated using Proposition 2.10.

The other two integrals are estimated using the given bounds from below on V . The

details are omitted.
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3. Existence of an asymptotic expansion

3.1. An L2-version of the main theorem

The proof of Theorem 1.3 goes via an expansion valid in weighted L2-space, which is of

independent interest. Modulo the key lemma (Lemma 3.9) concerning the orthogonal

foliation flow, we first obtain the weighted L2-expansion, and then obtain Theorem 1.3

as a consequence. The proof of the key lemma is deferred to §6.

For two sets E ,F⊂C, we define the distance between them as

distC(E ,F)= inf
z∈E
w∈F

|z−w|.

We shall need the following notion.

Definition 3.1. If K and S are compact sets in the plane with K⊂S and

distC(K,Sc)= ε,

we say that a compact set X is intermediate between K and S if K⊂X⊂S with

distC(K,X c)⩾
ε

1000
and distC(X ,Sc)⩾

ε

1000
.

We recall from the discussion following Definition 1.2 the notation Iϵ0=[1−ϵ0, 1+ϵ0],
where ϵ0 is fixed and positive, with the property that the curves ∂Sτ form a smooth flow

of simple loops for τ∈Iϵ0 .

Theorem 3.2. Assume that Q is 1-admissible, and fix the precision parameter κ∈N.
Then, for each τ∈Iϵ0 there exists a compact subset Kτ⊂Sτ with distC(Kτ , ∂Sτ )⩾ε for

some positive real number ε, such that the following holds. On the complement Kcτ , there
are bounded holomorphic functions Bτ,j such that the associated function

F ⟨κ⟩
m,n=m1/4

√
ϕ′τ [ϕτ ]

nemQτ

κ∑
j=0

m−jBτ,j ,

approximates well the normalized orthogonal polynomials Pm,n in the sense that we have

the norm control

∥Pm,n−χτ,0F ⟨κ⟩
m,n∥2mQ=O(m−κ−1)

as n,m!∞ while τ=n/m∈Iϵ0 . Here, χτ,0 denotes a smooth cut-off function with

0⩽χτ,0⩽1 and uniformly bounded gradient. In addition, the function χτ,0 vanishes on

Kτ , and equals 1 on the set X c
τ , where Xτ is an intermediate set between Kτ and Sτ . In

the above estimate, the implicit constant is uniform for τ∈Iϵ0 .
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In the above theorem, the products χτ,0F
⟨κ⟩
m,n are understood to vanish on the set

Kτ , where F ⟨κ⟩
m,n may be undefined.

Remark 3.3. (a) By inserting a further family X ′
τ of intermediate sets between Kτ

and Sτ such that Xτ is intermediate between X ′
τ and Sτ , we can make sure that the cut-

off function χτ,0 vanishes on X ′
τ (and not just on Kτ ). We mention that the compact sets

Kτ , X ′
τ , and Xτ may be obtained, e.g., as the complements of the conformal images under

ϕ−1
τ of the exterior disks De(0, ρ) with ρ=ρ0, ρ0,1 and ρ0,2, where 0<ρ0<ρ0,1<ρ0,2<1.

As for the intermediate property of Definition 3.1 regarding the sets Kτ , X ′
τ , Xτ , and

Sτ , this is a little subtle, and depends on making a correct choice of the parameters ρ0,

ρ0,1, and ρ0,2. At our disposal, we have the Koebe distortion theorem and the fact that

log(ϕ−1
τ )′ is a Lipschitz function in the hyperbolic metric with known Lipschitz constant

(see, e.g., Corollary 1.4 and Proposition 1.2 in [44], respectively). We omit the necessary

details.

(b) Without loss of generality, we may assume that the cut-off function χτ,0 is

uniformly smooth in the sense that for any fixed positive integer k the Ck(C)-norm of

χτ,0 is uniformly bounded for τ∈Iϵ0 .
(c) Our method of proof involves Toeplitz kernel problems and the construction of

an approximate orthogonal foliation flow of loops. The underlying idea is inspired by

an approach to the local expansion of Bergman kernels, which involves a flow of loops

emanating from the point of expansion [26].

3.2. Introduction of quasipolynomials

We turn to the approximate orthogonal quasipolynomials Fm,n, by which we mean cer-

tain functions which behave like orthogonal polynomials with respect to the measure

e−2mQ dA, in a sense specified below. Let Kτ be an appropriately chosen compact subset

of the droplet Sτ , which lies at a fixed positive distance from ∂Sτ . Moreover, we require

that the conformal mapping ϕτ :Sτ!De extends to a (surjective) conformal mapping

ϕτ :Kcτ −!De(0, ρ0), τ ∈ Iϵ0 ,

for some ρ0 with 0<ρ0,0<ρ0<1, where we recall that ρ0,0 was defined in the discussion

preceding Theorem 1.3. In what follows, we will disregard the behavior on the compact

set Kτ . We will justify this a posteriori, using ∂̄-methods.

Definition 3.4. We say that a function F is a quasipolynomial on Kcτ of degree n if

it is defined and holomorphic on Kcτ , with polynomial growth near infinity: |F (z)|≍|z|n

as |z|!∞.
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In the context of this definition, a quasipolynomial F of degree n has

F (z)= azn+O(|z|n−1)

near infinity, for some complex number a ̸=0. We refer to the number a as the leading

coefficient of the quasipolynomial F .

We now fix a positive integer κ, which we think of as an precision parameter. More-

over, we denote by χτ,0 a smooth cut-off function that vanishes on X ′
τ and equals 1 on

X c
τ , where X ′

τ denotes an intermediate set between Kτ and Sτ , while Xτ is an intermedi-

ate set between X ′
τ and Sτ . In addition, we shall require that the C2(κ+1)-norm of χτ,0

remains uniformly bounded for τ∈Iϵ0 .

Definition 3.5. We say that a sequence {Fm,n}m,n of quasipolynomials of degree

n on Kcτ is normalized and approximately orthogonal (of accuracy κ) if the following

asymptotic conditions (i)–(iii) are met as m!∞ while τ=n/m∈Iϵ0 :
(i) we have the approximate orthogonality∫

C
χτ,0Fm,n(z)p(z)e

−2mQ(z) dA(z)=O(m−κ−1/3∥p∥2mQ), for all p∈Poln;

(ii) the quasipolynomials Fm,n have approximately unit norm:∫
C
χ2
τ,0(z)|Fm,n(z)|2e−2mQ(z)dA(z)= 1+O(m−κ−1/3);

(iii) the quasipolynomial Fm,n has leading coefficient cm,n at infinity which is ap-

proximately real and positive, in the sense that

Im cm,n
Re cm,n

=O(m−κ−1/12),

where all the implied constants are uniform.

In terms of the above definition, Theorem 3.2 implies in particular that F
⟨κ⟩
m,n is a

sequence of approximately orthogonal quasipolynomials with accuracy κ. The fraction
1
3 which appears in the definition is convenient in our calculations. The concept would

be meaningful even if this number were replaced by e.g. 1
5 .

3.3. The renormalizing ansatz

Since Q is assumed 1-admissible, the curves Γ:=∂Sτ remain real-analytically smooth and

simple for τ∈Iϵ0=[1−ϵ0, 1+ϵ0]. In view of the requirement that Kτ,0⊂Kτ , the functions
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Q⊛
τ and �Qτ are harmonic, while Qτ is holomorphic in the domain Kcτ (see Definition 2.1).

We define the operator Λm,n by

Λm,nf(z) :=ϕ′τ (z)[ϕτ (z)]
nemQτ (z)(f �ϕτ )(z), τ =

n

m
. (3.1)

If f and g are well defined in De(0, ρ0), then Λm,nf and Λm,ng are well defined in Kcτ .
We observe that, by a change-of-variables,∫

Kc
τ

Λm,nfΛm,nge
−2mQ dA=

∫
Kc

τ

(f �ϕτ )(g�ϕτ )e
−2m(Q−τ log |ϕτ |−ReQτ )|ϕ′τ |2 dA

=

∫
De(0,ρ0)

fḡe−2mRτ dA,

(3.2)

where we write

Rτ := (Q−�Qτ )�ϕ−1
τ ,

and the first equality holds by (2.3).

The function Rτ given by (1.12) is a central object in our analysis, and we turn to

some of its basic properties.

Proposition 3.6. The function Rτ is defined on De(0, ρ0), and is real-analytic in

a neighborhood of T. Moreover, near the unit circle, Rτ satisfies

Rτ (re
iθ)= 2∆Rτ (e

iθ)(1−r)2+O((1−r)3), r! 1,

where the implied constant is uniform for eiθ∈T and τ∈Iϵ0 . Furthermore, Rτ has the

growth bound from below

Rτ (z)⩾ϑ log |z|, z ∈De(0, ρ1),

for some real parameters ϑ>0 and ρ1>1, which do not depend on τ∈Iϵ0 .

Remark 3.7. In particular, Rτ (z)≍(1−|z|)2 near the unit circle. Indeed, since �Qτ

is harmonic on Kcτ , we find that

∆Rτ =∆(Q−�Qτ )�ϕ−1
τ = |(ϕ−1

τ )′|2(∆Q)�ϕ−1
τ ,

which shows that near the circle T, we have uniform bound of ∆Rτ from below by a

positive constant. As a consequence, the same holds for ∂2rRτ (re
iθ) for r close to 1,

which will be useful in the context of Proposition 2.11.
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Sketch of proof. The assertion on the local behavior near the circle T results from

an application of Taylor’s formula, using that along the boundary ∂Sτ we have Q=�Qτ ,

∇Q=∇�Qτ while

∂2n(Q−�Qτ )= (∂2n+∂
2
t )(Q−�Qτ )= 4∆Q.

Here, ∂n and ∂t denote the normal and tangential derivatives, respectively. We turn to

the global estimate from below on Rτ . By the assumption (1.11) with τ=1 on the growth

of Q near infinity, and the growth control

�Qτ (z)= Q̂τ (z)= τ log |z|+O(1), as |z|!∞,

it follows from the choice of the interval Iϵ0 that

lim inf
|z|!∞

(Q−�Qτ )(z)
log |z|

⩾ 1+2ϵ0−τ > 0

for τ∈Iϵ0 . Since |ϕ−1
τ (z)|≍|z| near infinity, we see that

lim
|z|!∞

Rτ (z)

log |z|
⩾ 1+2ϵ0−τ > 0.

There is no point in De where Rτ vanishes, since the coincidence set (where Q̂τ and Q

coincide) equals Sτ (see Definition 1.2). We may conclude that the ratio Rτ (z)/log |z| is
bounded below by a positive constant ϑ on the exterior disk De(0, ρ1), independently of

τ in Iϵ0 .

Informally, Proposition 3.6 tells us that near the unit circle, the function e−2mRτ

may be thought of as a Gaussian wave around the unit circle T.
We return to the operator Λm,n, defined in (3.1). It renormalizes the weight, and

transports holomorphic functions in the exterior disk De(0, ρ0) to holomorphic functions

in the region Kcτ . In the sequel, we will refer toΛm,n as the canonical positioning operator.

Its basic properties are summarized in the following proposition, which involves the spaces

L2
ϕ(X c) and A2

ϕ(X c), as well as the restricted growth subspaces L2
ϕ,k(X c) and A2

ϕ,k(X c),

all defined in §1.9. Below, these appear for various choices of the weight ϕ, the parameter

k, and the compact set X .

Proposition 3.8. The canonical positioning operator Λm,n is an isometric isomor-

phism L2
2mRτ

(De(0, ρ0))!L
2
2mQ(Kcτ ), and the inverse operator is given by

Λ−1
m,ng(z)= z−n[ϕ−1

τ ]′(z)e−m(Qτ �ϕ
−1
τ )(z)(g�ϕ−1

τ )(z), g ∈L2
2mQ(Kcτ ).

Moreover, the operator Λm,n preserves holomorphicity, and in addition, it maps the

subspace A2
2mRτ ,0

(De(0, ρ0)) onto A
2
2mQ,n(Kcτ ).
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Proof. As direct consequence of the (3.2), we see that L2
2mRτ

(De(0, ρ0)) is mapped

isometrically into L2
2mQ(Kcτ ), and moreover if Λ−1

m,n is given by the above formula, we

see that it is actually the inverse to Λm,n. By definition, Λm,nf is holomorphic in Kcτ , if
f is holomorphic in De(0, ρ0). It follows that Λm,n is actually an isometric isomorphism

A2
2mRτ

(De(0, ρ0))!A
2
2mQ(Kcτ ). It remains to note that Λm,n maps bijectively

A2
2mRτ ,0(De(0, ρ0))−!A2

2mQ,n(Kcτ ),

which is a direct consequence of the fact that |ϕτ (z)|≍|z| as |z|!∞.

3.4. The orthogonal foliation flow

We will obtain our main result, Theorem 3.2, as a consequence of the existence of what

we call the approximate orthogonal foliation flow of simple loops Γm,n,t, parameterized

by the parameter t. For a brief sketch of the intuition that lies behind the construction

of this flow of curves, we refer to the discussion in §1.6 above.

We recall from §1.9 that a conformal mapping ψ of the exterior disk De onto a

domain containing the point at infinity is said to be orthostatic if it maps ∞ to ∞,

and has ψ′(∞)>0. Given a smooth family ψt of orthostatic conformal mappings on the

exterior disk, indexed by a real parameter t close to zero, such that the image domains

Ωt :=ψt(De) increase with t, we put Γt=ψt(T) and denote by D=
⋃
t Γt the region covered

by the flow. We may form the foliation mapping Ψ by the formula

Ψ(z)=ψ1−|z|

(
z

|z|

)
,

for z in some annulus A containing the unit circle. The foliation mapping Ψ maps A onto

the domain D covered by the boundaries. Moreover, the Jacobian JΨ of the foliation

mapping is given by

JΨ(rζ)=−1

r
Re(ζ̄∂tψt(ζ)ψ

′
t(ζ))|t=1−r, ζ ∈T, (3.3)

for r near 1. We may integrate over a flow encoded by a foliation mapping Ψ as follows:

If we denote by Aϵ the annulus Aϵ=D(0, 1+ϵ)\	D(0, 1−ϵ), we have, for integrable f ,∫
Ψ(Aϵ)

f dA=

∫
Aϵ

f �ΨJΨ dA

=2

∫ ϵ

−ϵ

∫
T
f �ψt(ζ)(1−t)JΨ((1−t)ζ) ds(ζ) dt.

(3.4)

The existence of the foliation flow may be phrased as follows. We call the relation

(3.5) below the master equation for the orthogonal foliation flow. For convenience of

notation, let δm be the number

δm :=m−1/2 logm.
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Lemma 3.9. Fix the precision parameter κ to be a positive integer. For τ=n/m∈Iϵ0 ,
there exist 0<ρ0<1 and bounded holomorphic functions Bτ,j on De(0, ρ0) for j=0, ..., κ,

such that the following properties hold. The function Bτ,0 is bounded away from zero

with Bτ,0(∞)>0, while, for j=1, ..., κ, we have ImBτ,j(∞)=0. Moreover, there exists a

smooth family of orthostatic conformal mappings {ψm,n,t}m,n,t on 	De , such that, if we

write

f ⟨κ⟩m,n=

κ∑
j=0

m−jBτ,j ,

we have that

m1/2|f ⟨κ⟩m,n�ψm,n,t(ζ)|2e−2m(Rτ �ψm,n,t)(ζ)(1−t)JΨm,n
((1−t)ζ)

=
m1/2

(4π)1/2
e−mt

2

(1+O(m−κ−1/3)), ζ ∈T,
(3.5)

provided that |t|⩽δm. Here, the implicit constant is uniform in τ∈Iϵ0 . Moreover, if

Dm,n denotes the union

Dm,n=
⋃

|t|⩽δm

ψm,n,t(T),

then distC(Dc
m,n,T)⩾c0δm for some positive constant c0.

Remark 3.10. The equation (3.5) may be understood as an approximate weighted

Polubarinova–Galin equation with weight |f ⟨κ⟩m,n|2e−2mRτ , and variable speed of expan-

sion. Indeed, we should compare with equation (6.11) in [33], which states in a similar

context that along concentric circles,

JΨ =ω−1
�Ψ,

where Ψ is a foliation mapping, and ω denotes a weight. In comparison, our factor

(4π)−1/2e−mt
2

appears as consequence of the variable speed.

In what follows, we take this key lemma for granted. The proof is supplied in §6.

3.5. The L2-expansion for quasipolynomials

We first find a sequence of approximately orthogonal quasipolynomials with an asymp-

totic expansion.

Lemma 3.11. Let κ∈N be given and let

f ⟨κ⟩m,n=

κ∑
j=0

m−jBτ,j(z)



344 h. hedenmalm and a. wennman

be the functions defined in Lemma 3.9. Then the functions

F ⟨κ⟩
m,n(z)=m1/4Λm,n[f

⟨κ⟩
m,n] =m1/4ϕ′τ (z)[ϕτ (z)]

nemQτ (z)(f ⟨κ⟩m,n�ϕτ )(z) (3.6)

constitute a family of approximately orthogonal quasipolynomials to accuracy κ in the

sense of Definition 3.5.

Proof. Let χτ,1 be a radial smooth cut-off function which vanishes on D(0, ρ0,1)
and equals 1 on De(0, ρ0,2), where the parameters 0<ρ0<ρ0,1<ρ0,2<1 are chosen in

accordance with Remark 3.3. The cut-off function χτ,0 is then given by χτ,0=χτ,1�ϕτ .

The intermediate sets X ′
τ and Xτ are given as the complements of the conformal images

of De(0, ρ0,1) and De(0, ρ0,2) under ϕτ , respectively.

By Lemma 3.9, the functions f
⟨κ⟩
m,n are bounded and holomorphic on the exterior

disk De(0, ρ0), with f
⟨κ⟩
m,n(∞)>0. As the leading term Bτ,0 is bounded away from zero on

De(0, ρ0), it follows that for large enoughm, the same can be said for f
⟨κ⟩
m,n. In view of this,

the functions F
⟨κ⟩
m,n given by (3.6) are quasipolynomials of order n on Kcτ :=ϕ−1

τ (De(0, ρ0))

in the sense of Definition 3.4.

It remains to verify the properties (i), (ii), and (iii) of Definition 3.5. To this end,

we recall the definition of the domain Dm,n from Lemma 3.9, which is a certain closed

neighborhood of the unit circle which arises from our orthogonal foliation flow. We recall

that

distC(Dc
m,n,T))⩾ c0δm

holds for some fixed constant c0>0, where δm=m−1/2 logm. We first check property (ii)

of Definition 3.5. As a step in this direction, we claim that most of the weighted L2-mass

of the function χτ,1f
⟨κ⟩
m,n lies in the domain Dm,n. Indeed, a computation based on the

change-of-variables formula (3.4) reveals that

m1/2

∫
Dm,n

|f ⟨κ⟩m,n|2e−2mRτ dA

=2m1/2

∫ δm

−δm

∫
T
|f ⟨κ⟩m,n�ψm,n,t(ζ)|2e−2mRτ �ψm,n,t(ζ) Re(−ζ̄∂tψm,n,tψ′

m,n,t ) ds(ζ) dt

=2m1/2

∫ δm

−δm
((4π)−1/2+O(δ2κ+1

m ))e−mt
2

dt=1+O(δ2κ+1
m )= 1+O(m−κ−1/3),

(3.7)

where we move the integration to the flow coordinates (t, ζ)∈[−δm, δm]×T.
We know that the functions f

⟨κ⟩
m,n are bounded uniformly in De(0, ρ0) independently

of m and n while τ∈Iϵ0 , so that

χτ,1|f ⟨κ⟩m,n|⩽C0 (3.8)
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holds in the whole plane C, for some constant C0. Let D⊛ denote a fixed bounded domain

which contains D∪Dm,n, such that the bound from below Rτ (z)⩾θ0 log |z| holds outside
D⊛, for some θ0>0 and all τ∈Iϵ0 . That such a domain exists for sufficiently large m

is shown in Proposition 3.6. On the other hand, in view of Remark 3.7 we have the

estimate

e−2mRτ ⩽ e−α0(logm)2 , on D⊛∩De(0, ρ0)\Dm,n
for some constant α0>0 (if necessary we adjust ρ0 and D⊛). As a consequence, we have

m1/2

∫
C\Dm,n

χ2
τ,1|f ⟨κ⟩m,n|2e−2mRτ dA

⩽C2
0m

1/2

∫
C\D⊛

e−2mθ0 log |z| dA+C2
0m

1/2

∫
D⊛∩D(0,ρ0)\Dm,n

e−α0(logm)2 dA

=O(m1/2e−α0(logm)2)

=O(m−α0 logm+1/2).

