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1. Introduction
1.1. Orthogonal polynomials

We consider polynomials in one complex variable of the form
P(z)=cp2"+cn_12"" ... +co, (1.1)

where cg, ¢1, ..., ¢, are complex numbers. If ¢, #0, we say that P has degree n, and call
¢n, the leading coefficient. We denote the (n+1)-dimensional space of all polynomials of
the form (1.1) by Pol,,41. Given a positive Borel measure p with infinite support on the

complex plane C, with finite moments
/ 12| dpu(z) <00, 0<k <N, (1.2)
C

for some positive integer N, we define the system {P,(2)})_, of normalized orthogo-

nal polynomials (ONPs) with respect to p recursively by applying the Gram-Schmidt

algorithm to the sequence {z"}2_, of monomials. Equivalently, the orthogonal polyno-
mial P, is the unique element in Pol,y; of unit norm in L?(C, ;1) with positive leading

coefficient ¢, >0, such that for all lower-degree polynomials g€ Pol,, we have

/ P, (2)a(2) dpu(z) = 0.
C

When the measure p=pu,, depends on a parameter m, the orthogonal polynomials will
be denoted by P, ,, where the first index is the parameter for the measure, and the
second is the degree of the polynomial.

For additional definitions and notation we refer the reader to §1.9.

1.2. Carleman—Szeg6d asymptotics

The 1920s witnessed a rapid development in the understanding of orthogonal polynomials
and related kernel functions. Among the pioneers were Gabor Szegd, Stefan Bergman
and Torsten Carleman. One of the early results is that of Szegd [55] (see also [56]),
who considered the orthogonal polynomials in L?(T', ds), where I is a real-analytically
smooth Jordan curve in the complex plane C supplied with normalized arc length measure
ds=(2m)~1|dz|. Let C\I'=QUS, be the decomposition of the complement into disjoint
connected components, where 2 is bounded and €, is unbounded, and denote by ¢ the
conformal mapping of the exterior domain 2, onto the exterior disk De:={2€C:|z|>1},

which fixes the point at infinity with positive derivative. Szeg&’s theorem asserts that

Po(2) =V ' (2)[6(2)]"(1+0(p")), 2z €, (1.3)
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where p is some number with 0<p<1. Due to the real-analytically smooth boundary,
the conformal mapping ¢ extends conformally past the boundary 02. With the extended
mapping still denoted by ¢, the asymptotic formula (1.3) remains valid in a neighborhood
of Q. UI.

Slightly later, Carleman [13], [14]—inspired by the work of Szegé—considered in-
stead the orthogonal polynomials in L?*(Q, dA), where dA=(2mi)~'dzAdz denotes the
normalized area element and € is a simply connected domain with real-analytic boundary
curve I'. He found an analogous asymptotic formula for the planar orthogonal polyno-
mials, which holds in a neighborhood Q. of the closure of the exterior domain . and is

expressed in terms of the conformal mapping ¢:
Py(2) = (n+1)"2¢/ (2)[0(2)]"(14+0(p")), z€Qe, (1.4)

for some p with 0<p<1. In the 1960s, Suetin extended Carleman’s result to domains
whose boundary has a lower-degree of smoothness, as well as to weighted cases, at the
expense of substantially worse error terms (see the monograph [54]). We should also men-
tion the more recent work of Dragnev and Mina—Dfaz ([18], [19], [43]), which strengthens
Carleman’s theorem on orthogonal polynomials, and gives information on the asymptotic
distribution of the zeros. In the work [35], which expands on ideas developed here, we
derive a complete asymptotic expansion for the orthogonal polynomials in a weighted
Carleman setting. Earlier, only the first term of the expansion was known.

In the above asymptotic formule a Jacobian factor appears, it is (¢ )1/ 2 in the case
of Szeg8’s theorem and ¢’ in Carleman’s case. By inspection, the orthogonal polynomials
are asymptotically push-forwards of the monomials under the conformal mapping in the
relevant L2-space.

We wish to contrast the above-mentioned results with the more classical study of
orthogonal polynomials on the real line R. Here, the earliest work is associated with
Legendre, Jacobi, Chebyshev, Hermite, Laguerre, and Gegenbauer, with further contri-
butions by Markov, Stieltjes, Szeg6, Bernstein, and Akhiezer. The structure of orthogonal
polynomials on the line is rather rigid with the appearance of a 3-term recursion relation,
which comes from the fact that multiplication by the independent variable is self-adjoint
on the weighted L2-space. Analogous rigidity applies to the orthogonal polynomials on
the unit circle T as well. These facts are basic in many of the standard approaches to
the asymptotics of orthogonal polynomials; see e.g. [51], [52]. Going beyond measures
supported on the line or the circle, the rigidity is lost, and in particular there are no
3-term recursions for regular measures on smooth Jordan curves except for ellipses [20].
For planar orthogonal polynomials, recursion formulae are rare, even if we allow any finite

number of terms [45].
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1.3. Exponentially varying weights

For a C?-smooth function Q: C—RU{+o0} called the potential, subject to the growth

bound
lim inf Q) >
z—oo log|z]

1, (1.5)

and a real parameter m>0, we consider the weighted area measures of the form
dpamo(2) = e 2mRE) dA(z), zeC (1.6)

where we recall that dA denotes the normalized planar area element. The condition
(1.5) guarantees that the measure pt=po,,¢ has finite moments (1.2), with upper range
given by N=N,,:=[(14€1)m|—2 for some €; >0. Here, [-] denotes the standard ceiling
function. This allows us to consider the sequence { Py, » }o<n<n,, of ONPs with respect
to the measure dpomg where n denotes the degree (cf. §1.1). Under certain additional
assumptions on the regularity of the weight ), we will obtain an asymptotic expansion
of P, valid as m and n tend to infinity with the ratio 7=n/m confined to an open
interval around 7=1.

The motivation for studying this particular class of orthogonal polynomials comes
from the theory of random normal matrix (RNM) ensembles, a particular instance of 2-
dimensional Coulomb gas. If m is a positive integer, the connection is that the eigenvalue
process associated with an m xm matrix from the RNM ensemble with potential @ is

determinantal with correlation kernel K,,, given by

m—1
Ko (2,w) = Ko (2,0) e 7R where K (2,w) = Y Prj(2) P, (w); - (17)
7j=0

see §5.1 below for details. Analogous families of exponentially varying weights confined
to the real line appear in connection with the study of random Hermitian matrices. In the
1980s, successive progress was made towards understanding the asymptotics of weighted
ONPs on the real line, with important contributions by Freud, Nevai, Lubinsky, Mhaskar,
Saff, and Totik, to mention a few (see e.g. the monographs [42], [53], and [59]). A deeper
understanding came through the efforts of Fokas, Its, Kitaev, and Deift-Zhou, whose
work brought novel methods into play. Their approach analyzes the ONPs with respect
to rather general potentials () on the real line in terms of solutions to matrix Riemann—
Hilbert problems; see, e.g., [16], [17], [23], [24].

In the work [39] of Its and Takhtajan a natural soft Riemann—Hilbert problem, or
matrix O-problem, is considered, whose solution would give us the orthogonal polynomial

P, n for the planar measure pi2,,q. However, unlike the 1-dimensional situation, it is
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not clear how to constructively solve these soft Riemann—Hilbert problems. The main
obstruction appears to be the complex conjugation of the matrix, which results from the
sesquilinearity of the inner product. While our analysis of the asymptotics of the ONPs

is different, we try to connect with the Its—Takhtajan approach later on in §7.

1.4. The boundary universality conjecture

We return to the study of random normal matrix ensembles with the associated corre-
lation kernel K,,. Macroscopically, the situation is well understood. For instance, in
the limit as m— 400 the eigenvalues condensate to a certain compact set S, called the
droplet, or alternatively spectral droplet (see §5.1 below). For simplicity, we assume below
that @ is C%2-smooth with positive Laplacian AQ >0 in a neighborhood of S;. An inter-
esting question is how the process behaves at the microscopic level, which we express in

rescaled coordinates as follows. For a point zg€C with AQ(zp)>0 and a direction neT,

we let ¢
(6 =204n——> 1.8
Zm(§) =20+ 3mAQ(z) (1.8)
where A,=0.0, denotes the (quarter) Laplacian, and consider
1
Pm(f):me(Zm(§)>Zm(§))- (1.9)

We introduce the notation £° for the interior and &£ for the closure of a subset £ CC, while
E£¢=C\¢& denotes the complement. Near any bulk point 2, i.e., a point in the interior S5
of the droplet, there exists a full asymptotic expansion of the kernel K,,; see e.g. [3], [4].
In this case, lim,, p,;,(§)=1, uniformly on compact subsets. Away from the droplet, i.e.
for zo€S§, we instead have lim,, p,,(§)=0. It remains to analyze the boundary points
20€081. An illustration of this blow-up procedure for a boundary point in the context
of RNM ensembles is supplied in Figure 1.2.

A natural simplifying assumption is that the boundary 90S; is smooth near zp, in
which case we let n be the outer normal to S7 at zg. It is not known what is the limit of

the density p,,, but the following universal behavior is expected.

Conjecture 1.1. (boundary universality) Let zo€9dS; and assume that 9S; is smooth

in a neighborhood of zg. Then the density p,, converges as m— oo to the limit

p(€) = erf(2Re¢).

Here, we write erf for the complex error function

1 oo
erf(z) = Wors / et*/2 dt,
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Figure 1.1. The Berezin density K, (20, 20) ™ |Km (2, 20)|? with Q(z):%|z|2 for the boundary

point zg=1 and m=30 (left). The orthogonal polynomial density |Pm, n(2)|2e=2mQ() for

n=25, m=20, and Q(z):%|z|2—Re(tz2), where t=0.2 (right).
where the integral is taken along a suitable contour from z to the origin and then from
the origin to oo along the positive real line. This conjecture, which has circulated in the
community at least since 2008, may have appeared in print for the first time in Riser’s
thesis [46]. It has been verified in some specific cases, and partial results have appeared
recently. In connection with this, we want to mention the work by Ameur, Kang, and
Makarov [5] who used a limiting form of the Ward identities to show that if p(¢) is a
priori known to only depend on Reé, then it must necessarily be of the form predicted
by Conjecture 1.1. The full conjecture however remains open. In the setting of Kéahler
manifolds, a similar problem appears in the context of partial Bergman kernels defined by
vanishing to high order along a divisor. Under the assumption of S'-invariance around
the divisor, Ross and Singer [48] obtain the error function asymptotics near the emergent
interface around the divisor (see also the work of Zelditch and Zhou [63]). In recent work,
Zelditch and Zhou [62] find that this is a universal edge phenomenon along interfaces in
the context of partial Bergman kernels defined by a quantized Hamiltonian.

Let us briefly motivate why the interface asymptotics for the RNM ensembles should
be approached via the orthogonal polynomials. The standard methods to obtain the
asymptotics of Bergman kernels are local in nature, both the peak section approach of
Tian (see [58]) as well as the microlocal approach of Boutet de Monvel and Sjostrand, as
explained by Berman, Berndtsson, and Sjostrand [9] (see also [28]). The same applies to
older work of Hérmander [37] and Fefferman [22]. One reason to expect the boundary
universality conjecture to be difficult is the apparent nonlocality of the correlation ker-
nel. To illustrate this, we consider the Berezin density of [2], associated with secondary

quantization and complementary to the Palm measure, cf. [12], given by
B0 (2) = K (20, 20) " EKm (2, 20)|2 e 2m@E),

We find numerically that for boundary points zo €087, this probability density develops

a noticeable ridge with slow decay along the whole boundary of the spectral droplet (see



316 H. HEDENMALM AND A. WENNMAN

Figure 1.2. The RNM process associated with a quadratic potential (the Ginibre ensemble)
with blow-up at a boundary point (courtesy of Nam-Gyu Kang).

Figure 1.1 (left)). For this reason we focus our analysis on the orthogonal polynomials,
which have an even more pronounced non-local behavior (see Figure 1.1 (right)). Indeed,
for rather general potentials @), the mean field approximation of the random normal ma-
trix model [3], [4] supplies information regarding the individual orthogonal polynomials,

and gives the weak-star convergence of measures
2 -2 ~
‘Pm,’ﬂl € mQ‘)W('7C\Sl,OO),

as n,m—oo0 with n=m+0O(1). Here, the left-hand side is the density of a probability
measure, and the right-hand side expression w(-, @\Sl, 00) stands for harmonic measure
of the domain @\81 evaluated at the point at infinity, which has the interpretation of
hitting probability of Brownian motion starting at co. We observe that harmonic measure
is concentrated to the boundary, so that the above convergence may be interpreted as
boundary concentration. Within the random normal matrix model, the addition of a new

—2m@Q@ of highest degree. This means

particle has the net effect of adding a term | P, ,,|*e
that the net effect of adding a particle is felt primarily along the droplet boundary. As a
consequence, we obtain a growing chain of spectral droplets S, so that the probability
wave | P, |?e~2™m? concentrates along 9S, as m,n—o0o0 with n=mr.

Finally, we mention that the orthogonal polynomial approach has proven to be

successful in several special cases. For instance, when
Q(2) = 5]2[*+aRe(z?)

with >0, Lee and Riser [41] obtain the orthogonal polynomials in explicit form, and
verify Conjecture 1.1 in this case. Along the same lines, in [7], Balogh, Bertola, Lee, and
McLaughlin consider potentials @) which are perturbations of the standard quadratic
potential of the form

Q=) = 4]z~ clog |z —a?,

for some a€R, ¢>0. For this @, they obtain an asymptotic expansion of the orthogonal

polynomials. For parameters a and c¢ such that the droplet S, does not divide the plane,
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the expansion is expressed in terms of the properly normalized conformal mapping of
the complement S¢ onto the exterior disk D., denoted ¢.. After some rewriting, their

formula reads

m

Pon(2)= (2) V@6, () e (11 0(m ™)), (1.10)

valid in a neighborhood of the closed exterior of the droplet for n/m=71+0(m™1), where
Q; is the bounded holomorphic function on ¢, with real part equal to @ on the boundary
0S8, extended analytically across the boundary. Using the asymptotics (1.10), they
verify Conjecture 1.1 for the given collection of potentials. The analysis in [7] is based
on Riemann—Hilbert problem methods, which are accessible due to a miraculous identity
which transforms the Hermitian orthogonality over the plane into bilinear orthogonality
relations along curves. The latter approach should be compared with the work of Bleher
and Kuijlaars [11] in the context of a cubic potential.

At the physical level, it is understood that the asymptotic formula (1.10) should hold
for the wider class of potentials of the form Q(z)=21|z|?+H(z), where H is harmonic in
a neighborhood of the droplet (the so-called Hele-Shaw potentials) [1], [57], [60]. The

higher-order-correction terms appear not to have been pursued.

1.5. Summary of the results

We study the orthogonal polynomials with respect to exponentially varying weights
e~2™% in the complex plane. The potential @Q is assumed admissible in the sense of
the definition below. To prepare the ground, we need some notions from potential the-
ory. Under C?-smoothness and some growth assumption on @, we consider for 7>0 the

coincidence set
S: = {Z eC: Q'r(z) = Q(Z)}a

where @T solves the obstacle problem
Q-(z) =sup{q(z) : ¢ € Subh,(C) and ¢< Q on C}.

Here, Subh,(C) denotes the convex body of subharmonic functions in the plane which
grow at most like 7log|z| at infinity. It follows that the function @T is automatically
C11-smooth and harmonic outside the set S* (see, e.g., [30]). Moreover, if @ has sufficient
growth, 8 is compact. For a subset £CC, we write 1¢ for the corresponding indicator

function. The support of the probability measure p, given by

dpr=27""15: AQ dA
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Figure 1.3. Laplacian growth of the compacts Sr for Q(z):%|z|2 —271/2log |24 1| (boundary
curves indicated).

is denoted by S, and called the droplet. Clearly, S;CS%, and SF\S; is a null-set for
the measure |AQ|dA. We note that . is the equilibrium measure for the weighted
logarithmic energy problem in the external field 7=1Q. More details are supplied in §2.1
below.

Definition 1.2. The potential Q: C—R is said to be T-admissible at 7=7; (or, in
short, 7p-admissible) if Sy, =& and the following conditions are satisfied:

(i) Q is C?-smooth in the entire complex plane;

(ii) @ is real-analytic and strictly subharmonic (i.e. AQ>0) in a neighborhood of
the droplet S;,;

(iii) @ is grows sufficiently fast at infinity:

lim inf QL)
|zl =400 log | 2]

> To; (1.11)

(iv) the boundary 9S,, is a smooth Jordan curve.

Note that under these conditions, it follows that Q,,(z)<Q(z) on Sy.. As a con-
sequence, we may exclude the immediate birth of additional components of S, as 7
increases from 7y.

In the sequel, we consider 1o=1, and assume that Q is T-admissible at 7=1. As
observed in §1.3, the condition (1.11) with 7=1 guarantees that all polynomials of degree
up to [(1+e€1)m]—2 belong to the space L?(C, e=2mQ dA), for some fixed small €;>0.
As @ is assumed 1l-admissible, the curve 9S; is smooth, simple and closed. By known
properties of Laplacian growth, this assumption implies that the same holds for the
boundaries 9S; for T€l,,:=[1—¢g, 14 €] for some €y>0 (cf. [33], [30]). By considering
a smaller €y, we can make sure this property holds on the larger interval I, as well,
so that in particular @ grows at least like (1+42¢g)log|z|+O(1) at infinity. Moreover,
the assumption of 1-admissibility entails that the smooth curves 9§, are actually real-
analytically smooth for 7€l.,. This follows from the work of Sakai [50] on boundaries

with a 1-sided Schwarz function, as observed in [33].
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We now proceed to present our main theorem. To set things up, we denote for 7€,
by ¢, the conformal mapping ¢,: SE—D,, normalized by ¢, (00)=00 and ¢/ (00)>0. As
a consequence of 1-admissibility, ¢, extends to a conformal mapping K¢ o —De(0, po,0),
where 0<pp o<1 and K, (CS, denotes an appropriate compact continuum. Here, we
use the notation D (0, r):={z€C:|z|>r} for the exterior disk of radius r centered at the
origin. We let Q. denote the bounded holomorphic function on S¢ whose real part equals
the potential @) along the boundary 0S;, and whose imaginary part vanishes at infinity.
By possibly adjusting po o, we may ensure that Q. extends holomorphically to K7 ,

For a subset £CC, we use the notation distc(z, £)=inf,ecg |z—w| for the Euclidean

distance from z to the set £.

THEOREM 1.3. Assume that Q is 1-admissible. Given a positive integer k, there
exist bounded holomorphic functions B, ; defined in a fized neighborhood of S such that

for any positive real A, the asymptotic formula
Pron(2) =m A8 (2)] 2 (¢ (2)]" e O 2 ( Zm iB,;(2)+0(m '”)),

holds, where the error term is uniform over all z€C with
distc(z, S¢) < A(m ™t logm)*/?

as n=Tm—+o00 along the integers with T€l,,.

In other words, the orthogonal polynomials P, ,, enjoy an asymptotic expansion
1
Po2) o 8 (] 20 (e (Broe) - Bra ()4 )

valid provided that distc(z, S¢)<A(m~'logm)/? as n=rm—+oc and 7€1,,, for any
given A>0.

Remark 1.4. (a) We derive Theorem 1.3 from an L2-version of the asymptotic ex-
pansion, given in Theorem 3.2 below. An advantage of the L2-version is that it holds in
a fixed e-neighborhood of the exterior S¢.

(b) Tt is curious to note that the expansion of P, , contains the factor (¢.)/?,
rather than ¢/ as one might expect from Carleman’s theorem. The square root is more
reminiscent of Szegd’s theorem. We have no satisfactory explanation for this fact, other
than appealing to heuristics based on the steepest descent method. Naturally, the ex-
pansion could be written with ¢/ as a factor, by adjusting the terms B, ; accordingly.
However, the term B, takes on the simplest possible form with the former choice, as

shown in Theorem 1.5.



320 H. HEDENMALM AND A. WENNMAN

In the context of Theorem 1.3, we would like to know the coeflicient functions B; ;.
How to find them is explained in the following theorem. For the formulation, we need
the Szegd projection PHE’0 of L?(T) onto the conjugate Hardy space H§70:L2 (T)o H?
(cf. §2.5 below). In addition, we need the effective weight R, which takes into account
the growth behavior of polynomials and a conformal change-of-variables. It is defined in
a neighborhood of D, by

R, =(Q-Q-)¢; ", (1.12)
where we need to explain what is the function QT. The solution @T to the obstacle
problem is a C'''-smooth function which equals @ on S,, while it is strictly smaller
and harmonic in the exterior S¢. As a consequence of the smoothness of ) and the
boundary curve 0S,, the restriction CA)T|5; to the exterior extends harmonically across
the boundary for each 7€1,,. We denote the extended function by Q-.

THEOREM 1.5. In the asymptotic expansion of Theorem 1.3, we have that
B,o= g /4eHa
where Hq ; is bounded and holomorphic in S¢ and satisfies Im Hg ,(00)=0, as well as
ReHg = % log AQ on 0S;.
Moreover, if Hgr_ denotes the bounded holomorphic function on De with
Re Hg, = 1log(4AR;) on'T,
and Im Hp_(00)=0, then for j=1,2,3,..., the coefficients B, ; have the form
Br;=[¢7]"*Brjo¢r,
where the functions B ; are bounded and holomorphic in De, and given by
B, ;=c, jefr —efns PHZYO[GHRT F. ;]

for some real-analytic functions F; ; on the circle T and constants c, jER. The functions
F, ; as well as the constants c-; may be computed algorithmically in terms of the potential
R, and the functions B, o, ..., Br j_1, where B7—70:(47T)_1/46HR7'.

Remark 1.6. (a) In the above theorem, all the functions B ; and B, ;, as well as
Hg,, and Hg_, extend holomorphically across their respective boundaries.
(b) The functions Hg » and Hg_ are related by

Hp, ¢, = 11log(2¢.)+Ho,-.

(¢c) We point out that Theorems 1.3 and 1.5 together imply that for large enough

m, and for T=n/mel., all the zeros of the polynomial P, ,(z) lie inside S;, and stay

away from the boundary curve 9S, by a distance of at least A(m~!logm)/2.
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While Theorem 1.5 gives the asymptotic structure of the orthogonal polynomials,
it remains to specify how to algorithmically obtain the real-analytic functions F: ; and
the constants c, j, for j=1,2,3,.... For k=0,1,2,..., let L be the differential operator
given by

3k

_1\Ww—ko—v ) v—k )
=3, e ([Bge- R )] ).