(3.9)

It now follows from (3.7) and (3.9) that

m1/2

∫
C
χ2
τ,1|f ⟨κ⟩m,n|2e−2mRτ dA

=m1/2

∫
Dm,n

|f ⟨κ⟩m,n|2e−2mRτ dA+m1/2

∫
C\Dm,n

χ2
τ,1|f ⟨κ⟩m,n|2e−2mRτ dA

=1+O(m−κ−1/3),

where we use the fact that χτ,1=1 holds on the set Dm,n together with our foliation flow

(Lemma 3.9) and the estimate (3.9). Hence, by the isometric property of Λm,n from

Proposition 3.8, it follows that∫
C
χ2
τ,0|F ⟨κ⟩

m,n|2e−2mQ dA=1+O(m−κ−1/3),

as required by property (ii) of Definition 3.5.

We turn to property (i) of Definition 3.5, the approximate orthogonality property.

For a polynomial p∈Poln of degree at most n−1, we put g=Λ−1
m,n[p] and note that

g(∞)=0. For all large enough n and m with τ=n/m∈Iϵ0 , the function f
⟨κ⟩
m,n is zero-free

in a neighborhood of the extended exterior disk 	De∪{∞}, which we may assume to be

a fixed exterior disk De(0, ρ0)∪{∞} for some fixed ρ0<1. By the isometric property of

Λm,n, we find that∫
C
χτ,0pF

⟨κ⟩
m,ne

−2mQ dA

=m1/4

∫
C
χτ,1gf

⟨κ⟩
m,ne

−2mRτ dA(z)

=m1/4

∫
Dm,n

g

f
⟨κ⟩
m,n

|f ⟨κ⟩m,n|2e−2mRτ dA+O(m−(α0/2) logm+3/4∥p∥2mQ),

(3.10)
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where we are required to justify the indicated error term estimate. To do this, we need

Proposition 2.3, or more accurately, [2, Lemma 3.5], which gives the following estimate

for p∈Poln:
|p|⩽C1m

1/2∥p∥2mQemQ̂τ (3.11)

in the whole plane C for some constant C1, independent of τ=n/m∈Iϵ0 . The missing

term on the right-hand side of (3.10) equals

m1/4

∫
C\Dm,n

χτ,1gf
⟨κ⟩
m,ne

−2mRτ dA=

∫
C\ϕ−1

τ (Dm,n)

χτ,0pF
⟨κ⟩
m,ne

−2mQ dA,

and if we apply the pointwise estimate (3.11), we obtain∫
C\ϕ−1

τ (Dm,n)

χτ,0|pF ⟨κ⟩
m,n|e−2mQ dA

⩽C1m
1/2∥p∥2mQ

∫
C\ϕ−1

τ (Dm,n)

χτ,0|F ⟨κ⟩
m,n|e−2mQ+mQ̂τ dA

=C1m
3/4∥p∥2mQ

∫
C\Dm,n

χτ,1|f ⟨κ⟩m,n|em(Q̂τ−Q)�ϕ−1
τ −mRτ dA

⩽C0C1m
3/4∥p∥2mQ

∫
De(0,ρ0)\Dm,n

e−mRτ dA,

where in the last step, we applied the estimate (3.8) and the fact that Q̂τ⩽Q. The rest of

the argument that gives (3.10) involves splitting the domain of integration using the set

Dτ , and proceeds as in (3.9). This establishes (3.10), although we still need to control the

main term on the right-hand side. To this end, we denote by h the ratio h=g/f
⟨κ⟩
m,n. In

view of the stated properties of f
⟨κ⟩
m,n and g, the function h is holomorphic in the exterior

disk De(0, ρ0) and vanishes at infinity. Using the foliation flow as coordinates on Dm,n
in terms of (t, ζ)∈[−δm, δm]×T, we find from Lemma 3.9 that

m1/4

∫
Dm,n

h(z)|f ⟨κ⟩m,n(z)|2e−2mRτ (z) dA(z)

= 2m1/4

∫ δm

−δm

∫
T
h�ψm,n,t(ζ)|f ⟨κ⟩m,n�ψm,n,t(ζ)|2e−2mRτ �ψm,n,t(ζ)

×Re(−ζ̄∂tψm,n,t(ζ)ψ′
m,n,t(ζ)) ds(ζ) dt

=2m1/4

∫ δm

−δm

∫
T
h�ψm,n,t(ζ)((4π)

−1/2e−mt
2

+O(m−κ−1/3e−mt
2

)) ds(ζ) dt

=O

(
m−κ−1/12

∫ δm

−δm

∫
T
|h�ψm,n,t(ζ)| ds(ζ)e−mt

2

dt

)
.

(3.12)
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Here, the crucial reduction in the last step of (3.12) is based on the fact that the function

h�ψm,n,t is holomorphic in 	De and vanishes at infinity, so that by the mean value property∫
T
h�ψm,n,t ds=0.

Now that (3.12) is established, we need to simplify the error term further. We will use the

observation that all the steps before the last in (3.12) apply to a fairly general sufficiently

integrable function in place of h, for instance |h| will work. It then follows from (3.12)

with |h| instead that large enough m, we have∫ δm

−δm

∫
T
|h�ψm,n,t(ζ)|e−mt

2

ds(ζ) dt⩽ 2

∫
Dm,n

|h(z)| |f ⟨κ⟩m,n(z)|2e−2mRτ (z) dA(z)

= 2

∫
Dm,n

|g(z)f ⟨κ⟩m,n(z)|e−2mRτ (z) dA(z)

⩽ 2C0

∫
Dm,n

|g(z)|e−2mRτ (z) dA(z),

where in the last step we applied the bound (3.8). Finally, we apply the Cauchy–Schwarz

inequality, and recall that recall that g=Λ−1
m,n[p], where Λm,n has the isometry property

of Proposition 3.8:∫ δm

−δm

∫
T
|h�ψm,n,t(ζ)|e−mt

2

ds(ζ) dt

⩽ 2C0

∫
Dm,n

|g(z)|e−2mRτ (z) dA(z)

⩽ 2C0∥g∥L2(Dm,n,e−2mRτ )

(∫
Dm,n

e−2mRτ dA

)1/2
=O(m−1/4∥p∥2mQ).

(3.13)

Here, we used a simple decay estimate of the integral of the Gaussian ridge e−2mRτ .

Next, we write g/f
⟨κ⟩
m,n in place of h, and combine the estimates (3.12) and (3.13), and

arrive at

m1/4

∫
Dm,n

gf ⟨κ⟩m,ne
−2mRτ (z) dA(z)=m1/4

∫
Dm,n

h(z)|f ⟨κ⟩m,n(z)|2e−2mRτ (z) dA(z)

=O(m−κ−1/3∥p∥2mQ).
(3.14)

In view of (3.10) and (3.14), we find that for all polynomials p∈Poln,∫
C
χτ,0pF

⟨κ⟩
m,ne

−2mQ dA=O(m−κ−1/3∥p∥2mQ), (3.15)

as required. Since in addition, f
⟨κ⟩
m,n(∞)>0, while Qτ (∞)∈R and ϕ′τ (∞)>0 hold, the

leading coefficient of the quasipolynomial F
⟨κ⟩
m,n is now positive, which settles property

(iii) of Definition 3.5 as well. This completes the proof.
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3.6. Polynomialization of quasipolynomials and proof of Theorem 3.2

We have applied Lemma 3.9 to obtain the existence of quasipolynomials F
⟨κ⟩
m,n, of degree

n and accuracy κ with an asymptotic expansion, and shown that they are approximately

orthogonal and normalized. To obtain the full L2-expansion, it remains to show that they

are indeed good approximations of the true normalized orthogonal polynomials Pm,n.

Proof of Theorem 3.2. We retain the above notation, and consider the ∂̄-problem

∂̄zu(z)=F ⟨κ⟩
m,n(z)∂̄zχτ,0(z).

In view of Proposition 2.6, the L2
2mQ,n-norm minimal solution u0, which then has the

growth u0(z)=O(|z|n−1) near infinity, enjoys the norm bound∫
C
|u0|2e−2mQdA⩽

1

α1m

∫
Sτ

|F ⟨κ⟩
m,n|2 |∂̄χτ,0|2e−2mQ dA, (3.16)

where α1>0 stands for the minimum of ∆Q on the biggest droplet Sτ with τ∈Iϵ0 (which

is attained for the rightmost endpoint τ=1+ϵ0). Next, given that the quasipolynomials of

degree n are of the form F
⟨κ⟩
m,n=m1/4Λm,n[f

⟨κ⟩
m,n], where the functions f

⟨κ⟩
m,n are uniformly

bounded in De(0, ρ0) for some radius ρ0<1, we find that∫
Sτ

|F ⟨κ⟩
m,n|2 |∂̄χτ,0|2e−2mQ dA=m1/2

∫
D
|f ⟨κ⟩m,n|2 |∂̄χτ,1|2 |ϕ′τ �ϕ−1

τ |2e−2mRτ dA

=O(m1/2e−α2m)

(3.17)

for some α2>0 such that 2Rτ⩾α2 on the support of ∂̄χτ,1. This exponential decay

estimate is possible since the support of ∂̄χτ,1 is located inside D away from the boundary.

Note that in the context of the estimate (3.17) it is important as well that the expression

|ϕ′τ �ϕ−1
τ |2 is uniformly bounded on the support of ∂̄χτ,1 as well. If we combine the above

estimates (3.16) and (3.17), we find that∫
C
|u0|2e−2mQdA=O(m−1/2e−α2m), (3.18)

as m!∞ while τ= n
m∈Iϵ0 , with a uniform implicit constant. Next, we put

P ⋆m,n :=F ⟨κ⟩
m,nχτ,0−u0

which is then automatically a polynomial of degree n, since the function is entire and

has growth |P ⋆m,n(z)|≍|z|n near infinity. Moreover, in view of (3.18), this polynomial is

very close to the function F
⟨κ⟩
m,nχτ,0 in the norm of L2(C, e−2mQ):∫

C
|P ⋆m,n−F ⟨κ⟩

m,nχτ,0|2e−2mQ dA=

∫
C
|u0|2e−2mQ dA=O(m−1/2e−α2m). (3.19)
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It now follows from (3.15) and (3.19) that for all polynomials p∈Poln of degree at most

n−1, we have that ∫
C
pP̄ ⋆m,ne

−2mQdA=O(m−κ−1/3∥p∥2mQ), (3.20)

while ∫
C
|P ⋆m,n|2e−2mQdA=1+O(m−κ−1/3). (3.21)

We observe that by duality, (3.20) asserts that

∥Pm,nP
⋆
m,n∥2mQ=O(m−κ−1/3), (3.22)

where Pm,n denotes the orthogonal projection in L2(C, e−2mQ) onto the subspace Poln

of polynomials of degree at most n−1. If we use this to correct the polynomial P ⋆m,n, and

put P̃m,n :=P⊥
m,nP

⋆
m,n=P

⋆
m,n−Pm,nP

⋆
m,n, then automatically P̃m,n has degree n and it

is also orthogonal to all the lower-degree polynomials. As a consequence, P̃m,n must be

a scalar multiple of Pm,n, the orthogonal polynomial we are looking for, which we write

as P̃m,n=cPm,n for a constant c. Putting things together so far, we have obtained that

∥P̃m,n−F ⟨κ⟩
m,nχτ,0∥2mQ=O(m−κ−1/3) (3.23)

with a uniform implied constant. Moreover, by (3.21) and (3.22), the norm of P̃m,n

equals

|c|= ∥cPm,n∥2mQ= ∥P̃m,n∥2mQ=1+O(m−κ−1/3), (3.24)

Next, by our version of the Bernstein–Walsh lemma (Proposition 2.3), it follows from

(3.23) that

|cPm,n−F ⟨κ⟩
m,n|= |P̃m,n−F ⟨κ⟩

m,n|=O(m−κ+1/6emQ̂τ )

holds in Scτ , which after division by F
⟨κ⟩
m,n gives that∣∣∣∣cPm,n

F
⟨κ⟩
m,n

−1

∣∣∣∣=O(m−κ−1/12), (3.25)

since f
⟨κ⟩
m,n is uniformly bounded away from zero. Next, we let |z|!+∞ and observe that

both the functions F
⟨κ⟩
m,n and Pm,n have positive leading coefficients, whose quotient is

denoted by γm,n. Since γm,n>0 we obtain from (3.25) that

| Im c|
|c|

⩽ |cγm,n−1|=O(m−κ−1/12),
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where the left-hand side inequality is elementary. Moreover, we can also realize from the

above that Re(c)>0. But then it follows from (3.24) that

c=1+O(m−κ−1/12).

It now follows from this observation combined with (3.23) that

∥Pm,n−χτ,0F ⟨κ⟩
m,n∥2mQ=O(m−κ−1/12).

This falls slightly short of allowing us to obtain Theorem 3.2 right away. The problem

is that our error term is larger than what is claimed. However, since the precision κ is

arbitrary, we might as well replace κ by κ+1 and see what we get. This would give that

∥Pm,n−χτ,0F ⟨κ+1⟩
m,n ∥2mQ=O(m−κ−1−1/12). (3.26)

By analyzing the last term in the asymptotic expansion, it is easy to verify that

∥χτ,0F ⟨κ+1⟩
m,n −χτ,0F ⟨κ⟩

m,n∥2mQ=O(m−κ−1),

and hence the assertion of the theorem immediate from this estimate and (3.26).

3.7. Proof of the main theorem

We are now ready to obtain the pointwise asymptotic expansion of the orthogonal poly-

nomials. We still work under the assumption that Lemma 3.9 holds.

Proof of Theorem 1.3. The quasipolynomials F
⟨κ⟩
m,n obtained in Theorem 3.2 may be

written in the form

F ⟨κ⟩
m,n=m1/4

√
ϕ′τ [ϕτ ]

nemQτ

κ∑
j=0

m−jBτ,j ,

where Bτ,j=[ϕ′τ ]
1/2Bτ,j �ϕτ are uniformly bounded, and holomorphic in the exterior do-

main Kcτ . To obtain the theorem, we need to show that F
⟨κ⟩
m,n is close to Pm,n pointwise

in the complement of the set

Kτ,A,m= {z ∈C : distC(z,Scτ )⩾A(m−1 logm)1/2}. (3.27)

On the complement Kcτ,A,m we have the estimate

0⩽m(Q̂τ−�Qτ )(z)⩽D logm,
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and hence

em(Q̂τ−�Qτ ) ⩽ eD logm=mD,

where D is some positive constant, which is uniformly bounded while τ∈Iϵ0 . To see

this, a simple Taylor expansion of the difference Q̂τ−�Qτ in the interior direction suffices.

In view of Theorem 3.2, and the pointwise estimate of Proposition 2.3 applied to the

intermediate set Xτ between Kτ and Scτ , where the cut-off function χτ,0 assumes the

value 1, we find that

|Pm,n(z)−F ⟨κ⟩
m,n(z)|=O(m−κ−1/2emQ̂τ (z))=O(m−κ−1/2+Dem

�Qτ (z)), z ∈Kcτ,A,m,

where the implicit constant again is uniform in the relevant parameter range. We may

rephrase this as saying that

Pm,n(z)=F ⟨κ⟩
m,n(z)+O(m−κ−1/2+Dem

�Qτ (z))

=m1/4
√
ϕ′τ [ϕτ ]

nemQτ

( κ∑
j=0

Bτ,j+O(m−κ−3/4+D)

)
,

for z∈Kcτ,A,m. This essentially proves the theorem, except that the error term is now

worse than claimed. However, we may fix this by replacing κ by κ′ :=κ+⌈D⌉+1 in the

above argument, to obtain on Kcτ,A,m that

Pm,n(z)=m1/4
√
ϕ′τ [ϕτ ]

nemQτ

( κ′∑
j=0

m−jBτ,j+O(m−κ−7/4)

)

=m1/4
√
ϕ′τ [ϕτ ]

nemQτ

( κ∑
j=0

m−jBτ,j+O(m−κ−1)

)
,

where the last step follows since the functions m−jBτ,j are all O(m−κ−1) for j in the

range κ+1⩽j⩽κ′. The proof is complete.

4. Algorithmic determination of the coefficient functions

4.1. Implementation of the radial Laplace method

We turn to the algorithm of Theorem 1.5. To proceed, we need two families of differential

operators. We recall the differential operators Lk defined in (1.13) appearing in the

application of Laplace’s method in Proposition 2.10. We need to apply these operators

to functions defined in a neighborhood of the unit circle, and we apply them in the radial

direction. So, for functions f(reiθ), we put

Lk[f ](re
iθ)=

3k∑
ν=k

(−1)ν−k2−ν

ν! (ν−k)! [∂2rRτ (reiθ)]ν
∂2νr ([Wτ (re

iθ)]ν−kf(reiθ)),
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where

Wτ (re
iθ)=Rτ (re

iθ)− 1
2 (r−1)2∂2xRτ (xe

iθ)|x=1.

The second family of operators is defined implicitly in the following lemma, which turns

explicit appearances of the parameter l into differential operators.

Lemma 4.1. Let k be a non-negative integer. Then, there exist partial differential

operators Mk of order 2k with real-analytic coefficients, such that for any integer l⩾0

and any smooth function f defined in a neighborhood of T, we have that∫
T
eilθ(∂2rRτ (re

iθ))−1/2Lk[r
1−lf(reiθ)]|r=1 dθ=

∫
T
eilθMk[f ](e

iθ) dθ.

Proof. We first observe that, by integration by parts, multiplication by l corresponds

to applying the differential operator i∂θ inside the integral

l

∫
T
f(θ)eilθ dθ=

∫
T
i∂θf(θ)e

ilθ dθ.

From this, it is immediate that the formula

p(l)

∫
T
f(θ)eilθ dθ=

∫
T
p(i∂θ)f(θ)e

ilθ dθ (4.1)

holds for polynomials p. Structurally, Lk[r
1−lf(reiθ)] can be written as

Lk[r
1−lf(reiθ)] =

3k∑
ν=k

bν(re
iθ)∂2νr [[Wτ (re

iθ)]ν−kr1−lf(reiθ)], (4.2)

where bν is the real-analytic function given by

bν(re
iθ)=

(−1)ν−k2−ν

ν!(ν−k)! [∂2rRτ (reiθ)]ν
.

We observe that, by the Leibniz rule

∂jr(r
1−lf(reiθ))|r=1 =

j∑
i=0

(
j

i

)
(−1)j−i(l−1)j−ir

1−l−j+i∂irf(re
iθ)|r=1

=

j∑
i=0

(
j

i

)
(−1)j−i(l−1)j−i∂

i
rf(re

iθ)|r=1,

(4.3)
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where (x)i=x(x+1) ... (x+i−1) denotes the standard Pochhammer symbol. We return

to the formula (4.2) for Lk. Again, by the Leibniz formula, we have that

∂2νr [W ν−k
τ (eiθ)r1−lf(reiθ)]|r=1

=

2ν∑
j=0

(
2ν

j

)
∂2ν−jr ([Wτ (re

iθ)]ν−k)∂jr(r
1−lf(reiθ))|r=1

=

3k−ν∑
j=0

(
2ν

j

)
∂2ν−jr ([Wτ (re

iθ)]ν−k)∂jr(r
1−lf(reiθ))|r=1

=

3k−ν∑
j=0

j∑
i=0

(−1)j−i
(
2ν

j

)(
j

i

)
(l−1)j−i∂

2ν−j
r ([Wτ (re

iθ)]ν−k)∂irf(re
iθ)|r=1,

where the truncation of the sum follows from an application of the flatness of Wτ near

the unit circle T, and the last equality is due to (4.3). We write the expression for

Lk[r
1−lf(reiθ)] as

Lk[r
1−lf(reiθ)]|r=1 =

3k∑
ν=k

3k−ν∑
j=0

j∑
i=0

(l−1)j−1ci,j,ν(e
iθ)∂irf(re

iθ)|r=1,

where

ci,j,ν(e
iθ)= (−1)j−i

(
2ν

j

)(
j

i

)
(l−1)j−ibν(e

iθ)∂2ν−jr ([Wτ (re
iθ)]ν−k)|r=1.

Changing the order of summation, we arrive at

(∂2rRτ (re
iθ))−1/2Lk[r

1−lf(reiθ)]|r=1

=

2k∑
i=0

2k∑
j=i

(−1)j−i
(
j

i

)
(l−1)i−j(∂

2
rRτ (re

iθ))−1/2dj(e
iθ)∂irf(re

iθ)|r=1,

where

dj(e
iθ)=

3k−j∑
ν=k

(
2ν

j

)
bν(e

iθ)∂2ν−jr ([Wτ (re
iθ)]ν−k)|r=1.

It follows from (4.1) that the asserted identity holds with Mk given by

Mk[f ](e
iθ)=

2k∑
i=0

2k∑
j=i

(−1)j−i
(
j

i

)
(i∂θ−1)i−j [(∂

2
rRτ (re

iθ))−1/2dj(e
iθ)∂irf(re

iθ)]|r=1.