This is a differential operator of order 6k, acting on a smooth function f defined in
a neighborhood of the unit circle. We are specifically interested in the restriction
Li[f](re*?)|,—1, which expression only involves derivatives of order at most 2k. The
operator Ly results from the asymptotic analysis of definite integrals using Laplace’s
method, as in Proposition 2.10 below. Later on, in Lemma 4.1, we show the existence of

differential operators My with the property that

/ (2R, (rei®)) VL[ f ()] dB = / ML f)(¢?)] b,
T T

for [=1,2,3,.... We use these operators to rid the left-hand side of any unwanted depen-
dence on the parameter [. In terms of the operators L and My, we may now express

F, ; and c;; as follows:
j .
Fo;(0)=> Mg[Br; ](e”), j>1, (1.14)
k=1

and the real constants c, ; are given by ¢, o=(47)~"/4 while, for j=1,2,3, ...,

Crj= —%(47)1/4 > /Mk[BmBT’l](ew)ds(e”’), (1.15)
(i k,yen; U T

where n;={(i, k,1)eN3:4,1<j, k>0, and i+k+Il=j} and N:={0,1,2, ... }. The way this
algorithm works is that we start with the known function B; o, which in its turn gives
the function F;; and the constant c¢,; via (1.14) and (1.15), respectively. This then
gives B, from the expression in Theorem 1.5. In the next round, we obtain F; 5 and
¢r,2 followed by B in a similar fashion. An inductive procedure gives F; ;, cr j, and
B; ; for all j>2 as well. Knowing B; ; then gives the coefficient function B, ; as well, by

Theorem 1.5.
As a direct consequence of Theorems 1.3 and 1.5, we resolve the boundary univer-
sality conjecture (Conjecture 1.1) for 1-admissible potentials. For the convenience of the
reader, we recall some notation. For zo€0S; we denote by n the outward unit normal to

0S; at zp, and write z,,(§) for the rescaled variable around zg given by (1.8).
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COROLLARY 1.7. Assume that @Q is 1-admissible, and denote by k,, the rescaled

kernel )
kp, ; =——Kp(zm y Am .
(€)= gy Ken (€, 20 )
Then, there exist unimodular continuous functions c,,: C—T such that we have the con-

vergence

m—o0

locally uniformly on C2, where the limiting kernel is the Faddeeva plasma kernel
k(&,n) = &M= (1€1*+In|*)/2 erf(E+17).

The terminology Faddeeva plasma kernel comes from the plasma dispersion function,

which was tabulated by Faddeeva and Terent’ev in [21].

Remark 1.8. The above kernel convergence has an interpretation in terms of de-
terminantal point processes in the plane. More precisely, the blow-up of the eigenvalue
process for the RNM ensemble around zy converges to the Faddeeva plasma point field,
with correlation kernel k(&,n). The unimodular continuous functions ¢,, are irrelevant,

as they do not affect determinantal point processes.

To complement the present exposition on planar orthogonal polynomials, we explain
in [34] how the ideas developed here also apply to give a full asymptotic expansion of
the Bergman kernel for exponentially varying weights when one of the variables is away
from the corresponding droplet. In that setting, holes in the droplet typically arise from
the repulsive effect of patches where AQ<0. This result gives error function transition
behavior along smooth loops of the droplet boundary.

In the follow-up work [36], we intend to explore further the implications of Theo-
rems 3.2 and 1.5 for the theory of random normal matrices. In particular, we analyze the
asymptotics of the free energy log Z,, g, where Z,, g denotes the partition function of
the RNM ensemble, and relate the analysis to the planar analogue of the classical Szegd

limit theorem on Toeplitz determinants.

1.6. Sketch of the main ideas

The first step towards obtaining Theorem 1.3 is the construction of a family of approxi-
mately orthogonal quasipolynomials, defined outside a compact subset C, of the interior
of the droplet S;. This family of functions have the property that they are approxi-
mately orthogonal to the collection of lower-degree polynomials, have the correct poly-

nomial growth at infinity, but need not be well-defined globally (i.e. on KC;). In a second
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step, these quasipolynomials may be corrected to true polynomials using Hérmander’s
O-estimates. The actual construction depends on our key lemma (Lemma 3.9) which

establishes the existence of what we call the orthogonal foliation flow.

We turn to the underlying ideas for the orthogonal foliation flow. Our approach will
take a slightly different point of view than what is used later on. It has the advantage
of being more intuitively direct. The approach begins with the following disintegration
formula: let {7, n,:}e denote a smoothly varying family of closed simple curves, which
foliate a region 1, ,, when ¢ runs through an interval J,,. If v(z) denotes the scalar
normal velocity of the curve flow as it passes through the point z, then for a suitably

integrable function F' we have
/ F(2)e?mQ3) dA(z) =2 / / F(z)e 2mRG)y(2) ds(z) d. (1.16)
Qm.,n Im v Ym,n,t

We consider the weighted arc length measure e 2™Qv ds restricted to the curve Y nts
and the associated orthogonal polynomial P, : of degree n. We would like to find
a foliation {Ymn}: of the region €, , such that P, ., ¢=c(t)Py, n0, Where Py, 0 is
independent of the flow parameter ¢ and ¢(t) is an appropriate positive constant. As a
consequence of (1.16), the polynomial P, ¢ is then orthogonal to Pol,, with respect
to the measure 1Qm1n6_2mQ dA. Now, if the foliation covers a sufficiently large enough
region €, ,, then the resulting normalized orthogonal polynomial ought to be close to
Py, n itself. In other words, the 2-dimensional orthogonality relations foliate into lower-

dimensional orthogonality relations along a curve family {7V, ¢}

The stationarity condition P, ¢ =c(t) P n,0 is quite demanding, and in fact we do
not know that such a foliation exists, at least if we require it to foliate the entire plane.
Instead, we obtain the foliation in an approximate sense, up to any given precision,
so that ,,, covers a band around dS, of width =m~"2logm. We remark that the
stationarity condition may be thought of as a Hele-Shaw flow condition (see [27], [33])
for the curves 7y, ¢, with respect to the weight \Pm,n70|26’2mQ. Hele—Shaw flows are
notorious for singularity formation, after which the foliation flow cannot be continued.
The requirement not to develop such singularities puts a strong requirement on the weight
|Pm7n’0\26*2mQ. This is used in an approximate fashion in §6 to devise an algorithm to
construct P, o together with the foliation iteratively in a self-improving manner. For
technical reasons, we work with the flow curves I'y, »t=¢(Ym.n,¢) after applying the

conformal mapping ¢,, and consider quasipolynomials rather than polynomials.
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1.7. An outline of the presentation

In §2, we introduce some auxiliary material which will be needed later on. In particular,
we discuss some aspects of weighted logarithmic potential theory and obstacle problems,
and introduce the concept of weighted Laplacian growth. Moreover, we collect some
results on Hormander-type L?-estimates for the d-operator, and the asymptotic analysis
of integrals based on Laplace’s method.

In §3, we introduce the notion of quasipolynomials, and state our key lemma on the
orthogonal foliation flow (Lemma 3.9). Using Hérmander-type O-techniques we get the
L2-analogue of the main theorem (Theorem 3.2) from the key lemma. The main theorem
(Theorem 1.3) then follows from Theorem 3.2 by a weighted Bernstein—Walsh lemma.

In §4, we obtain Theorem 1.5, which identifies the coefficient functions in the asymp-
totic expansion. The proof is based on steepest descent analysis. The starting point is the
existence of the expansion of Theorem 1.3 which tells us that the probability distribution
| Pon.n|?e~2mQ is approximately a Gaussian ridge centered around dS,, so by composing
with the conformal mapping ¢, we obtain a Gaussian ridge around the unit circle. By
writing the relevant integrals in polar coordinates and applying Laplace’s method in the
radial direction, this structure allows us to collapse the orthogonality conditions into
integral equations on the unit circle. The collapsed orthogonality conditions then reduce
to inhomogeneous Toeplitz kernel equations. The algorithm arises when we solve those
equations.

In §5, we supply more details on determinantal point processes, and give the proof
of Corollary 1.7 on boundary universality in the random normal matrix model for 1-
admissible potentials.

In §6, we supply the proof of key lemma on the existence of the orthogonal foliation
flow. The proof is based on an algorithm, which determines both the flow and the
asymptotic expansion of the approximately orthogonal quasipolynomials in an iterative
and intertwined fashion. An outline of the algorithm is provided in §6.2 and §6.4.

Finally, in §7, we connect our orthogonal foliation flow with the Its and Takhtajan
approach involving soft Riemann-Hilbert problems (2x 2 matrix d-problems).
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1.9. Notation and conventions
We denote by 9, and 0. the standard Wirtinger derivatives, given by
0.=%3(0,—1i9,) and 0.=3(9,+1i0y), z=z+iy. (1.17)

When the dependence on z is clear, we will omit the subscript and simply write @ and 0.
The Laplacian factorizes as A=00 (notice that this is a quarter of the usual Laplacian).

The Riemann sphere is denoted by ((A:, and we identify it with the extended complex
plane @:(CU{oo} via stereographic projection. If I' is a bounded Jordan curve, and
Q. denotes the unbounded component of C\I', then the domain 2, is simply connected
if regarded as a domain on the Riemann sphere C. Asa consequence, the Riemann
mapping theorem guarantees that there exists a conformal mapping ¢: {2, — D, onto the

exterior disk D,. This mapping is uniquely determined if we require that
¢(c0) =00 and ¢'(c0)>0. (1.18)

A conformal mapping of unbounded domains which is subject to the normalization
(1.18) at infinity is called orthostatic. Unless specified otherwise, a conformal mapping
¢: 21—y is tacitly assumed to be onto.

We use the standard Landau notation for control of asymptotic quantities. Namely, if
f(t) and g(¢t) denote two positive functions defined for t€(0, 1], we say that f(t)=0(g(t))
as t—0 if there exists a constant C' with 0<C<oo such that f(¢)<Cyg(t) for all ¢>0
sufficiently small. Moreover, we say that f(t)=o(g(t)) as t—0 if lims o f(¢)/g(t)=0.
Moreover, we use the notation f(¢)=g(t) to say that f(t)=0(g(t)) and g(¢t)=0(f(t)), as
t—0. Similar comparisons when f and g are functions defined on more general sets are
understood analogously.

For a positive Borel measure y supported on the set QCC, we denote by L?(€2, i) the

standard L2-space of square integrable functions with respect to u, with inner product
g [ 15 autz)
Q

For a domain QCC, we define the Bergman space A%(Q, ;1) as the subspace of L?({, p)
consisting of all & L?(€2, 1) which are holomorphic on Q. For an integer n and unbounded
Q, we denote by L2 (£, u) and A2(Q, i) the subspaces of functions f with

[f(2)=0(2""), 2€Q, |z = +oo.

If Q=C is the entire complex plane, we drop it from the notation. Measures of the form
dp=e~? dA play a major role in our analysis, and for such measures we use the shorthand
notation Ai(Q), Li(Q), Aim(Q), and Lin(Q) for the spaces discussed above. The L2
norm and inner products are denoted by || - ||, and (-, -),, or simply by |- ||¢ and (-, )¢

in the case of measure of the form du=e~? dA.
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Frequently used notation

For the convenience of the reader, we supply a list of frequently used notation.

C,R, T Complex plane, real line, and unit circle, respectively.
D, De Open unit disk D={z:|z|<1} and exterior disk Do={z:|z|>1}, also
for arguments (zg, ) denoting center and radius of the boundary circle.
Z,N, 7. Integers, natural numbers N={0, 1,2, ... } and positive integers
Z.={1,2,3,... }, respectively.
gee, & Complement, interior, and closure of the set £. The complement is

understood as C\&, unless specified otherwise.

le Indicator function for the set .

0., 0, Wirtinger derivatives, given by 0.=13(0,—1i9y), 0:=3(0x+19,),
where z=x+1y.

A Laplacian, which factorizes as A=09. N.B.: this equals 1-quarter of
the usual Laplacian.

Pol,, Space of polynomials of degree at most n—1.

Q, @T The potential and the solution to obstacle problem with growth 7log |z|
at infinity, respectively.

QT Harmonic extension of @7 Se across IS,

Q¥ Bounded harmonic extension of Q|gs. to S¢.

[0 Holomorphic function on 8¢ with Re Q,=Q% and Im Q. (c0)=0.

S;, St The droplet and the coincidence set for the obstacle problem, respectively.
These are equal under the rp-admissibility assumption, for |7—7o| small.

Ko, K7 Compact subsets of S; related with the radii pgo and pg, respectively.

I, I, =[1—¢€o, 1+€o] for a small parameter y>0.

br Conformal mapping ¢,: S¢— D, with ¢, (c0)=00 and ¢ (00)>0.

R, The effective weight, given by (Q—Q,)od);l.

Xr,05 Xr,1 Smooth cut-off functions related via x,o0=xr1°¢-.

w(E,Q, z) Harmonic measure of E relative to (2, 29).

H? H?, Hg’o Hardy spaces; cf. §2.5.

Hg The Herglotz operator for a domain 2 containing the point at infinity.

P2, Py Orthogonal projection onto Hardy spaces.

nonvy Index sets, appearing with various subscripts and superscripts.
See pp. 359, 360, 371, 377-383, 389-397.

Ly, My, Differential operators arising in steepest descent calculations.

B;j, Br; Coefficient functions in asymptotic expansions of ONPs, related through

the conformal mapping ¢, (see Theorem 1.5).
Vst 12}1-11, b Conformal mappings related to the orthogonal foliation flow, their Taylor
coefficients in (s,t), and bounded holomorphic coefficient functions.
Tints Din The curves of the orthogonal foliation and the foliated region, respectively.

1L 1, ﬁjJ The logarithmic density in the master equation and its Taylor coefficients
in (s,t); see §6.4.

Amn Canonical positioning operator; cf. §3.3.

Féf Zl, éf)n Quasipolynomial and analogous bounded function, related through A, .

Om The number §,, =m~1/2 log m.

A(g7 o) The 20-fattened diagonal annulus; cf. §6.1.

<1, <oL Lexicographic and order-lexicographic orderings.

POL() Polynomial complexity classes; cf. §6.7.

Guw, Huw Non-linear differential expressions for Faa di Bruno’s formula.



ASYMPTOTICS OF PLANAR ORTHOGONAL POLYNOMIALS 327

2. Preliminaries

2.1. An obstacle problem and logarithmic potential theory

In this section, we follow the presentation of [30]. The standard reference for the potential
theoretic aspects of this material is the monograph [49] by Saff and Totik.
For a positive real parameter 7, let Subh,(C) denote the convex set of all subhar-

monic functions ¢: C—RU{—0o0} on the complex plane C which meet the growth bound
q(z) <7log|z|+0(1)

as |z|—o0. For lower semicontinuous potentials @ subject to the growth condition (1.11)

and for 0<7< 1, we let @T be the solution to the obstacle problem
Q-(2):= sup{q(z) : ¢ € Subh,(C) and ¢ < Q on C}, (2.1)

and observe that trivially @T <Q, and if we regularize @T on a set of logarithmic capacity
zero (and keep the same notation for the regularized function), then Q- €Subh, (C) holds.
Suppose now that Q is C?-smooth. Standard regularity results then give that QT is Ch1-
smooth, so that the partial derivatives of order 2 of @T are locally bounded (in the sense
of distribution theory); see e.g. [10] for a simple argument to this effect. As a consequence

of the growth condition (1.11) on @, the coincidence set defined by
St {2€C:0,(2) = Q(2)}

is compact, and moreover, a Perron-type argument shows that @T is harmonic off SF. It
now follows from the C''-smoothness that A@T=13¢ AQ holds in the sense of distribu-
tion theory (see [40, p. 53]).

The above obstacle problem has a direct relation with weighted potential theory.
The weighted logarithmic energy, with respect to a continuous weight function V:C—R,

of a compactly supported finite real Borel measure p is defined as

1
Wl = [ log o due) dutw)+2 [ V() dutw)
CxC |z —wl C
With V=7"1Q, we set out to minimize the energy I.-1g[p] over all compactly supported
Borel probability measures u. There is a unique such minimizer, called the equilibrium
measure, which we denote by p.. The connection with the obstacle problem is via the
relation

dp-(2) =277 AQ, dA=27""15. AQ(2) dA. (2.2)
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As a consequence, we may recover the logarithmic potential for the equilibrium measure
from @, and a real constant Fo -
UF(z):= / log b du,(2)= —TﬁléT(zH—FQ’T, zeC.
C [z —w|

As . is a probability measure by definition, we see from (2.2) that AQ>0 a.e. on SF.
So, the coincidence set SF will avoid the open subset of the plane where AQ <0, which
may be non-empty. We call the support (as a distribution) of the equilibrium measure
s the droplet, and denote it by S,. We alternatively call it the spectral droplet, due
to the spectral interpretation as the accumulation set for the eigenvalues of random
matrices. In general this is a subset of the coincidence (or contact) set SF. However,
the difference set S\ S, is small, in the sense that it is a null set with respect to the
weighted area measure |AQ|dA. In this presentation, we will assume throughout that
the potential @) is 1-admissible. Under this assumption, we have the equality S, =8 for
7€, :=[1—€p, 14+€9] with some small but positive €.

The function @T is Cll-smooth, with @T:Q on the droplet S;, whereas in the
complement S¢ it is harmonic and determined by the boundary data that @T:Q on
88, and the growth Q. (z)=7log|z|+0O(1) as |z|—+00. We proceed to introduce some
further functions related to the potential Q.

Definition 2.1. Assume that @ is 1-admissible, and let 7€ l.,. Then,

(i) @ is defined as the harmonic extension of the restriction of Q- to S¢ across the
boundary 0S..

(i) Q% is the bounded harmonic harmonic function on 8¢ which equals @ on 9S;,
extended harmonically across 9S;.

(ili) Q; is the bounded holomorphic function in 8¢ such that Re @, =Q% on 8¢ with
Im Q(00)=0, extended analytically across 0S;.

It is clear that the functions QT and Q& are related via

Q. =7log .| +QE. (2.3)

2.2. A weighted Bernstein—Walsh lemma

The significance of the set S; in relation to orthogonal polynomials is made clear by

Proposition 2.3 below. We begin with a useful lemma taken from [2]; see Lemma 3.2.

LEMMA 2.2. Let u be holomorphic in a disk D(z,m~/25). Then,

2
meAé

u(z)|?e 2R < — / u[2e72mQ dA,
d D(z,m=1/2)

where A denotes the essential supremum of AQ on D(z,m~'/26).



ASYMPTOTICS OF PLANAR ORTHOGONAL POLYNOMIALS 329

This lemma is used in [2] to obtain growth bounds for polynomials of degree at
most n. The approach works more generally, for functions of polynomial growth in the
space A%mQ(ICC) defined in §1.9, where K is a compact subset of the interior of the
droplet S.. The following result generalizes the classical Bernstein—Walsh lemma; see
e.g. [49, §II1.2].

PROPOSITION 2.3. Let T=n/m, and suppose K is a compact subset of the interior
of S;. Then there exists a positive constant C' such that for any ueAng (K¢) with the

polynomial growth control |u(z)|=0(|z|") as |z| =00, we have that
|u(2)| < CmY2||u| g2 (e o—2my ™) diste (2, K) = 5m~ /2,

Proof. Assume that 2€S,\K lies at a distance of at least m~'/2§ from K. By

Lemma 2.2, we have the estimate
2

2A6
me
[u(2)]? < —57— ¥ Jull L2 e o-2ma)s

N

which yields the claim for z€S,\ K with the constant C:05:5*16A52. Next, suppose
that v has norm equal to 1, and let ¢(z) be the subharmonic function

o) — L 1og 1P

= , e Ke.
2m mC(? *

It follows from the above estimate on |u(z)|? that ¢(2)<Q for €S, \K, and the growth
bound on |u(2)| as |z| = oo entails that ¢(z) <7 log |2|+0(1) as |z| = oco. Now, we consider
the difference q—@T and observe that it is harmonic in §¢ and that q—@T <0 holds on the
boundary 0§, since @T:Q there. Moreover, we see from the growth bound on ¢ that the
difference q— @T is bounded from above in S¢. It now follows from the maximum principle
for subharmonic functions that ¢(z)—Q,(2)<0 throughout z€S8¢

T

which completes the
proof. 0

In particular, Proposition 2.3 tells us that |P,, ,(2)|>e~?™% decays exponentially
off the droplet S; if T=n/m. As alluded to in the introduction, it is possible to also
locate the mass of the probability density |Pp,,(2)?e?™2(). We recall the notation
@ (-,C\S;,00) for the harmonic measure of C\S; relative to the point at infinity. The

following is from [3].

THEOREM 2.4. As m,n—o00 with T=n/m=79+0(m™1) for some 1o with 0<15<1,

we have the convergence
2 —2m ~
‘Pm,n‘ e Q*)’W(',C\S‘,—O,OO),
in the sense of weak-star convergence of measures.

See Figure 1.1 (right) above for an illustration of this convergence.
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2.3. Weighted Laplacian growth

Weighted Laplacian growth (or weighted Hele-Shaw flow) describes the movement of the
boundary of a viscous fluid droplet in a porous medium, as fluid is injected into the
droplet. The weight appears as a result of the variable permeability of the medium, or,
alternatively, as a result of curved geometry. For the mathematical formulation, consider
a simply connected domain €y on the Riemann sphere (E::(CU{OO} containing the point
at infinity. A smoothly increasing family {€;}; of domains is said to be a Hele-Shaw
flow with weight w, relative to the injection point at infinity, if the infinitesimal change
of the measure 1g_w(z) dA equals harmonic measure (the derivative is as usual taken in

the sense of distribution theory):
O(lo,wdA) =dw(-,Q,00). (2.4)

Alternatively, we can think in terms of the weak formulation, which amounts to the

requirement that

/ hwdA=(t—s)h(c0), s<t,
2\

holds for all bounded harmonic functions i on ;. At times, we prefer to think of
the flow of the boundary loops {9€:}; rather than the flow of domains itself. A basic
reference on Hele-Shaw flow is the book [27] by Gustafsson, Teodorescu and Vasili’ev.
The weighted Hele-Shaw flow problem appears to have been treated first in the paper
[33] by Hedenmalm and Shimorin, where the weight was interpreted as a Riemannian
metric, motivated by considerations in the potential theory of clamped plates [29]. This
line of work is continued by [32], [31]. In this connection, we mention the work [47] by
Ross and Witt—Nystrom, which deals with a less regular situation.

In the present work, weighted Laplacian growth appears for two distinct families
of weights that arise naturally. For instance, the complement S¢ evolves according to
Laplacian growth with the weight 2AQ and injection point at infinity, with 7 as backward
time. The second type of Laplacian growth occurs with the weight w=|P|?e~?™% where
P is an approximation of the orthogonal polynomial P, ,; see the discussion in §1.6.
The latter flow of loops is what we call the orthogonal foliation flow.

We will need the following lemma, about the movement of the loops 0S,- as T varies.

LEMMA 2.5. Fiz t7€l.,=[1—¢€p,14+€g]. Denote by n,.(¢) the outer unit normal to
0S8 at a point (€08, and let n,.({)R denote the straight line which contains n,(¢) and

the origin. Then, if for real € the point (. is closest to ( in the intersection

(CfnT(C)R) ﬂaST—sa
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we have as €—0 that

e =C—en(Q) 5 +O(E)

and the outer normal n._.((.) satisfies

n;—c(¢:) =1,(¢)+0(e).

Proof. We recall that the compact sets S, evolve according to weighted Laplacian
growth with respect to the weight 2AQ), so that we have (2.4) with Q,=8¢. For the
details, we refer to Theorem 5.22 and Proposition 6.10 in [30]. This means that

where we recall that ¢, is the (surjective) conformal mapping S¢—D,. Informally, the
boundary 8S, moves at local speed (4AQ)~!|¢. | in the exterior normal direction, where
the number 4 appears in place of 2 as a result of the different normalizations associated
with ds and dA. It is known by [33, Theorem 6.2], which is based on the Nishida—
Nirenberg version of the Cauchy—Kovalevskaya theorem, that the loops 05, deform real-
analytically as 7 varies. In view of this fact and the evolution equation (2.5), the claimed

assertions follow from Taylor’s formula. O

2.4. Polynomial 8-methods

Let ¢ be a strictly subharmonic function on C. Hormander’s classical result states that

the inhomogeneous O-equation

ou=f

can be solved for any datum f€L2 (C) with the estimate

loc

-
u2e’¢dA</ 1PE_aa.
L (115

Taking this as a starting point, in [2], Ameur, Hedenmalm, and Makarov investigate the
case when the solution w is constrained by an additional polynomial growth condition at
infinity. We now describe this result. Recall from §1.9 that Li’n(C) denotes the subspace
of Li(@) subject to the growth restraint

F(2)=0(l2""")

near infinity. The polynomial growth Bergman space AQ)n((C) is analogously defined
there. We will consider these spaces with ¢p=2mQ.

The following is a direct consequence of [2, Theorem 4.1].
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PROPOSITION 2.6. Let fe L>(C) be supported on S;. Then, the L%mQyn((C)—mimmal

solution ug p, to the problem

5U(J,n = f

satisfies
6—2mQ

_om 1
/C\uo,nﬁe 2 QdAg%/S |f]? 10 dA, (2.6)

provided that the right-hand side is finite.

Proof. We apply [2, Theorem 4.1] with T=38,, ¢=2mQ, 0=0, and
gﬁ:2m(1—£)@7+5mlog(1+|z|2).
T

Then all conditions except (ii) are trivially satisfied with a,b=0(1) as e—+0". To see why
(ii) holds, it is enough to observe that

b(z) = QmT(l— ;) log |2|+2em log | 2| +O(1) =log(|z|*")+0O(1)

as |z|]—oo. Hence, the inclusion AECPoln follows. Letting e—0" for fixed m and n

completes the proof. O

Remark 2.7. In [2, Theorem 4.1], there is an additional freedom to modify the
weight with a function g, which we set to equal p=0 in the above. The conditions on g
are such that there is flexibility in the interior direction inside the droplet, but none in
the exterior or along the boundary. As p is used to control the norm-minimal solution
to the O-equation, this flexibility tells us that decay of the datum f in the interior of
the droplet translates to a corresponding decay of the solution wug . On the other hand,
decay of the datum near a boundary point in the tangential direction will not necessarily

have the same effect.

2.5. Holomorphic boundary value problems and Toeplitz operators

For the reader’s convenience, we include some elementary facts from the theory of Her-
glotz kernels and Hardy spaces. Let f be holomorphic in the unit disk D with continuous
extension to the boundary. The classical Herglotz integral formula [25, pp.52] asserts

that
[+

B T (=2

If FeL'(T) is real-valued, this allows us to solve the boundary value problem

f(2) Re(f(¢)) ds(¢)+1m(f(0)), z€D.

Ref|11-:F,
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where f is holomorphic in the disk by the integral formula

C+=z

f(z)=HpF(z):= =

F(¢)ds(¢), ze€D.

Moreover, the solution is unique up to an additive imaginary constant. For us, it is
more natural to work in the exterior disk. By reflection in the unit circle, we obtain the

formula

f(z):HDCF(z)::/Z+<F(()ds(§), 2D,

T2—C
which we refer to as the Herglotz transform of F. If F is L?(T)-integrable, its Herglotz
transform is in the conjugate Hardy space H2. If we assume slightly more smoothness,
e.g. that I is C''-smooth, then its Herglotz transform is continuous and bounded in the
closed exterior disk D.. Analogously, if we have a lot of smoothness, e.g. F is C*“-smooth,
then its Herglotz transform extends to a bounded analytic function on a slightly bigger
exterior disk D, (0, p) with p<1. We recall the definition of the Hardy space H2=H?(D)
mentioned above. A function f is in H? if it is holomorphic in D with

sup / FrC) 2 ds(C) < +oo.

0<r<1

Alternatively, in terms of the boundary values, H? is the closed subspace of L?(T) defined
by the property that the Fourier coefficients with negative index all vanish. The conjugate
Hardy space H? consists of all functions of the form f, where f€H?, which may also be
viewed as the Hardy space on the exterior disk D,. In a similar fashion, the standard
HP-spaces can be defined as well. For instance, for p=o0o the space H consists of the
bounded holomorphic functions in the unit disk I equipped with the supremum norm.

Associated with the Hardy and conjugate Hardy subspaces of L?(T) there are the
orthogonal projections Pyo2: L*(T)—H? and Pp2: L*(T)—H?. These are associated
with the Szegé integral kernel:

Pu2f(2)= Tlf(i)fds(@7 zeD,

d
h P )= [ L asq), sep
a2 J\z)= - Z—C s(C), =z o

We will also be interested in the subspace H? ; of H? consisting of all functions that
vanish at infinity (or equivalently, have average zero on the unit circle). The associated

projection is
¢f(©)

PHiof(Z) = S—

ds(¢), z€Ds.
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It is clear from the above concrete formulse that the Herglotz transform Hp, can be
expressed in terms of projections: Hp,=Pp2 +Pp2 . For an L*(T)-function ©, we
define the (exterior) Toeplitz operator Te: H? — H? by

Tof=Pu:[0f], feH>.

The nullspace (kernel) of this operator consists of all solutions in H? to Tg f=0. Assum-
ing that © is non-zero almost everywhere on the circle T, it follows that the condition
that f belongs to the nullspace is equivalent to f€ H2NO ™1 HZ, where HZ consists of the
functions in H? with mean zero. If we implicitly define the function ¥ by ©(z)=29(z),

we may rephrase this condition as
feH*n9 ' H?, (2.7)

which we refer to as a homogeneous (exterior) Toeplitz kernel condition. For a function

F in the space L*(T), we also consider the related condition
feH* N (~F+H?), (2.8)

which we refer to as an inmhomogeneous Toeplitz kernel condition. In terms of Toeplitz
operators, this condition may be written as T,y f+P g2 [2F]|=0. The following proposi-
tion provides the structure of solutions to the homogeneous and inhomogeneous Toeplitz

kernel conditions for sufficiently regular symbols 9.

PROPOSITION 2.8. Suppose that 9 can be written in the form ¥9=¢e%*?, where u and

v are in H*, and let F be a function in L?(T). Then, f solves
feH*n9~ Y (—F+H?)

if and only if
f:Ce_T’—e_T’PHg)O[e_”F},

for some constant C.

Proof. That fe H2NY~Y(—F+H?) is equivalent to having
e'fece’H*N(—e “"F+e “H?)=H*N(—e “F+H?). (2.9)
Since e’ f€ H?, an application of the projection Py | gives

PHE,O[eﬁf] =e'f-C
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for some constant C. On the other hand, since e”f€—e~“F+H? holds by (2.9), it is
immediate that

Pz [e"f]= Py [ F],

since H? projects to {0}. It follows that
e’i’f:C'—i-PHgyo[e’i’f] =C—=Py2 [e7"F],

as claimed. O

Remark 2.9. The Toeplitz kernel equation (2.9) may be viewed as a scalar Riemann—
Hilbert problem with jump from the inside D to the outside D, equal to e " F'. Later, we
will use the conformal mapping from the complement of the droplet S¢ to the exterior
disk D,, and the interpretation of the Toeplitz kernel equation in that context is as a

scalar Riemann—Hilbert problem on the Schottky double of S¢.

2.6. Steepest descent analysis

For our computational algorithm in §4, we will need the following result ([38], p. 220,
Theorem 7.7.5). The formulation requires some notation. For an open subset Q of R, we
let C*(€2) denote the space of k times differentiable functions on €2, and for a compact
subset K of R, we let C¥(K) denote the space k times differentiable, compactly supported
functions on R whose support is contained in K. The norm in the space C*(Q) is defined

as

k
luller @)= 1P| L=,
=0

and the norm in C¥(K) is analogously defined.

PrOPOSITION 2.10. Let KCR be a compact interval, 2 an open neighborhood of K,
xo an interior point of K, and k a positive integer. If u€C2¥(K), VeC3*+t1(Q) and
V=0 in Q, V/(20)=0, V'(20)>0, and V'#0 in K\{zo}, then, for w>0, we have

/2 k-1

1
wV (z0) 7wV(z)d . jL
/Ku(x)e x < V(o) ) Zw

< Cw ™ ¥ul|cor (k). (2-10)

Here, C is bounded when V stays in a bounded set in C3**1(Q), and |x—z0|/|V'(z)| has

a uniform bound. With

Wao(2) =V (2) =V (20)— %(xfxo)QV”(xo),
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we have

(71)]6271 82Z(Wk U)(l‘)

Lu(x):= UV ()]t "

(k1)

I—k=j

20>3k

In the definition of the above differential operator L;, it is implicit that the sum-

mation takes place over non-negative integers k and . The differential operator (1.13)
mentioned in connection with Theorem 1.5 is obtained from this formula.

The following proposition is tailored to our needs, based on Proposition 2.10.

PRroPOSITION 2.11. Let three reals pg, p1, and pa be given, with 0<pg<1l<p;<ps.
Assume that V:[pg,00) =R is C3*+1_smooth, and that V has a unique minimum at 1,
with V(1)=V'(1)=0. Suppose furthermore that

(a) the convezity bound V' >=a on (pg, p2) for some real a>0;

(b) V has a bound from below of the form V(z)>dlogx on the interval [p1,00), for
some real constant 9>0.

If the function u: (pg, 00)—C is bounded and continuous throughout, and in addition

u is C%F-smooth on the interval [0, p2] and vanishes on [0, po), then we have

o] 1/2 k-1
/ u(x)e“’v(‘”)dx< Vi ) Zw IL;]

PO

where the error term E=E(w,k,u, 9, po, p1,p2) enjoys the bound

|E| < Clw_k HUHCM([PO,M]) + |‘u||L°°([P1,OO))pr19+1’

provided that w>2/9, where Cy remains uniformly bounded when V stays in a bounded
set of C**+1([py, pa]).

Sketch of proof. Let x be a smooth cut-off function with 0<y <1 throughout, which
equals 1 on the interval [po, p1], and vanishes on [p2,00). We use the cut-off function to

split the integral

/oo u(x)e—wv(ac) dr = /p2 X(x)u(x)e_wV(x) dx+/°°(l_x(m))u(x)e_wv(w) dx.

0 PO P1

The first integral gives the main contribution, which is estimated using Proposition 2.10.
The other two integrals are estimated using the given bounds from below on V. The

details are omitted. O
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3. Existence of an asymptotic expansion
3.1. An L2-version of the main theorem

The proof of Theorem 1.3 goes via an expansion valid in weighted L2-space, which is of
independent interest. Modulo the key lemma (Lemma 3.9) concerning the orthogonal
foliation flow, we first obtain the weighted L?-expansion, and then obtain Theorem 1.3
as a consequence. The proof of the key lemma is deferred to §6.

For two sets £, FCC, we define the distance between them as

distc (&, F) = ;relg |z —wl.

weF
We shall need the following notion.

Definition 3.1. If K and S are compact sets in the plane with CS and
distc (K, S8¢) =¢,
we say that a compact set X is intermediate between I and S if LCX CS with

g S
distc(KC, X°) > ——— and  diste(X,S%) > ——.
iste (K, %) > 755 and - diste(, 5% > 7555

We recall from the discussion following Definition 1.2 the notation I.,=[1—¢€g, 1+€g],
where € is fixed and positive, with the property that the curves 9S, form a smooth flow

of simple loops for T€l,.

THEOREM 3.2. Assume that Q is 1-admissible, and fix the precision parameter kEN.
Then, for each T€I,, there exists a compact subset I, CS, with distc(K,,0S8;)>¢e for
some positive real number €, such that the following holds. On the complement K¢, there

are bounded holomorphic functions B, ; such that the associated function
K
Ei =m" /@ o) em e Yy mTIB, ;.
§=0

approzimates well the normalized orthogonal polynomials P, ,, in the sense that we have
the norm control

| P, —Xr,oFrglenzmQ =0(m~" 1)

as n,m—oo0 while T=n/mel,,. Here, xro denotes a smooth cut-off function with
0<xr,0<1 and uniformly bounded gradient. In addition, the function x.o vanishes on
K+, and equals 1 on the set X¢, where X, is an intermediate set between K. and S;. In

the above estimate, the implicit constant is uniform for T€l.,.
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In the above theorem, the products XT,OFT<VLH,Z’L are understood to vanish on the set

K-, where F,ﬁ% may be undefined.

Remark 3.3. (a) By inserting a further family X7 of intermediate sets between K,
and S, such that X, is intermediate between X! and S,, we can make sure that the cut-
off function X, ¢ vanishes on X! (and not just on K,). We mention that the compact sets
K-, X, and X, may be obtained, e.g., as the complements of the conformal images under
¢7 ! of the exterior disks D¢ (0, p) with p=po, po,1 and pg 2, where 0<po<po1<po2<1.
As for the intermediate property of Definition 3.1 regarding the sets ,, X!, X,, and
S, this is a little subtle, and depends on making a correct choice of the parameters po,
po,1, and po 2. At our disposal, we have the Koebe distortion theorem and the fact that
log(¢71)" is a Lipschitz function in the hyperbolic metric with known Lipschitz constant
(see, e.g., Corollary 1.4 and Proposition 1.2 in [44], respectively). We omit the necessary
details.

(b) Without loss of generality, we may assume that the cut-off function x,o is
uniformly smooth in the sense that for any fixed positive integer k& the C*(C)-norm of
X0 is uniformly bounded for T€1,.

(¢) Our method of proof involves Toeplitz kernel problems and the construction of
an approximate orthogonal foliation flow of loops. The underlying idea is inspired by
an approach to the local expansion of Bergman kernels, which involves a flow of loops
emanating from the point of expansion [26].

3.2. Introduction of quasipolynomials

We turn to the approzimate orthogonal quasipolynomials F,, ,,, by which we mean cer-
tain functions which behave like orthogonal polynomials with respect to the measure
e~2mQ d A, in a sense specified below. Let I, be an appropriately chosen compact subset
of the droplet S;, which lies at a fixed positive distance from 0S,. Moreover, we require

that the conformal mapping ¢,: S, —D, extends to a (surjective) conformal mapping
¢T:K:$——>]D)e(07p0)a TEIE()?

for some py with 0<pg,0<po<1, where we recall that py o was defined in the discussion
preceding Theorem 1.3. In what follows, we will disregard the behavior on the compact

set K. We will justify this a posteriori, using 9-methods.

Definition 3.4. We say that a function F' is a quasipolynomial on K¢ of degree n if
it is defined and holomorphic on K¢, with polynomial growth near infinity: |F(z)|x<]|z|"

as |z|]—o0.
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In the context of this definition, a quasipolynomial F' of degree n has
F(2)=az"+0(]z|" 1)

near infinity, for some complex number a7#0. We refer to the number a as the leading
coefficient of the quasipolynomial F'.

We now fix a positive integer x, which we think of as an precision parameter. More-
over, we denote by x,o a smooth cut-off function that vanishes on X’ and equals 1 on
X¢, where X! denotes an intermediate set between K, and S;, while X is an intermedi-
ate set between X/ and S;. In addition, we shall require that the C?5+ ) _norm of X7,0

remains uniformly bounded for 7€1,,.

Definition 3.5. We say that a sequence {Fy, n}mn of quasipolynomials of degree
n on K¢ is normalized and approzimately orthogonal (of accuracy k) if the following
asymptotic conditions (i)—(iii) are met as m— oo while T=n/mel,,:

(i) we have the approximate orthogonality
0B G029 dA(z) = O™ planq).  for al p& Pol,
(ii) the quasipolynomials F, ,, have approximately unit norm:
[ oI (e dA () = 10~

(iii) the quasipolynomial F, , has leading coefficient ¢, , at infinity which is ap-

proximately real and positive, in the sense that

where all the implied constants are uniform.

In terms of the above definition, Theorem 3.2 implies in particular that F},{% is a

sequence of approximately orthogonal quasipolynomials with accuracy k. The fraction
% which appears in the definition is convenient in our calculations. The concept would

be meaningful even if this number were replaced by e.g. %

3.3. The renormalizing ansatz

Since @ is assumed 1-admissible, the curves I':=3dS,; remain real-analytically smooth and

simple for €., =[1—¢€g, 1+¢€p]. In view of the requirement that K, oC/C;, the functions



340 H. HEDENMALM AND A. WENNMAN

Q% and @, are harmonic, while Q. is holomorphic in the domain K¢ (see Definition 2.1).
We define the operator A,, , by

n

Amnf(2) ::QS;(Z)WT(Z)]”@WQT(Z)(f°¢‘r)(z)7 T= m (3.1)

If f and g are well defined in D¢ (0, po), then A,, ., f and A,, ,g are well defined in K¢.
We observe that, by a change-of-variables,
/ A f A nge "9 dA= / R R e A e 2

* R (3.2)

[ ggermitaa
DO(O’PU)

c
b

where we write
R; = (Q_@T)o ;1)

and the first equality holds by (2.3).
The function R, given by (1.12) is a central object in our analysis, and we turn to

some of its basic properties.

PROPOSITION 3.6. The function R, is defined on De(0, po), and is real-analytic in

a neighborhood of T. Moreover, near the unit circle, R, satisfies
R.(re')=2AR (") (1—-r)*+0((1-7)%), r—1,

where the implied constant is uniform for e €T and T€l,. Furthermore, R, has the

growth bound from below
RT(Z)21910g|Z|7 ZGDC(Oapl)a

for some real parameters ¥>0 and p;>1, which do not depend on T€I,.

Remark 3.7. In particular, R, (z)=(1—|z|)? near the unit circle. Indeed, since Q,

is harmonic on K¢, we find that
AR- = AQ-Qr)=07" =|(¢7") "(AQ)=67 ",

which shows that near the circle T, we have uniform bound of AR, from below by a
positive constant. As a consequence, the same holds for 92R.(re*) for r close to 1,

which will be useful in the context of Proposition 2.11.
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Sketch of proof. The assertion on the local behavior near the circle T results from
an application of Taylor’s formula, using that along the boundary 9S, we have Q:@T,
VQ=VQ, while
R(Q-Qr) = (02+8))(Q-Q-) =44Q.
Here, 0, and 0, denote the normal and tangential derivatives, respectively. We turn to
the global estimate from below on R,. By the assumption (1.11) with 7=1 on the growth

of ) near infinity, and the growth control
Qr(2)=Qr(2) =Tlog |2[+0(1), as |2| = o0,
it follows from the choice of the interval I, that

b Q=00 (2)

>142¢g—7>0
lz|»o0  log|z]

for 7€1,,. Since |¢p71(2)|<|z| near infinity, we see that

R, (z)

\z\1~>oo log |#|

>142¢g—7>0.

There is no point in D, where R, vanishes, since the coincidence set (where @T and @
coincide) equals S, (see Definition 1.2). We may conclude that the ratio R,(z)/log |z| is
bounded below by a positive constant ¥ on the exterior disk D, (0, p1), independently of
T in I,. O

Informally, Proposition 3.6 tells us that near the unit circle, the function e=2mfr

may be thought of as a Gaussian wave around the unit circle T.

We return to the operator A,, ,, defined in (3.1). It renormalizes the weight, and
transports holomorphic functions in the exterior disk D (0, pg) to holomorphic functions
in the region C¢. In the sequel, we will refer to A, ,, as the canonical positioning operator.
Its basic properties are summarized in the following proposition, which involves the spaces
LZ(X¢) and A3(X¢), as well as the restricted growth subspaces L7 ; (X°) and A7 , (X°),
all defined in §1.9. Below, these appear for various choices of the weight ¢, the parameter
k, and the compact set X.

PROPOSITION 3.8. The canonical positioning operator A, ,, is an isometric isomor-

phism L3, (De(O,pg))%Lng(lCi), and the inverse operator is given by

ALLg(x) =207 (2)e ™0 )P (gog ) (2), g € L3,,0(KY).

Moreover, the operator A, , preserves holomorphicity, and in addition, it maps the
subspace A3, p o(De(0, o)) onto A%mQ’n(ICi).
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Proof. As direct consequence of the (3.2), we see that L3, (De(0, po)) is mapped
isometrically into Lng (K<), and moreover if A, is given by the above formula, we
see that it is actually the inverse to A,, ,. By definition, A,, , f is holomorphic in K¢, if
f is holomorphic in D¢ (0, po). It follows that A,, , is actually an isometric isomorphism

A3, k. (IDe(0, po))%Ang (K<2). It remains to note that A, , maps bijectively

A%mRT,O(De(Ov PO)) — Ang,n(’Ci)’

which is a direct consequence of the fact that |¢,(2)|<|z| as |z|—=oc. O

3.4. The orthogonal foliation flow

We will obtain our main result, Theorem 3.2, as a consequence of the existence of what
we call the approzimate orthogonal foliation flow of simple loops I'y, p +, parameterized
by the parameter ¢t. For a brief sketch of the intuition that lies behind the construction
of this flow of curves, we refer to the discussion in §1.6 above.

We recall from §1.9 that a conformal mapping 1 of the exterior disk D, onto a
domain containing the point at infinity is said to be orthostatic if it maps oo to oo,
and has ¢’(0c0)>0. Given a smooth family 1; of orthostatic conformal mappings on the
exterior disk, indexed by a real parameter ¢ close to zero, such that the image domains
Q4 :=1)(De) increase with ¢, we put I'y=1,(T) and denote by D=|J, I'; the region covered
by the flow. We may form the foliation mapping ¥ by the formula

U(z) =1 (;l),

for z in some annulus A containing the unit circle. The foliation mapping ¥ maps A onto
the domain D covered by the boundaries. Moreover, the Jacobian Jy of the foliation

mapping is given by

Tu(rQ) == Re(CO(QPD i1 CET, (33)

for r near 1. We may integrate over a flow encoded by a foliation mapping ¥ as follows:
If we denote by A, the annulus A.=D(0, 14¢)\D(0,1—¢), we have, for integrable f,

A/(Ae)fdA:/Ae foUJydA
- / 6 / () (- 8) Tu(1-1)C) ds(C) dt.