The proof of the lemma is complete.
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4.2. Algorithmic computation of the coefficients in the asymptotic expansion

In this section we supply the proof of Theorem 1.5, and explain the underlying com-

putational algorithm. The main point is that we show how to iteratively obtain the

coefficients, given that an asymptotic expansion exists, as formulated in Theorem 3.2.

Proof of Theorem 1.5. Fix the precision κ to be a positive integer. Let F
⟨κ⟩
m,n be the

approximate orthogonal quasipolynomials from Theorem 3.2 with the expansion

F ⟨κ⟩
m,n(z)=m1/4

√
ϕ′τ (z)[ϕτ (z)]

nemQτ (z)
κ∑
j=0

m−jBτ,j(z),

where the functions Bτ,j are bounded and holomorphic on Kcτ for some compact subset

Kτ of S�τ , which we may assume to be the conformal image of the exterior disk De(0, ρ0)

under the mapping ϕ−1
τ . If we make the ansatz

Bτ,j(z)=
√
ϕ′τ (z)(Bτ,j �ϕτ )(z),

we may express Fm,n using the canonical positioning operator F
⟨κ⟩
m,n=m1/4Λm,n[f

⟨κ⟩
m,n],

where

f ⟨κ⟩m,n(z)=

κ∑
j=0

m−jBτ,j(z), z ∈De(0, ρ0). (4.4)

According to Theorem 3.2, the functions F
⟨κ⟩
m,n have the approximate orthogonality prop-

erty ∫
C
χτ,0F

⟨κ⟩
m,np̄e

−2mQ dA=O(m−κ−1∥p∥2mQ), p∈Poln . (4.5)

The function χτ,0 is a cut-off function with 0⩽χ⩽1 throughout C, such that χτ,0 vanishes

on Kτ and equals 1 on X c
τ , where Kτ lies at a fixed positive distance from ∂Sτ , and Xτ is

an intermediate set between them (cf. Definition 3.1). We consider the associated cut-off

function χτ,1=χτ,0�ϕ
−1
τ , tacitly extended to vanish where it is undefined. Without loss

of generality, we may assume that χτ,1 is radial. By Remark 3.3, we may assume that

χτ,1 vanishes on D(0, ρ′0) for some number ρ′0 with ρ0<ρ
′
0<1. In order to compute the

functions Bτ,j , we would like to apply equation (4.5) to

q(z)=Λm,n[z
−l] =ϕ′τ (z)[ϕτ (z)]

n−lemQτ (z)

for a positive integer l, but this function is unfortunately not a polynomial. To fix this,

we consider the L2
2mQ,n-minimal solution v to the ∂̄-problem

∂̄v= ∂̄(χτ,0q)= q∂̄χτ,0.
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If v is the solution, then the difference χτ,0q−v will be an entire function with the

polynomial growth bound O(|z|n−1) at infinity, and hence a polynomial of degree less

than or equal to n−1. By the estimate of Proposition 2.6, we have the norm control∫
C
|v|2e−2mQ dA⩽

1

2m

∫
C
|q|2 |∂̄χτ,0|2

e−2mQ

∆Q
dA⩽

A2

2mα1

∫
Xτ\Kτ

|q|2e−2mQ dA,

where we have used that there exists a positive real α1 such that ∆Q⩾α1 holds on Sτ ,
which contains the support of ∂̄χτ,0, and that we have the bound |∂̄χτ,0|⩽A. Since

the support of ∂̄χτ,0 lies in Kcτ , we may use the structure of q as q=Λm,n[z
−l] and

Proposition 3.8 ∫
Xτ\Kτ

|q|2e−2mQ dA=

∫
ρ0⩽|z|⩽ρ′′0

|z|−2le−2mRτ (z) dA(z),

where ρ′′0 is associated with a natural choice of the intermediate set Xτ as the image of

an exterior disk under ϕ−1
τ , and satisfies ρ0<ρ

′
0<ρ

′′
0<1. Due to Proposition 3.6, this

immediately gives that, for any fixed positive integer l,∫
C
|v|2e−2mQ dA=O(e−ϵ1m)

as m and n tend to infinity while τ=n/m∈Iϵ0 , for some positive real ϵ1. This means

that for a fixed positive integer l, we have for q=Λ[z−l] the approximate orthogonality∫
C
χ2
τ,0F

⟨κ⟩
m,nq̄e

−2mQ dA=O(m−κ−1), (4.6)

where we have used that χτ,0q−v is a polynomial of degree at most n−1, and the above

smallness of v. If we use the canonical positioning operator as in Proposition 3.8 in

polarized form, (4.6) reads in polar coordinates

m1/4

∫
T
eilθ

∫ ∞

ρ0

r1−lχ2
τ,1(r)f

⟨κ⟩
m,n(re

iθ)e−2mRτ (re
iθ) dr ds(eiθ)=O(m−κ−1), (4.7)

for fixed l. We now apply Proposition 2.11 to the radial integral, with V (r)=2Rτ (re
iθ).

Note that ∂2rRτ (re
iθ)|r=1=4∆Rτ (e

iθ). As a consequence, the inner integral in (4.7) has

an expansion∫ ∞

ρ0

r1−lχ2
τ,1(r)f

⟨κ⟩
m,n(re

iθ)e−2mRτ (re
iθ) dr

=

(
π

4m∆Rτ (eiθ)

)1/2 κ∑
j=0

m−jLj [r
1−lf ⟨κ⟩m,n(re

iθ)]|r=1

+O(m−κ−1∥r1−lχ2
τ,1f

⟨κ⟩
m,n,θ∥C2(κ+1)([ρ0,ρ2])+∥r1−lχ2

τ,1f
⟨κ⟩
m,n,θ∥L∞([ρ1,∞))ρ

−mϑ+1
1 ),
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where, to simplify the notation, we use the subscript θ to denote the radial restriction

fθ(r)=f(re
iθ). Here, ϑ, α, and ρ1 are some real numbers with ϑ>0, α>0 and 1<ρ1<ρ2,

which are independent of τ∈Iϵ0 . By applying the standard Cauchy estimates to the

functions f
⟨κ⟩
m,n, and by Remark 3.3 (both part (a) and (b) are needed) we have uniform

control on the norms

∥r1−lχ2
τ,1f

⟨κ⟩
m,n,θ∥C2(κ+1)([ρ0,ρ2]) and ∥r1−lχ2

τ,1f
⟨κ⟩
m,n,θ∥L∞([ρ1,∞)),

provided that l is fixed, and that f
⟨κ⟩
m,n are uniformly bounded. For fixed l, it follows that∫ ∞

ρ0

r1−lχ2
τ,1(r)f

⟨κ⟩
m,n(re

iθ)e−2mRτ (re
iθ) dr

=

(
π

4m∆Rτ (eiθ)

)1/2 κ∑
j=0

m−jLj [r
1−lf ⟨κ⟩m,n(re

iθ)]|r=1+O(m−κ−1),

(4.8)

where the implied constant is uniformly bounded as long as f
⟨κ⟩
m,n is uniformly bounded

on De(0, ρ0). By expanding the expression (4.4) for f
⟨κ⟩
m,n, it follows from (4.8) that∫ ∞

ρ0

r1−lχ2
τ,1(r)f

⟨κ⟩
m,n(re

iθ)e−2mRτ (re
iθ) dr

=

(
π

4m∆Rτ (eiθ)

)1/2 κ∑
k=0

m−kLk[r
1−lf ⟨κ⟩m,n(re

iθ)]|r=1+O(m−κ−1)

=

(
π

4m∆Rτ (eiθ)

)1/2 κ∑
j=0

m−j
j∑

k=0

Lk[r
1−lBτ,j−k(re

iθ)]|r=1+O(m−κ−1),

(4.9)

as m!∞. We multiply the expression (4.9) by eilθ and integrate with respect to θ to

get

m1/4

∫
T
eilθ

∫ ∞

ρ0

r1−lχ2
τ,1(r)f

⟨κ⟩
m,n(re

iθ)e−2mRτ (re
iθ) dr ds(eiθ)

=

κ∑
j=0

m−j−14

∫
T
eilθ

(
π

4∆Rτ (e/iθ)

)1/2 j∑
k=0

Lk[r
1−lBτ,j−k(re

iθ)]|r=1 ds(e
iθ)

+O(m−κ−3/4),

asm!∞. This is an asymptotic series, and so is (4.7), only that all the coefficients vanish

in the latter, and only the error term remains. Since two asymptotic series coincide only

if they coincide term by term, we find that, for integers j=0, ..., κ,∫
T
eilθ(4∆Rτ (e

iθ))−1/2

j∑
k=0

Lk[r
1−lBτ,j−k(re

iθ)]|r=1 ds(e
iθ)= 0, l=1, 2, 3, ... .
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This condition looks like the standard condition membership in the Hardy space H2.

The problem with this is that the functions unfortunately depend on the parameter l, so

the criterion does not apply. To remedy this, we apply Lemma 4.1, which gives∫
T
eilθ

j∑
k=0

Mk[Bτ,j−k](e
iθ) ds(eiθ)= 0, l=1, 2, 3, ..., (4.10)

which is now of the desired form. So, by the standard Fourier analytic characterization

of the Hardy space, the equation (4.10) is equivalent to having

j∑
k=0

Mk[Bτ,j−k]|T ∈H2, j=0, ..., κ. (4.11)

We look at the case j=0 first. Then (4.11) says that M0[Bτ,0]|T∈H2. The operator M0,

with the defining property given by Lemma 4.1, has the form

M0[f ](e
iθ)= (4∆Rτ (e

iθ))−1/2f(eiθ). (4.12)

We recall that it is given that Bτ,0 is bounded and holomorphic in a neighborhood of the

closed exterior disk 	De , so that in particular Bτ,0|T∈H2
−. If we combine this with the

observation that M0[Bτ,0]|T∈H2 together with the explicit expression (4.12) for M0, we

arrive at

Bτ,0|T ∈ (4∆Rτ )
1/2H2∩H2

−. (4.13)

Let HRτ be the bounded holomorphic function in De such that

ReHRτ
= 1

2 log(4∆Rτ )
1/2 = 1

4 log(4∆Rτ ) on T (4.14)

with ImHRτ
(∞)=0. It follows from the given regularity of Rτ that HRτ

is a bounded

holomorphic function in the exterior disk, which extends holomorphically to a neighbor-

hood of 	De. We may rewrite (4.13) in the form

Bτ,0|T ∈ e2ReHRτH2∩H2
−.

By Proposition 2.8 applied with u=v=−�HRτ
and F=0, it follows that Bτ,0 is of the

form

Bτ,0 = cτ,0e
HRτ (4.15)

for some constant cτ,0, which must be positive by our normalization.

We proceed to consider more generally j=1, 2, 3, ... . If we separate out the term

corresponding to k=0 from equation (4.11), we find that

Bτ,j
(4∆Rτ )1/2

+

j∑
k=1

Mk[Bτ,j−k]|T ∈H2, j=1, ..., κ. (4.16)
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This equation allows us to compute Bτ,j , given that we have already obtained the func-

tions Bτ,0, ..., Bτ,j−1. Indeed, if we put

Fτ,j =

j∑
k=1

Mk[Bτ,j−k],

which involves only the functions Bτ,0, ..., Bτ,j−1, we may write (4.16) in the form

Bτ,j |T ∈H2
−∩(4∆Rτ )1/2(−Fτ,j+H2)=H2

−∩e2ReHRτ (−Fτ,j+H2),

which by Proposition 2.8 has the solution

Bτ,j = cτ,je
HRτ −eHRτ PH2

−,0
[e

HRτ Fτ,j ], (4.17)

for some constant cτ,j , which have to be real in view of our normalization f
⟨κ⟩
m,n(∞)>0.

Since Bτ,0 is known up to a constant multiple, this allows us to iteratively derive Bτ,j for

j=1, ..., κ. The only remaining freedom is the choice of the constants cτ,j for j=0, ..., κ.

We proceed to determine them. Since the orthogonal polynomials Pm,n are normalized,

it follows from Theorem 3.2 together with the triangle inequality that

∥χτ,0F ⟨κ⟩
m,n∥2mQ=1+O(m−κ−1)

as m!∞. Since

χτ,0F
⟨κ⟩
m,n=m1/4Λm,n[χτ,1f

⟨κ⟩
m,n],

it follows from the isometric property described in Proposition 3.8 that

m1/2

∫
C
χ2
τ,1|f ⟨κ⟩m,n|2e−2mRτ dA=

∫
C
χ2
τ,0|F ⟨κ⟩

m,n|2e−2mQ dA=1+O(m−κ−1). (4.18)

Here, the integrals are over the whole plane, although the isometry is only over the the

complements of certain compact subsets. However, since we interpret the products with

the cut-off functions as vanishing where the cut-off function vanishes itself, this is of no

concern to us. We now expand f
⟨κ⟩
m,n according to (4.4), so that by equation (4.18),

2m1/2
κ∑

j,k=0

m−(j+k)

∫
T

∫ ∞

ρ0

χ2
τ,1(r)Bτ,j(re

iθ)
Bτ,k(re
iθ)e−2mRτ (re

iθ)r dr ds(eiθ)

= 1+O(m−κ−1),

(4.19)

where the factor 2 appears as a result of our normalizations. This equation is what will

give us the values of the constants cτ,j . We turn first to the case j=0. By a trivial
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version of Proposition 2.11, for any integers j and k, with 0⩽j, k⩽κ, we have the rough

estimate ∫ ∞

ρ0

χ2
τ,1(r)Bτ,j(re

iθ)
Bτ,k(re
iθ)e−2mRτ (re

iθ)r dr ds(reiθ)=O(m−1/2),

where the implicit constant is uniform for τ∈Iϵ0 . If we disregard all the contributions

in (4.19) which are of order O(m−1/2), we see that only j=k=0 gives a non-trivial

contribution. The term corresponding to j=k=0 in (4.19) can be expanded using the

Laplace method of Proposition 2.11 (recall the formula (4.15) for Bτ,0), to give

2m1/2

∫
T

∫ ∞

ρ0

χ2
τ,1(r)|Bτ,0(reiθ)|2e−2mRτ (re

iθ)r dr ds(eiθ)

= 2m1/2|cτ,0|2
∫
T

( π

4m∆Rτ (eiθ)

)1/2
L0[re

2ReHRτ (re
iθ)]|r=1 ds+O(m−1/2).

Since in general, for a smooth function f we have that L0[f(r)]|r=1=f(1), the leading

contribution simplifies to (recall the definition (4.14) of HRτ ),

2m1/2|cτ,0|2
∫
T

( π

4m∆Rτ (eiθ)

)1/2
L0[re

2ReHRτ (re
iθ)]|r=1 ds

=2π1/2|cτ,0|2
∫
T
(4∆Rτ (e

iθ))−1/2e2ReHRτ (e
iθ) ds(eiθ)

= 2π1/2|cτ,0|2
∫
T
ds(eiθ)

= 2π1/2|cτ,0|2.

Since this is the leading contribution to (4.19), we must have 2π1/2|cτ,0|2=1. This

determines the constant cτ,0 up to a unimodular factor, and by positivity we find that

cτ,0=(4π)−1/4.

We turn to the remaining coefficients cτ,j , for j=1, ..., κ. By applying the Laplace

method of Proposition 2.10 to the radial integral in the formula (4.19), we arrive at

2π1/2
κ∑
j=0

m−j
∑

(i,k,l)∈ת⋆
j

∫
T
(4∆Rτ (e

iθ))−1/2Lk[rBτ,i(re
iθ)
Bτ,l(re

iθ)]|r=1 ds(e
iθ)

= 1+O(m−κ−1/2),

where the index set is j⋆ת :={(i, k, l)∈N3 :i+k+l=j}. Here, N={0, 1, 2, ... } as usual. As

this represents an equality of asymptotic series, we may identify term by term. The term
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with j=0 was already analyzed, and it follows that, for j=1, ..., κ, we have∑
(i,k,l)∈ת⋆

j

∫
T
(4∆Rτ (e

iθ))−1/2Lk[rBτ,i(re
iθ)
Bτ,l(re

iθ)]|r=1 ds(e
iθ)

= 2Re

∫
T
(4∆Rτ (e

iθ))−1/2L0[rBτ,j(re
iθ)
Bτ,0(re

iθ)]|r=1 ds(e
iθ)

+
∑

(i,k,l)∈תj

∫
T
(4∆Rτ (e

iθ))−1/2Lk[rBτ,i(re
iθ)
Bτ,l(re

iθ)]|r=1 ds(e
iθ)= 0,

(4.20)

where jת denotes the restricted index set jת :={(i, k, l)∈ת⋆j :i, l<j}, and where we separate

out the terms involving the leading term Bτ,j . We successfully resolve the first term on

the right-hand side of (4.20), while the second term is much more complicated. However,

we may observe that it only depends on the functions Bτ,ν with ν=0, ..., j−1, and hence

only on the constants cτ,ν with ν=0, ..., j−1. This allows us to algorithmically determine

these constants, albeit with increasing degree of complexity. As for the first term on the

right-hand side, we observe that the operator L0|r=1 only evaluates at r=1. Using the

structure of Bτ,j as given by (4.17), we find that∫
T
(4∆Rτ (e

iθ))−1/2L0[rBτ,j(re
iθ)
Bτ,0(re

iθ)]|r=1 ds(e
iθ)

=

∫
T
(4∆Rτ (e

iθ))−1/2Bτ,j(e
iθ)
Bτ,0(e

iθ) ds(eiθ)

= cτ,0

∫
T
(4∆Rτ (e

iθ))−1/2e2ReHRτ (re
iθ)(cτ,j−PH2

−,0
[e

HRτ Fτ,j ](e

iθ)) ds(eiθ)

= cτ,0

∫
T
(cτ,j−PH2

−,0
[e

HRτ Fτ,j ](e

iθ)) ds(eiθ)

= cτ,0cτ,j .

Here we use the definition (4.14) of HRτ
and the fact that the projection PH2

−,0
maps

into a subspace of functions with mean zero. Assume now that j is given, and that we

have determined cτ,k for k=0, ..., j−1. The above equality together with (4.20) then

gives that

2Re cτ,jcτ,0 =−
∑

(i,k,l)∈תj

∫
T
(4∆Rτ (e

iθ))−1/2Lk[rBτ,i(re
iθ)
Bτ,l(re

iθ)]|r=1 ds(e
iθ).

Since cτ,0=(4π)−1/4 and moreover since the constants cτ,j must be real by our normal-

ization, we obtain that

cτ,j =−1

2
(4π)1/4

∑
(i,k,l)∈תj

∫
T
(4∆Rτ (e

iθ))−1/2Lk[rBτ,i(re
iθ)
Bτ,l(re

iθ)]|r=1 ds(e
iθ),
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where the integral may be expressed in terms of the operator Mk by∫
T
(4∆Rτ (e

iθ))−1/2Lk[rBτ,i(re
iθ)
Bτ,l(re

iθ)]|r=1 ds(e
iθ)

=

∫
T
Mk[Bτ,i(re

iθ)
Bτ,l(re
iθ)] ds(eiθ).

This completes the proof.

5. Applications to random matrix theory

5.1. The random normal matrix model

For extensive treatments of the random normal matrix ensembles; see e.g. [30], [3], [4],

[5], [6], [61]. Here we only briefly discuss the topic, in order to fix the notation and recall

some basic concepts.

Let M be a matrix, picked with respect to the probability measure (“tr” stands for

trace)

dµm(M)=
1

Zm,Q
e−2m tr(Q(M))dM,

where dM denotes the measure induced by the flat Euclidean metric of Cm2

on the

submanifold of normal m×m matrices, where Zm,Q is a normalizing constant. Such a

matrix M has a set of m random eigenvalues, which we denote by Φm={z1,m, ..., zm,m}.
It is known that the eigenvalues follow the law

dPm(z1, ..., zm)=
1

Zm,Q

[∏
j<k

|zj−zk|2
]
e−2m

∑m
j=1Q(zj) dA⊗n(z1, ..., zm), (5.1)

where Zm,Q is a related normalizing constant, known as the partition function of the

ensemble. Here, dA⊗n stands for Euclidean volume measure in Cn normalized by the

factor π−n. We recognize this as the law for the Coulomb gas with m particles at the

inverse temperature β=2 in the external field Q. Courtesy of the fact that the product

expression in (5.1) may be written as the square modulus of a Vandermondian determi-

nant, these ensembles are determinantal. That is, if the k-point intensities Rk,m(z1, ... zk)

are defined as the intensities associated to finding points simultaneously at the locations

z1, ..., zk, then we may compute Rk,m by

Rk,m(z1, ..., zk)=det(Km(zj , zl))1⩽j,l⩽k. (5.2)

Here Km is the correlation kernel

Km(z, w)=Km(z, w)e−m(Q(z)+Q(w)), z, w∈C
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whereKm is the reproducing kernel for the space Polm, supplied with the inner product of

the space L2
2mQ(C). We remark that the correlation kernel Km is not uniquely determined

by the above-mentioned intensities, since any kernel modified by a cocycle

Kcm(z, w)= c(z)c̄(w)Km(z, w),

will generate the same point process by the determinantal formula (5.2). Here, the cocycle

is associated with a continuous unimodular function c:C!T. This means that in terms

of convergence of point processes, we need only correlation kernel convergence modulo

cocycles. It is known (see [30], [61]) that the process Φm condensates to the droplet S1

as m!+∞. Indeed, if νm denotes the empirical measure

νm=
1

m

∑
z∈Φm

δz,

then almost surely, νm converges weakly to the equilibrium measure µτ with τ=1, the

support of which equals S1. We rescale the point process near a boundary point z0, in

the outer normal direction n, in order to understand the microscopic behavior of Φm. To

rescale we use the linear transformation

zm(ζ) := z0+n
ζ√

2m∆Q(z0)
.