The existence of the foliation flow may be phrased as follows. We call the relation

(3.4)

(3.5) below the master equation for the orthogonal foliation flow. For convenience of

notation, let d,, be the number

S i=m~ 2 logm.
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LEMMA 3.9. Fiz the precision parameter k to be a positive integer. For T=n/m¢el,,
there exist 0<po<1 and bounded holomorphic functions B ; on De(0, po) for j=0,..., K,
such that the following properties hold. The function B. is bounded away from zero
with By o(00)>0, while, for j=1,...,k, we have Im B, ;(c0)=0. Moreover, there exists a
smooth family of orthostatic conformal mappings {Ym.n.t}mnt on De, such that, if we

write

K
55, =>"m7 B,
=0
we have that

2| £ 0ty o (Q) e 2 Eretmon ) (1) Jy (1))

m1/2 Cni? e
:WC ¢ (1+O(m 1/3)), CET,

(3.5)

provided that [t|<0y,. Here, the implicit constant is uniform in T€l,,. Moreover, if

Di,.n, denotes the union

Dm,n: U "pm,n,t(T)7

|t‘<57n

then distc(D T)>codp, for some positive constant cg.

c
m,n’

Remark 3.10. The equation (3.5) may be understood as an approximate weighted

Polubarinova—Galin equation with weight | f7<,f >n|26’2mRT, and variable speed of expan-

sion. Indeed, we should compare with equation (6.11) in [33], which states in a similar

context that along concentric circles,
Jy = wlo v,

where W is a foliation mapping, and w denotes a weight. In comparison, our factor

(47r)_1/ 2 g—mt? appears as consequence of the variable speed.

In what follows, we take this key lemma for granted. The proof is supplied in §6.

3.5. The L%-expansion for quasipolynomials

We first find a sequence of approximately orthogonal quasipolynomials with an asymp-

totic expansion.

LEMMA 3.11. Let k€N be given and let

fi = m I B.;(2)
=0
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be the functions defined in Lemma 3.9. Then the functions

Eyi () =m A [ F500] =m0 (2)[6- ()] e 2 G (fi,000)(2) - (3.6)

)

constitute a family of approximately orthogonal quasipolynomials to accuracy k in the
sense of Definition 3.5.

Proof. Let x.1 be a radial smooth cut-off function which vanishes on D(0, po 1)
and equals 1 on De(0, po2), where the parameters 0<py<po1<po,2<1 are chosen in
accordance with Remark 3.3. The cut-off function x, o is then given by x;o=xr1°¢+.
The intermediate sets X and X, are given as the complements of the conformal images
of D (0, po,1) and De(0, pg 2) under ¢, respectively.

By Lemma 3.9, the functions f,ﬁf >n are bounded and holomorphic on the exterior
disk D¢ (0, po), with f,g'fil (00)>0. As the leading term B o is bounded away from zero on
D (0, po), it follows that for large enough m, the same can be said for f,gf Zz In view of this,
the functions F,sle given by (3.6) are quasipolynomials of order n on K¢:=¢-1(D.(0, po))
in the sense of Definition 3.4.

It remains to verify the properties (i), (ii), and (iii) of Definition 3.5. To this end,
we recall the definition of the domain D, ,, from Lemma 3.9, which is a certain closed
neighborhood of the unit circle which arises from our orthogonal foliation flow. We recall
that

diste (D5, .. T)) > codm

holds for some fixed constant cy>0, where 6,, =m~/?logm. We first check property (ii)
of Definition 3.5. As a step in this direction, we claim that most of the weighted L?-mass
of the function x, 1 f,gf >n lies in the domain D,, ,. Indeed, a computation based on the

change-of-variables formula (3.4) reveals that

m1/2/ |f1§:7>n|2€72mR.,. dA
D

m,n

Om — —
- 2m1/2 / 4 / |f7<n’i>nowm,n,t(<)|2€72mRT0wm’n’t(C) Re(*Catwm,n,tﬂj;n,n,t ) dS(C) dt
T

—Om

Om 2
=2m!/? / ((4m) =2 4+0(62 ) e ™™ dt =1+ 0(03 ) =14+0(m "~ 1/3),
—Om

(3.7)

where we move the integration to the flow coordinates (¢,¢)€[—dpm, dpm] X T.
We know that the functions f,sf >n are bounded uniformly in D (0, pp) independently

of m and n while 7€, so that

Xral £ < Co (3.8)
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holds in the whole plane C, for some constant Cy. Let Dg denote a fixed bounded domain
which contains DUD,,, ,,, such that the bound from below R.(z)>0ylog |z| holds outside
Dg, for some 0p>0 and all T€l.,. That such a domain exists for sufficiently large m
is shown in Proposition 3.6. On the other hand, in view of Remark 3.7 we have the
estimate

e 2mBr L gmollog m)2, on DgNDe(0, po)\Din.n

for some constant >0 (if necessary we adjust pp and Dg). As a consequence, we have

mif [l e
C\Dm,n

<03m1/2/ 672m00 log |z| dA+Cgm1/2/ efao(logm)"’ dA (3 9)
C\D@ D@QD(OJ)U)\'D"L,” :

= O(ml/Qe_a"(logm)2)
— O(m—0logm+1/2).
It now follows from (3.7) and (3.9) that
m1/2/ 1| £4) [2em2mBe 14

_m1/2 |fr<rf>n|2€_2mRT dA+m1/2 Xi | <n) ‘2 —2mR, dA
Din C\ Do, !

= 14-0(m™"1/3),

where we use the fact that x-;=1 holds on the set D,, ,, together with our foliation flow
(Lemma 3.9) and the estimate (3.9). Hence, by the isometric property of A, , from
Proposition 3.8, it follows that

/ X3,0|Fn<1'le‘26—2mQ dA=1+0(m""1/3),
C

as required by property (ii) of Definition 3.5.

We turn to property (i) of Definition 3.5, the approximate orthogonality property.
For a polynomial pePol,, of degree at most n—1, we put g= A;}n[p] and note that
g(00)=0. For all large enough n and m with r=n/mel,, the function f n is zero-free
in a neighborhood of the extended exterior disk D,U{oc}, which we may assume to be
a fixed exterior disk D (0, pg)U{oc} for some fixed pp<1. By the isometric property of
Ay, n, we find that

[ xeanF e da

=m'/* [ xeagfi e 2 dA(z) (3.10)
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where we are required to justify the indicated error term estimate. To do this, we need
Proposition 2.3, or more accurately, [2, Lemma 3.5], which gives the following estimate
for pePol,,:

Ip| < C1m?|[pll2mq ™" (3.11)

in the whole plane C for some constant C;, independent of 7=n/mé&l.,. The missing

term on the right-hand side of (3.10) equals
m'/* / Xragfine 2 dA= / XropFi, e~ dA,
C\Dp,n C\¢7 " (Dm.n)

and if we apply the pointwise estimate (3.11), we obtain

/ Xr oD [e=2m2 4.4
C\¢7 " (Dim,n)

§01m1/2||p||2mQ/ ) XT70|FT<:7>”|@*2mQ+mQT dA
C

7 (Dm,n

=Cim**pllame [C X fem(@rm@eortmis g4

m,n

<0001m3/4||p\|2mQ/ e~mRr g
Dc(OvPO)\Dm,n

where in the last step, we applied the estimate (3.8) and the fact that @T <Q. The rest of
the argument that gives (3.10) involves splitting the domain of integration using the set
D,, and proceeds as in (3.9). This establishes (3.10), although we still need to control the
main term on the right-hand side. To this end, we denote by h the ratio h:g/féf,zl. In
view of the stated properties of ff,f, >n and g, the function h is holomorphic in the exterior
disk D¢ (0, po) and vanishes at infinity. Using the foliation flow as coordinates on D,
in terms of (¢,{)€[—dm, dm] X T, we find from Lemma 3.9 that
mil [ R @R daC)
D

m,n

m,n

Sm
—oml/4 o (K)o 2 ,—2mRrotm n,t(C)
2m /6m/il‘h wm,n,t(C)‘fm,n ¢nl,n,t(()| e
X Re(—C0i¥mn,t (() ¥ n.(C)) ds() dt (3.12)

Om
=2t [ [ et Q(am) 26 O ()
6 JT

Om
:o<m—'€—1/12 /_6 /T|hoq/}m’n’t(()|ds(()e_mt2 dt).
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Here, the crucial reduction in the last step of (3.12) is based on the fact that the function

Iot)m, .+ is holomorphic in D, and vanishes at infinity, so that by the mean value property

/ ho, ntds=0.
T

Now that (3.12) is established, we need to simplify the error term further. We will use the
observation that all the steps before the last in (3.12) apply to a fairly general sufficiently
integrable function in place of h, for instance |h| will work. It then follows from (3.12)

with |h| instead that large enough m, we have

6”L 2
/ / hothmme (O]~ ds(C) dt <2 / ()| 14 (2) Pe2m () dA(2)
) T

Drmn

—Om

=2 / 19(2) £, (2)|e 72 (2) g A(2)
D

m,n

<2y [ Jgla)le ) dago),
D

where in the last step we applied the bound (3.8). Finally, we apply the Cauchy—Schwarz
inequality, and recall that recall that g:Afn}n [p], where A,, , has the isometry property

of Proposition 3.8:
Sm

/6m/T|h°7/’rm,t(0|6mt2 ds(C) dt

<20, / lg(2)] 2P dA(z)
Diin (3.13)

1/2
<20l (o, em2mnry ( [ dA)
D

=O0(m™|[pllzmaq)-

Here, we used a simple decay estimate of the integral of the Gaussian ridge e~2"mEr,

Next, we write g/f,ﬁ?n in place of h, and combine the estimates (3.12) and (3.13), and

arrive at

ml/A / o F e G) 4 A(z) = /! / h(=) £ (2) Pe2mP-) dA(2)
Dy Diin (3.14)

=0(m ™" |Ipll2mq)-

In view of (3.10) and (3.14), we find that for all polynomials p€Pol,,,

/ XropED e 22 dA=0(m™" 2 |pllzmq), (3.15)
C

as required. Since in addition, féf,)n(oo)>0, while Q,(c0)€R and ¢’ (0c0)>0 hold, the
leading coefficient of the quasipolynomial F,ﬁfZL is now positive, which settles property

(iii) of Definition 3.5 as well. This completes the proof. O
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3.6. Polynomialization of quasipolynomials and proof of Theorem 3.2

We have applied Lemma 3.9 to obtain the existence of quasipolynomials F,%%, of degree

n and accuracy x with an asymptotic expansion, and shown that they are approximately
orthogonal and normalized. To obtain the full L2-expansion, it remains to show that they

are indeed good approximations of the true normalized orthogonal polynomials P, .

Proof of Theorem 3.2. We retain the above notation, and consider the d-problem

O:u(2) = F{i, (2)0:xr,0(2)-

In view of Proposition 2.6, the L%mQyn—norm minimal solution ug, which then has the

growth uo(2)=0(|z|""1) near infinity, enjoys the norm bound
/\UOP meggc L / FLEL[2 [Gxrol?e ™€ dA, (3.16)

where a; >0 stands for the minimum of AQ on the biggest droplet S, with 7€, (which
is attained for the rightmost endpoint 7=1+¢(). Next, given that the quasipolynomials of
degree n are of the form Fyst'le:ml/ Amnl f,gf >n], where the functions f,gf ), are uniformly

bounded in D, (0, po) for some radius po<1, we find that

[ VLR ol e da=mt [0 a6 07 e d

— O(ml/Qefon)

(3.17)

for some as>0 such that 2R,>as on the support of 5)(7,1. This exponential decay
estimate is possible since the support of 5)(7,1 is located inside D away from the boundary.
Note that in the context of the estimate (3.17) it is important as well that the expression
|¢p" o= 1|? is uniformly bounded on the support of dx,.1 as well. If we combine the above
estimates (3.16) and (3.17), we find that

/(C|u0|2e_2deA:O(m_l/ge_azm), (3.18)

as m—oo while =2 €I, with a uniform implicit constant. Next, we put

€0

* . K
Pm,n = 2LX7—70_UO

m,

which is then automatically a polynomial of degree n, since the function is entire and
has growth [P}, (2)[<[z|" near infinity. Moreover, in view of (3.18), this polynomial is

very close to the function Frh ;.0 in the norm of L2(C, e=2mQ):

/|P;1,n_Fr§an'rO|2 —2mQ dA = /|u0|2 —2mQ dA = O( —1/2 70427774) (3.19)
C
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It now follows from (3.15) and (3.19) that for all polynomials pePol,, of degree at most

n—1, we have that
/PRZ,n@_QdeA=0(m_“_1/3|\pll2mcz), (3.20)
C

while
/ Py [P 2mQdA = 1+ O(m " 1/3). (3.21)
C

We observe that by duality, (3.20) asserts that
1P P llame = O(m ™" 71/2), (3.22)

where P,, ,, denotes the orthogonal projection in L?(C, e=2™?) onto the subspace Pol,
of polynomials of degree at most n—1. If we use this to correct the polynomial P}, ., and

put Py =P, Pl =P~ P P,

m,n" m,n m,n’

71'7’7

then automatically ﬁmm has degree n and it
is also orthogonal to all the lower-degree polynomials. As a consequence, ﬁmm must be
a scalar multiple of P, ,,, the orthogonal polynomial we are looking for, which we write

as f’m,nchmm for a constant c. Putting things together so far, we have obtained that
1P = 0 X7 0l l2me = O(m ™" 71/3) (3.23)

with a uniform implied constant. Moreover, by (3.21) and (3.22), the norm of ]Bm,n
equals
el = llcPa nll2me = Hﬁm,nHQmQ = 1+O(m_ﬂ_1/3)a (3.24)

Next, by our version of the Bernstein-Walsh lemma (Proposition 2.3), it follows from

(3.23) that
_ O(m—n+1/6em@.,.)

[P = F{| = [Pron = F:

)
m,n

holds in 8¢, which after division by F)\r), gives that

‘ Pm,n
&

(KZZ

—1‘ =O(m™r"1/12), (3.25)

since ff,f ), is uniformly bounded away from zero. Next, we let |z|—+o00 and observe that
both the functions an@n and P, , have positive leading coefficients, whose quotient is

denoted by Yy, n. Since Vi, >0 we obtain from (3.25) that

| Tm ¢|

Ic] < Ymn—1|=O(m ="~ 1/12),
C
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where the left-hand side inequality is elementary. Moreover, we can also realize from the
above that Re(c)>0. But then it follows from (3.24) that

c=140(m™""1/12),

It now follows from this observation combined with (3.23) that

HPm,n_XT,OFrgﬁ%lth = O(m_ﬁ_l/m)-

This falls slightly short of allowing us to obtain Theorem 3.2 right away. The problem
is that our error term is larger than what is claimed. However, since the precision k is

arbitrary, we might as well replace k by k+1 and see what we get. This would give that
1P, = X0 Eit Y ll2me = O(m =" 17 1/12), (3.26)

By analyzing the last term in the asymptotic expansion, it is easy to verify that
HXT,OFv(nK,:l) _XTyoFT<V{€,’>I’LH2mQ = O<m_ﬁ_1)7

and hence the assertion of the theorem immediate from this estimate and (3.26). O

3.7. Proof of the main theorem

We are now ready to obtain the pointwise asymptotic expansion of the orthogonal poly-

nomials. We still work under the assumption that Lemma 3.9 holds.

Proof of Theorem 1.3. The quasipolynomials F,gf")n obtained in Theorem 3.2 may be

written in the form
K
Fi), =m" /8 [o,]"em 2 S m B, ;,
=0

where B, ;j=[¢~ 1'2B, ¢, are uniformly bounded, and holomorphic in the exterior do-
main K¢. To obtain the theorem, we need to show that anzq is close to Py, pointwise

in the complement of the set
Kram=1{z€C:distc(z,8) = A(m™ ! log m)l/2}. (3.27)

On the complement K¢ we have the estimate

T,A,m

0 g m(@r 7@7‘)(’2) < D logma
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and hence

¢m(@r=8r) ¢ gDlogm _ D

where D is some positive constant, which is uniformly bounded while 7€l.,. To see
this, a simple Taylor expansion of the difference @T —C?T in the interior direction suffices.
In view of Theorem 3.2, and the pointwise estimate of Proposition 2.3 applied to the
intermediate set X, between K, and S¢, where the cut-off function x,( assumes the
value 1, we find that

(Z)| _ O(m—n—l/Qem@T(z)) — O(m—m—l/Q-&-DemQT(z))’ L e e

T,A,m>

| Py (2)— "

)
,n
where the implicit constant again is uniform in the relevant parameter range. We may

rephrase this as saying that
Pmm(z) = Féfizl(Z)“!‘O(m_"_l/z"‘De”LQr(Z))

=m' /] (o] e (ZBT,j+O(m—”‘3/4+D>),

J=0
for z€K7 4 ,,,- This essentially proves the theorem, except that the error term is now
worse than claimed. However, we may fix this by replacing x by «:=k+[D]+1 in the
above argument, to obtain on K7 , |, that

Pon(2) =m" /G ()" e ( i: mIB, +O(m"“_7/4)>

j=0
=m! /G [g-]" e (fm‘j&,jw(m—“—l)) :
j=0

where the last step follows since the functions m™B; ; are all O(m~"~!) for j in the

range k+1<j<k'. The proof is complete. O

4. Algorithmic determination of the coefficient functions
4.1. Implementation of the radial Laplace method

We turn to the algorithm of Theorem 1.5. To proceed, we need two families of differential
operators. We recall the differential operators Ly defined in (1.13) appearing in the
application of Laplace’s method in Proposition 2.10. We need to apply these operators
to functions defined in a neighborhood of the unit circle, and we apply them in the radial
direction. So, for functions f(re*), we put

3k —ko—
<_1)V k2 3 2v

,reiQ — i ~ Teia v—Fk rei@ ,
Lk[.ﬂ( ) nglﬂ (V*k)'[@?RT(T‘eza)]yar ([W ( )] f( ))
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where

Wo(re?)=R.(re")—3(r—1)202R, (ze")|,=1.

The second family of operators is defined implicitly in the following lemma, which turns

explicit appearances of the parameter [ into differential operators.

LEMMA 4.1. Let k be a non-negative integer. Then, there exist partial differential
operators My, of order 2k with real-analytic coefficients, such that for any integer 1>0
and any smooth function f defined in a neighborhood of T, we have that

[ e @R e ) L ey o= [ M) .
T T

Proof. We first observe that, by integration by parts, multiplication by I corresponds
to applying the differential operator iJy inside the integral

il0 _ . il6
l/Tf(Q)e dﬁf/jrzaef(ﬁ)e de.

From this, it is immediate that the formula
o) [ £(©)" ao= [ p(iou) ()™ a0 (4.1)
T T
holds for polynomials p. Structurally, Ly[r! ! f(re®®)] can be written as
. gk . . .
Lol f(re )] = 3 b (re O W, (re ) e o), (42)
v=k

where b, is the real-analytic function given by

(_1)y—k2—u
V(v—k) [0 R, (re?)]¥”

b,,(rew) =

We observe that, by the Leibniz rule

62 (Tl_lf(Teia)”r:l — Z (‘Z) (—1)j_i(l—l)j,irl_l_j”(’)if(rew)|,«:1
=0
, (4.3)

_ f (ﬂf)(_ly—i(z_l)jia:;f<rei9>|r—1,
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where (z);=z(z+1) ... (v+i—1) denotes the standard Pochhammer symbol. We return
to the formula (4.2) for L. Again, by the Leibniz formula, we have that

=\
- 3:: g;(_l)j_i <2]‘V) <Z> (I=1); 02 I (W (re") =)L f (re™)] =1,

where the truncation of the sum follows from an application of the flatness of W, near
the unit circle T, and the last equality is due to (4.3). We write the expression for
Li[r' = f(re')] as

3k 3k—v

J
Ll e Dlmr =Y > > (1=1) 160 (e")0f(re') ],

v=k j=0 i=0
where

) (1) -l O e

cogute®) =1y (2

Changing the order of summation, we arrive at

(87 R (re )~ 2L [t f(re™)] i

2k 2k

Zz(lw@a1)i_j<a,%RT<re“’)>1/2dj<e"9)aif(re”>|r_1,
i=0 j=i
where
i0 _Sk_j 2v i0y52v—j W i0\v—k
(e >—§(j)by<e ORI (W (rei®) ) 1.

It follows from (4.1) that the asserted identity holds with My, given by
2% 2k . o ,
)= 2> (-1 () (109 = 1)i—5[(92Rr (re™)) /2, ()L f (re )| 1.

=0 j=1

The proof of the lemma is complete. O
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4.2. Algorithmic computation of the coefficients in the asymptotic expansion

In this section we supply the proof of Theorem 1.5, and explain the underlying com-
putational algorithm. The main point is that we show how to iteratively obtain the

coeflicients, given that an asymptotic expansion exists, as formulated in Theorem 3.2.

Proof of Theorem 1.5. Fix the precision k to be a positive integer. Let F,%F"ZL be the

approximate orthogonal quasipolynomials from Theorem 3.2 with the expansion

FL () =m0 ) e O S B, (2),

Jj=0

where the functions B, ; are bounded and holomorphic on K¢ for some compact subset
K- of 82, which we may assume to be the conformal image of the exterior disk D, (0, po)

under the mapping ¢ 1. If we make the ansatz

B, j(2) =V #7(2)(Br j°0:)(2),

we may express Fy, , using the canonical positioning operator Féf,zl:ml/ A T<,f >n],

where

féﬁ%(Z):Zm_jBT’j(z), 2€De(0, po). (4.4)
§=0
According to Theorem 3.2, the functions F,%”Zl have the approximate orthogonality prop-
erty

/ Xr 0 pemQ dA = O(m " pllame), € Pol,. (4.5)
C

The function X is a cut-off function with 0<x <1 throughout C, such that x, ¢ vanishes
on K, and equals 1 on X¢, where IC; lies at a fixed positive distance from 9S;, and X is
an intermediate set between them (cf. Definition 3.1). We consider the associated cut-off
function x,1=xXr0°¢; ', tacitly extended to vanish where it is undefined. Without loss
of generality, we may assume that x, i is radial. By Remark 3.3, we may assume that
Xr,1 vanishes on (0, pj) for some number pf, with po<pj<1. In order to compute the

functions B; ;, we would like to apply equation (4.5) to

4(2) = Al = 0(2)[61 (2)] "L )

for a positive integer [, but this function is unfortunately not a polynomial. To fix this,

we consider the L%QO—minimal solution v to the d-problem

ov= 5(XT,OQ) = qéX‘r,O~
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If v is the solution, then the difference x,o0g—v will be an entire function with the
polynomial growth bound O(|z|"~!) at infinity, and hence a polynomial of degree less

than or equal to n—1. By the estimate of Proposition 2.6, we have the norm control

[repen@ans o [ 1qpio 2 e A [ wemeaa
c X 2m e q XT,0 AQ S 2m041 XA q ’

where we have used that there exists a positive real a; such that AQ>a; holds on S,

which contains the support of dx,o, and that we have the bound |9x,o|<A. Since
the support of Ox,o lies in K¢, we may use the structure of ¢ as g=A, ,[z7!] and

Proposition 3.8

/ |q|2672mQ dA:/ |Z|721672mR.,.(z) dA(Z),
XAK- po<|zl<py

where pj is associated with a natural choice of the intermediate set X, as the image of

an exterior disk under and satisfies po<pj<p(j<1l. Due to Proposition 3.6, this

T 7

immediately gives that, for any fixed positive integer I,
/ |v|2€—2mQ dA = O<e—61m)
C

as m and n tend to infinity while 7=n/me€l,,, for some positive real e;. This means

that for a fixed positive integer I, we have for g=A[2~!] the approximate orthogonality

[ oFihae 2 dA=0m ), (4.6)
C

where we have used that x,0¢—v is a polynomial of degree at most n—1, and the above
smallness of v. If we use the canonical positioning operator as in Proposition 3.8 in

polarized form, (4.6) reads in polar coordinates
1/4/ zl0/ rl= lX72- 1 f<f€7>n(rei9)ef2mR,(rew) dr ds(eie) :O(mfnfl), (47)
PO

for fixed I. We now apply Proposition 2.11 to the radial integral, with V (r)=2R, (re®).
Note that 02 R, (re')|,—1=4AR,(e'?). As a consequence, the inner integral in (4.7) has

an expansion

> —2m re'®
[ e e gy
Po

1/2 K
<4mAR*9) Zm*JL [P A (e )]l

1-1.2

—K— l —mdJ
+O(m " 1||T1 X‘?’l m7n70||02<”+1)([p0,p2])+HT XTl WZZL,QHLW([pLOO))plm +1)

)
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where, to simplify the notation, we use the subscript 6 to denote the radial restriction
fo(r)=f(re*?). Here, ¥, o, and p; are some real numbers with >0, a>0 and 1< p; < pa,
which are independent of 7€l,,. By applying the standard Cauchy estimates to the
functions f,g'f )., and by Remark 3.3 (both part (a) and (b) are needed) we have uniform

control on the norms

1-1.2

l
P =02 £ llcatesn oy a0d 1P I 0 F ol o (1000

provided that [ is fixed, and that ff/f 21 are uniformly bounded. For fixed [, it follows that
oo
[ e et et gy
PO
(4.8)

1/2 k
S L, [ ) (i P
(4mART(ei0)> ;)m il e (el =1 +0(m ™77,

where the implied constant is uniformly bounded as long as f,sf >n is uniformly bounded

on D, (0, po). By expanding the expression (4.4) for féf,zl, it follows from (4.8) that

>~ 3 —2m re'®
[ e et et gy
PO

1/2 &k
s - L i o
:(4mAR(ei9)> Zm ML (re')] o1 +0(m TR wo)
1/2 K |
(MR@) Zm Z [ Br i (re )]l +0(m "),
k=0

as m—>o00. We multiply the expression (4.9) by e?? and integrate with respect to 6 to
get

1/4/ zlG/ Pl zxgl( )f(ﬁ)n(rew)e—zmm(re“’)drds(ew)

1/2 J
—j—14 il m 1-1 ) i0 i0
=S [ trg) S B ()

7=0
+O(m71~e73/4)’

as m—o00. This is an asymptotic series, and so is (4.7), only that all the coefficients vanish
in the latter, and only the error term remains. Since two asymptotic series coincide only
if they coincide term by term, we find that, for integers j=0, ..., s

/”9(4AR WZL “Brin(re?) =1 ds(e®) =0, 1=1,2,3,....
T
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This condition looks like the standard condition membership in the Hardy space H?2.
The problem with this is that the functions unfortunately depend on the parameter [, so

the criterion does not apply. To remedy this, we apply Lemma 4.1, which gives

J
/ e My[Brj_kl(e")ds(e) =0, 1=1,2,3,..., (4.10)
T k=0

which is now of the desired form. So, by the standard Fourier analytic characterization
of the Hardy space, the equation (4.10) is equivalent to having
J
> My[B,; illr€ H?, j=0,...,k. (4.11)
k=0
We look at the case j=0 first. Then (4.11) says that M[B; o]|r€H?. The operator My,
with the defining property given by Lemma 4.1, has the form

Molf](e") = (4AR- (') "H/2f (). (4.12)

We recall that it is given that B, o is bounded and holomorphic in a neighborhood of the
closed exterior disk D., so that in particular B olr€H?. If we combine this with the
observation that Mo[B- o]|r€ H? together with the explicit expression (4.12) for My, we
arrive at

B olr € (4AR,)Y2H?*NH?. (4.13)

Let Hg, be the bounded holomorphic function in D, such that
ReHp, =1 log(4AR,)Y? = 1log(4AR;) onT (4.14)

with Im Hg_(00)=0. It follows from the given regularity of R, that Hp_ is a bounded
holomorphic function in the exterior disk, which extends holomorphically to a neighbor-
hood of D,. We may rewrite (4.13) in the form

B, ol € 2R fr- 2 N2,

By Proposition 2.8 applied with u=v=—Hp_ and F=0, it follows that B, g is of the
form
B,og=c,enr (4.15)

for some constant ¢, o, which must be positive by our normalization.
We proceed to consider more generally j=1,2,3,.... If we separate out the term
corresponding to k=0 from equation (4.11), we find that

B, ! .
anTa o MlBr il € =1 (4.16)
T k=1
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This equation allows us to compute B, ;, given that we have already obtained the func-

tions B, ..., By j—1. Indeed, if we put

J

1= 2 MilBr-t)

which involves only the functions B; , ..., B; j_1, we may write (4.16) in the form
B, jlr € H*N(4AR,)V*(—F, j+H?) = H?ne*Rellrr (1 H?),
which by Proposition 2.8 has the solution

Byj=cr et — e P [ p ], (4.17)

for some constant c; ;, which have to be real in view of our normalization ff,'f )n(oo)>0.
Since B; o is known up to a constant multiple, this allows us to iteratively derive B; ; for
j=1,...,k. The only remaining freedom is the choice of the constants c, ; for j=0,...,x
We proceed to determine them. Since the orthogonal polynomials P,, , are normalized,

it follows from Theorem 3.2 together with the triangle inequality that
X0 Fihllome = 14+0(m ™" 1)

as m—»00. Since
X, OF< K = 1/4A [XT,1f7<:,>n]7

it follows from the isometric property described in Proposition 3.8 that

m1/2

|2 —2mR, dA = / X?_’O‘Fr(nrf),leQ(a—ZmQ dA = 1+O(m—n—1). (418)

Here, the integrals are over the whole plane, although the isometry is only over the the
complements of certain compact subsets. However, since we interpret the products with
the cut-off functions as vanishing where the cut-off function vanishes itself, this is of no

concern to us. We now expand f,g?n according to (4.4), so that by equation (4.18),

2m1/2 Z m- (j+k) // Xrl ( eiO)ET,k(TezH)672mRT(re’9),rdrds(eiG)
Jih=0 (4.19)

=1+0(m™ "1,

where the factor 2 appears as a result of our normalizations. This equation is what will

give us the values of the constants c, ;. We turn first to the case j=0. By a trivial
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version of Proposition 2.11, for any integers j and k, with 0<j, k<, we have the rough

estimate

[ 0B e Bralre e 2 dr ds(ret) =O(m2),

PO

where the implicit constant is uniform for re€l.,. If we disregard all the contributions
in (4.19) which are of order O(m~'/2), we see that only j=k=0 gives a non-trivial
contribution. The term corresponding to j=k=0 in (4.19) can be expanded using the

Laplace method of Proposition 2.11 (recall the formula (4.15) for B, ), to give

a2 [ [ Brotre e 2 (o)
T Jp

0

1/2 i0

—oml/2|c. 2/( T ) Lo[re2ReHr (e g ~1/2y
mlenol” | (A (emy) ol s dst Ol )

Since in general, for a smooth function f we have that Lo[f(r)]|,=1=/(1), the leading

contribution simplifies to (recall the definition (4.14) of Hg_),

™ 1/2 i0
2m1/2|07’°|2/1r<4mAR (efe)) Lo[re? e <D, ds

:27T1/2|C7-10|2\/(4ART(6’L.9))71/2€2R6HRT(619) ds(eia)
T

=211/2)c, 0|2 / ds(e'?)
T

1/2|C7‘,0|2'

=27
Since this is the leading contribution to (4.19), we must have 27'/2|c, o|?=1. This
determines the constant ¢, up to a unimodular factor, and by positivity we find that
07’0:(477)_1/4.
We turn to the remaining coefficients ¢, ;, for j=1,...,x. By applying the Laplace

method of Proposition 2.10 to the radial integral in the formula (4.19), we arrive at

oml/? Zm_j Z /(4ART(eie))_1/2Lk[TBT,i(reia)ET’l(rew)]|T:1 ds(e™)
=0 T

(i,k,D)Eny

= 1—|—O(m_”_1/2)7

where the index set is n;::{(i,k,l)€N3:i+k+l:j}. Here, N={0,1,2,... } as usual. As

this represents an equality of asymptotic series, we may identify term by term. The term
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with j=0 was already analyzed, and it follows that, for j=1, ..., k, we have

3 /T (AR, ()" V2Ly[r By s(re®) Bry(re™®)]| =1 ds(e™)

(i,k,1)ens

=2Re /1r(4ART(ew))_1/2LO[TBT,j(rew)gﬂo(rew)] =1 ds(e®) (4.20)

- / (AR, (¢0)) V2L [r B, ;(re®) By y(re®)]joes ds(e™®) =0,
(i,k,D)en; 7T

where N; denotes the restricted index set N;:={(i, k, 1) €n}:4,1<j}, and where we separate
out the terms involving the leading term B ;. We successfully resolve the first term on
the right-hand side of (4.20), while the second term is much more complicated. However,
we may observe that it only depends on the functions B, with v=0, ..., j—1, and hence
only on the constants ¢, , with =0, ..., j—1. This allows us to algorithmically determine
these constants, albeit with increasing degree of complexity. As for the first term on the
right-hand side, we observe that the operator Lg|,—1 only evaluates at r=1. Using the
structure of B, ; as given by (4.17), we find that

/11:(4AR7—(€Z.6))71/2L0[7’BTJ (Teie)gﬂo(rew)ﬂr:l ds(ew)
:/(4ART(ew))71/2B77j(6w)§ﬂo(6i9)ds(ew)
T
=cro \/(4ART(ei0))7l/232ReHRT(TG%G)(CTJ7PH3 O[GFIRT Fﬁj](eie)) ds(eiG')
T ,

=cro / (crj—Ppz [ F, j](e™)) ds(e™)
g ,
= Cr,0Cr,j-

Here we use the definition (4.14) of Hgr_ and the fact that the projection P2 maps
into a subspace of functions with mean zero. Assume now that j is given, and that we
have determined ¢,y for k=0,...,j—1. The above equality together with (4.20) then
gives that

2Recrjcro=— ) / (4AR.(e')) /2Ly [rByi(re’®) By y(re')]|,—1 ds(e™).
(ik,yen; T

—1/4

Since ¢, g=(47) and moreover since the constants ¢, ; must be real by our normal-

ization, we obtain that

1 ) L ) )
erj=—5 MYt 7 /T(4ART(M))—1/2Lk[rBT,i(reZ")BT,l(rew)}|T:1 ds(e”),
(4,k,1)€N;
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where the integral may be expressed in terms of the operator My by
/(4ART(ei0))*1/2Lk[rBT’l-(rew)ET,l(rew)]|T:1 ds(e'?)
T
:/Mk[BTvi(rew)ET’l(rew)] ds(e'?).
T

This completes the proof. O

5. Applications to random matrix theory
5.1. The random normal matrix model

For extensive treatments of the random normal matrix ensembles; see e.g. [30], [3], [4],
[5], [6], [61]. Here we only briefly discuss the topic, in order to fix the notation and recall
some basic concepts.

Let M be a matrix, picked with respect to the probability measure (“tr” stands for

trace)
1

Aprn (M) = ——— = 2m QUMD g

Zm.,Q ’
where dM denotes the measure induced by the flat Euclidean metric of C™ on the
submanifold of normal m xm matrices, where Z,, ¢ is a normalizing constant. Such a
matrix M has a set of m random eigenvalues, which we denote by ®,,={z1.m, -, Zm,m }-

It is known that the eigenvalues follow the law

1 m
AP (21, ey 2m) = 5—— [ H |Zj—2k|2] eI QR GADT (21 2), (5.1)
Zmq L ;
i<k
where Z,, ¢ is a related normalizing constant, known as the partition function of the
ensemble. Here, dA®" stands for Euclidean volume measure in C” normalized by the

factor 7=

. We recognize this as the law for the Coulomb gas with m particles at the
inverse temperature S=2 in the external field (). Courtesy of the fact that the product
expression in (5.1) may be written as the square modulus of a Vandermondian determi-
nant, these ensembles are determinantal. That is, if the k-point intensities Ry m, (21, ... 2k)
are defined as the intensities associated to finding points simultaneously at the locations

21, ey 2, then we may compute Ry ., by

Rk,m(zl, ceey Zk) = det(Km(zj, Zl))lgj,lglw (52)
Here K,,, is the correlation kernel

Ko (2, w) = K (2, w) e ™@EFTRW) e C
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where K, is the reproducing kernel for the space Pol,,, supplied with the inner product of
the space L%mQ (C). We remark that the correlation kernel K,,, is not uniquely determined

by the above-mentioned intensities, since any kernel modified by a cocycle
K5, (2, w) = c(2)e(w) Ko (2, w),

will generate the same point process by the determinantal formula (5.2). Here, the cocycle
is associated with a continuous unimodular function ¢: C—T. This means that in terms
of convergence of point processes, we need only correlation kernel convergence modulo
cocycles. It is known (see [30], [61]) that the process ®,, condensates to the droplet Sy

as m——+oo. Indeed, if v,,, denotes the empirical measure

Vm:% Z 0z,

2EDP,,

then almost surely, v, converges weakly to the equilibrium measure p, with 7=1, the
support of which equals &;. We rescale the point process near a boundary point zg, in
the outer normal direction n, in order to understand the microscopic behavior of ®,,,. To

rescale we use the linear transformation

¢
V2mAQ(z)

Writing ®,,, ={z; m };, we introduce the rescaled local process by ¥,,={(jm};, where

zm(€) :=zp+n

Zj”m:Zm(Cj,m% ]=1,,m

Similarly, we denote by k,,, the rescaled correlation kernel

1

:me(zm(ﬁ),zm(n))-

ki (€5 1)
We recall the familiar notion that a function F'(£,7n) is Hermitian entire if it is an entire
function of the two variables (£,7) with the symmetry property F(£,1)=F(n,¢). The
following is from [5].

THEOREM 5.1. There is a sequence of continuous unimodular functions cp,: C—T,
such that for any given infinite sequence of positive integers N, there exist an infinite

subsequence N*CN and an Hermitian entire function F(£,n) such that

lim cm(€>ém (n)km(zm (5)7 Zm(n)) = efﬁ—(\§|2+|ﬂ|2)/2F(§7 77)'

N*3m—o00
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5.2. Uniform asymptotics near 7=1

We take as our starting point the first term of the asymptotic expansion of Theorem 1.3.
Recall the definition of the compact set Kr 4., in (3.27).

COROLLARY 5.2. Let Hq » be the bounded holomorphic function in the set K¢ with
real part ReHg =+ 110g(2AQ) on the boundary 0S:, which is real-valued at infinity.

Then, in the limit as m,n—oo while T=n/mel.,, we have the asymptotics

|Pm7n( )‘2 —2mQ(z 1/2|¢ ( >| _Zm(Q_QT)(Z)(ﬂ'_l/zezRQHQ’T(Z)—FO(m_l)),

where the implied constant is uniform for z€KZ 4 ..

Proof. We recall that

o n
Qr=ReQ,+7log|d,| =Re QT—'_E log |&+|,
and in view of Theorems 1.3 and 1.5, we may write

| P> =m'2(¢) (2)] |7 [ €*™ R0 27| B, o +-O(m )|
:m1/2|¢;(2)|62m@" (7T_1/262ReHQ’T(Z)+O(m_1))7

and the assertion follows. O

5.3. Error function asymptotics

In view of Corollary 5.2, we observe that the probability density |Pm7n|2€_2mQ resembles
a Gaussian wave which crests around the boundary S, of the droplet, where 7=n/m.
As a consequence, we expect the density to be obtained as the sum of such Gaussians.
Near the droplet boundary, this effect is the strongest, and adding a large but finite
number of such Gaussian waves crested along boundary curves dS, which move with the

degree parameter n results in error function asymptotics.

ProOPOSITION 5.3. If @ is 1-admissible and z9€0S; is a boundary point, then if
Pm 18 the blow-up density given by (1.8) and (1.9), we have the convergence

lim pm(C) = erf(QC)a

m—0o0

locally uniformly on C.
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Proof. We recall the rescaled variable from the introduction

where zo€0S, and n is the outward unit normal to S; at zg, and the rescaled density
pm (&) given by (1.9). In terms of orthogonal polynomials, the object of study is the
function

m—1
1
Z |Pm’n(2m(£))|26—27nQ(zm(§))'

Pm (g) = m n=0

We begin by noting that 2,,(¢) is in the set K7 , ,, (see Theorem 1.3), provided that  is
confined to the disk D(0, 7,,), where r,,, =A+/AQ(20) logm, and that m is large enough.
We shall assume throughout that £€D(0, r,,).

Next, we write

mi1— 1
Py (€) = 2mAQ ) Z_% | P (2 (€)) 2620 (€))
and split accordingly for mi<m
1 m—1
&)= 5 ig0y Do Pralem@)Pe > O o ). (53)

n=msi

We choose m; to be the integer part of m—ml/2 log m.

By Proposition 2.3, it follows that, for n<my,
| P (2)[2e2mQ) < Cme—%n(Q—@q)(z)7 (5.4)

where 7y =my/mel,, for m large enough. By Taylor’s formula applied to the relative
potential Q—Q-, =R, o¢,, in S (Proposition 3.6), it follows that

(Q_@\n)(z) 250 diSt(C(ZvaSn)Q (55)

for some constant £p>0, provided that z€ Sy, is close enough to dS;,. For instance, this
estimate holds for z€81\S,,. Moreover, as 71 =m;/m eventually is in I, the function
Q—@n does not vanish on 87 ,

shows that further away from the boundary 9S,,, the right-hand side of (5.4) decays

exponentially.

and tends to infinity at infinity. The latter observation

If n<my and 7=n/m, then

1772m71/2 logm =6,,.
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As a consequence of Lemma 2.5 we obtain that the boundary S, moves at a pos-
itive speed in 7. In particular, for 7=n/m where n<m; we have that the distance
distc(0S,,081) is at least 2ady,, for some fixed positive . Since distc(9S,,,081) is

at least 2cgd,,, we have that
distc(z, 0Sr,) = apdm, 2z €D(z0, apdpm)- (5.6)

Next, we note that if (€D(0,r,,), then for large enough m we have z,,(¢) €D(zo, todm)-

This follows from the obvious fact that (logm)*/2

and (5.6) it follows that

=o(logm). By a combination of (5.5)
(Q=Qn)(zm(€)) > Boa .
Now, it follows from the above estimates (5.4) and (5.5) that for n<m,
| Py (2 (€)) 2 2mQEm () = O(me*%oa%(log m)2),
where the implicit constant is uniform in £€D(0,r,,). It follows that
prma,m (€)= O(m?e oe80o8™) - £ €D(0,r,n),

which shows in particular that p,, . (€)=0(m~M) for arbitrarily large M.

As a result of the above considerations, it follows that we may focus on the remaining
sum in (5.3) over the degrees n with m;<n<m—1, that is, 7=n/m with 7y <7<1. In
particular, the asymptotics of Corollary 5.2 applies in the whole range. Set

. . J
=Tm(j)=1—=1,
7(J) =7m(4) -
where j ranges from 1 to m—m;, which is approximately m'/?logm. We obtain
pm(f)
ST 2 Q 2ReH M
QAQ E |¢) &)le” m(Q=Qr(;))(zm (£))+2Re Q,r(j)(zm(f))+o(m— ).

By Taylor’s formula, it follows that

|67y (2m ()| = [ (20)|[+O((m ™" log m)'/?),

and by the same token that

2ReHq.-(j)(2m(€)) = 3 log AQ(20) +O((m ™" log m)/?)
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as m—oo for all j<m—m;. The next thing to consider is the movement of S, where
7=7(j) and j increases. As n denotes the outward pointing unit normal to 9S; at the

point zg, Lemma 2.5 tells us that the line zp+nR intersects OST(j) at the nearest point

Jj 161(20) JV

ool co( (),
KA 4AQ(zp) + m
and the outer unit normal n; to 0S5, ;) at the point z; will satisfy
n; =n+0 (i) =n+0(m~?logm).

m

We may hence write

(Q—Qx(j)) (zm ()

—(0-0-) | 2 I J |97 (20)| m-1/2 m)2
~(@-00) (5 2mAQz0) (63 maQe "))

A simple Taylor series expansion in normal and tangential coordinates at the point z;
gives that
(Q—Qx,)(zj+1;)) =2AQ(2;)(Re A)*+O(|A[*) = 2AQ(20) (Re /\)2+O(|)\|2:n+|>\|3>,

for A close to zero. From this, we deduce that for n with |n|=0(logm) we have

2m(Q—©T(J‘)) (Zj+nj27nZQ(zo)> = %(2 Ren)2+0(m~Y2(logm)?), m — oc.

We apply this with 5 given by

J 181(20)]
2/2mAQ(2)

n=E&+ +0(m ™/ (logm)?),

which then gives that

|91 (20)

2_ , Ry ~1/2 3
(2Ren)’ = <2Re§+] 2mAQ(zo)> +0(m™/“(logm)?).

Putting these asymptotic relations together, we find that

(€)= —=(1+0(m™/2(log m)?))
S (] om0 58
2 amAQ) T\ 2 mAQ(0)
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We recognize immediately (5.8) as an approximate Riemann sum for

erf(QRef):\/%/ e~ (2Re&+1)%/2 1y
0

—1/2

with respect to a partition of the interval [0, yg log m], with step length m Yo, where

N (ChI
\/ QAQ(Z())

Since such Riemann sums converge to the corresponding integral with small error, this
implies that
lim p, (&) =erf(2Ref),

m—0o0

which completes the proof. 0

5.4. Convergence of correlation kernels to the Faddeeva plasma kernel

Finally, we turn to the convergence of the rescaled kernels k,,, (2, (£), 2m(n)) as m—o0. In
principle, this should follow from our expansion of the orthogonal polynomials, but to do
this directly seems a bit tricky. However, given the work of Ameur, Kang, and Makarov
[5], it turns out to be enough to obtain the more straightforward diagonal convergence

of the correlation kernel.