Writing Φm={zj,m}j , we introduce the rescaled local process by Ψm={ζj,m}j , where

zj,m= zm(ζj,m), j=1, ...,m.

Similarly, we denote by km the rescaled correlation kernel

km(ξ, η)=
1

2m∆Q(z0)
Km(zm(ξ), zm(η)).

We recall the familiar notion that a function F (ξ, η) is Hermitian entire if it is an entire

function of the two variables (ξ, η̄) with the symmetry property F (ξ, η)=F̄ (η, ξ). The

following is from [5].

Theorem 5.1. There is a sequence of continuous unimodular functions cm:C!T,
such that for any given infinite sequence of positive integers N , there exist an infinite

subsequence N ∗⊂N and an Hermitian entire function F (ξ, η) such that

lim
N∗∋m!∞

cm(ξ)c̄m(η)km(zm(ξ), zm(η))= eξη̄−(|ξ|2+|η|2)/2F (ξ, η).
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5.2. Uniform asymptotics near τ=1

We take as our starting point the first term of the asymptotic expansion of Theorem 1.3.

Recall the definition of the compact set Kτ,A,m in (3.27).

Corollary 5.2. Let HQ,τ be the bounded holomorphic function in the set Kcτ with

real part ReHQ,τ=
1
4 log(2∆Q) on the boundary ∂Sτ , which is real-valued at infinity.

Then, in the limit as m,n!∞ while τ=n/m∈Iϵ0 , we have the asymptotics

|Pm,n(z)|2e−2mQ(z) =m1/2|ϕ′τ (z)|e−2m(Q−�Qτ )(z)(π−1/2e2ReHQ,τ (z)+O(m−1)),

where the implied constant is uniform for z∈Kcτ,A,m.

Proof. We recall that

�Qτ =ReQτ+τ log |ϕτ |=ReQτ+
n

m
log |ϕτ |,

and in view of Theorems 1.3 and 1.5, we may write

|Pm,n|2 =m1/2|ϕ′τ (z)| |ϕτ |2ne2mReQτ |Bτ,0+O(m−1)|2

=m1/2|ϕ′τ (z)|e2m
�Qτ (π−1/2e2ReHQ,τ (z)+O(m−1)),

and the assertion follows.

5.3. Error function asymptotics

In view of Corollary 5.2, we observe that the probability density |Pm,n|2e−2mQ resembles

a Gaussian wave which crests around the boundary ∂Sτ of the droplet, where τ=n/m.

As a consequence, we expect the density to be obtained as the sum of such Gaussians.

Near the droplet boundary, this effect is the strongest, and adding a large but finite

number of such Gaussian waves crested along boundary curves ∂Sτ which move with the

degree parameter n results in error function asymptotics.

Proposition 5.3. If Q is 1-admissible and z0∈∂S1 is a boundary point, then if

ρm is the blow-up density given by (1.8) and (1.9), we have the convergence

lim
m!∞

ρm(ζ)= erf(2ζ),

locally uniformly on C.
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Proof. We recall the rescaled variable from the introduction

zm(ξ)= z0+n
ξ√

2m∆Q(z0)
,

where z0∈∂Sτ and n is the outward unit normal to Sτ at z0, and the rescaled density

ρm(ξ) given by (1.9). In terms of orthogonal polynomials, the object of study is the

function

ρm(ξ)=
1

2m∆Q(z0)

m−1∑
n=0

|Pm,n(zm(ξ))|2e−2mQ(zm(ξ)).

We begin by noting that zm(ξ) is in the set Kcτ,A,m (see Theorem 1.3), provided that ξ is

confined to the disk D(0, rm), where rm=A
√
∆Q(z0) logm, and that m is large enough.

We shall assume throughout that ξ∈D(0, rm).

Next, we write

ρm1,m(ξ)=
1

2m∆Q(z0)

m1−1∑
n=0

|Pm,n(zm(ξ))|2e−2mQ(zm(ξ))

and split accordingly for m1<m

ρm(ξ)=
1

2m∆Q(z0)

m−1∑
n=m1

|Pm,n(zm(ξ))|2e−2mQ(zm(ξ))+ρm1,m(ξ). (5.3)

We choose m1 to be the integer part of m−m1/2 logm.

By Proposition 2.3, it follows that, for n⩽m1,

|Pm,n(z)|2e−2mQ(z) ⩽Cme−2m(Q−Q̂τ1
)(z), (5.4)

where τ1=m1/m∈Iϵ0 for m large enough. By Taylor’s formula applied to the relative

potential Q−�Qτ1=Rτ1 �ϕτ1 in Scτ1 (Proposition 3.6), it follows that

(Q−Q̂τ1)(z)⩾β0 distC(z, ∂Sτ1)2 (5.5)

for some constant β0>0, provided that z∈Scτ1 is close enough to ∂Sτ1 . For instance, this
estimate holds for z∈S1\Sτ1 . Moreover, as τ1=m1/m eventually is in Iϵ0 , the function

Q−Q̂τ1 does not vanish on Scτ1 , and tends to infinity at infinity. The latter observation

shows that further away from the boundary ∂Sτ1 , the right-hand side of (5.4) decays

exponentially.

If n⩽m1 and τ=n/m, then

1−τ ⩾m−1/2 logm= δm.
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As a consequence of Lemma 2.5 we obtain that the boundary ∂Sτ moves at a pos-

itive speed in τ . In particular, for τ=n/m where n⩽m1 we have that the distance

distC(∂Sτ , ∂S1) is at least 2α0δm, for some fixed positive α0. Since distC(∂Sτ1 , ∂S1) is

at least 2α0δm, we have that

distC(z, ∂Sτ1)⩾α0δm, z ∈D(z0, α0δm). (5.6)

Next, we note that if ζ∈D(0, rm), then for large enough m we have zm(ζ)∈D(z0, α0δm).

This follows from the obvious fact that (logm)1/2=o(logm). By a combination of (5.5)

and (5.6) it follows that

(Q−Q̂τ1)(zm(ζ))⩾β0α
2
0δ

2
m.

Now, it follows from the above estimates (5.4) and (5.5) that for n⩽m1

|Pm,n(zm(ξ))|2e−2mQ(zm(ξ)) =O(me−2β0α
2
0(logm)2),

where the implicit constant is uniform in ξ∈D(0, rm). It follows that

ρm1,m(ξ)=O(m2e−β0α
2
0(logm)2), ξ ∈D(0, rm),

which shows in particular that ρm1,m(ξ)=O(m−M ) for arbitrarily large M .

As a result of the above considerations, it follows that we may focus on the remaining

sum in (5.3) over the degrees n with m1⩽n⩽m−1, that is, τ=n/m with τ1⩽τ⩽1. In

particular, the asymptotics of Corollary 5.2 applies in the whole range. Set

τ(j)= τm(j)= 1− j

m
,

where j ranges from 1 to m−m1, which is approximately m1/2 logm. We obtain

ρm(ξ)

=
(πm)−1/2

2∆Q(z0)

m−m1∑
j=1

|ϕ′τ(j)(zm(ξ))|e−2m(Q−�Qτ(j))(zm(ξ))+2ReHQ,τ(j)(zm(ξ))+O(m−M ).

(5.7)

By Taylor’s formula, it follows that

|ϕ′τ(j)(zm(ξ))|= |ϕ′1(z0)|+O((m−1 logm)1/2),

and by the same token that

2ReHQ,τ(j)(zm(ξ))= 1
2 log∆Q(z0)+O((m−1 logm)1/2)



366 h. hedenmalm and a. wennman

as m!∞ for all j⩽m−m1. The next thing to consider is the movement of ∂Sτ , where
τ=τ(j) and j increases. As n denotes the outward pointing unit normal to ∂S1 at the

point z0, Lemma 2.5 tells us that the line z0+nR intersects ∂Sτ(j) at the nearest point

zj = z0−n
j

m

|ϕ′1(z0)|
4∆Q(z0)

+O
(( j

m

)2)
,

and the outer unit normal nj to ∂Sτ(j) at the point zj will satisfy

nj =n+O
( j
m

)
=n+O(m−1/2 logm).

We may hence write

(Q−�Qτ(j))(zm(ξ))

= (Q−�Qτ(j))
(
zj+

nj√
2m∆Q(z0)

(
ξ+

j

2

|ϕ′1(z0)|√
2m∆Q(z0)

+O(m−1/2(logm)2)

))
.

A simple Taylor series expansion in normal and tangential coordinates at the point zj

gives that

(Q−�Qτj )(zj+njλ)= 2∆Q(zj)(Reλ)
2+O(|λ|3)= 2∆Q(z0)(Reλ)

2+O

(
|λ|2 j

m
+|λ|3

)
,

for λ close to zero. From this, we deduce that for η with |η|=O(logm) we have

2m(Q−�Qτ(j))
(
zj+nj

η√
2m∆Q(z0)

)
=

1

2
(2Re η)2+O(m−1/2(logm)3), m!∞.

We apply this with η given by

η= ξ+
j

2

|ϕ′1(z0)|√
2m∆Q(z0)

+O(m−1/2(logm)2),

which then gives that

(2Re η)2 =

(
2Re ξ+j

|ϕ′1(z0)|√
2m∆Q(z0)

)2
+O(m−1/2(logm)3).

Putting these asymptotic relations together, we find that

ρm(ξ)=
1√
2π

(1+O(m−1/2(logm)3))

×
m−m1∑
j=1

|ϕ′1(z0)|√
2m∆Q(z0)

exp

(
−1

2

(
2Re ξ+j

|ϕ′(z0)|√
2m∆Q(z0)

)2)
+O(m−M ).

(5.8)
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We recognize immediately (5.8) as an approximate Riemann sum for

erf(2Re ξ)=
1√
2π

∫ ∞

0

e−(2Re ξ+t)2/2 dt

with respect to a partition of the interval [0, γ0 logm], with step length m−1/2γ0, where

γ0 =
|ϕ′(z0)|√
2∆Q(z0)

.

Since such Riemann sums converge to the corresponding integral with small error, this

implies that

lim
m!∞

ρm(ξ)= erf(2Re ξ),

which completes the proof.

5.4. Convergence of correlation kernels to the Faddeeva plasma kernel

Finally, we turn to the convergence of the rescaled kernels km(zm(ξ), zm(η)) asm!∞. In

principle, this should follow from our expansion of the orthogonal polynomials, but to do

this directly seems a bit tricky. However, given the work of Ameur, Kang, and Makarov

[5], it turns out to be enough to obtain the more straightforward diagonal convergence

of the correlation kernel.

Proof of Corollary 1.7. We denote by G(ξ, η) the Ginibre-∞ kernel

G(ξ, η)= eξη̄−(|ξ|2+|η|2)/2,

which is the correlation kernel of a translation invariant planar point process. We now

present some material from [5]. An important concept is that of cocycles. By The-

orem 5.1, there exists a sequence of continuous functions cm:C!T such that, for any

subsequence N of the natural numbers N, there exists a Hermitian entire function F (ξ, η)

and a further subsequence N ⋆⊂N such that

cm(ξ)c̄m(η)km(zm(ξ), zm(η))!G(ξ, η)F (ξ, η), m∈N ⋆, m!∞, (5.9)

where the convergence is uniform on compact subsets of C2. For Hermitian entire func-

tions, the diagonal restriction F (ξ, ξ) determines the function uniquely. Indeed, the

polarization of the diagonal restriction gives back our function F (ξ, η). We denote by

ρ(ξ) the limiting density

ρ(ξ)= lim
m!∞
m∈N⋆

km(zm(ξ), zm(ξ))=G(ξ, ξ)F (ξ, ξ),
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and since G(ξ, ξ)≡1, it follows that F (ξ, ξ)=ρ(ξ). By Proposition 5.3 we have that

ρ(ξ)= erf(2Re ξ).

Moreover, by the uniqueness property of diagonal restriction, the only possibility for the

Hermitian entire function is

F (ξ, η)= erf(ξ+η̄).

This shows that the limit along some subsequence of any given sequence of positive

integers is always the same. We claim that this means that the whole sequence converges.

Indeed, in case the convergence (5.9) were to fail along the positive integers, by a normal

families argument, we could distill a sequence N0 such that the left-hand side of (5.9)

would converge to something else along the subsequence N0. This would contradict what

we have already established, which is that the we have diagonal convergence to the error

function. The assertion of the corollary follows.

6. The existence of the orthogonal foliation flow

6.1. Smoothness classes and polarization of functions

In order to proceed with less obscuring notation, we consider a smooth family of bounded

holomorphic functions fs(z), and a smooth family of orthostatic conformal mappings ψs,t.

Here, fs corresponds to f
⟨κ⟩
m,n where s=m−1, and ψs,t corresponds to the mappings ψm,n,t

appearing in Lemma 3.9. We suppress τ and κ in the notation, because κ is thought of

as fixed, and we work with uniformity in the parameter τ . Moreover, we denote by R

a weight whose properties are analogous to those of Rτ , as captured in Definition 6.1

below.

We denote by A(ϱ1, ϱ2) the annulus

A(ϱ1, ϱ2) :=D(0, ϱ2)\	D(0, ϱ1),

for positive real numbers ϱ1 and ϱ2 with ϱ1<ϱ2 (notice that we distinguish between the

symbols ρ and ϱ). In addition, for parameters ϱ0 and σ0, we denote by Â(ϱ0, σ0) the

2σ0-fattened diagonal annulus in C2:

Â(ϱ0, σ0) := {(z, w)∈A(ϱ0, ϱ−1
0 )×A(ϱ0, ϱ−1

0 ) : |z−w|⩽ 2σ0},

For a real-analytic function R there exists a polarization R(z, w), which is holomor-

phic in (z, 	w) and has R(z, z)=R(z). This is easy to see using convergent local Taylor

series expansions of R(z) in the coordinates which are the real and imaginary parts,
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Re z and Im z. By replacing Re z by 1
2 (z+	w) and Im z by 1

2i (z−	w) in this expansion,

we obtain the polarization R(z, w). We observe that, if R(z, w) is such a polarization

of a function R(z) which is real-analytically smooth near the circle T, and in addition

is quadratically flat there, then R(z)=(1−|z|2)2R♯(z), where R♯(z) is real-analytic near

the circle T. In polarized form, R(z, w) factors as

R(z, w)= (1−z	w)2R♯(z, w), (6.1)

where R♯(z, w) is holomorphic in (z, 	w) in a neighborhood of the part of the diagonal

where both variables are near T.

Definition 6.1. For positive real numbers ϱ0 and σ0, where ϱ0<1, we denote by

W(ϱ0, σ0) the class of C2-smooth non-negative functions R on De(0, ϱ0) such that the

following conditions hold:

(i) The functions R and ∇R both vanish on T, while ∆R>0 holds on T.
(ii) R is real-analytic on A(ϱ0, (ϱ0)−1), and both R(z, w) and R♯(z, w) given by (6.1)

polarize to bounded holomorphic functions in (z, 	w) on the diagonal annulus Â(ϱ0, σ0),
such that R♯(z, w) remains bounded away from zero there.

(iii) In addition,

R♯(z, z)⩾α(R)> 0, z ∈A(ϱ0, ϱ−1
0 ),

and further away,

inf
z∈De(0,ϱ

−1
0 )

R(z)

log |z|
= θ(R)> 0.

We say that a subset S⊂W(ϱ0, σ0) is a uniform family, provided that, for each

R∈S, the corresponding R♯(z, w) is uniformly bounded and bounded away from zero on

Â(ϱ0, σ0) while the controlling constants such as α(R) and θ(R) are uniformly bounded

away from zero.

If a function f(z, w) is holomorphic in (z, 	w), we may consider the associated function

fT(z)= f

(
z,

1

z̄

)
, (6.2)

which is then holomorphic in z, wherever it is well defined. We note that fT(z)=f(z, z)

on the circle T. We recall the notation of Definition 6.1.

Proposition 6.2. Suppose that f(z, w) is holomorphic in (z, 	w) on the domain

Â(ϱ, σ), where 0<ϱ<1 and σ>0. Then, the function fT(z), which extends the restriction

of the diagonal function f(z, z) to T, has a holomorphic extension to the annulus

ϱ′< |z|< 1

ϱ′
,
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where

ϱ′ =max{ϱ, (
√

1+σ2+σ)−1}.

Proof. The function fT(z)=f(z, z̄
−1) is automatically holomorphic and bounded in

the variable z in the domain ∣∣∣z− 1

z̄

∣∣∣< 2σ,

provided that z∈A(ϱ, ϱ−1). The displayed condition is equivalent to the requirement

that

−2σ|z|< |z|2−1< 2σ|z|,

from which the claim follows by solving two quadratic equations.

Remark 6.3. We note that, if ϱ is close enough to 1 to guarantee that

ϱ⩾ (
√

1+σ2+σ)−1,

then ϱ′=ϱ.

Remark 6.4. Suppose a real-analytic function F (z) admits a polarization F (z, w)

which is holomorphic in (z, 	w) for (z, w)∈Â(ϱ, σ), and let f be given in terms of the

Herglotz kernel by f=HDe
[F |T] (cf. §2.5). We note that, by the properties of the Herglotz

kernel, f may be obtained by the formula f=2PH2
−
[F |T]−⟨F ⟩T, where ⟨F ⟩T denotes the

average of F on the unit circle. Let FT be as in (6.2), and express it in terms of its

Laurent series, which by Proposition 6.2 converges in the annulus A(ϱ′, (ϱ′)−1):

FT(z)=
∑
n∈Z

anz
n.

In terms of the Laurent series, PH2
−
[F |T] equals

∑
n⩽0 anz

n and ⟨F ⟩T=a0. As a con-

sequence, PH2
−
[F |T] defines a holomorphic function on the exterior disk De(0, ϱ

′) and

hence, f is holomorphic on De(0, ϱ
′) as well.

The setting which will prove useful to us is when we may control certain related

quantities and their polarizations, which is possible on thinner C2-complexified annuli.

The polarization of log∆R appears later in the induction algorithm, while log(z∂R̂) is

important for the control associated with the implicit function theorem.

Proposition 6.5. If R belongs to a uniform family S⊂W(ϱ0, σ0) for some positive

reals ϱ0 and σ0, with ϱ0<1, and if R̂=
√
R is chosen so that R̂(z) is positive for |z|>1

and negative for |z|<1, then there exist positive ϱ1 and σ1 with ϱ0⩽ϱ1<1, σ1⩽σ0, and

ϱ1⩾(
√
1+σ2

1+σ1)
−1, such that the polarizations of the functions log∆R, R̂, log(z∂R̂)

are all holomorphic in (z, 	w) and uniformly bounded on the 2σ1-fattened diagonal annulus

Â(ϱ1, σ1).



asymptotics of planar orthogonal polynomials 371

Proof sketch. This follows from the assumptions on the uniform family, if we use

the standard Cauchy estimates plus the fact that log∆R=log(2(R♯)2) and log(z∂R̂)=
1
2 logR

♯ hold on the unit circle T. The condition ϱ1⩾(
√
1+σ2

1+σ1)
−1 is achieved by

choosing ϱ1 large enough, but still in the range ϱ0⩽ϱ1<1.

6.2. The master equation for the orthogonal foliation flow

For an integer n, we denote by Zn the triangular index set

Zn= {(j, l)∈N2 : 2j+l⩽n}, (6.3)

and supply it with the inherited lexicographic ordering ≺L:

(i, k)≺L (j, l) if i< j or i= j and k < l.

We recall the notation of the pair (ϱ1, σ1) from Proposition 6.5.

The following is an analogue of Lemma 3.9. We introduce a parameter s, which is

supposed to be close to zero, and plays the role of the Planck constant ℏ. Later on, we

will put s=1/m.