Proof of Corollary 1.7. We denote by G(£,7) the Ginibre-oo kernel
G(&,n) = s (1P +nl*) /2.

which is the correlation kernel of a translation invariant planar point process. We now
present some material from [5]. An important concept is that of cocycles. By The-
orem 5.1, there exists a sequence of continuous functions ¢,,: C—T such that, for any
subsequence A of the natural numbers N, there exists a Hermitian entire function F'(£,7)
and a further subsequence N'* CA such that

Cm (§)Cm (Mkm (2m (§), 2m (1)) = G(§,MF(E,n), meNT, m— o0, (5.9)

where the convergence is uniform on compact subsets of C2. For Hermitian entire func-
tions, the diagonal restriction F'(,¢) determines the function uniquely. Indeed, the
polarization of the diagonal restriction gives back our function F(&,n). We denote by
p(€) the limiting density

m—oQ

meN*
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and since G(&,€)=1, it follows that F'(§,&)=p(£). By Proposition 5.3 we have that

p(€) = erf(2Re¢).

Moreover, by the uniqueness property of diagonal restriction, the only possibility for the

Hermitian entire function is
F(&m) =erf(§+7).

This shows that the limit along some subsequence of any given sequence of positive
integers is always the same. We claim that this means that the whole sequence converges.
Indeed, in case the convergence (5.9) were to fail along the positive integers, by a normal
families argument, we could distill a sequence Ny such that the left-hand side of (5.9)
would converge to something else along the subsequence Ny. This would contradict what
we have already established, which is that the we have diagonal convergence to the error

function. The assertion of the corollary follows. O

6. The existence of the orthogonal foliation flow

6.1. Smoothness classes and polarization of functions

In order to proceed with less obscuring notation, we consider a smooth family of bounded
holomorphic functions f,(z), and a smooth family of orthostatic conformal mappings s .
Here, f; corresponds to f,<,'f>n where s=m ™!, and 15 ; corresponds to the mappings ¥, n ¢
appearing in Lemma 3.9. We suppress 7 and & in the notation, because « is thought of
as fixed, and we work with uniformity in the parameter 7. Moreover, we denote by R
a weight whose properties are analogous to those of R;, as captured in Definition 6.1
below.

We denote by A(p1,02) the annulus

A(o1, 02) :==D(0, 02)\ID(0, 01),

for positive real numbers g1 and gy with g1 <o (notice that we distinguish between the
symbols p and p). In addition, for parameters go and og, we denote by A(go,ao) the

20¢-fattened diagonal annulus in C2:
A(907 O-O) = {(27 U}) S A(QOa Qal) XA(QO> Qal) : |Z—’U)‘ < 200}7

For a real-analytic function R there exists a polarization R(z,w), which is holomor-
phic in (z,@) and has R(z,z)=R(z). This is easy to see using convergent local Taylor

series expansions of R(z) in the coordinates which are the real and imaginary parts,
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Rez and Imz. By replacing Re z by %(2—&—@) and Im z by %(2—@) in this expansion,
we obtain the polarization R(z,w). We observe that, if R(z,w) is such a polarization
of a function R(z) which is real-analytically smooth near the circle T, and in addition
is quadratically flat there, then R(z)=(1—|z|?)2R*(z), where R*(2) is real-analytic near

the circle T. In polarized form, R(z,w) factors as
R(z,w) = (1—2w)2R*(z,w), (6.1)

where R(z,w) is holomorphic in (z,@) in a neighborhood of the part of the diagonal

where both variables are near T.

Definition 6.1. For positive real numbers g9 and oy, where gg<1, we denote by
W(00,00) the class of C?-smooth non-negative functions R on D, (0, gg) such that the
following conditions hold:

(i) The functions R and VR both vanish on T, while AR>0 holds on T.

(ii) R is real-analytic on A(gg, (00) '), and both R(z,w) and R*(z,w) given by (6.1)
polarize to bounded holomorphic functions in (z,@) on the diagonal annulus A (g, op),
such that R*(z,w) remains bounded away from zero there.

(iii) In addition,

R¥(z,2)2a(R)>0, z€A(0,00),

and further away,

mf ) _gpyso.
ZEDe(ngal) log |Z|
We say that a subset ECW(0p,00) is a uniform family, provided that, for each
RE G, the corresponding RF(z,w) is uniformly bounded and bounded away from zero on

A(po,00) while the controlling constants such as «(R) and §(R) are uniformly bounded

away from zero.

If a function f(z,w) is holomorphic in (z, @), we may consider the associated function

Jr(2) =f(z, ;) (6.2)

which is then holomorphic in z, wherever it is well defined. We note that fr(z)=f(z, 2)

on the circle T. We recall the notation of Definition 6.1.

PROPOSITION 6.2. Suppose that f(z,w) is holomorphic in (z,@) on the domain

A(p,0), where 0<o<1 and o>0. Then, the function fr(z), which extends the restriction

of the diagonal function f(z,z) to T, has a holomorphic extension to the annulus

, 1
Q<‘Z|<7/a
0
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where
o =max{p, (V14+02+0)"'}.

Proof. The function fr(z)=f(z, 2z 1) is automatically holomorphic and bounded in
the variable z in the domain

‘ 1
Z—=
z

< 20,

provided that 2€A(g, 07!). The displayed condition is equivalent to the requirement
that
—20|z| < |2]*—1 < 20|z,

from which the claim follows by solving two quadratic equations. O

Remark 6.3. We note that, if g is close enough to 1 to guarantee that
0> (V1+o240)™
then o' =p.

Remark 6.4. Suppose a real-analytic function F(z) admits a polarization F(z,w)
which is holomorphic in (z,@) for (z,w)GA(Q,J), and let f be given in terms of the
Herglotz kernel by f=Hp_[F|r] (cf. §2.5). We note that, by the properties of the Herglotz
kernel, f may be obtained by the formula f=2P y2 [F|r|—(F)r, where (F)r denotes the
average of F' on the unit circle. Let Fr be as in (6.2), and express it in terms of its

Laurent series, which by Proposition 6.2 converges in the annulus A(¢’, (¢’)™1):

Fr(z)= Z anz".
ne”Z
In terms of the Laurent series, P2 [F|r] equals >, janz" and (F)r=ao. As a con-
sequence, P2 [F|r] defines a holomorphic function on the exterior disk De(0, ¢") and

hence, f is holomorphic on D (0, o’) as well.

The setting which will prove useful to us is when we may control certain related
quantities and their polarizations, which is possible on thinner C?-complexified annuli.
The polarization of log AR appears later in the induction algorithm, while log(zaﬁ) is

important for the control associated with the implicit function theorem.

PROPOSITION 6.5. If R belongs to a uniform family & CW(po,00) for some positive
reals oo and og, with og<1, and if R=+/R is chosen so that ﬁ(z) is positive for |z|>1
and negative for |z|<1, then there exist positive o1 and o1 with pg<1<1, 01<00, and
912(\/@—4—01)’1, such that the polarizations of the functions log AR, ﬁ, log(zaﬁ)

are all holomorphic in (z, @) and uniformly bounded on the 201 -fattened diagonal annulus

A(thl)-
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Proof sketch. This follows from the assumptions on the uniform family, if we use
the standard Cauchy estimates plus the fact that log AR=log(2(R*)?) and log(zaﬁ):
1log R* hold on the unit circle T. The condition 01>(y/1+07+01)"! is achieved by
choosing g; large enough, but still in the range gp<p1<1. O

6.2. The master equation for the orthogonal foliation flow

For an integer n, we denote by 7, the triangular index set
tn={0.,1) eN?:2j+I<n}, (6.3)
and supply it with the inherited lexicographic ordering <r.:
(i,k) <L (4,1) ifi<j or i=jand k<l.

We recall the notation of the pair (g1,01) from Proposition 6.5.
The following is an analogue of Lemma 3.9. We introduce a parameter s, which is
supposed to be close to zero, and plays the role of the Planck constant h. Later on, we

will put s=1/m.

PROPOSITION 6.6. Let Kk be a given positive integer and let REW(po, o), for some
0o and oy, with 0<p9g<1 and c¢o>0. Then, there exist a radius oo with 01<p2<1,
bounded holomorphic functions b; on the exterior disk De(0, 01) for j=0,...,k, and or-

thostatic conformal mappings

ber=vort Y sty
(J.D)€EY2r+1
jz1
defined on De(0, 02) with s +(De(0, 02)) CDe(0, 01) for s and t close to zero, such that
the following holds. For fized s, the domains s +(De) increase with t: s ¢(De) Cths ¢ (Do)
for t<t', and if we put hS:Z';:O s7b; and fs=exp(hs), the functions fs and s+ have
the property that, for C€T,

[fsotbs s (Q)Pe ™25 oot Re(—Cayabs 1 (O] 4 (C))

(6.4)
= () O ),

Here, the implicit constant remains uniformly bounded as long as R is confined to a

uniform family in W(oo, 00), for fized oy and oy.
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Remark 6.7. (a) Strictly speaking, the functions v, and hs we write down de-
pend on the precision parameter x, while the coefficient functions b; and ’l/AJj’l do not.
We observe that the orthostaticity of 1s; gives that 1%,0(00)>0, and moreover that
Im 1/33471(00):0 for all 5,1>0.

(b) The function fs will also admit an asymptotic expansion of the form

K

£ = s B;(Q)+0(s"t),  ¢€De(0,01),

=0

where the coefficient functions B; may be obtained algorithmically as multivariate poly-

nomials in the functions by, ..., b;.

The first step towards finding the conformal mappings 1) ; is to note the following:
we find by taking logarithms that

2Re hyot)s 4 (() =25~ (Rows 1) (¢) +log Re(—(eths 1), 4 (¢) ) = —s~ "t 4+0(1),  (6.5)

as s,t—0. Next, we multiply both sides by s, to obtain

25 Re hgot)s 1(¢) —2Roths ¢ (C) +s1og Re(—(Outs 11, 4 (C) ) = —t*+O(s). (6.6)

Finally, we take the limit as s—0 in (6.6), expecting that

Re hsow&t and 1Og Re<_68tw8,t1;;7t)

remain bounded, and arrive at the equation

Regpo,(¢) = 5t%.

As a consequence, g should be a conformal mapping of D, onto the exterior of the

appropriate level curve of the weight R.

PROPOSITION 6.8. Let R be as in Proposition 6.6. There exist a positive num-
ber to, and a real-analytically smooth family {to}ie(—tyt,) 0f orthostatic conformal
mappings De—Qy, where Q; is the unbounded component of C\I'y, and where Ty are

real-analytically smooth, simple closed level curves of R:
R|Ft = %tQ.

Moreover, Q=D and Q; increases with t.
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Proof. The assumed strict subharmonicity of R gives that there exists a neighbor-
hood U of T such that VR|;\r7#0. This shows that the level sets must be simple and
closed curves, for [t| sufficiently small. Indeed, if a curve would possess a loop, then R
would have to have a local extremal point inside the loop, which is impossible. Since VR
vanishes on T, we cannot apply the implicit function theorem directly to R to obtain the

result. However, the function

~ R(re'?)

R(re?):= ———2
is, in view of Proposition 3.6, strictly positive and real-analytic in a neighborhood of the
unit circle T. We form the square root R=VR by

R(re'®)=(r—1)\/ R(rei®),

where the square root on the right-hand side is the standard square root of a positive
number. We may now apply the implicit function theorem to the function R. The result
follows immediately by applying the Riemann mapping theorem to the exterior of the

resulting analytic level curves of R. O

Remark 6.9. Proposition 6.8 tells us that the conformal mappings 1, extend to
some domain containing D., but supplies little information on how much bigger such a
domain is allowed to be. We will discuss this issue in §6.3 below. Along the way, we also
obtain an alternative proof of Proposition 6.8, which may be viewed as a quantitative

version of the implicit function theorem in the given context.

The Taylor coefficients 1[}0,[ (in the flow variable t) of the conformal mappings g,
may be explicitly computed in terms of the weight R, using a higher-order version of
Nehari’s formula for conformal mappings to nearly circular domains. We will return to
this in §6.8. Before we carry on, we formulate the following lemma, which allows us to

draw the conclusion that the mappings 15+ of Proposition 6.6 are actually conformal.
LEMMA 6.10. Assume that v is a holomorphic function on De(0, 0) of the form
P(z)=2+F(2),

such that |F'|<3% and
2

" 0
2[2F"(2) < =g

z €D, (0, o).
Then, ¥ is univalent on De(0, 0).
Proof. This is immediate from the Becker-Pommerenke univalence criterion [8]. O

It is clear that the mappings 1, ; meet this criterion for some p<1, for small enough

s and t for a fixed precision parameter «.
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6.3. The smoothness of level curves and the implicit function theorem

In this subsection, we analyze the extension properties of conformal mappings from D,
onto the exterior of the level curves of R near the unit circle. In a sense, this may be
viewed as a quantitative version of the implicit function theorem.

The function R is assumed to belong to the class W(gp, 0¢) of Definition 6.1, which
is a quantitative way to say that R is real-analytic near the unit circle T, and vanishes
along with its normal derivative on T, while AR is positive on T. We recall the definition
of the choice of square root R of R from the proof of Proposition 6.8. This function is
also real-analytic near the circle, vanishes on T but its gradient is non-zero and points
in the direction of the outward normal. To make this more quantitative, we let o; and
o1 be the parameters of Proposition 6.5. Then, in the 20;-fattened diagonal annulus

A(p1,01), we have the control

sup log (20, R(z, w))| < +oc. (6.7)
(z,'w)eA(gl ,01)

We recall that the mappings 1, are defined by the requirement of orthostaticity and

ﬁwwmz—%,

By differentiating the relation (6.8) with respect to ¢, we obtain from the chain rule

CeT. (6.8)

[(8,R)o10.4)04 0. |+ (89 R) o100 4]0y arg o s = —

9l

which we may rewrite as

(18, R) =1 4]0 10g |0 +|+ [(39]:2)01/)071&]8,5 arg o+ =Re <[(r5r1§ 10 R)>100,4]0; log 1/’215)
1

Ve
Here, we divided by the coordinate function ¢ in order to avoid issues with branch cuts of
the logarithm. The differential operator acting on R may be written as 79, —10p=220,,

so the above expression simplifies further to

Re<[(2z82E)o1/}07t]8t log wz_t> = f% on T. (6.9)

It is on the basis of the relation (6.9) that we will try to recover information on the

mappings ¢ . We introduce the notation

1(C) :=1og(220,R), s = peotho.s, Ft(o_atlog%z@, (6.10)
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and observe that (6.9) may be written in the form
eMFy4e"Fy=—v2 onT. (6.11)

We note that along the unit circle T, the function e“:22321§ equals the positive function
V2AR, so there are no problems with taking the logarithm in the definition of y in a
neighborhood of T. In particular, if 1o+ is a perturbation of the identity, the function
s is well defined and smooth. Next, we decompose uy=p; +p;, where pf € H?> and
wy GHiO are both smooth, and write Gy=e*+ F,. Given that F,€ H?, it is clear that
Gy€H?. If we multiply the above equation (6.11) by e~2Re ‘J, we arrive at

e_‘IﬁGt—i—e_”t+ Gy=2 Re(e‘ﬁt+ Gi)= —\/56_2Re“t+,

where we point out that e~ it G.€H?, while emhi G,€H?. This is equation is solved by
applying the Herglotz kernel, and yields the solution

where we use the fact that F; and p; are real-valued at infinity (cf. Remark 6.7 (a)).
That is,

1 _
F,= ——Qe/‘f*M Hp, [e 2Rend], (6.12)

Let us write boa(O)
9+(¢) =log 70’2 ; (6.13)

so that 0;g; =G, and go=0. Here, the logarithm is understood as the principal branch. In
terms of these functions, the equation (6.12) becomes the following non-linear differential

equation in ¢:

Orgt = f% exp(P g2 [1otho 4 —Pp2 [otho i) ) Hp, [exp(—2Re P2 uotb])].  (6.14)

It is not difficult to see that the equation (6.14) may be solved by an iterative procedure,

if we rewrite it in integral form

t

QtZ—% | exp(P 2 [povo.0] =Pz [1oho,0])Hp, [exp(=2Re P g2 [poto ])] db. (6.15)

As a first order approximation, we start with z/)([f]t(c )=¢, and use the formula (6.15) to

define gt[jH] in terms of 1#([)];157 for j=0,1,2,..., by integration. The process is interlaced
with computing 1/)([]] :‘ 1 = exp(gt[j +1]), and results in convergent sequences gt[j I and w([)j L
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We are interested in analyzing where the function v ; extends as a holomorphic map-
ping. To this end, we recall that the function p given by (6.10) has a well-defined polar-
ization to A(Ql, o1). Tt is clear that if for some 9, <1, ¥ ; maps the annulus A(g;, (6;) ')
into A(g1, 07 "), we obtain the estimate

< ﬁg exp<5”M|H°°(A(91,@11))>7

8 ) 6. (0¢)— X T A2
10cgell== acee. @0 < 752 1-¢?

where we use the estimate

11l e (0
L e B A
t

and the analogous estimate for P = . [f]. Assume for the moment that g;<1 is monoton-

ically increasing in |¢|, and recall that 1o ¢({)=Cexp(g:). In light of the above estimate

of O;g¢, we obtain

Jalt [P
gt 2o (4 (ou, (001 1)) < 'Q'exp(f) HE(Alose; ”):ctm,
1—Qt 1—,Qt

where C} is defined implicitly by the last relation. This leads to the control
e Mo <o (O < e (@)™, CeAlan (a7,

which means that ¢ ; maps the annulus A(gy, (6;)~!) into A(p1, o7 1), provided that

et 5, > 01

Let us make the ansatz §;=p1 e™!*!, for some positive constant M. The above requirement
is then satisfied provided that M >C;. If we restrict ¢ to the interval

log(1/01)

t| < , 6.16
1< 2L (6.16)
it is immediate that ) )
— < —.
1-9; 1—01
This then gives the following estimate for Cj:
2 4]l o 1
Ct < f exp (5 H>(A(e1,01 )),
1-01 1-01
where the right-hand side does not depend on t. We may finally choose M to be the
following constant:
2 [raiyess .
M: \/> exp (5 H (A(legl )) (617)
l1—o01 1-o01
and obtain that g is holomorphic in the exterior disk De (0, g;), where
ét =01 eMltl )

provided that ¢ satisfies (6.16). For ¢ close to zero, g; is then close to ¢; in a quantifiable

fashion. We gather these observations in a proposition.
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PROPOSITION 6.11. Suppose R is in the class W(po, 0o) and that (6.7) holds. Then
the conformal maps 1o ¢, initially defined on D, extend to holomorphic functions on the
exterior disk De(0, py), where py=p1eMt< /b1 and M is given by (6.17), provided that
t is in the interval (6.16).

6.4. An outline of the orthogonal foliation flow algorithm

We now proceed to describe an outline of the algorithm. With the notation

2

S

I Q) =2 Ro ot (0)- 2 ( (R, O 5 ) Hoe(Re( -0, T (615

we may rewrite the master equation (6.4) for the orthogonal foliation flow as

= _ 9191 1L,4(C)
H]J(C) - ]'l' i
_ { —2log(4m), for €T and (5,1)=(0,0), (6.19)
0, for (€T and (j,1) € Y2, \{(0,0)}.

provided that the functions h, and v,; obtained by solving these equations do not
degenerate, as long as R remains in a bounded set of W(py, o) for some gy with 0<gp<1

and some oy >0. We recall that hg is defined by the finite expansion

K

he=Y_ s'b;. (6.20)

§=0
As it turns out later on in Proposition 6.19, we have, for j,1>1,

~

I _1,4(¢) = —2(4AR(()Y* Re(Cju-1(¢) +Tj-14(C), (€T, (6.21)

where T;_1; is real-valued and real-analytic, and depends only on b, ...,b;—1 and ﬁp,q
with (p, ¢) <L (j,1—1), where we recall that <, denotes the standard lexicographic order-

ing. Moreover, when (=0 we get
I0(¢) =2Reb; () +T;0(¢), CET, (6.22)

where T o depends only on by, ..., b;_1 and qsz,q for (p,q)=<r(j+1,0). Such dependencies

will be encoded in terms of complexity classes introduced in §6.7.

Step 1. We let 1g; be the orthostatic conformal mappings to the exterior of level

curves of R, as given by Proposition 6.8. In particular, this determines uniquely the
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coeflicient functions 1[)0’17 for 1=0,...,2k+1 (for the details; see Proposition 6.16 below).
For instance, we find that v o(¢)=C, while g1 (()=—CHp, [(4AR)~1/2].

Step 2. By evaluating ﬁO,O(C):Hs,t(C)L@:t:Oa we obtain from (6.19) that

2Rebo(¢)+log Re(—§1$071(§)) = —% log(4m), (e€T.

As 1&0’1 is already known and the above real part is strictly positive on T (see Proposi-

tion 6.16 below), this gives the value of 2Re by on the unit circle T, which gives that
bo = —1 log(4m)+1Hp, [log(4AR))].

We proceed from Step 2 to Step 3 with j=1.
Step 3. We have determined by, ..., b;,—1 and @ZAJ]-J for all (j,1)=<w(jo,0), and in this

step we intend to determine all the coefficient functions 1[)]-,1 for (4,1)<r(jo+1,0). In view
of Proposition 6.19 below, we may obtain explicitly ¥, 1.1 in terms of this known data
set, which by the equations (6.19) and (6.21) gives an equation for 1[)]-0,0. More generally,

the equation which gives 77!;]-0710 takes the form
Re(&&jo,lo) = %(4AR)71/2Tj0—1710+1 on T,
and we solve it with the formula

Djoto(Q) = 5CHp, [AAR) V2T, 1 4,11](0).

If we apply this solution formula with /=0, the background data gets extended to all 1[)]-71
with (j,1) <1 (jo,1). Continuing in the same fashion, Proposition 6.19 shows that T _1 o
may be expressed in terms of this extended data set. Consequently, the above solution
formula also determines 1[)]-071. More generally, as we proceed iteratively in the same

manner, we obtain all the coefficient functions z/A)jJ with j=jo and (j,1)<r (jo+1,0).

Step 4. At this stage, using Step 3, we have at our disposal the functions by, ..., bj,—1,
and ﬁj,l for all (4,1)<r(jo+1,0). Proposition 6.19 now allows us to compute T;, o in

terms of this data, and from (6.19) and (6.22), we derive an equation for bj,:
2Rebj, =—%;)0, onT.
We solve this equation explicitly by
bjo(¢) = —5Hp, [Tj5,0](¢), ¢ €De.