Proposition 6.6. Let κ be a given positive integer and let R∈W(ϱ0, σ0), for some

ϱ0 and σ0, with 0<ϱ0<1 and σ0>0. Then, there exist a radius ϱ2 with ϱ1<ϱ2<1,

bounded holomorphic functions bj on the exterior disk De(0, ϱ1) for j=0, ..., κ, and or-

thostatic conformal mappings

ψs,t=ψ0,t+
∑

(j,l)∈Z2κ+1

j⩾1

sjtlψ̂j,l

defined on De(0, ϱ2) with ψs,t(De(0, ϱ2))⊂De(0, ϱ1) for s and t close to zero, such that

the following holds. For fixed s, the domains ψs,t(De) increase with t: ψs,t(De)⊂ψs,t′(De)

for t<t′, and if we put hs=
∑κ
j=0 s

jbj and fs=exp(hs), the functions fs and ψs,t have

the property that, for ζ∈T,

|fs�ψs,t(ζ)|2e−2s−1R�ψs,t(ζ) Re(−ζ̄∂tψs,t(ζ)ψ′
s,t(ζ))

= e−t
2/s((4π)−1/2+O(|s|κ+1/2+|t|2κ+1)).

(6.4)

Here, the implicit constant remains uniformly bounded as long as R is confined to a

uniform family in W(ϱ0, σ0), for fixed ϱ0 and σ0.
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Remark 6.7. (a) Strictly speaking, the functions ψs,t and hs we write down de-

pend on the precision parameter κ, while the coefficient functions bj and ψ̂j,l do not.

We observe that the orthostaticity of ψs,t gives that ψ̂′
0,0(∞)>0, and moreover that

Im ψ̂′
j,l(∞)=0 for all j, l⩾0.

(b) The function fs will also admit an asymptotic expansion of the form

fs(ζ)=

κ∑
j=0

sjBj(ζ)+O(sκ+1), ζ ∈De(0, ϱ1),

where the coefficient functions Bj may be obtained algorithmically as multivariate poly-

nomials in the functions b0, ..., bj .

The first step towards finding the conformal mappings ψs,t is to note the following:

we find by taking logarithms that

2Rehs�ψs,t(ζ)−2s−1(R�ψs,t)(ζ)+logRe(−ζ̄∂tψs,tψ′
s,t(ζ) )=−s−1t2+O(1), (6.5)

as s, t!0. Next, we multiply both sides by s, to obtain

2sRehs�ψs,t(ζ)−2R�ψs,t(ζ)+s log Re(−ζ̄∂tψs,tψ′
s,t(ζ) )=−t2+O(s). (6.6)

Finally, we take the limit as s!0 in (6.6), expecting that

Rehs�ψs,t and logRe(−ζ̄∂tψs,tψ̄′
s,t)

remain bounded, and arrive at the equation

R�ψ0,t(ζ)=
1
2 t

2.

As a consequence, ψ0,t should be a conformal mapping of De onto the exterior of the

appropriate level curve of the weight R.

Proposition 6.8. Let R be as in Proposition 6.6. There exist a positive num-

ber t0, and a real-analytically smooth family {ψ0,t}t∈(−t0,t0) of orthostatic conformal

mappings De!Ωt, where Ωt is the unbounded component of C\Γt, and where Γt are

real-analytically smooth, simple closed level curves of R:

R|Γt =
1
2 t

2.

Moreover, Ω0=De and Ωt increases with t.
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Proof. The assumed strict subharmonicity of R gives that there exists a neighbor-

hood U of T such that ∇R|U\T ̸=0. This shows that the level sets must be simple and

closed curves, for |t| sufficiently small. Indeed, if a curve would possess a loop, then R

would have to have a local extremal point inside the loop, which is impossible. Since ∇R
vanishes on T, we cannot apply the implicit function theorem directly to R to obtain the

result. However, the function

R̃(reiθ) :=
R(reiθ)

(r−1)2

is, in view of Proposition 3.6, strictly positive and real-analytic in a neighborhood of the

unit circle T. We form the square root R̂=
√
R by

R̂(reiθ)= (r−1)

√
R̃(reiθ),

where the square root on the right-hand side is the standard square root of a positive

number. We may now apply the implicit function theorem to the function R̂. The result

follows immediately by applying the Riemann mapping theorem to the exterior of the

resulting analytic level curves of R̂.

Remark 6.9. Proposition 6.8 tells us that the conformal mappings ψ0,t extend to

some domain containing 	De , but supplies little information on how much bigger such a

domain is allowed to be. We will discuss this issue in §6.3 below. Along the way, we also

obtain an alternative proof of Proposition 6.8, which may be viewed as a quantitative

version of the implicit function theorem in the given context.

The Taylor coefficients ψ̂0,l (in the flow variable t) of the conformal mappings ψ0,t

may be explicitly computed in terms of the weight R, using a higher-order version of

Nehari’s formula for conformal mappings to nearly circular domains. We will return to

this in §6.8. Before we carry on, we formulate the following lemma, which allows us to

draw the conclusion that the mappings ψs,t of Proposition 6.6 are actually conformal.

Lemma 6.10. Assume that ψ is a holomorphic function on De(0, ϱ) of the form

ψ(z)= z+F (z),

such that |F ′|⩽ 1
2 and

2|zF ′′(z)|⩽ ϱ2

|z|2−ϱ2
, z ∈De(0, ϱ).

Then, ψ is univalent on De(0, ϱ).

Proof. This is immediate from the Becker–Pommerenke univalence criterion [8].

It is clear that the mappings ψs,t meet this criterion for some ϱ<1, for small enough

s and t for a fixed precision parameter κ.
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6.3. The smoothness of level curves and the implicit function theorem

In this subsection, we analyze the extension properties of conformal mappings from De

onto the exterior of the level curves of R near the unit circle. In a sense, this may be

viewed as a quantitative version of the implicit function theorem.

The function R is assumed to belong to the class W(ϱ0, σ0) of Definition 6.1, which

is a quantitative way to say that R is real-analytic near the unit circle T, and vanishes

along with its normal derivative on T, while ∆R is positive on T. We recall the definition

of the choice of square root R̂ of R from the proof of Proposition 6.8. This function is

also real-analytic near the circle, vanishes on T but its gradient is non-zero and points

in the direction of the outward normal. To make this more quantitative, we let ϱ1 and

σ1 be the parameters of Proposition 6.5. Then, in the 2σ1-fattened diagonal annulus

Â(ϱ1, σ1), we have the control

sup
(z,w)∈Â(ϱ1,σ1)

|log(z∂zR̂(z, w))|<+∞. (6.7)

We recall that the mappings ψ0,t are defined by the requirement of orthostaticity and

R̂�ψ0,t(ζ)=− t√
2
, ζ ∈T. (6.8)

By differentiating the relation (6.8) with respect to t, we obtain from the chain rule

[(∂rR̂)�ψ0,t]∂t|ψ0,t|+[(∂θR̂)�ψ0,t]∂t argψ0,t=− 1√
2
,

which we may rewrite as

[(r∂rR̂)�ψ0,t]∂ log |ψ0,t|+[(∂θR̂)�ψ0,t]∂t argψ0,t=Re

(
[(r∂rR̂−i∂θR̂)�ψ0,t]∂t log

ψ0,t

ζ

)
=− 1√

2
.

Here, we divided by the coordinate function ζ in order to avoid issues with branch cuts of

the logarithm. The differential operator acting on R̂ may be written as r∂r−i∂θ=2z∂z,

so the above expression simplifies further to

Re

(
[(2z∂zR̂)�ψ0,t]∂t log

ψ0,t

ζ

)
=− 1√

2
on T. (6.9)

It is on the basis of the relation (6.9) that we will try to recover information on the

mappings ψ0,t. We introduce the notation

µ(ζ) := log(2z∂zR̂), µt=µ�ψ0,t, Ft(ζ)= ∂t log
ψ0,t(ζ)

ζ
, (6.10)
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and observe that (6.9) may be written in the form

eµtFt+e µ̄t F̄t=−
√
2 on T. (6.11)

We note that along the unit circle T, the function eµ=2z∂zR̂ equals the positive function√
2∆R, so there are no problems with taking the logarithm in the definition of µ in a

neighborhood of T. In particular, if ψ0,t is a perturbation of the identity, the function

µt is well defined and smooth. Next, we decompose µt=µ
+

t +µ
−
t , where µ+

t ∈H2 and

µ−
t ∈H2

−,0 are both smooth, and write Gt=eµ
−
t Ft. Given that Ft∈H2

−, it is clear that

Gt∈H2
−. If we multiply the above equation (6.11) by e−2Reµ+

t , we arrive at

e−µ̄t
+

Gt+e−µ
+
t 
Gt=2Re(e−µ̄

+
t Gt)=−

√
2e−2Reµ+

t ,

where we point out that e−µ̄
+
t Gt∈H2

−, while e−µ
+
t 
Gt∈H2. This is equation is solved by

applying the Herglotz kernel, and yields the solution

Gt=− 1√
2
e µ̄

+
t HDe

[e−2Reµ+
t ],

where we use the fact that Ft and µ+

t are real-valued at infinity (cf. Remark 6.7 (a)).

That is,

Ft=− 1√
2
e µ̄

+
t −µ−

t HDe [e
−2Reµ+

t ]. (6.12)

Let us write

gt(ζ)= log
ψ0,t(ζ)

ζ
, (6.13)

so that ∂tgt=Gt and g0=0. Here, the logarithm is understood as the principal branch. In

terms of these functions, the equation (6.12) becomes the following non-linear differential

equation in t:

∂tgt=− 1√
2
exp(PH2 [µ�ψ0,t]−PH2

−,0
[µ�ψ0,t])HDe [exp(−2RePH2 [µ�ψ0,t])]. (6.14)

It is not difficult to see that the equation (6.14) may be solved by an iterative procedure,

if we rewrite it in integral form

gt=− 1√
2

∫ t

0

exp(PH2 [µ�ψ0,θ]−PH2
−,0

[µ�ψ0,θ])HDe
[exp(−2RePH2 [µ�ψ0,θ])] dθ. (6.15)

As a first order approximation, we start with ψ
[0]
0,t(ζ)=ζ, and use the formula (6.15) to

define g
[j+1]
t in terms of ψ

[j]
0,t, for j=0, 1, 2, ... , by integration. The process is interlaced

with computing ψ
[j+1]
0,t :=ζ exp(g

[j+1]
t ), and results in convergent sequences g

[j]
t and ψ

[j]
0,t.
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We are interested in analyzing where the function ψ0,t extends as a holomorphic map-

ping. To this end, we recall that the function µ given by (6.10) has a well-defined polar-

ization to Â(ϱ1, σ1). It is clear that if for some ϱ̂t<1, ψ0,t maps the annulus A(ϱ̂t, (ϱ̂t)−1)

into A(ϱ1, ϱ−1
1 ), we obtain the estimate

∥∂tgt∥H∞(A(ϱ̂t,(ϱ̂t)−1)) ⩽

√
2

1−ϱ̂2t
exp

(
5
∥µ∥H∞(A(ϱ1,ϱ−1

1 ))

1−ϱ̂2t

)
,

where we use the estimate

∥PH2 [f ]∥H∞(D(0,(ϱ̂t)−1)) ⩽
∥f∥H∞(A(ϱ̂t,(ϱ̂t)−1))

1−ϱ̂2t
,

and the analogous estimate for PH2
−,0

[f ]. Assume for the moment that ϱ̂t<1 is monoton-

ically increasing in |t|, and recall that ψ0,t(ζ)=ζ exp(gt). In light of the above estimate

of ∂tgt, we obtain

∥gt∥H∞(A(ϱ̂t,(ϱ̂t)−1)) ⩽

√
2|t|

1−ϱ2t
exp

(
5
∥µ∥H∞(A(ϱ1,ϱ−1

1 ))

1−ϱ̂2t

)
=:Ct|t|,

where Ct is defined implicitly by the last relation. This leads to the control

e−Ct|t|ϱ̂t⩽ |ψ0,t(ζ)|⩽ eCt|t|(ϱ̂t)
−1, ζ ∈A(ϱ̂t, (ϱ̂t)−1),

which means that ψ0,t maps the annulus A(ϱ̂t, (ϱ̂t)−1) into A(ϱ1, ϱ−1
1 ), provided that

e−Ct|t|ϱ̂t⩾ ϱ1.

Let us make the ansatz ϱ̂t=ϱ1e
M |t|, for some positive constantM . The above requirement

is then satisfied provided that M⩾Ct. If we restrict t to the interval

|t|⩽ log(1/ϱ1)

2M
, (6.16)

it is immediate that
1

1−ϱ̂2t
⩽

1

1−ϱ1
.

This then gives the following estimate for Ct:

Ct⩽

√
2

1−ϱ1
exp

(
5
∥µ∥H∞(A(ϱ1,ϱ−1

1 )

1−ϱ1

)
,

where the right-hand side does not depend on t. We may finally choose M to be the

following constant:

M =

√
2

1−ϱ1
exp

(
5
∥µ∥H∞(A(ϱ1,ϱ−1

1 )

1−ϱ1

)
(6.17)

and obtain that ψ0,t is holomorphic in the exterior disk De(0, ϱ̂t), where

ϱ̂t= ϱ1e
M |t|,

provided that t satisfies (6.16). For t close to zero, ϱ̂t is then close to ϱ1 in a quantifiable

fashion. We gather these observations in a proposition.
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Proposition 6.11. Suppose R is in the class W(ρ0, σ0) and that (6.7) holds. Then

the conformal maps ψ0,t, initially defined on 	De, extend to holomorphic functions on the

exterior disk De(0, ρ̂t), where ρ̂t=ρ1e
M |t|⩽

√
ρ1 and M is given by (6.17), provided that

t is in the interval (6.16).

6.4. An outline of the orthogonal foliation flow algorithm

We now proceed to describe an outline of the algorithm. With the notation

Πs,t(ζ)= 2Rehs�ψs,t(ζ)−
2

s

(
(R�ψs,t)(ζ)−

1

2
t2
)
+log(Re{−ζ̄∂tψs,t(ζ)ψ′

s,t(ζ)}), (6.18)

we may rewrite the master equation (6.4) for the orthogonal foliation flow as

Π̂j,l(ζ)=
∂js∂

l
kΠs,t(ζ)

j! l!

∣∣∣∣
s=t=0

=

{
− 1

2 log(4π), for ζ ∈T and (j, l)= (0, 0),

0, for ζ ∈T and (j, l)∈ Z2κ\{(0, 0)}.

(6.19)

provided that the functions hs and ψs,t obtained by solving these equations do not

degenerate, as long as R remains in a bounded set of W(ϱ0, σ0) for some ϱ0 with 0<ϱ0<1

and some σ0>0. We recall that hs is defined by the finite expansion

hs=

κ∑
j=0

sjbj . (6.20)

As it turns out later on in Proposition 6.19, we have, for j, l⩾1,

Π̂j−1,l(ζ)=−2(4∆R(ζ))1/2 Re(ζ̄ψ̂j,l−1(ζ))+Tj−1,l(ζ), ζ ∈T, (6.21)

where Tj−1,l is real-valued and real-analytic, and depends only on b0, ..., bj−1 and ψ̂p,q

with (p, q)≺L(j, l−1), where we recall that ≺L denotes the standard lexicographic order-

ing. Moreover, when l=0 we get

Π̂j,0(ζ)= 2Re bj(ζ)+Tj,0(ζ), ζ ∈T, (6.22)

where Tj,0 depends only on b0, ..., bj−1 and ψ̂p,q for (p, q)≺L(j+1, 0). Such dependencies

will be encoded in terms of complexity classes introduced in §6.7.

Step 1. We let ψ0,t be the orthostatic conformal mappings to the exterior of level

curves of R, as given by Proposition 6.8. In particular, this determines uniquely the
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coefficient functions ψ̂0,l, for l=0, ..., 2κ+1 (for the details; see Proposition 6.16 below).

For instance, we find that ψ̂0,0(ζ)=ζ, while ψ̂0,1(ζ)=−ζHDe
[(4∆R)−1/2].

Step 2. By evaluating Π̂0,0(ζ)=Πs,t(ζ)|s=t=0, we obtain from (6.19) that

2Re b0(ζ)+logRe(−ζ̄ψ̂0,1(ζ))=− 1
2 log(4π), ζ ∈T.

As ψ̂0,1 is already known and the above real part is strictly positive on T (see Proposi-

tion 6.16 below), this gives the value of 2Re b0 on the unit circle T, which gives that

b0 =− 1
4 log(4π)+

1
4HDe

[log(4∆R)].

We proceed from Step 2 to Step 3 with j=1.

Step 3. We have determined b0, ..., bj0−1 and ψ̂j,l for all (j, l)≺L(j0, 0), and in this

step we intend to determine all the coefficient functions ψ̂j,l for (j, l)≺L(j0+1, 0). In view

of Proposition 6.19 below, we may obtain explicitly Tj0−1,1 in terms of this known data

set, which by the equations (6.19) and (6.21) gives an equation for ψ̂j0,0. More generally,

the equation which gives ψ̂j0,l0 takes the form

Re(ζ̄ψ̂j0,l0)=
1
2 (4∆R)

−1/2Tj0−1,l0+1 on T,

and we solve it with the formula

ψ̂j0,l0(ζ)=
1
2ζHDe

[(4∆R)−1/2Tj0−1,l0+1](ζ).

If we apply this solution formula with l=0, the background data gets extended to all ψ̂j,l

with (j, l)≺L(j0, 1). Continuing in the same fashion, Proposition 6.19 shows that Tj0−1,2

may be expressed in terms of this extended data set. Consequently, the above solution

formula also determines ψ̂j0,1. More generally, as we proceed iteratively in the same

manner, we obtain all the coefficient functions ψ̂j,l with j=j0 and (j, l)≺L(j0+1, 0).

Step 4. At this stage, using Step 3, we have at our disposal the functions b0, ..., bj0−1,

and ψ̂j,l for all (j, l)≺L(j0+1, 0). Proposition 6.19 now allows us to compute Tj0,0 in

terms of this data, and from (6.19) and (6.22), we derive an equation for bj0 :

2Re bj0 =−Tj0,0, on T.

We solve this equation explicitly by

bj0(ζ)=− 1
2HDe

[Tj0,0](ζ), ζ ∈De.

After completing this step in the algorithm, we have extended the data set to contain

b0, ..., bj0 and all coefficient functions ψ̂j,l with (j, l)≺L(j0+1, 0).

Step 5. Finally, we iterate Steps 3 and 4 with j0 replaced by j0+1, until all coefficient

functions bk and ψ̂j,l have been determined, for 0⩽k⩽κ and (j, l)∈Z2κ+1. This also means

that the flow equation (6.19) is met with the given choices of coefficient functions.
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Remark 6.12. If we apply the above algorithm to the function R=Rτ , the coeffi-

cient functions Bj in the expansion of fs=exp(hs) obtained here are the same as those

appearing in Theorem 1.5. There, the algorithm was based on Laplace’s method and in-

homogeneous Toeplitz kernel equations. The algorithm presented here is in principle an

alternative route towards finding the coefficient functions. However, a drawback is that

the algorithm requires us to compute the additional functions ψ̂j,l, which adds further

complexity.

6.5. The general multivariate Faà di Bruno formula

We recall the Faà di Bruno formula in several variables, and study some of its properties.

To prepare for the formulation, we introduce the well-ordering used in [15], which we call

the order-lexicographical ordering (OL for short). Given two multi-indices

α=(α1, ..., αd) and β=(β1, ..., βd),

we write that α≺OLβ if:

(i) |α|<|β|, or if
(ii) |α|=|β| and α≺Lβ (lexicographically).

Here, we recall that in the lexicographical ordering α≺Lβ holds if either α1<β1 or

α1=β1, ..., αk−1=βk−1 while αk<βk holds for some 1⩽k⩽d. As a matter of notation,

α⪯β means that either α≺β or α=β; this applies to both the lexicographical and order-

lexicographical orderings. We use some elements of standard multi-index notation. For

instance, if α=(α1, ..., αd) is a d-dimensional multi-index, that is, a d-vector of integers

in N:={0, 1, 2, ... }, we write

|α|=
∑
j

αj ,

α! =
∏
j

(αj !),

ξα =
∏
j

ξ
αj

j , ξ=(ξ1, ..., ξd)∈Cd,

∂αf(x)= ∂α1
x1
... ∂αd

xd
f(x), x=(x1, ..., xd)∈Rd.

We will need the index set

OLט
k;d′,d= {(α1, ...,αk;β1, ...,βk)∈ (Nd

′
)k×(Nd)k :

0≺OL α1 ≺OL ...≺OL αk and βj |> 0 for all j=1, ..., k}.
(6.23)

We now formulate the multivariate Faà di Bruno’s formula as it appears in [15].
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Proposition 6.13. Let Ω⊂Rd and Ω′⊂Rd′ be domains in the respective Euclidean

spaces. Let g=(g1, ..., gd): Ω
′
!Ω and f : Ω!R be Cn-smooth, so that the composition

f �g: Ω′
!R is Cn-smooth as well. Then, for any d′-dimensional multi-index ν with

|ν|=n, we have on Ω′

∂ν(f �g)=
∑

1⩽|µ|⩽n

[(∂µf)�g]Gµ,ν(g),

where µ runs over the d′-dimensional multi-indices, and the function Gµ,ν(g) is given

by

Gµ,ν(g)=ν!

n∑
k=1

∑
(α;β)∈סOL

k (µ,ν)

k∏
j=1

[∂αjg]βj

βj ! [αj !]
|βj |

.

Here, the indicated index set is given by

OLס
k (µ,ν) :=

{
(α;β)= (α1, ...,αk;β1, ...,βk)∈ OLט

k;d′,d :
∑
j βj =µ and

∑
j |βj |αj =ν

}
.

Note that, since g is assumed vector-valued, the multi-index partial derivative ∂αjg

is vector-valued as well, and the multi-index power [∂αjg]βj produces a real-valued func-

tion.

Remark 6.14. Both the order-lexicographical and the lexicographical ordering are

well-orderings of the multi-indices. If in (6.23) we replace ≺OL by the lexicographic

ordering ≺L to obtain the analogous index set Lט
k;d′,d, this amounts to a reshuffling of

the multi-indices α1, ...,αk to get them ordered with respect to ≺L instead. This allows

us to define the index set Lס
k (µ,ν) as well, based on Lט

k;d′,d instead. It is important to

note that the assertion of Proposition 6.13 holds with the index set OLס
k (µ,ν) replaced

by Lס
k (µ,ν). The reason why this is so is that if we reshuffle both the αj and the βj ,

then nothing really happened and the involved sum remains the same.

6.6. The multivariate Faà di Bruno formula adapted to our setting

We specialize Proposition 6.13 to the situation that we need to analyze. We will con-

sider only the case of d=d′=2. We work in terms of polar coordinates (r, θ), and put

R(r, θ)=R(reiθ). Although still not specified completely, we assume the function ψs,t is

sufficiently smooth in both (s, t), and introduce the function Ψs,t:

Ψs,t=(|ψs,t|, argψs,t), (6.24)

which maps to polar coordinates, so that

R�ψs,t= R�Ψs,t. (6.25)
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Accordingly, we denote by Dµ
r,θ the differential operator

Dµ
r,θ = ∂µ1

r ∂µ2

θ , µ=(µ1, µ2),

and obtain by applying Proposition 6.13 to R�Ψs,t with ν=(j, l) that, along the circle T,

∂js∂
l
t(R�ψs,t)|s=t=0 = ∂js∂

l
t( R�Ψs,t)|s=t=0

=
∑

2⩽|µ|⩽j+l

[(Dµ
r,θ R)�Ψs,t]Gµ,(j,l)(Ψs,t)|s=t=0

=
∑

2⩽|µ|⩽j+l

[(Dµ
r,θR)(ψs,t)]Gµ,(j,l)(Ψs,t)|s=t=0

=
∑

2⩽|µ|⩽j+l

(Dµ
r,θR)Gµ,(j,l)(Ψs,t)|s=t=0,

(6.26)

where the terms corresponding to indices µ with |µ|⩽1 vanish and hence get dropped.

The reason for this is that ψ0,0(ζ)=ζ preserves T and that the function R together with

its gradient vanish along the unit circle T. More generally, we find that

Dµ
r,θR|T = ∂µ1

r ∂µ2

θ R|T =0, µ=(µ1, µ2)∈{0, 1}×N. (6.27)

In the context of (6.26), it is important to point out that the multi-index derivatives

that appear in the expression Gµ,(j,l)(Ψs,t) (as defined in Proposition 6.13) are taken

with respect to the variables (s, t). Moreover, in the equality (6.26), we have suppressed

the variable ζ∈T, and consider it to be fixed.

We will be interested in identifying the maximal index (p, q) with respect to the

lexicographical ordering, such that the partial derivative ∂ps∂
q
tΨs,t appears non-trivially

in the right-hand side expression of (6.26).

Proposition 6.15. Let us consider two double-indices ν,µ∈N2, with 2⩽|µ|⩽|ν|
and µ /∈{(1, 1), (0, 2)}, and let (α;β)∈סL

k (µ,ν). Then, the following conditions hold :

(i) If ν=(j, l), where j, l⩾1, then for all i=1, ..., k, we have that αi⪯L(j, l−1).

Moreover, the equality αi=(j, l−1) holds if and only if i=k=2, µ=(2, 0), and

(α;β)= ((0, 1), (j, l−1); (1, 0), (1, 0)).

(ii) If ν=(j, 0) with j⩾3, then each αi is of the form (a, 0) with a⩽j−1. Moreover,

the equality a=j−1 holds if and only if i=k=2, µ=(2, 0), and

(α;β)= ((1, 0), (j−1, 0); (1, 0), (1, 0)).
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(iii) If ν=(0, l) with l⩾3, then αi is of the form (0, b) with b⩽l−1. Moreover, the

equality b=l−1 holds if and only if µ=(2, 0) and

(α;β)= ((0, 1), (0, l−1); (1, 0), (1, 0)).

(iv) If ν=(2, 0), then necessarily µ=(2, 0) and the only non-trivial index (α;β) is

(α;β)= ((1, 0); (2, 0)).

(v) If ν=(0, 2), then necessarily µ=(2, 0) and the only non-trivial index (α;β) is

(α;β)= ((0, 1); (2, 0)).

Note that since |ν|⩾2, the above list covers all the possibilities. We will denote by

(α⊛;β⊛) the indicated extremal index (α;β) in each of the cases (i)–(v).

Proof of Proposition 6.15. We show how to obtain (i), (ii), and (iv). The remaining

cases (iii) and (v) are analogous and omitted. We recall the compatibility conditions on

the index set Lס
k (µ,ν). After all, the assertion (α;β)∈סL

k (µ,ν) means that (α;β)∈טL
k;2,2

together with the conditions

k∑
i=1

|βi|αi=ν,

k∑
i=1

βi=µ, (6.28)

where each βi has |βi|⩾1, and the multi-indices αi are strictly increasing with i in the

lexicographical ordering. From these assumptions, it is immediate that each αi satisfies

αi⪯Lν.

As for assertion (i), we see that equality αi=(j, l) could hold only if k=1, with

α1=(j, l) and |β1|=1. But then |µ|=1, which would contradict our assumption that

|µ|⩾2. Hence, given the structure of the lexicographic ordering, for any index i, we

have αi⪯L(j, l−1). However, if equality holds here, that is, if for some i0 we have

αi0=(j, l−1), we find from (6.28) that |βi0 |=1, whereas the sum on the left-hand side,

taken over all other indices i ̸=i0, must equal (0, 1). As a consequence, only k=2 is

possible, and then α=((0, 1), (j, l−1)). In addition, we get that |β1|=|β2|=1, so that

by the second relation in (6.28), |µ|=2 holds. Given the assumptions on µ, the only

remaining possibility is µ=(2, 0), and then β1=β2=(1, 0).

We turn our attention to the assertion (ii). In a similar manner as above, since the

weighted sum of the multi-indices αi equals (j, 0), we see that for each index i=1, ..., k,

αi=(ai, 0) for some ai∈N with 0<ai⩽j. It is clear that ai0=j could occur for some i0

only if i0=k=1, |β1|=1, and |µ|=1, which again would contradict our assumption |µ|⩾2.
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It follows that ai⩽j−1 for each i. Next, the only way we could have αi0=(j−1, 0) for

some i0 is if i0=k=2 and correspondingly α=((1, 0), (j−1, 0)). The remaining properties

are immediate.

Finally, to see why (iv) holds, we analogously find that each αi is of the form

αi=(ai, 0), where 0<ai⩽2. In view of (6.28),

a1|β1|+...+ak|βk|=2,

with |βi|⩾1 for each i. This is possible only if 1⩽k⩽2. If k=2, we get that a1=a2=1

and |β1|=|β2|=1, which leads to α1=α2=(1, 0). This gets excluded on the basis of the

monotonicity requirement α1≺Lα2, so k=1 is the only possibility. So the requirement

(6.28) now reads a1|β1|=2 and β1=µ. If a1=2, then |β1|=1, and consequently |µ|=1,

which is contrary to our assumption that |µ|⩾2. The only remaining alternative is that

α1=(1, 0) and |β1|=2. Since β1=µ, and the only admissible µ of length 2 is µ=(2, 0),

it follows that β1=(2, 0), and the claim follows.

We observe that in each of the cases (i)–(v), the lexicographically maximal αi occurs

as the index i=k, where k∈{1, 2} and (α;β)∈סL
k (µ,ν) and µ=µ0 :=(2, 0) while |ν|⩾2.

If we put

A(ν)=max
k

max
(α;β)∈סL

k(µ0,ν)
αk

where the maximum is taken lexicographically over the entire range k=1, ..., |ν|, then
the maximum occurs for k=2 unless if ν=(2, 0) or ν=(0, 2). Moreover, if ν=(2, 0) or

ν=(0, 2), the maximum occurs for k=1. Let kν∈{1, 2} be the parameter value for which

the maximum is attained, depending on ν, as just explained. In any of the instances

(i)-(v), there exists a unique extremal pair (α⊛;β⊛)∈סL
k (µ0,ν) provided that k=kν .

Next, let Lס
k,⊛(µ0,ν) denote the depleted index set

Lס
k,⊛(µ0,ν)=

{
Lס
k (µ0,ν), if k ̸= kν ,

Lס
k (µ0,ν)\{(α⊛;β⊛)}, if k= kν ,

and consider the associated expression in the context of the multivariate Faà di Bruno

formula:

G⊛
µ0,ν

(Ψs,t) :=ν!

|ν|∑
k=1

∑
(α;β)∈סL

k,⊛(µ0,ν)

k∏
j=1

[∂αjΨs,t]
βj

βj ![αj !]
|βj |

. (6.29)

Then, Gµ0,ν(Ψs,t) splits as follows (where (α⊛;β⊛)=(α⊛
1 , ...,α

⊛
kν
;β⊛

1 , ...,β
⊛
kν
)):

Gµ0,ν(Ψs,t)=G⊛
µ0,ν

(Ψs,t)+Hµ0,ν(Ψs,t), Hµ0,ν(Ψs,t) :=ν!

kν∏
j=1

[∂α
⊛
j Ψs,t]

β⊛
j

β⊛
j ![α

⊛
j !]

|β⊛
j |
. (6.30)

If ν=(2, 0), the depleted index set Lס
k,⊛(µ0,ν) is empty for k∈{1, 2}, which gives that

G⊛
µ0,ν

(Ψs,t)= 0 if ν =(2, 0). (6.31)
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6.7. Polynomial complexity classes

In order to make sure that the algorithm outlined above in §6.4 does not break down,

we need to carefully keep track of the dependency structure of the coefficient functions

involved. In particular, when solving for the coefficient function ψ̂j,l in terms of a Herglotz

operator applied to a function gj,l, we need to know that gj,l may be computed in terms

of functions already determined in previous steps of the algorithm. To help with this,

we introduce for a non-negative integer j and a subset Σ⊂N2 the polynomial complexity

class POL(j,Σ), defined as the following function class on the unit circle T:

POL(j,Σ)=R[Re ζ, Im ζ,Dα
r,θR(ζ),Re b

(k)
ν , Im b(k)ν ,Re ψ̂p,q, Im ψ̂p,q,Re ψ̂

′
p,q, Im ψ̂′

p,q

such that k∈N, 0⩽ ν⩽ j, (p, q)∈Σ, α∈N2].

Here, R[X :Y ] denotes the class of multivariate polynomials with real coefficients in the

variables X, restricted by the condition Y . In other words, POL(j,Σ) is the collection

of multivariate polynomials in the expressions

Re ζ, Im ζ, Dα
r,θR(ζ), Re b

(k)
ν , Im b

(k)
ν , Re ψ̂p,q, Im ψ̂p,q, Re ψ̂

′
p,q, and Im ψ̂′

p,q,

under the conditions k∈N, 0⩽ν⩽j, (p, q)∈Σ, and α∈N2. If there is no dependence on

any of the functions bj , we simplify the notation and write POL(Σ) for the polynomial

complexity class. In connection with these classes, we will find it useful to introduce for

non-negative integers p and q the rectangular index sets

Σp,q = {(a, b)∈N2 : a⩽ p and b⩽ q}.

6.8. The semiclassical case of the orthogonal foliation flow

We first explore Step 1 of the algorithmic procedure outlined in §6.4. We recall the

notation Ψ0,t=(|ψ0,t|, argψ0,t) from (6.24). Moreover, we recall that ϱ1 is as in Propo-

sition 6.5 (see also Proposition 6.2). We have already established the regularity of ψ0,t

in the implicit function theorem of §6.3. We proceed to compute the Taylor coefficients

in t, and highlight the algorithmic aspects. We use the notation introduced in §6.5 and

§6.6 freely.

Proposition 6.16. The Taylor coefficients ψ̂0,l in the variable t near t=0 of the

conformal mapping ψ0,t with

ψ0,t(ζ)=

2κ+1∑
l=0

tlψ̂0,l(ζ)+O(t2κ+2),
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are uniquely determined by the level-curve requirement

R�ψ0,t(ζ)=
1
2 t

2, ζ ∈T,

together with the monotonicity condition that the images ψ0,t(De) grow with t and the

normalization ψ′
0,t(∞)>0. Moreover, as such, they are given by

ψ̂0,0(ζ)= ζ,

ψ̂0,1(ζ)=−ζHDe [(4∆R)
−1/2](ζ),

and, more generally, by

ψ̂0,l(ζ)= ζHDe
[(4∆R)−1/2Gl](ζ), l=2, ..., 2κ+3,

where Gl(ζ)∈POL(Σ0,l−1) is given by the formula (µ0=(2, 0))

Gl(ζ) :=
1

(l+1)!

(
4(∆R)G⊛

µ0,(0,l+1)(Ψ0,t)|t=0

+
∑

3⩽|µ|⩽l+1

(∂µ1
r ∂µ2

θ R)Gµ,(0,l+1)(Ψ0,t)|t=0−2(l+1)(∆R)1/2gl

)
,

where

gl := ∂lt|ψ0,t||t=0−l! Re(ζ̄ψ̂0,l)∈POL(Σ0,l−1).

The coefficient functions ψ̂0,l all extend holomorphically to the domain De(0, ϱ1).

Proof. By Proposition 6.8, the conformal mappings ψ0,t are uniquely defined by the

given requirements, and ψ0,0(ζ)=ζ holds. Moreover, since t 7!ψ0,t is smooth, the validity

of the indicated expansion follows from Taylor’s formula, and the first coefficient then

equals ψ̂0,0(ζ)=ψ0,0(ζ)=ζ. In view of Taylor’s formula applied to the function t 7!R�ψ0,t,

we have that

(R�ψ0,t)(ζ)=

2κ+1∑
l=0

tl

l!
∂lt(R�ψ0,t(ζ))|t=0+O(|t|2κ+2). (6.32)

Since by assumption R�ψ0,t(ζ)=
1
2 t

2 holds on T, we find that, for ζ∈T,

∂lt(R�ψ0,t)(ζ)|t=0 =

{
1, for l=2,

0, for l ̸=2.
(6.33)

It is automatic that (6.33) holds for 0⩽l⩽1, since R is quadratically flat on T. We now

consider l=2. By the multivariate Faà di Bruno formula (6.26) with s=0 treated as
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constant, together with the quadratic flatness of R near the unit circle T a calculation

shows that

∂2t (R�ψ0,t)|t=0 =(∂2rR)(∂t|ψ0,t|)2|t=0 =4∆R[Re(ζ̄ψ̂0,1)]
2 on T.

Since the left-hand side equals 1 by (6.33), we may solve for Re(ζ̄ψ̂0,1) using either the

positive or the negative root. We choose the negative square root, which gives that

∂t|ψ0,t||t=0 =Re(ζ̄ψ̂0,1)=−(4∆R)−1/2 on T. (6.34)

This choice is the one which is compatible with the growth of the domains ψ0,t(De) as

t increases (so that the loops ψ0,t(T) move inward). Finally, we solve this equation by

means of the formula

ψ̂0,1(ζ)=−ζHDe
[(4∆R)−1/2](ζ), (6.35)

as in Step 3 of the algorithmic procedure in §6.4. Here, the uniqueness of the solution

follows from Remark 6.7 (a). Since (4∆R)−1/2 has a polarization which is holomorphic

in (z, 	w) for (z, w)∈Â(ϱ1, σ1), the function ψ̂0,1 extends holomorphically to De(0, ϱ1), by

Proposition 6.2 and Remark 6.4.

As for the higher-order Taylor coefficients, we again apply the multivariate Faà di

Bruno formula (6.26). As a result, on the circle ζ∈T we have for l⩾3 that (apply (6.34)

in the last step)

∂lt(R�ψ0,t)|t=0 =
∑

2⩽|µ|⩽l

(∂µ1
r ∂µ2

θ R)Gµ,(0,l+1)(Ψ0,t)|t=0

=4l(∆R)(∂l−1
t |ψ0,t|)(∂t|ψ0,t|)+G⊛

µ0,l
(Ψ0,t)|t=0

+
∑

3⩽|µ|⩽l

(∂µ1
r ∂µ2

θ R)Gµ,(0,l)(Ψ0,t)|t=0

=−l!(4∆R)1/2 Re(ζ̄ψ̂0,l−1)−l(4∆R)1/2gl−1+G⊛
µ0,(0,l)

(Ψ0,t)|t=0

+
∑

3⩽|µ|⩽l

(∂µ1
r ∂µ2

θ R)Gµ,(0,l)(Ψ0,t)|t=0,

(6.36)

where µ0=(2, 0) and we recall that

gl−1 = ∂l−1
t |ψ0,t||t=0−(l−1)! Re(ζ̄ψ̂0,l−1).

An elementary computation shows that the highest-order derivatives cancel out, and it

follows that gl−1∈POL(Σ0,l−2).

We recall that the expression G⊛
µ0,(0,l+1)(Ψ0,t) appearing in the above formula is as

in (6.29). We write

Gl−1 =
1

l!

(
−l(4∆R)1/2gl−1+G⊛

µ0,(0,l)
(Ψ0,t)|t=0+

∑
3⩽|µ|⩽l

(∂µ1
r ∂µ2

θ R)Gµ,(0,l)(Ψt)|t=0

)
,
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and claim that Gl−1∈POL(Σ0,l−2). We already saw that gl has this property, and hence

(∆R)1/2gl−1=(∆R)Re(−ζ̄ψ̂0,1) does as well. That the same holds for the remaining two

terms of the above formula can be seen from Proposition 6.15, and hence it follows that

Gl−1∈POL(Σ0,l−2). It is a consequence of (6.36) that the condition (6.33) for l⩾3 may

be expressed as

−(4∆R)1/2 Re(ζ̄ψ̂0,l−1)+Gl−1 =0, l=3, 4, 5, ... .

This is an equation of a kind we have met before, and we know that a solution ψ̂0,l is

supplied by the formula (change l by l+1 in the previous relation)

ψ̂0,l(ζ)= ζHDe

[
Gl

(4∆R)1/2

]
(ζ), l=2, 3, 4, ... . (6.37)

Let us assume for the moment that the lower-order terms ψ̂0,b with 0⩽b⩽l−1 all extend

holomorphically to an exterior disk De(0, ϱ1). Then the entire expression inside brackets

in (6.37) polarizes to extend to a 2σ1-fattened diagonal annulus Â(ϱ1, σ1) given that var-

ious partial derivatives of R do, as well as (∆R)−1/2, which follows from Proposition 6.5.

Moreover, since ϱ1 is big enough to guarantee that ϱ1⩾(
√

1+σ2
1+σ1)

−1, then in view

of Proposition 6.2, the expression on the right-hand side of (6.37) will be holomorphic

in the same exterior disk De(0, ϱ1) as well, by Remark 6.3. But then we have enough to

keep the iteration going, and obtain that all the terms ψ̂0,l extend holomorphically to a

single exterior disk De(0, ϱ1).

6.9. Taylor expansion of the weight term in the master equation

We continue with the Taylor expansion of the composition R�ψs,t in terms of powers of

s and t, where the starting point is the application of the Faà di Bruno formula in (6.26).