After completing this step in the algorithm, we have extended the data set to contain
bo, ..., bj, and all coefficient functions z/AJjJ with (4,1) <5 (jo+1,0).

Step 5. Finally, we iterate Steps 3 and 4 with jj replaced by jo+1, until all coefficient
functions by and @/Ajjyl have been determined, for 0< k< and (j,!) €Y2x+1. This also means

that the flow equation (6.19) is met with the given choices of coefficient functions.
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Remark 6.12. If we apply the above algorithm to the function R=R,, the coeffi-
cient functions B; in the expansion of fs=exp(hs) obtained here are the same as those
appearing in Theorem 1.5. There, the algorithm was based on Laplace’s method and in-
homogeneous Toeplitz kernel equations. The algorithm presented here is in principle an
alternative route towards finding the coefficient functions. However, a drawback is that
the algorithm requires us to compute the additional functions ﬁj,l, which adds further

complexity.

6.5. The general multivariate Faa di Bruno formula

We recall the Faa di Bruno formula in several variables, and study some of its properties.
To prepare for the formulation, we introduce the well-ordering used in [15], which we call

the order-lexicographical ordering (OL for short). Given two multi-indices

a=(a1,...,aq) and B=(01,...,584),

we write that a<or 8 if:

(i) |al<|Al, or if

(ii) |a|=|8| and <1, B (lexicographically).

Here, we recall that in the lexicographical ordering ae<r, 3 holds if either ay <y or
a1=p01,...,a_1=PLr_1 while ap < holds for some 1<k<d. As a matter of notation,
a =3 means that either <3 or a«=g3; this applies to both the lexicographical and order-
lexicographical orderings. We use some elements of standard multi-index notation. For
instance, if a=(ayq,...,aq) is a d-dimensional multi-index, that is, a d-vector of integers
in N:={0, 1,2, ... }, we write

ol =) aj,
J

a!:H(aj!),
J

¢=11¢" ¢
J

O%f(x) =05 .02 f(x), x=(1,...,xq) ER?

(517 "‘7§d) € (Cdv

We will need the index set

80 g = (@, oy o By, oo By) € (N )P x (NP

(6.23)
0 <o, a1 <oL ... <orL @ and ﬁ]‘ >0 for all 7=1,.., k}

We now formulate the multivariate Faa di Bruno’s formula as it appears in [15].
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PROPOSITION 6.13. Let QCRY and ' CR? be domains in the respective Euclidean
spaces. Let g=(g1,..-,94): Y —=Q and f:Q—=R be C™-smooth, so that the composition
feg: Y =R is C™-smooth as well. Then, for any d'-dimensional multi-index v with

|v|=n, we have on

(fg)= 3 (0" 1) glGun(e)
1<|pl<n
where p runs over the d'-dimensional multi-indices, and the function G, . (g) is given
by
G (g) =v! Z Z H |,e [
k=1 (a;B)eoQ™ (p,v) 7= 18

Here, the indicated index set is given by

P, v) ={(a;8) = (au, ..., k; By, o Br) €O a2 > Bj=p and Y, |B)lay =v}.

Note that, since g is assumed vector-valued, the multi-index partial derivative 0%/ g
is vector-valued as well, and the multi-index power [0%g]®i produces a real-valued func-

tion.

Remark 6.14. Both the order-lexicographical and the lexicographical ordering are
well-orderings of the multi-indices. If in (6.23) we replace <o, by the lexicographic
ordering <p, to obtain the analogous index set m%; @ ,q» this amounts to a reshuffling of
the multi-indices au, ..., a; to get them ordered with respect to <y, instead. This allows
us to define the index set oF(u,v) as well, based on m{;;d,’d instead. It is important to
note that the assertion of Proposition 6.13 holds with the index set OSL (p, v) replaced
by ok(u,v). The reason why this is so is that if we reshuffle both the a; and the B,

then nothing really happened and the involved sum remains the same.

6.6. The multivariate Faa di Bruno formula adapted to our setting

We specialize Proposition 6.13 to the situation that we need to analyze. We will con-
sider only the case of d=d'=2. We work in terms of polar coordinates (r,6), and put
A(r,0)=R(re'?). Although still not specified completely, we assume the function 1, ; is

sufficiently smooth in both (s,t), and introduce the function W ;:

‘Ps,t:(|ws,t|aarg djs,t)a (624)
which maps to polar coordinates, so that

Rotps = oW, ;. (6.25)
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Accordingly, we denote by D!, the differential operator
Dvl”l:ezaﬁlagav “:(MlaIU'Q)»
and obtain by applying Proposition 6.13 to ¥, ; with v=(j,[) that, along the circle T,

agaﬁ (Rodj&t) |S=t=0 = 8£8i (HO ‘I's,t) |S=t=0
= Z [(Dzeﬂ)ows,t]gu,(ﬁl)(\Ils,t)|s=t=0

28|kl <G+

6.26
= Y (DR )G ammo (626)
2<| <G+
= Z (Df:gR)gu,(j,l)(‘I’s,t)|s:t207
2<|pl<g+l

where the terms corresponding to indices p with |p|<1 vanish and hence get dropped.
The reason for this is that g ¢({)=¢ preserves T and that the function R together with

its gradient vanish along the unit circle T. More generally, we find that
Dfﬁth =90M9Rlr=0, p=(p1,p2)€{0,1}xN. (6.27)

In the context of (6.26), it is important to point out that the multi-index derivatives
that appear in the expression G,, (;;)(Ws,:) (as defined in Proposition 6.13) are taken
with respect to the variables (s, t). Moreover, in the equality (6.26), we have suppressed
the variable (€T, and consider it to be fixed.

We will be interested in identifying the mazimal index (p,q) with respect to the
lexicographical ordering, such that the partial derivative 9?9] W, ; appears non-trivially

in the right-hand side expression of (6.26).

PROPOSITION 6.15. Let us consider two double-indices v, peN?, with 2<|p|<|v|
and pg{(1,1),(0,2)}, and let (ca; B)€dY(p,v). Then, the following conditions hold:

(i) If v=(4,1), where j,1>=1, then for all i=1,...,k, we have that o;=y(j,l—1).
Moreover, the equality o;=(j,01—1) holds if and only if i=k=2, u=(2,0), and

(a§ﬂ) = ((07 1)> (]a l_l); (17 0)7 (170))'

(ii) If v=(4,0) with j >3, then each a; is of the form (a,0) with a<j—1. Moreover,
the equality a=j—1 holds if and only if i=k=2, u=(2,0), and

(a; B) = ((L O)’ (jfla O)a (17 O)a (170))
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(iii) If v=(0,1) with >3, then oy is of the form (0,b) with b<I—1. Moreover, the
equality b=1—1 holds if and only if p=(2,0) and

(Oé,ﬁ) = ((07 1)a (07 lil); (170)7 (15 O))

(iv) If v=(2,0), then necessarily p=(2,0) and the only non-trivial index (a;B) is

(a;8)=1((1,0);(2,0)).

(v) If v=(0,2), then necessarily p=(2,0) and the only non-trivial indezx (c; B) is
(a;8) = ((0,1);(2,0)).

Note that since |v|>2, the above list covers all the possibilities. We will denote by
(a®; B®) the indicated extremal index (c; 3) in each of the cases (i)-(v).

Proof of Proposition 6.15. We show how to obtain (i), (ii), and (iv). The remaining
cases (iii) and (v) are analogous and omitted. We recall the compatibility conditions on
the index set Oy (u, v). After all, the assertion (c; 3) €0 (i, V) means that (c; B) €Ly, 5
together with the conditions

k k
S iBilai=v, > Bi=up, (6.28)
=1 i=1

where each 3, has |3,|>1, and the multi-indices o; are strictly increasing with ¢ in the
lexicographical ordering. From these assumptions, it is immediate that each «; satisfies
o; 3LV

As for assertion (i), we see that equality a;=(j,1) could hold only if k=1, with
a1=(4,1) and |B;|=1. But then |p|=1, which would contradict our assumption that
|| >2. Hence, given the structure of the lexicographic ordering, for any index i, we
have a; =<1, (j,l—1). However, if equality holds here, that is, if for some iy we have
a;,=(j,1—1), we find from (6.28) that |3, |=1, whereas the sum on the left-hand side,
taken over all other indices i#ip, must equal (0,1). As a consequence, only k=2 is
possible, and then a=((0,1),(j,1—1)). In addition, we get that |3,|=|8,|=1, so that
by the second relation in (6.28), |pu|=2 holds. Given the assumptions on p, the only
remaining possibility is p=(2,0), and then 8, =08,=(1,0).

We turn our attention to the assertion (ii). In a similar manner as above, since the
weighted sum of the multi-indices «; equals (j,0), we see that for each index i=1, ..., k,
a;=(a;,0) for some a; €N with 0<a;<j. It is clear that a;,=3j could occur for some i

only if igc=k=1, |3;]|=1, and || =1, which again would contradict our assumption |u|>2.
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It follows that a;<j—1 for each i. Next, the only way we could have a;,=(j—1,0) for
some g is if ip=k=2 and correspondingly a=((1,0), (—1,0)). The remaining properties
are immediate.

Finally, to see why (iv) holds, we analogously find that each «; is of the form
a;=(a;,0), where 0<a;<2. In view of (6.28),

a1|Bq |+ +ak| By =2,

with |3;|>1 for each i. This is possible only if 1<k<2. If k=2, we get that a;=as=1
and |B,|=|B2|=1, which leads to a;; =a2=(1,0). This gets excluded on the basis of the
monotonicity requirement o <y, a2, so k=1 is the only possibility. So the requirement
(6.28) now reads a1|B,]=2 and B, =p. If a;=2, then |B,|=1, and consequently |pu|=1,
which is contrary to our assumption that |p|>2. The only remaining alternative is that
a1=(1,0) and |B;|=2. Since B;=p, and the only admissible p of length 2 is p=(2,0),
it follows that 8;=(2,0), and the claim follows. O

We observe that in each of the cases (i)—(v), the lexicographically maximal a; occurs
as the index i=Fk, where k€{1,2} and (a; 8)€0k (1, v) and p=p,:=(2,0) while [v]|>2.
If we put

A(v) =max max ay
ko (a;B)evy (po.v)
where the maximum is taken lexicographically over the entire range k=1, ..., |v|, then

the maximum occurs for k=2 unless if v=(2,0) or v=(0,2). Moreover, if v=(2,0) or
v=(0,2), the maximum occurs for k=1. Let k, €{1,2} be the parameter value for which
the maximum is attained, depending on v, as just explained. In any of the instances
(i)-(v), there exists a unique extremal pair (a®;3%)ecok(uy,v) provided that k=k,.
Next, let 8 o (19, v) denote the depleted index set

L D%(“Ov’/)a lfk;?ékl/a
Ok @(NO) V) = 1L ® ® .
Dk(“ovl/)\{(a ;B )}a ifk=ky,
and consider the associated expression in the context of the multivariate Faa di Bruno

formula:
lv|

(0%,
Gy (Tst) _V'Z > H a't'ﬁ] (6.29)

1 (;B)€e0f o (po.v) = 1
Then, G, . (¥s,¢) splits as follows (where (a®; B%)=(a?, ... a% ;6® . ,ﬂk ):
o ?
guo,u(‘I’s,t) = gﬂo,u(\I’s,t)‘i’HHO,u(‘I’s,t)v Hl‘o s t = I/' H ﬁ®| @ (630)
J

If v=(2,0), the depleted index set D£,®(u0, V) is empty for ke{l, 2}, which gives that
G2 L(We1)=0 ifv=(2,0). (6.31)
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6.7. Polynomial complexity classes

In order to make sure that the algorithm outlined above in §6.4 does not break down,
we need to carefully keep track of the dependency structure of the coefficient functions
involved. In particular, when solving for the coefficient function ’(/AJj,l in terms of a Herglotz
operator applied to a function g;;, we need to know that g;; may be computed in terms
of functions already determined in previous steps of the algorithm. To help with this,
we introduce for a non-negative integer j and a subset X CN? the polynomial complexity

class POL(j,X), defined as the following function class on the unit circle T:

POL(j, ¥) =R[Re ¢, Im ¢, D& R(C), Re b, Im b{¥), Re ¢, Im ¥y, 4, Re ), . Im ),
such that k€N, 0<v <, (p,q) €%, a €N,
Here, R[X:Y] denotes the class of multivariate polynomials with real coefficients in the

variables X, restricted by the condition Y. In other words, POL(j,Y) is the collection

of multivariate polynomials in the expressions
Re(, Im(, D2y R(Q), Reby”, Imby”, ey, Im g, Redl) ,, and Im .

under the conditions k€N, 0<v<j, (p,q)€Y, and a€N2. If there is no dependence on
any of the functions b;, we simplify the notation and write POL(X) for the polynomial
complexity class. In connection with these classes, we will find it useful to introduce for

non-negative integers p and ¢ the rectangular index sets

Zp,q:{(mb)ENQ:agp and b< q}.

6.8. The semiclassical case of the orthogonal foliation flow

We first explore Step 1 of the algorithmic procedure outlined in §6.4. We recall the

notation o ,=(|1bg,|, arg o) from (6.24). Moreover, we recall that g; is as in Propo-
sition 6.5 (see also Proposition 6.2). We have already established the regularity of g ¢
in the implicit function theorem of §6.3. We proceed to compute the Taylor coefficients
in ¢, and highlight the algorithmic aspects. We use the notation introduced in §6.5 and

§6.6 freely.

PROPOSITION 6.16. The Taylor coefficients 1&0,l in the variable t near t=0 of the

conformal mapping 1o+ with

2k+1

You(Q) =D t'ho () +O* ),

=0
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are uniquely determined by the level-curve requirement

Rotpo4(¢) =31, (€T,

together with the monotonicity condition that the images g +(De) grow with t and the

normalization 1/’6,15(00)>0' Moreover, as such, they are given by

Po,0(¢)=¢,
1o,1(¢) = —CHp,[(4AR)~/2)(0),

and, more generally, by
P0u(¢) =CHp, [AAR)T?81](¢),  1=2,...,26+3,

where &;(()€POL(Z¢—1) is given by the formula (pg=(2,0))

1

&(¢):= [ (4(AR)930,(0,1+1) (®o,¢)lt=0

+ Y (Wlang)gu,(o,Hl)(‘1’0,t)|t—0—2(l+1)(AR)1/291>a
3<|pl <+

where
1=0—1!'Re(Cto1) € POL(Z0,_1).

g1 = 8% 0,4
The coefficient functions ’L/AJQJ all extend holomorphically to the domain D (0, 01).

Proof. By Proposition 6.8, the conformal mappings 1 ; are uniquely defined by the
given requirements, and g o(¢)=¢ holds. Moreover, since t— 1) ¢ is smooth, the validity
of the indicated expansion follows from Taylor’s formula, and the first coefficient then
equals 1&070(@ =19,0(¢)=C¢. In view of Taylor’s formula applied to the function ¢+ Rot)q ¢,

we have that
2k+1 1

(Retho) (@)= Y [Oh(Retina(O)leco+O(IH5+2), (6:32)

=0

Since by assumption Ro¢07t(g):%t2 holds on T, we find that, for (€T,

1, forl=2,

(6.33)
0, forl#2.

O (Ret0.)(Qli—n = {

It is automatic that (6.33) holds for 0<I<1, since R is quadratically flat on T. We now

consider [=2. By the multivariate Faa di Bruno formula (6.26) with s=0 treated as
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constant, together with the quadratic flatness of R near the unit circle T a calculation
shows that

07 (Rotpo,0)li=0 = (97 R) (u]tbo.¢])*li=0 = 4AR[Re(CYo,1)]*  on T.

Since the left-hand side equals 1 by (6.33), we may solve for Re(@[zoyl) using either the

positive or the negative root. We choose the negative square root, which gives that
devo t]|e=0 =Re(Ctho 1) = —(4AR)~Y2 on T. (6.34)

This choice is the one which is compatible with the growth of the domains g ;(IDe) as
t increases (so that the loops 1 ((T) move inward). Finally, we solve this equation by

means of the formula

Wo,1(¢) = —CHp, [(4AR)/?)(0), (6.35)
as in Step 3 of the algorithmic procedure in §6.4. Here, the uniqueness of the solution
follows from Remark 6.7 (a). Since (4AR)~!/? has a polarization which is holomorphic
in (z,w) for (z,w)eA(p1,01), the function ¢ extends holomorphically to D (0, o1), by
Proposition 6.2 and Remark 6.4.

As for the higher-order Taylor coefficients, we again apply the multivariate Faa di
Bruno formula (6.26). As a result, on the circle (€T we have for [>3 that (apply (6.34)
in the last step)

Oi(Revbot)li=o= D (004 R)Gp (0.41)(Por)li=o

2<|pl<l

=4U(AR) (9 [vo,¢ ) (Delt0,e)) +Gy. 1 (Zo,1)le=0
+ Z (3#18521%)9”,(0,1)(‘1’070|t:0 (636)

3<| i<
= _“(4AR)1/2 Re(&z’O,l—l) —1(4AR)1/291—1 +g§07(0,l)(‘1'07t)‘t=0
+ Z (0105 R)Gpu 0.0 (®o,t) | t=0,

3<|pl<l

where py=(2,0) and we recall that

911 =0} [Yo,ellt=0— (1= 1)! Re(Cto,—1).
An elementary computation shows that the highest-order derivatives cancel out, and it
follows that g;—1 €POL(X;_2).

We recall that the expression G
in (6.29). We write

®

100,(0 l+1)(‘1,07t) appearing in the above formula is as

1
G_1=7 (-l(4AR)1/2gl1 +G,0 o0 (Tot)le=o+ > (@i“ang)gu,(o,z)(‘I’t)|t_0> ;

!
3<|pl<l
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and claim that &;_; ePOL(Xg,;_2). We already saw that g; has this property, and hence
(AR)'/2g,_1=(AR) Re(—Ctby,1) does as well. That the same holds for the remaining two
terms of the above formula can be seen from Proposition 6.15, and hence it follows that
®;_1€POL(3g,_2). It is a consequence of (6.36) that the condition (6.33) for />3 may

be expressed as
—(4AR)Y?Re(Cioy-1)+®_1 =0, 1=3,4,5,....

This is an equation of a kind we have met before, and we know that a solution ’lz}o,l is
supplied by the formula (change ! by {41 in the previous relation)

&,

1o,(¢) = CHp, [(4AR)1/2

}(g), 1=2,3,4,.... (6.37)

Let us assume for the moment that the lower-order terms 1&0’17 with 0<b<l—1 all extend
holomorphically to an exterior disk De(0, 01). Then the entire expression inside brackets
in (6.37) polarizes to extend to a 201-fattened diagonal annulus A(g;,01) given that var-

—1/2 which follows from Proposition 6.5.

ious partial derivatives of R do, as well as (AR)
Moreover, since o7 is big enough to guarantee that 912(\/@—1—01)_1, then in view
of Proposition 6.2, the expression on the right-hand side of (6.37) will be holomorphic
in the same exterior disk D, (0, 1) as well, by Remark 6.3. But then we have enough to
keep the iteration going, and obtain that all the terms 1&0,1 extend holomorphically to a

single exterior disk D (0, 1). O

6.9. Taylor expansion of the weight term in the master equation

We continue with the Taylor expansion of the composition Revs in terms of powers of
s and t, where the starting point is the application of the Faa di Bruno formula in (6.26).
We recall the definition (6.3) of the triangular index set y,. We work under the assump-
tion that 1, ; depends sufficiently smoothly on both (s,t) near (0,0). This assumption
gets justified in the stepwise proof which we outlined in §6.8, which retrieves the Taylor
coefficients of 9, ; in (s, t) iteratively. We use the notion of polynomial complexity classes
POL(j,¥) and the index sets ¥, , from §6.7.

PROPOSITION 6.17. On the unit circle T, the function Reot)s, enjoys the erpansion

2Rotp,y = 2Rt s+ Y ST 4 O(s|(|s]H 24 |25 ),
(4,1 EY2n

where Ry 0=0, while for the remaining indices (j,1)#(0,0), we have

2

M= G

(4AR)[Hpuy (1.0 (Ps,0)][s==0+150),
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where py=(2,0). Here, the main term is given in terms of Hu, (j+1.1)(Ws.t), defined by

l(atlws,tD(ag—i_laé_l|¢s,t|)7 if 720 and 1>1,
H“Oa(j+1vl)(llls7t): (j+1)(6s|ws,t|)(ag|¢s,t|)a if 122 and =0,
(Ds]ths,e])?, if j=1 and 1=0,

while the term t;;, considered as a remainder, is given by

t] = (4AR)g L(G+1,0) (\Il )+ Z (DZQR)QH,(]'—&-LZ)(‘Ils,t)‘s:t:()a

3| p|<i+I+1

where we recall that G (W) is given by (6.29). For j=0 and [>1, we have

Ho,(F+1,0)

v € POL(E)7 with X = {(p7 q) S Ej+1’l : (p, q) <L (j+1, l—l)})

In a similar fashion, for j>1, we have that the Taylor coefficient R;o€POL(X;0).
Moreover, the implied constant in the above expansion of Reots; remains bounded if
the weight R is confined to a uniform family in W(go,00) for some fixzed 0<gp<1 and
00>0, while the functions s, are smooth with bounded norms in C?**4 with respect to

(s,t) in a neighborhood of (0,0), uniformly on the circle T.