We recall the definition (6.3) of the triangular index set Zn. We work under the assump-

tion that ψs,t depends sufficiently smoothly on both (s, t) near (0, 0). This assumption

gets justified in the stepwise proof which we outlined in §6.8, which retrieves the Taylor

coefficients of ψs,t in (s, t) iteratively. We use the notion of polynomial complexity classes

POL(j,Σ) and the index sets Σp,q from §6.7.

Proposition 6.17. On the unit circle T, the function R�ψs,t enjoys the expansion

2R�ψs,t=2R�ψ0,t+
∑

(j,l)∈Z2κ

sj+1tlRj,l+O(|s|(|s|κ+1/2+|t|2κ+1)),

where R0,0=0, while for the remaining indices (j, l) ̸=(0, 0), we have

Rj,l=
2

(j+1)! l!
((4∆R)[Hµ0,(j+1,l)(Ψs,t)]|s=t=0+rj,l),
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where µ0=(2, 0). Here, the main term is given in terms of Hµ0,(j+1,l)(Ψs,t), defined by

Hµ0,(j+1,l)(Ψs,t)=


l(∂t|ψs,t|)(∂j+1

s ∂l−1
t |ψs,t|), if j⩾ 0 and l⩾ 1,

(j+1)(∂s|ψs,t|)(∂js |ψs,t|), if j⩾ 2 and l=0,

(∂s|ψs,t|)2, if j=1 and l=0,

while the term rj,l, considered as a remainder, is given by

rj,l=(4∆R)G⊛
µ0,(j+1,l)(Ψs,t)+

∑
3⩽|µ|⩽j+l+1

(Dµ
r,θR)Gµ,(j+1,l)(Ψs,t)|s=t=0,

where we recall that G⊛
µ0,(j+1,l)(Ψs,t) is given by (6.29). For j⩾0 and l⩾1, we have

rj,l ∈POL(Σ), with Σ= {(p, q)∈Σj+1,l : (p, q)≺L (j+1, l−1)}).

In a similar fashion, for j⩾1, we have that the Taylor coefficient Rj,0∈POL(Σj,0).

Moreover, the implied constant in the above expansion of R�ψs,t remains bounded if

the weight R is confined to a uniform family in W(ϱ0, σ0) for some fixed 0<ϱ0<1 and

σ0>0, while the functions ψs,t are smooth with bounded norms in C2κ+4 with respect to

(s, t) in a neighborhood of (0, 0), uniformly on the circle T.

Proof. The fact that R�ψs,t enjoys an expansion of the indicated form for some

coefficientsRj,l with the given error term is an immediate consequence of the multivariate

Taylor’s formula. The coefficients Rj,l are then obtained from the successive partial

derivatives (6.26). It just remains to calculate them:

Rj,l=
2

(j+1)! l!
∂j+1
s ∂lt(R�ψs,t−R�ψ0,t)|s=t=0

=
2

(j+1)! l!
∂j+1
s ∂lt(R�ψs,t)|s=t=0

=
2

(j+1)! l!

∑
2⩽|µ|⩽j+l+1

(Dµ
r,θR)Gµ,(j+1,l)(Ψs,t)|s=t=0.

In particular, R0,0=0, as the sum is over the empty set. In the right-hand side, the

sum over |µ|=2 is special as the only non-trivial contribution comes from the index

µ=µ0=(2, 0), by (6.27):∑
|µ|=2

(Dµ
r,θR)Gµ,(j+1,l)(Ψs,t)|s=t=0 =(4∆R)Gµ0,(j+1,l)(Ψs,t)|s=t=0 on T. (6.38)

Here, we use the fact that ∂2rR=4∆R on T. It follows that for (j, l) ̸=(0, 0), we have on

T that

Rj,l=
2

(j+1)! l!

(
(4∆R)Gµ0,(j+1,l)(Ψs,t)+

∑
3⩽|µ|⩽j+l+1

(Dµ
r,θR)Gµ,(j+1,l)(Ψs,t)

)∣∣∣∣
s=t=0

.

(6.39)
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We write ν :=(j+1, l), and split the expression Gµ0,ν(Ψs,t) further according to formula

(6.30):

Gµ0,ν(Ψs,t)=G⊛
µ0,ν

(Ψs,t)+Hµ0,ν(Ψs,t).

We turn to the task of expressing

Hµ0,ν(Ψs,t)=ν!

kν∏
j=1

[∂α
⊛
j Ψs,t]

β⊛
j

β⊛
j ! [α

⊛
j !]

|β⊛
j |
,

in explicit form in the various cases as outlined in Proposition 6.15. First, if j⩾0 and

l⩾1, then kν=2 and

Hµ0,ν(Ψs,t)= l(∂t|ψs,t|)(∂j+1
s ∂l−1

t |ψs,t|).

It remains to consider j⩾1 and l=0. If j=1 and l=0, then

Hµ0,ν(Ψs,t)= (∂s|ψs,t|)2,

while if instead j⩾2 and l=0, then

Hµ0,ν(Ψs,t)= (j+1)(∂s|ψs,t|)(∂js |ψs,t|).

It remains to discuss the algebraic properties of rj,l for j⩾0 and l⩾1, and those of

Rj,0 for j⩾1. In view of Proposition 6.15, for j⩾0 and l⩾1 all the indices αi have

0≺L α0 ≺L ...≺L αk ≺L (j+1, l−1),

provided that (α;β)∈סL
k (µ,ν) holds for a k=1, ..., |ν|, given that |µ|⩾3. In addition,

the same conclusion remains valid if µ=µ0=(2, 0), provided that it is assumed that

(α;β)∈סL
k,⊛(µ0,ν), which excludes the extremal multi-index. After some additional sim-

plifications, this shows that rj,l has the claimed form. For j⩾1 and l=0, the assertion

about the algebraic properties ofRj,0 follows from the observation that if (α;β)∈סL
k (µ,ν)

with ν=(j+1, 0), then for i=1, ..., k, we have αi=(ai, 0) with 0<ai⩽j, by Proposi-

tion 6.15. The computational aspects are analogous to the case already discussed. This

completes the proof.

6.10. Taylor expansion of the remaining terms in the master equation

We recall that hs and ψs,t stand for the functions

hs(ζ)=

κ∑
j=0

sjbj(ζ) and ψs,t(ζ)=ψ0,t(ζ)+
∑

(j,l)∈Z2κ+1

j⩾1

sjtlψ̂j,l(ζ),
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where κ is a (big) positive integer. Moreover, the bj are bounded holomorphic functions

in the exterior disk De(0, ϱ1), and ψ0,t is a conformal mapping of the exterior disk onto the

exterior of the level curves Γt of R as above, and where ψ̂j,l are holomorphic functions on

De(0, ϱ1) with bounded derivative. Let us denote by Hj,l, Rj,l, and Jj,l the corresponding

coefficient functions in the following three expansions (for ζ∈T):

2Re(hs�ψs,t)(ζ)=
∑

(j,l)∈Z2κ

sjtlHj,l(ζ)+O(|s|κ+1/2+|t|2κ+1), (6.40)

2s−1

(
R�ψs,t(ζ)−

t2

2

)
=

∑
(j,l)∈Z2κ

sjtlRj,l(ζ)+O(|s|κ+1/2+|t|2κ+1), (6.41)

log Re(−ζ̄∂tψs,t(ζ)ψ′
s,t(ζ) )=

∑
(j,l)∈Z2κ

sjtlJj,l(ζ)+O(|s|κ+1/2+|t|2κ+1), (6.42)

where (6.41) holds since R�ψ0,t(ζ)=
1
2 t

2 on T as a matter of definition. Moreover, we

recall that, by Proposition 6.16, we have that

exp(J0,0)=Re(−ζ̄∂tψs,t(ζ)ψ′
s,t(ζ) )|s=t=0 =(4∆R(ζ))−1/2 on T.

We have already analyzed the coefficient functions Rj,l for (j, l)∈Z2κ back in Proposi-

tion 6.17. Here, we refine the analysis and obtain a more convenient splitting of Rj,l into

a main term plus a remainder, and express the coefficients Hj,l and Jj,l in terms of the

successive partial derivatives of the functions bj and ψs,t.

Proposition 6.18. In the above context, the Taylor coefficients Hj,l in (s, t) of the

function 2Rehs�ψs,t in (s, t) according to (6.40) have the following properties. For j⩾0

we have

Hj,0 =2Re bj+hj,0,

where hj,0∈POL(j−1,Σj,0). On the other hand, for (j, l)∈Z2κ with l⩾1, we see that

Hj,l∈POL(j,Σj,l).

As for the Taylor coefficients Rj,l associated with R�ψs,t according to (6.41), we

have for (j, l)∈Z2κ with j⩾0 and l⩾1 that

Rj,l=2(4∆R)1/2 Re(ζ̄ψ̂j+1,l−1)+sj,l

where

sj,l ∈POL({(p, q)∈Σj+1,l : (p, q)≺L (j+1, l−1)}).

As for the coefficients Jj,l appearing in (6.42), J0,0 is given by

J0,0 = logRe(−ζ̄ψ̂0,1)=− 1
2 log(4∆R),

while, for (j, l)∈Z2κ\{(0, 0)}, we see that Jj,l∈POL(Σj,l+1).
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Proof. This follows from an application of the multivariate Taylor’s formula, together

with the multivariate Faà di Bruno formula (Proposition 6.13), and the equation (6.41)

above. Let us indicate the necessary computations, starting with the coefficients Hj,l.

For (j, l)∈Z2κ\{(r, 0):r⩾0} we have

Hj,l=2Re

j∑
i=0

∑
1⩽µ⩽j+l−i

∂µbi(ζ)

j+l−i∑
k=1

∑
(α,β)∈סL

k(µ,(j−i,l))

k∏
r=1

[∂αr
s,t ψs,t(ζ)]

βr

(αr!)βrβr!
, (6.43)

and consequently Hj,l∈POL(j,Σj,l), while for indices (j, 0) with j⩾0 we have

Hj,0 =2Re bj+hj,0,

where hj,0∈POL(j−1,Σj,0) is given by

hj,0 =2Re

j−1∑
i=0

∑
1⩽µ⩽j−i

∂µbi(ζ)

j−i∑
k=1

∑
(α,β)∈סL

k(µ,(j−i,0))

k∏
r=1

[∂αr
s,tψs,t]

βr

(αr!)βrβr!
. (6.44)

Turning to the claim about the coefficient Rj,l, we note that

sj,l=
2

(j+1)! l!
rj,l+2(4∆R)1/2

(
∂j+1
s ∂l−1

t |ψs,t|
(j+1)! (l−1)!

−Re(ζ̄ψ̂j+1,l−1)

)∣∣∣∣
s=t=0

. (6.45)

The claim in the proposition follows from Proposition 6.17 together with the observation

that

∂j+1
s ∂l−1

t |ψs,t(ζ)|
(j+1)! (l−1)!

∣∣∣∣
s=t=0

−Re(ζ̄ψ̂j+1,l−1(ζ))

∈POL({(p, q)∈Σj+1,l : (p, q)≺L (j+1, l−1)}).

In order to see why this claim holds, we simply observe that the first term on the left-

hand side is the Taylor coefficient in (s, t) corresponding to the multi-index (j+1, l−1)

of the function |ψs,t|. The Taylor expansion of this function may be found as follows. We

notice that ψ0,0=ζ, so that if we apply the generalized binomial theorem with exponent
1
2 , we obtain

|ψs,t(ζ)|=
∣∣∣∣(1+ ∑

(p,q)̸=(0,0)

sptq ζ̄ψ̂p,q

)1/2∣∣∣∣2

=

∣∣∣∣1+∑
k⩾1

(
1/2

k

)( ∑
(p,q) ̸=(0,0)

sptq ζ̄ψ̂p,q

)k∣∣∣∣2

=1+
∑
k,k′⩾1

(
1/2

k

)(
1/2

k′

)( ∑
(p,q) ̸=(0,0)

sptq ζ̄ψ̂p,q

)k( ∑
(p,q) ̸=(0,0)

sptqζ
¯̂
ψp,q

)k′

+2Re
∑
k⩾1

(
1/2

k

)( ∑
(p,q) ̸=(0,0)

sptq ζ̄ψ̂p,q

)k
, ζ ∈T.

(6.46)
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Apart from the contribution from the conformal mapping ψ0,t, the series involve a trun-

cation given by the index set Z2κ+1, and hence we have no convergence issues. The

maximal index (p, q) in the lexicographical ordering for which ψ̂p,q appears in the Taylor

coefficient for sj+1tl−1 of the above expression (6.46), is easily seen to be (j+1, l−1).

The contribution corresponding to the maximal index comes from the last term on the

right-hand side of (6.46), and equals

2Re

(
1/2

1

)
ζ̄ψ̂j+1,l−1 =Re(ζ̄ψ̂j+1,l−1).

As for all the other indices, the contribution in the above sum to the Taylor coefficient

lies in the complexity class

POL({(p, q)∈Σj+1,l−1 : (p, q)≺L (j+1, l−1)}),

and the claim follows.

Finally, we turn to the coefficient Jj,l. We know that J0,0=logRe(−ζ̄ψ̂0,1), while for

indices (j, l)∈Z2κ\{(0, 0)} we apply the Faà di Bruno’s formula to the logarithm of the

Jacobian expression to obtain

Jj,l=
∑

1⩽µ⩽j+l

(−1)µ(µ−1)!(4∆R)µ/2

×
j+l∑
k=1

∑
(α,β)∈סL

k(µ;(j,l))

k∏
r=1

[∂αr
s,t Re(−ζ̄∂tψs,tψ′

s,t)]
βr

(αr!)βrβr!
.

(6.47)

As we may eliminate the half-powers of ∆R by writing

(4∆R)µ/2 =(4∆R)µ(4∆R)−µ/2 =(4∆R)µRe(−ζ̄ψ̂0,1(ζ))
µ, ζ ∈T,

it follows that Jj,l∈POL(Σj,l+1).

6.11. Taylor expansion of the density in the master equation

We recall from §6.4 the function

Πs,t(ζ)= 2Rehs�ψs,t(ζ)−
2

s

(
(R�ψs,t)(ζ)−

t2

2

)
+log(Re(−ζ̄∂tψs,t(ζ)ψ′

s,t(ζ))).

We compute the Taylor coefficients Π̂j,l for (j, l)∈Z2κ given implicitly by

Πs,t(ζ)=
∑

(j,l)∈Z2κ

sjtlΠ̂j,l(ζ)+O(|s|κ+1/2+|t|2κ+1).
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This will determine what the master equation for the Taylor coefficients (6.19) entails

for the coefficient functions bk and ψ̂p,q for k⩽κ and (j, l)∈Z2κ+1.

We recall that the Taylor coefficients Hj,l, hj,0, Jj,0, Rj,0, and sj,l have appeared

above in Propositions 6.17 and 6.18. See in addition the explicit formulæ (6.43), (6.44),

(6.45), and (6.47).

Proposition 6.19. The coefficients Π̂j,l(ζ) in the above expansion are given explic-

itly as follows. For j=l=0, we have

Π̂0,0(ζ)= 2Re b0(ζ)+logRe(−ζ̄ψ̂0,1(ζ)),

while for l=0 and j=1, 2, 3, ... the coefficient function is given by

Π̂j,0(ζ)= 2Re bj(ζ)+Tj,0,

where Tj,0 :=hj,0−Rj,0+Jj,0∈POL(j−1,Σj,1). Also, for j=0, 1, 2, ... and l=1, 2, 3, ... ,

the coefficient function Π̂j,l is given by

Π̂j,l=−2(4∆R(ζ))1/2 Re(ζ̄ψ̂j+1,l−1(ζ))+Tj,l,

where Tj,l :=Hj,l−sj,l+Jj,l∈POL(j,Σ), with Σ as the index set

Σ= {(p, q)∈Σj+1,l∪Σj,l+1 : (p, q)≺L (j+1, l−1)}.

Proof. The formula for Π̂0,0=Πs,t|s=t=0 is immediate from the definition (6.18).

Indeed, ψ0,0(ζ)=ζ, and the formula (6.18) reads, where hs=2Re log fs,

Π0,0(ζ)=h0(ζ)+log(Re(−ζ̄ψ̂0,1(ζ))),

where we use the fact that R0,0=0, according to Proposition 6.17. The conclusion now

follows by observing that h0(ζ)=2Re b0(ζ).

The coefficients Π̂j,0 for j⩾1 are given by

Π̂j,0 =Hj,0−Rj,0+Jj,0.

The main contribution will come from the term Hj,0, and we need to prove that the

remainder of this term, as well as both terms Rj,0 and Hj,0 belong to the polynomial

complexity class POL(j−1,Σj,1). By Proposition 6.18, it follows that

Hj,l=2Re bj+hj,l,
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with hj,l∈POL(j−1,Σj,0). Moreover, by Propositions 6.17 and 6.18, respectively, it

follows that

Rj,0 ∈POL(Σj,0)⊂POL(j−1,Σj,1) and Jj,0 ∈POL(Σj,1)⊂POL(j−1,Σj,1),

and hence the claim follows.

We next turn to the coefficients Π̂j,l with (j, l)∈Z2κ for which l⩾1. The main term

of

Π̂j,l=Hj,l−Rj,l+Jj,l

will come from the term Rj,l, while the total remainder, consisting of the remainder from

the term Rj,l together with the full terms Hj,l and Jj,l, is supposed to lie in the correct

polynomial complexity class POL(j,Σ), where

Σ= {(p, q)∈Σj+1,l∪Σj,l+1 : (p, q)≺L (j+1, l−1)}.

By Proposition 6.18, we have for such indices (j, l) that

Rj,l=−2(4ReR)1/2 Re(ζ̄ψ̂j+1,l−1)+sj,l,

where sj,l∈POL(j,Σ). By Proposition 6.18, it also follows that

Hj,l ∈POL(j,Σj,l)⊂POL(j,Σ), and Jj,l ∈POL(Σj,l+1)⊂POL(j,Σ).

which proves the claim.

6.12. Algorithmic resolution of the master equation

We are now ready to make the algorithm outlined in §6.4 rigorous. We recall the master

equation for the Taylor coefficients (6.19):

Π̂j,l=

{
− 1

2 log(4π), for ζ ∈T and (j, l)= (0, 0),

0, for ζ ∈T and (j, l)∈ Z2κ\{(0, 0)}.

In order to solve this system, we solve for the coefficient functions of hs and ψs,t itera-

tively, according to the algorithm outlined in §6.4.

Proof of Proposition 6.6. In view of Propositions 6.8 and 6.16, the conformal map-

ping ψ0,t and its Taylor coefficients ψ̂0,l for l=0, 1, ..., 2κ+1 with respect to the time

parameter t of the flow are well defined, and they satisfy the required smoothness prop-

erties: for t near 0, the conformal mapping ψ0,t extends holomorphically across the
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boundary T to an exterior disk De(0,
√
ϱ1 ) according to Proposition 6.11. In addition,

the derivative ψ′
0,t remains uniformly bounded as long as the weight R is confined to

a uniform family in W(ϱ0, σ0) for fixed ϱ0 and σ0. Moreover, the coefficient functions

ψ̂0,l extend holomorphically to De(0, ϱ1), by Remark 6.4. This completes Step 1 of the

algorithmic procedure.

Turning our attention to Step 2, we recall from Proposition 6.16 that on the circle

T, we have

Re(−ζ̄ψ̂0,1)= (4∆R(ζ))−1/2.

Hence, by Proposition 6.19 the equation Π̂0,0=− 1
2 log(4π) is equivalent to

2Re b0− 1
2 log(4∆R)=− 1

2 log(4π) on T.

Since we want the function fs to be zero-free in the exterior disk and real at infinity, this

tell us that

b0 =− 1
4 log(4π)+

1
4HDe

[log(4∆R)].

We note that this automatically gives the normalization Im b0(∞)=0. By Proposition 6.5

and Remark 6.4, it follows that b0 extends holomorphically to the exterior disk De(0, ϱ1).

Moreover, b0 clearly remains uniformly bounded provided that R is confined to a uniform

family in W(ϱ0, σ0). This completes Step 2.

We proceed to Step 3 of the algorithmic procedure. We are now in the following

situation. For some j0⩾1, our known data set is POL(j0−1,Σ), where

Σ= {(j, l)∈ Z2κ : (j, l)≺L (j0, 0)}

and all elements of POL(j0−1,Σ) meet the required extension conditions. In particular,

all the functions b0, ..., bj0−1 and ψ̂j,l for all (j, l)∈Z2κ+1 with (j, l)≺L(j0, 0) are already

known. In addition, the relations (6.19) are met for all (j, l)∈Z2κ with (j, l)≺L(j0−1, 1).

We will now show how this allows us to obtain the relations (6.19) for all subsequent

indices (j, l)∈Z2κ with (j, l)≺L(j0, 0), by making appropriate choices of the functions

ψ̂j0,l for l⩾0 with (j0, l)∈Z2κ+1. The additional indices for which we need to solve (6.19)

are those (j, l)∈Z2κ of the form (j, l)=(j0−1, l+1), where l⩾0.

To achieve this, we assume that for all l with 0⩽l⩽l0−1, we have obtained the

coefficient functions ψ̂j0,l by solving the equation (6.19) for the index pair (j0−1, l+1),

and turn to the next equation. This reads Π̂j0−1,l0+1=0, as long as (j0−1, l0+1)∈Z2κ.

At this point, the known data set is POL(j0−1,Σ′), where

Σ′ = {(j, l)∈ Z2κ+1 : (j, l)≺L (j0, l0)}
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If l0 is too large for (j0, l0)∈Z2κ+1 to hold, we are in fact done, we do not need to obtain

ψ̂j0,l0 for such indices. On the other hand, if (j0, l0)∈Z2κ+1, we proceed as follows. By

Proposition 6.19, the equation Π̂j0−1,l0+1=0 may be written in the form

Π̂j0−1,l0+1 =−2(4∆R)1/2 Re(ζ̄ψ̂j0,l0)+Tj0−1,l0+1 =0 on T,

where Tj0−1,l0+1∈POL(j0−1,Σ′). We provide a solution to this equation by the formula

ψ̂j0,l0 =
1

2
ζHDe

[
Tj0−1,l0+1

(4∆R)1/2

]
. (6.48)

The function Tj0−1,l0+1 has a polarization which is holomorphic in (z, 	w) for (z, w)∈
Â(ϱ1, σ1), and the same holds for the weight R. As a consequence, it follows that ψ̂j0,l0
extends holomorphically to the exterior disk De(0, ϱ1), and that ψ̂j0,l0(ζ)=O(|ζ|) with an

implicit constant which is uniformly bounded, provided that R is confined to a uniform

family in W(ϱ0, σ0).

The base step l0=0 of the induction procedure of Step 3 is entirely analogous.

Indeed, the known data set is POL(j0−1,Σ) with Σ as above, and by Proposition 6.19

the relevant equation Π̂j0−1,1=0 takes the form

−2(4∆R)1/2 Re(ζ̄ψ̂j0,0)+Tj0−1,1 =0 on T,

where Tj0−1,1 in particular lies in POL(j0−1,Σ). Hence, we obtain ψ̂j0,0 by the formula

(6.48) with l replaced by zero.

We now turn to Step 4. After the completion of Step 3, the situation is as follows:

the known data set is POL(j0−1,Σ) with

Σ= {(j, l) : (j, l)≺L (j0+1, 0)}, (6.49)

where every element of POL(j0−1,Σ) polarizes to Â(ϱ1, σ1). In addition, the relations

(6.19) are met for all (j, l)∈Z2κ with (j, l)≺L(j0, 0). We recall that in particular this

means that the known data set consists of the coefficient functions b0, ..., bj0−1 and ψ̂j,l

for (j, l)∈Z2κ+1 with (j, l)≺L(j0+1, 0). In this step, we need to find the function bj0 ,

and verify that the relation (6.19) is then met with (j, l)=(j0, 0). To this end, we apply

Proposition 6.19, and observe that the equation (6.19) with (j, l)=(j0, 0) is equivalent to

having

Π̂j0,0 =2Re bj0+Tj0,0 =0 on T,

where Tj0,0∈POL(j0−1,Σ), with Σ given by (6.49). Since POL(j0−1,Σ) is a collection

of known functions, we hence obtain an equation for the unknown function bj0 , with

solution

bj0 =− 1
2HDe

[Tj0,0].
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In view of Proposition 6.5 and Remark 6.4, the function bj0 extends holomorphically

to the exterior disk De(0, ϱ1), and remains uniformly bounded if the weight R is con-

fined to a uniform family in W(ϱ0, σ0). Moreover, we observe that bj0 has the required

normalization at infinity: Im bj0(∞)=0.

We finally turn to Step 5. The key observation is that we are now in a position to

return to Step 3 followed by Step 4, with j0 replaced by j0+1. Since Step 1 and Step

2 combine to form the initial data for Steps 3 and 4 with j0=1, the algorithm produces

iteratively the entire set of coefficient functions, and solves in the process all the equations

(6.19) for (j, l)∈Z2κ.

Equipped with the functions bj for j=0, ..., κ, the conformal mappings ψ0,t and the

coefficients ψ̂j,l for (j, l)∈Z2κ+1∩{(j, l):j⩾1}, we observe that the functions hs and ψs,t

given by

hs(ζ)=

κ∑
j=0

sjbj(ζ) and ψs,t(ζ)=ψ0,t+
∑

(j,l)∈Z2κ+1

j⩾1

sjtlψ̂j,l(ζ)

are well defined, and have the desired smoothness and mapping properties. By the

Becker–Pommerenke criterion of Lemma 6.10, it is immediate that ψs,t, as defined, is

univalent in a neighborhood of the closed exterior disk De for s and t close to zero. As

ψs,t extends holomorphically to the exterior disk De(0,
√
ϱ
1
), and since ψs,t is a smooth

perturbation of the identity it follows that ψs,t is univalent on De(0, ϱ2) and that

ψs,t(De(0, ϱ2))⊂De(0, ϱ1)

for s and t close to zero, provided that ϱ2 is chosen appropriately with
√
ϱ1⩽ϱ2<1.

The conclusion of Proposition 6.6 is now an immediate consequence of the relations

(6.19) for the Taylor coefficients of the logarithm of the function

exp(Πs,t(ζ))= |fs�ψs,t(ζ)|2e−2s−1((R�ψs,t)(ζ)−t2/2) Re(−ζ̄∂tψs,t(ζ)ψ′
s,t(ζ) )

for ζ∈T, in the variables (s, t) near (0, 0), as verified in the above algorithm.

6.13. Implementation of the orthogonal foliation flow for R=Rτ

It remains only to prove the key lemma (Lemma 3.9). The hard work was completed in

the previous subsection. The existence of the orthogonal foliation flow now follows if we

use s=1/m as our quantization parameter.

Proof of Lemma 3.9. We first claim that Q�ϕ−1
τ is uniformly real-analytic in the

exterior disk De(0, ρ0,0) for τ∈Iϵ0 . By this we mean that there exists a number σ0,0>0
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such that Q�ϕτ has a polarization which is uniformly bounded on the 2σ0,0-fattened

diagonal annulus Â(ρ0,0, σ0,0) (see Definition 6.1). Let ρ1,0 be the number given by

ρ1,0 :=max{ρ0,0, ((1+σ2
0,0)

1/2+σ0,0)
−1}.

Moreover, the function Q⊛
τ �ϕ

−1
τ , which is the harmonic extension of Q�ϕ−1

τ |T to the ex-

terior disk De, is uniformly bounded on Â(ρ1,0, σ0,0) in view of Proposition 6.2 and an

elementary decomposition of harmonic functions into holomorphic and conjugate holo-

morphic functions. In view of (2.3), the same holds for �Qτ �ϕ
−1
τ and consequently also

for Rτ=(Q−�Qτ )�ϕ−1
τ . In view of the uniform flatness of Rτ near the unit circle, the

function Rτ,0 defined by the relation Rτ (ζ)=(1−|ζ|2)2Rτ,0(ζ) enjoys the same property

as well, namely that its polarization is uniformly bounded on Â(ρ1,0, σ0,0). By possibly

replacing σ0,0 by a smaller positive number σ1,0, we may guarantee that the polarization

of Rτ,0 remains bounded away from zero in the slightly smaller fattened diagonal annulus

Â(ρ1,0, σ1,0). If necessary, we replace ρ1,0 by the larger number

ρ2,0 =max{ρ1,0, ((1+σ2
1,0)

1/2+σ1,0)
−1},

which is still smaller than 1.

In view of the above considerations and the uniform bounds from Proposition 3.6, the

family Rτ for τ∈Iϵ0 constitute a uniform family inW(ϱ0, σ0) where ϱ0=ρ2,0 and σ0=σ1,0.

By Proposition 6.5, we obtain numbers ϱ1 and σ1 with 0<ϱ1<1 and σ1>0. We set ρ0=ϱ1

and apply Proposition 6.6 to obtain the desired conformal mappings ψm,n,t=ψs,t and

f
⟨κ⟩
m,n=fs with associated asymptotic expansion to precision κ, where s=m−1. Here, the

function f
⟨κ⟩
m,n is holomorphic and bounded on De(0, ρ0), positive at infinity and bounded

away from zero in the entire exterior disk De(0, ρ0). Moreover, the flow equation (3.5) of

Lemma 3.9 holds to the desired accuracy, in view of Proposition 6.6 with s=m−1.

7. Connection with soft Riemann–Hilbert problems

7.1. Matrix ∂̄-problems and orthogonal polynomials

Given the successful application of Riemann–Hilbert problem methods to the study of

orthogonal polynomials in the context of the real line and the unit circle, it has been

proposed that the planar orthogonal polynomials should be approached in a similar

fashion. Following Its and Takhtajan [39], we consider a matrix ∂̄-problem (or a soft

Riemann–Hilbert problem) and see how it fits in with our orthogonal foliation flow.

A polynomial is said to be monic if it has leading coefficient equal to 1. So, let

πm,n denote the monic orthogonal polynomial of degree n with respect to the measure
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e−2mQ dA, where Q is assumed 1-admissible. In other words, πm,n is given by

πm,n(z)=κ−1
m,nPm,n(z),

where κm,n is the leading coefficient of the normalized orthogonal polynomial Pm,n.

If f∈Lp(C) for some 1<p<2, we let Cf be its Cauchy transform, given by

Cf(z)=

∫
C

f(w)

z−w
dA(w)

which is well defined almost everywhere and represents a function which is locally in the

Sobolev space W 1,p. The importance of the Cauchy transform comes from the fact that,

in the sense of distribution theory, ∂̄Cf=f .

In [39], Its and Takhtajan propose to study the asymptotics of πm,n starting from

the observation that the matrix-valued function

Ym,n(z)=

(
πm,n(z) −C[π̄m,ne

−2mQ](z)

−κ2m,n−1πm,n−1(z) κ2m,n−1C[π̄m,n−1e
−2mQ](z)

)
(7.1)

solves the ∂̄-problem

{
∂̄Y (z)=−
Y (z)W (z), for z ∈C,

Y (z)= (I+O(z−1))
(
zn 0
0 z−n

)
, as |z|!+∞,

(7.2)

where W (z)=Wm(z) is the matrix-valued function

W (z)=

(
0 e−2mQ(z)

0 0

)
.

Moreover, the solution is unique, as shown in [39]. We remark that classical Riemann–

Hilbert problems, where a jump occurs on a curve Γ may be phrased as ∂̄-problems where

∂̄Y (z) is understood as a matrix-valued measure supported on Γ, and the above problem

is a natural generalization to a more genuinely 2-dimensional situation.

The idea that underlies the Its–Takhtajan approach, as well as the classical Riemann–

Hilbert approach to orthogonal polynomials, is the expectation that one may construc-

tively obtain an approximate solution Ỹ =Ỹm,n(z) to the problem (7.1) (or the corre-

sponding RHP), which should then produce an entry (Ỹm,n)1,1 which is approximately

equal to πm,n(z).
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7.2. Integration of Riemann–Hilbert problems along curve families

Unfortunately, it has proven difficult to solve the problem (7.1) constructively. The

following simple observation shows how our orthogonal foliation flow reduces the ∂̄-

problem to a family of more classical Riemann–Hilbert problems along closed curves.

In order to describe this problem, we denote by J(z) a 2×2 jump matrix and let Γ

be an oriented smooth simple closed curve in C. We denote by Ω+ and Ω− the interior

and exterior components of the complement C\Γ, respectively. If f is a function defined

on C\Γ, which is continuous up to the boundary Γ as seen from each component, we

define the two boundary value functions f+ and f− on Γ by

f±(ζ)= lim
z!ζ

z∈Ω±

f(z), ζ ∈Γ.

We consider the Riemann–Hilbert problem of finding a 2×2 matrix-valued function Y (z)

which meets 
Y is holomorphic on C\Γ,

Y +(z)=Y −(z)+
Y −(z)J(z), for z ∈Γ,

Y (z)= (I+O(z−1))
(
zn 0
0 z−n

)
, as |z|!+∞,

(7.3)

In order to analyze this problem, we need a variant of the Cauchy transform, which

applies to functions defined on Γ. For smooth Γ and reasonable f , we write

CΓf(z)=
1

2πi

∫
Γ

f(w)

w−z
dw, z ∈C\Γ.

As is well known, the classical Plemelj formula is a useful tool in the study of Riemann–

Hilbert problems:

(CΓf)
+(z)= (CΓf)

−(z)+f(z). (7.4)

We now connect the more classical Riemann–Hilbert problem (7.3) with the matrix ∂̄-

problem (7.2).

Proposition 7.1. Let {Γt}t∈I be a smooth strictly expanding flow of positively ori-

ented simple closed curves, and denote by D the union D=
⋃
t∈I Γt. Let ω(z) denote a

smooth positive function on D, and denote by ξ:D!C the vector field νη̄, where η(z)

denotes the outward unit normal field to the curve family and ν denotes the scalar nor-

mal velocity of the flow. Then, for each t∈I, there is a unique solution Yt(z) to the

Riemann–Hilbert problem (7.3) with jump matrix

J =

(
0 2ωξ

0 0

)
.



asymptotics of planar orthogonal polynomials 401

Also, if there exists a continuous positive function λ(t) such that (Yt)1,1 and λ(t)(Yt)2,1

are independent of t, then the matrix-valued function

Y (z)=Λ−1
1

∫
I

Λ(t)Yt(z) dtΛ
−1
2

is the unique solution to (7.2), with

W =

(
0 1Dω

0 0

)
,

provided that

Λ(t)=

(
1 0

0 λ(t)

)
, Λ1 =

(
1 0

0
∫
I
λ(t) dt

)
, and Λ2 =

(
|I| 0

0 1

)
.

Proof. We first establish the existence of solutions to the problem (7.3) of Γt, which

may be expressed in terms of a family of t-dependent orthogonal polynomials. We recall

that ξ factors as νη̄, where ν denotes the speed of the boundary in the normal direction,

while η denotes the outward pointing unit normal field. Since arc-length measure |dz| on
Γt relates to the complex line element dz by dz=τ |dz| where τ denotes the unit tangent

vector field along Γt, it follows that

1

2πi
dz=

1

2π
(−iτ)|dz|= η ds (7.5)

where we recall the convention ds=|dz|/2π. From this, it follows that (2πi)−1ξdz=ν ds,

and we may consequently define an inner product by

⟨f, g⟩t :=
∫
Γt

f(z)ḡ(z)ν(z) ds(z)=
1

2πi

∫
Γt

f(z)ḡ(z)ξ(z) dz.

Let {π⋆n,t}n denote the sequence of monic orthogonal polynomials with respect to this

inner product, such that π⋆n,t has degree n, and denote by κ⋆n,t the leading coefficient of

the corresponding normalized orthogonal polynomial P ⋆n,t=κ
⋆
n,tπ

⋆
n,t. It is straightforward

to check that the function(
π⋆n,t 2CΓt

[π̄⋆n,tωξ]

− 1
2 (κ

⋆
n−1,t)

2π⋆n−1,t −(κ⋆n−1,t)
2CΓt

[π̄⋆n−1,tωξ](z)

)
supplies a solution to the Riemann–Hilbert problem (7.3).

As for the uniqueness, it is clear from Plemelj’s formula (7.4) and the jump condition

that any solution Yt(z) must take the form

Yt(z)=

(
at(z) ut(z)+2CΓt [ātωξ](z)

bt(z) vt(z)+2CΓt [b̄tωξ](z)

)
,
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where at, bt, ut, and vt are entire functions. From the growth constraint at infinity,

we see that these four functions are all polynomials. Moreover, ut=vt=0 for the same

reason. A standard expansion of the Cauchy kernel at infinity shows that at is a monic

polynomial of degree n which is orthogonal to the lower-degree polynomials Poln with

respect to ωξ dz on Γt. It follows that at=π
⋆
n,t. Analogously, bt is given by

bt=− 1
2 (κ

⋆
n−1,t)

2π⋆n−1,t.

We have established the unique solvability of the Riemann–Hilbert problem (7.3) with

the given jump matrix.

Next, we turn to the connection with the ∂̄-problem (7.2). Under the assumption

that (Yt)1,1=at=A is independent of t, and that for some t-dependent parameter λ(t),

the expression λ(t)(Yt)2,1=λ(t)bt=B is also independent of t, we may consequently write

Λ(t)Yt(z)=

(
A(z) 2CΓt

[Āωξ](z)

B(z) 2CΓt
[
Bωξ](z)

)
,

where we recall that Λ(t) is the matrix given in the proposition. Recall that we may

integrate over the flow {Γt}t using the disintegration∫
t∈I

(
2

∫
Γt

u(z)ν(z) ds

)
dt=

∫
D
u(z) dA(z),

for functions u such that the indicated integrals have a well-defined meaning. It now

follows that if ⟨λ⟩I=
∫
I
λ(t) dt, the matrix-valued function

Ŷ (z) :=Λ−1
1

∫
I

Λ(t)Yt(z) dtΛ
−1
2 =Λ−1

1

(
|I|A(z) −C[Āω1D](z)

|I|B(z) −C[
Bω1D](z)

)
Λ−1
2

=

(
A(z) −C[Āω1D](z)

(⟨λ⟩I)−1B(z) −(⟨λ⟩I)−1C[
Bω1D](z)

)
solves

∂̄Ŷ (z)=

(
0 −Āω1D
0 −(⟨λ⟩I)−1
Bω1D

)
=−Ŷ (z)

(
0 ω1D

0 0

)
with asymptotics

Ŷ (z)= (I+O(z−1))

(
zn 0

0 z−n

)
, as |z|!+∞,

as a consequence of the corresponding asymptotics of Yt for each t∈I.
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Remark 7.2. (a) For the orthogonal foliation flow, in the context of a neighborhood

of the boundary curve of the droplet Sτ with τ=n/m, the (approximate) orthogonal

polynomial of degree n is also approximately orthogonal to the lower-degree polynomials

along the individual flow loops corresponding to ω=e−2mQ. So, in view of Proposi-

tion 7.1, the conditions

∂t(Yt)1,1 =0 and ∂t(λ(t)(Yt)2,1)= 0 (7.6)

should be met at least approximately for some appropriate scalar-valued function λ(t)

(cf. the presentation in §1.6). Alternatively, we could use (7.6) as a criterion to define a

flow of curves. In the given setting, this should give us back our orthogonal foliation flow.

In other words, (7.6) should be analogous to the condition (6.19), once the Riemann–

Hilbert problems of Proposition 7.1 are approximately solved in a constructive fashion,

and we would expect that, in an approximate sense,

Γt∼ϕ−1
τ (ψm,n,−t(T)).

It is entirely possible that the conditions (7.6) would be more stable close to the zeros

of the orthogonal polynomial πm,n. For instance, this might be the case with a highly

eccentric ellipse.

(b) In their work, Its and Takhtajan use a bounded domain Ω to address possible

convergence issues. Here, the potential Q grows sufficiently rapidly, so there is no need

for us to consider such a truncation.
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Ebene gehören. Math. Z., 9 (1921), 218–270.

[56] — Orthogonal Polynomials. Amer. Math. Soc. Colloq. Publ., 23. Amer. Math. Soc., Prov-
idence, RI, 1975.

[57] Teodorescu, R., Bettelheim, E., Agam, O., Zabrodin, A. & Wiegmann, P., Semi-
classical evolution of the spectral curve in the normal random matrix ensemble as
Whitham hierarchy. Nuclear Phys. B, 700 (2004), 521–532.

[58] Tian, G., On a set of polarized Kähler metrics on algebraic manifolds. J. Differential
Geom., 32 (1990), 99–130.

[59] Totik, V., Weighted Approximation with Varying Weight. Lecture Notes in Math., 1569.
Springer, Berlin–Heidelberg, 1994.

[60] Wiegmann, P.B., Aharonov–Bohm effect in the quantum Hall regime and Laplacian
growth problems, in Statistical Field Theories (Como, 2001), NATO Sci. Ser. II Math.
Phys. Chem., 73, pp. 337–349. Kluwer Acad. Publ., Dordrecht, 2002.

[61] Zabrodin, A. & Wiegmann, P., Large-N expansion for the 2D Dyson gas. J. Phys. A,
39 (2006), 8933–8963.

[62] Zelditch, S. & Zhou, P., Central limit theorem for spectral partial Bergman kernels.
Geom. Topol., 23 (2004), 1961–2004.

[63] — Interface asymptotics of partial Bergman kernels on S1-symmetric Kähler manifolds. J.
Symplectic Geom., 17 (2019), 793–856.
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