Proof. The fact that Ro1)s; enjoys an expansion of the indicated form for some
coefficients JR;; with the given error term is an immediate consequence of the multivariate
Taylor’s formula. The coefficients 9R;; are then obtained from the successive partial

derivatives (6.26). It just remains to calculate them:

SRJ'»I aj+1al(R°ws t*ROd}O t)|9 t=0

m
2
=GR lsmimo
2
S > (DHyR)Gu 410)(Ts o) s=i=0-

2| p|<g+H1+1

In particular, J9,0=0, as the sum is over the empty set. In the right-hand side, the

sum over |p|=2 is special as the only non-trivial contribution comes from the index
p=p,=(2,0), by (6.27):
> (D2 R)G (1) (W ) |s=i=0 = (4AR)Gp (5411 (Psi)ls=i=0 on T.  (6.38)
[pe|=2
Here, we use the fact that 92R=4AR on T. It follows that for (j,1)#(0,0), we have on
T that

2
Rji= GO ((4AR)gu0,(j+1,l)(‘I’s,t)+ Z (DﬁfeR)gu,(g‘H,z)(‘I’s,t))

3| p|<+i+1

s:t:O.
(6.39)



ASYMPTOTICS OF PLANAR ORTHOGONAL POLYNOMIALS 389

We write v:=(j+1,1), and split the expression G,, (¥ ;) further according to formula
(6.30):

gp,o,u(‘:[’s,t) = gﬁo7y(q’s,t)+7{uo,u(@s,t)~
We turn to the task of expressing

®

] \I’
' st
g (W H L B! [a®Y] 391 1o®11851

in explicit form in the various cases as outlined in Proposition 6.15. First, if j>0 and
[>1, then k,=2 and

My 0 (W) =1(0,

1) (05

It remains to consider j>1 and [=0. If j=1 and [=0, then

tl)-

Huow(‘I’s,t) = (85 W)s,t |)27

while if instead j7>2 and [=0, then

Hpsg (Cs,t) = (1) (05105t ) (0 s 2])-

It remains to discuss the algebraic properties of t;; for 720 and [>1, and those of
R, for j>1. In view of Proposition 6.15, for j>0 and [>1 all the indices o; have

0<p oo <L ... <1, o <L, (j—l—l,l—l),

provided that (a; B)€dk(u,v) holds for a k=1,..., |v|, given that |u|>3. In addition,
the same conclusion remains valid if p=p,=(2,0), provided that it is assumed that
(a; 8) EDI,;@ (pg, v), which excludes the extremal multi-index. After some additional sim-
plifications, this shows that t;; has the claimed form. For j>1 and [=0, the assertion
about the algebraic properties of R, o follows from the observation that if (c; 8) €0k (p, v)
with v=(j+1,0), then for i=1,...,k, we have a;=(a;,0) with 0<a;<j, by Proposi-
tion 6.15. The computational aspects are analogous to the case already discussed. This

completes the proof. O

6.10. Taylor expansion of the remaining terms in the master equation

We recall that hy and 1), stand for the functions

Q)= _b;(Q) and ¢ (Q)=tos(O)+ D 10,
Jj=0 (4,1 €Y2r+1
i1
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where £ is a (big) positive integer. Moreover, the b; are bounded holomorphic functions
in the exterior disk D, (0, 1), and g ; is a conformal mapping of the exterior disk onto the
exterior of the level curves I'; of R as above, and where 1[1]-7; are holomorphic functions on
D (0, 1) with bounded derivative. Let us denote by $;;, R;;, and J;; the corresponding

coefficient functions in the following three expansions (for (€T):

2Re(hsotres) ()= D 7H9,;(0)+0(|s|" /245, (6.40)
(1) €ET2x
2
23_1(3"%(0—2): S SUR(OFO(s TP, (6.41)
(7,0 €Er2r
log Re(—COrths 1 ()05, (0)) = D> 711 3;0(Q)+O(| s/ 24t >*+), (6.42)
(4,1 €ET2x

where (6.41) holds since Rotpg,(¢)=2t> on T as a matter of definition. Moreover, we

recall that, by Proposition 6.16, we have that

exp(Jo,0) = Re(—=C0ts 1 ()% +(C) )] s=t=0 = (4AR(¢))™"* onT.

We have already analyzed the coefficient functions R;; for (j,1)€y2. back in Proposi-
tion 6.17. Here, we refine the analysis and obtain a more convenient splitting of 9, ; into
a main term plus a remainder, and express the coeflicients $;; and J;; in terms of the

successive partial derivatives of the functions b; and ) ;.

PROPOSITION 6.18. In the above context, the Taylor coefficients $;; in (s,t) of the
function 2Re hsoths 4 in (s,t) according to (6.40) have the following properties. For j>0
we have

.S;_)j70 = QRe bj‘i’hj,o,

where h;0€POL(j—1,%;0). On the other hand, for (j,1)EY2x with 1>1, we see that
$;1€POL(j, 2;,1).

As for the Taylor coefficients R, associated with Revs, according to (6.41), we
have for (j,1)€Y2x with j>0 and 1>1 that

Ry =2(4AR)"? Re(Cthjt1.1-1)+55.
where
5,0 € POL({(p,q) € Zj41.0: (p,q) <L (G+1,1-1)}).
As for the coefficients J;; appearing in (6.42), Joo is given by
Jo,0=log Re(—(dby,1) = —5log(4AR),

while, for (j,1)€72.\{(0,0)}, we see that J;;€POL(X;41).
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Proof. This follows from an application of the multivariate Taylor’s formula, together
with the multivariate Faa di Bruno formula (Proposition 6.13), and the equation (6.41)
above. Let us indicate the necessary computations, starting with the coeflicients $; ;.
For (j,1)€y2:\{(r,0):r>0} we have

J jHl—i k
St s (
9;0=2Re) Y 9Hi(Q) Y > H 35 ﬁ . (6.43)
i=0 1<u<G+—i k=1 (c,B)€0l (1, (j—i,l)) T=1 "

and consequently 9;;POL(j, X;;), while for indices (j,0) with j>0 we have
$Hj0=2Reb;+b; 0,

where h; 0€POL(j—1,%; ) is given by

& b 8
i=0 1<u< k:l( B)esk (p(j—i,0)) =1 T T

Turning to the claim about the coefficient R, ;, we note that
5. = 2 a+lal 1|wst|
N ESIN G+1)!(I—1)!
The claim in the proposition follows from Proposition 6.17 together with the observation
that

t) l+2(4AR)1/2< —Re(Chji1i- 1)) (6.45)

s=t=0

O e ()l =
(j+t1)! (I—1)! s:t:o_Re(ijH’l_l(O)

€POL({(p,q) €Zj41,0:(p.q) <L (j+1,1-1)}).

In order to see why this claim holds, we simply observe that the first term on the left-

hand side is the Taylor coefficient in (s,t) corresponding to the multi-index (j+1,1—1)
of the function |15 ¢|. The Taylor expansion of this function may be found as follows. We

notice that 1 0=¢, so that if we apply the generalized binomial theorem with exponent

%, we obtain
/22
pal=| (14 X i)
(p,q)#(0,0)
1/2 . k2
=1+ 5Pt
‘ kz}l ( k > ((p,qgoﬁ) pr,q)

B (B 5, (5, i

k21 (p,q)#(0,0) (p,q)#(0,0)

1/2 _. Y
+2Rez<k>( > sPtqapp,q), CeT.

k>1 (p,q)#(0,0)
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Apart from the contribution from the conformal mapping )+, the series involve a trun-
cation given by the index set 2,11, and hence we have no convergence issues. The
maximal index (p, q) in the lexicographical ordering for which 1/Azp,q appears in the Taylor
coefficient for s7T1#=1 of the above expression (6.46), is easily seen to be (j+1,1—1).
The contribution corresponding to the maximal index comes from the last term on the
right-hand side of (6.46), and equals

2 Re (1/2)<wj+u L =Re(Cijs11).

As for all the other indices, the contribution in the above sum to the Taylor coefficient

lies in the complexity class
POL({(pa q) € Zj"l‘l,l—l . (pa q) <L (]+1?l_1)})7

and the claim follows.
Finally, we turn to the coeflicient J; ;. We know that Jo 0=log Re(—&[)o’l), while for
indices (j,1) €72+ \{(0,0)} we apply the Faa di Bruno’s formula to the logarithm of the

Jacobian expression to obtain

Ju= Y (FDM(u—1)I(4AR?

1<u<j+l
s t t¥s,t
S
1 (e, B) €0y (p3(5,0) 7=1
As we may eliminate the half-powers of AR by writing
(4AR)"/? = (AAR)*(4AR) /2 = (AAR)" Re(—Cyo.1 (O))*, (€T,
it follows that J;;€POL(X; 141). O

6.11. Taylor expansion of the density in the master equation

We recall from §6.4 the function

I(6) = 2ot (0)~ 2 ((R-10)(€) - 5 ) +Hou(Re(~0b T O

We compute the Taylor coefficients II I1;, for (j,1)€Y2x given implicitly by

Hs7t(C): Z Sjtlﬁj,l(C)+O(|5|“+1/2+|t|2”’+1).
(j?l)EYZN



ASYMPTOTICS OF PLANAR ORTHOGONAL POLYNOMIALS 393

This will determine what the master equation for the Taylor coefficients (6.19) entails
for the coefficient functions b, and ﬂp’q for k<s and (j,1) €P2r+1-

We recall that the Taylor coefficients $;, 5.0, J5,0, Rj0, and s;; have appeared
above in Propositions 6.17 and 6.18. See in addition the explicit formulee (6.43), (6.44),
(6.45), and (6.47).

PROPOSITION 6.19. The coefficients ﬁj,g(C) in the above expansion are given explic-
itly as follows. For j=I1=0, we have

Io,0(¢) =2 Rebo(¢) +log Re(—(Yo,1(¢)),
while for =0 and j=1,2,3,... the coefficient function is given by
IM;,0(¢) =2Reb;(¢)+T0,

where T;0:=h;0—R;j0+J;0€POL(j—1,%,1). Also, for j=0,1,2,... and 1=1,2,3, ...,

the coefficient function ﬁjJ is given by
I, = ~2(4AR(C)"* Re(Cdj11-1(0) + T,
where T;1:=9;1—5;1+3;,1€POL(j,X), with ¥ as the index set

Y= {(pa Q) € 2:j-i-l,luzj,l-‘rl : (pa Q) <L (.]+17 l_l)}

Proof. The formula for ﬁo,oZHs,t|s:t:o is immediate from the definition (6.18).
Indeed, 10,0(¢)=¢, and the formula (6.18) reads, where h,=2Relog fs,

Io,0(¢) = ho(¢)+log(Re(=Cdho,1(0))),

where we use the fact that 9 =0, according to Proposition 6.17. The conclusion now
follows by observing that ho(¢)=2Reby(().

~

The coefficients 119 for j>1 are given by

-~

Hj0=9j;0—R;0+Jj,0-

The main contribution will come from the term $); 0, and we need to prove that the
remainder of this term, as well as both terms ;o and £, 0 belong to the polynomial
complexity class POL(j—1,%,1). By Proposition 6.18, it follows that

3:jj,l =2Re bj+hj,l7
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with b;;€POL(j—1,%;0). Moreover, by Propositions 6.17 and 6.18, respectively, it
follows that

mj70 S POL(EL()) C POL(]—]., Ej,l) and 3]',0 c POL(EJJ) C POL(]—]., Zj,l);

and hence the claim follows.
We next turn to the coefficients ﬁj,l with (g, Z)GYQK for which [>1. The main term
of
I =9;0—R+35.

will come from the term R ;, while the total remainder, consisting of the remainder from
the term R;; together with the full terms $);; and J;, is supposed to lie in the correct
polynomial complexity class POL(j, ), where

Y={(p,q) €Xj41,UZ; 141:(p,q) <L (j+1,1-1)}.
By Proposition 6.18, we have for such indices (j,1) that
M1 =—2(4Re R)"* Re(Cthj1.-1)+5;.1,
where s;;€POL(j, X). By Proposition 6.18, it also follows that
9,1 €POL(j,%;;) CPOL(j,%), and J,;€POL(X;;4+1) CPOL(},%).

which proves the claim. O

6.12. Algorithmic resolution of the master equation

We are now ready to make the algorithm outlined in §6.4 rigorous. We recall the master

equation for the Taylor coefficients (6.19):

o~ _{ —3log(4m), for €T and (5,1)=(0,0),
77 o, for €T and (4,1) € 72 \{(0,0)}.

In order to solve this system, we solve for the coefficient functions of hs and v, itera-

tively, according to the algorithm outlined in §6.4.

Proof of Proposition 6.6. In view of Propositions 6.8 and 6.16, the conformal map-
ping o+ and its Taylor coeflicients 1[)0_’1 for 1=0,1,...,2k+1 with respect to the time
parameter ¢ of the flow are well defined, and they satisfy the required smoothness prop-

erties: for ¢t near 0, the conformal mapping vy extends holomorphically across the
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boundary T to an exterior disk D, (0, /01 ) according to Proposition 6.11. In addition,
the derivative ¢6’t remains uniformly bounded as long as the weight R is confined to
a uniform family in W(go, 0¢) for fixed oo and o¢. Moreover, the coefficient functions
1[}071 extend holomorphically to D.(0, ¢1), by Remark 6.4. This completes Step 1 of the
algorithmic procedure.

Turning our attention to Step 2, we recall from Proposition 6.16 that on the circle

T, we have
Re(—Ciho1) = (4AR(C)) /2.

Hence, by Proposition 6.19 the equation ﬁo,oz—% log(47) is equivalent to
2Reby— 3 log(4AR) = — 3 log(47w) on T.

Since we want the function f, to be zero-free in the exterior disk and real at infinity, this
tell us that
bo = —1log(4m)+1iHp, [log(4AR)].

We note that this automatically gives the normalization Im bg(c0)=0. By Proposition 6.5
and Remark 6.4, it follows that by extends holomorphically to the exterior disk D, (0, g1).
Moreover, by clearly remains uniformly bounded provided that R is confined to a uniform
family in W(go,00). This completes Step 2.

We proceed to Step 3 of the algorithmic procedure. We are now in the following

situation. For some jp=>1, our known data set is POL(jo—1,X), where

S ={(4,1) €¥ar: (4, 1) <1 (Jo,0)}

and all elements of POL(jp—1, X) meet the required extension conditions. In particular,
all the functions by, ..., bj,—1 and ¢, for all (j,1)€ax+1 with (4,1) <. (jo, 0) are already
known. In addition, the relations (6.19) are met for all (j,1) €2, with (4,1)<r(jo—1,1).
We will now show how this allows us to obtain the relations (6.19) for all subsequent
indices (j,1)€Y2x with (j,1)<wL(jo,0), by making appropriate choices of the functions
W, for 1=0 with (jo, 1) €V2r+1. The additional indices for which we need to solve (6.19)
are those (j,1) €2, of the form (j,1)=(jo—1,1+1), where [>0.

To achieve this, we assume that for all [ with 0<I<lp—1, we have obtained the
coefficient functions zﬁjml by solving the equation (6.19) for the index pair (jo—1,1+1),
and turn to the next equation. This reads ﬁj0_1,10+1:0, as long as (jo—1,lo+1)EP2x-
At this point, the known data set is POL(jo—1,%’), where

Y ={(4,1) €Vor+1: (4, 1) <L (o, lo)}
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If Iy is too large for (jo,lo) EY2x+1 to hold, we are in fact done, we do not need to obtain
/(&jo,lo for such indices. On the other hand, if (jo,lo) €Y2x+1, We proceed as follows. By

Proposition 6.19, the equation ﬁj0,1710+1:0 may be written in the form
Ty 11041 = —2(44AR)"* Re((jo 10) +Tjo 10011 =0 on T,

where T, _1;,4+1€POL(jo—1,%’). We provide a solution to this equation by the formula

) 1 Tio1
Yjo,to = 5CHb, {(iOA 11%)0;; ] : (6.48)

The function ¥,,_1,,+1 has a polarization which is holomorphic in (z,@) for (z,w)e
A(Ql, o1), and the same holds for the weight R. As a consequence, it follows that z/AJj0710
extends holomorphically to the exterior disk D¢ (0, g1), and that 1, ;,(¢)=0(|¢|) with an
implicit constant which is uniformly bounded, provided that R is confined to a uniform
family in W(go, 09).

The base step lp=0 of the induction procedure of Step 3 is entirely analogous.
Indeed, the known data set is POL(jo—1,X) with ¥ as above, and by Proposition 6.19

the relevant equation ﬁjo,l,l =0 takes the form
—2(4AR)'/? Re(§¢j0,0)+‘zjof1,1 =0 onT,

where T;,_1 1 in particular lies in POL(jo—1,%). Hence, we obtain ¢;, o by the formula
(6.48) with [ replaced by zero.

We now turn to Step 4. After the completion of Step 3, the situation is as follows:
the known data set is POL(jo—1,X) with

E={0,0:0(,1) <L (o+1,0)}, (6.49)

where every element of POL(jo—1, %) polarizes to A(o1,01). In addition, the relations
(6.19) are met for all (j,1)€y2. with (j,1)<L(jo,0). We recall that in particular this
means that the known data set consists of the coefficient functions by, ..., bj,—1 and 1/3le
for (j,1)€Y2x+1 with (j,1)<L(jo+1,0). In this step, we need to find the function by,
and verify that the relation (6.19) is then met with (j,1)=(jo,0). To this end, we apply
Proposition 6.19, and observe that the equation (6.19) with (4,1)=(jo, 0) is equivalent to
having

-~

IT;,0=2Re bjo +%j50=0 onT,
where T;, 0€POL(jo—1,X), with £ given by (6.49). Since POL(jo—1,X) is a collection

of known functions, we hence obtain an equation for the unknown function b;,, with
solution
1
bjo = 7§HD9 [Tjo,0]~
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In view of Proposition 6.5 and Remark 6.4, the function b;, extends holomorphically
to the exterior disk D (0, 01), and remains uniformly bounded if the weight R is con-
fined to a uniform family in W(go, 00). Moreover, we observe that bj, has the required
normalization at infinity: Im b;,(c0)=0.

We finally turn to Step 5. The key observation is that we are now in a position to
return to Step 3 followed by Step 4, with jg replaced by jo+1. Since Step 1 and Step
2 combine to form the initial data for Steps 3 and 4 with jo=1, the algorithm produces
iteratively the entire set of coefficient functions, and solves in the process all the equations
(6.19) for (j,1)EV2x-

Equipped with the functions b; for j=0, ..., s, the conformal mappings o and the
coefficients zﬁﬂ for (j,1)€Y2rt1N{(J,1):7>1}, we observe that the functions hy and 1),
given by

he(Q)=Y_sb;(¢) and o i(Q)=voi+ Y, stu(C)
j=0 (G, EV2m+1
i1
are well defined, and have the desired smoothness and mapping properties. By the
Becker-Pommerenke criterion of Lemma 6.10, it is immediate that 15, as defined, is
univalent in a neighborhood of the closed exterior disk D, for s and ¢ close to zero. As
s+ extends holomorphically to the exterior disk D (0, \/El), and since 1, ; is a smooth
perturbation of the identity it follows that 15+ is univalent on D (0, g2) and that

ws,t(De((L 92)) - ]De(oa Ql)

for s and t close to zero, provided that gs is chosen appropriately with /01 <02 <1.
The conclusion of Proposition 6.6 is now an immediate consequence of the relations
(6.19) for the Taylor coefficients of the logarithm of the function

exp(IL (€)= | fso s o (Q) e ™2 (Bve) Q=D Ro(—Cp, (O] 4(C))

for (€T, in the variables (s,t) near (0,0), as verified in the above algorithm. O

6.13. Implementation of the orthogonal foliation flow for R=R,

It remains only to prove the key lemma (Lemma 3.9). The hard work was completed in
the previous subsection. The existence of the orthogonal foliation flow now follows if we

use s=1/m as our quantization parameter.

Proof of Lemma 3.9. We first claim that Qe¢-! is uniformly real-analytic in the

exterior disk D¢ (0, po o) for T7€l,,. By this we mean that there exists a number g, o>0
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such that QQo¢, has a polarization which is uniformly bounded on the 20 ¢-fattened

diagonal annulus A(po’o, 00,0) (see Definition 6.1). Let p; ¢ be the number given by

p1,0 :=max{poo, ((1+U§,0)1/2+0070)71}-

Moreover, the function Q® ¢!, which is the harmonic extension of Q-¢- 1|t to the ex-
terior disk D, is uniformly bounded on A(pl}o,aop) in view of Proposition 6.2 and an
elementary decomposition of harmonic functions into holomorphic and conjugate holo-
morphic functions. In view of (2.3), the same holds for Q,o¢;' and consequently also
for RT:(Q—@T)O(b; L In view of the uniform flatness of R, near the unit circle, the
function R, defined by the relation R, (¢)=(1—|(|*)?>R,0({) enjoys the same property
as well, namely that its polarization is uniformly bounded on A(pl,o, 00,0)- By possibly
replacing 0o o by a smaller positive number o1 ¢, we may guarantee that the polarization
of R, remains bounded away from zero in the slightly smaller fattened diagonal annulus

A(p1,0,01,0). If necessary, we replace p1,9 by the larger number

p2,0 =max{p1 o, ((1+Ui0)l/2+0170)71},

which is still smaller than 1.

In view of the above considerations and the uniform bounds from Proposition 3.6, the
family R, for 7€ I, constitute a uniform family in W(gy, 0¢) where po=p2,0 and cp=01 ¢.
By Proposition 6.5, we obtain numbers p; and o1 with 0<p; <1 and o1 >0. We set pp=p01
and apply Proposition 6.6 to obtain the desired conformal mappings ¥, n+=1%s: and
ffrf 21: fs with associated asymptotic expansion to precision &, where s=m~!. Here, the
function f},’f Z«L is holomorphic and bounded on D, (0, po), positive at infinity and bounded
away from zero in the entire exterior disk D, (0, pg). Moreover, the flow equation (3.5) of

Lemma, 3.9 holds to the desired accuracy, in view of Proposition 6.6 with s=m™". O

7. Connection with soft Riemann—Hilbert problems
7.1. Matrix O-problems and orthogonal polynomials

Given the successful application of Riemann—Hilbert problem methods to the study of
orthogonal polynomials in the context of the real line and the unit circle, it has been
proposed that the planar orthogonal polynomials should be approached in a similar
fashion. Following Its and Takhtajan [39], we consider a matrix d-problem (or a soft
Riemann—Hilbert problem) and see how it fits in with our orthogonal foliation flow.

A polynomial is said to be monic if it has leading coefficient equal to 1. So, let

Tm,n denote the monic orthogonal polynomial of degree n with respect to the measure



ASYMPTOTICS OF PLANAR ORTHOGONAL POLYNOMIALS 399
e~ 2mQ dA, where Q is assumed 1-admissible. In other words, Tm,n 1S given by

Wm,n(z) = ‘Ii;n%npmﬂl('z%

where Ky, ,, is the leading coefficient of the normalized orthogonal polynomial P, .

If feLP(C) for some 1<p<2, we let Cf be its Cauchy transform, given by

f(w)
Crl)= [ 1% dA(w)
which is well defined almost everywhere and represents a function which is locally in the
Sobolev space WP, The importance of the Cauchy transform comes from the fact that,
in the sense of distribution theory, 0Cf=f.
In [39], Its and Takhtajan propose to study the asymptotics of 7y, , starting from
the observation that the matrix-valued function

e T (%) —C[ﬁmyne”mQ](z)
Ymn(2) = <—n$n,n_mm,n1<z> nﬁ,n_lc[ﬁm,nlemw(z)) 1)

solves the d-problem

. (7.2)
Y(2)= (1+0(z*1))( A QH), as || = oo,

z

{ oY (2) =Y (2)W(z), for z €C,

where W (z)=W,,(z) is the matrix-valued function

W(e) = (0 e—2mQ(?) )
0 0

Moreover, the solution is unique, as shown in [39]. We remark that classical Riemann—
Hilbert problems, where a jump occurs on a curve I' may be phrased as O-problems where
dY (z) is understood as a matrix-valued measure supported on I', and the above problem
is a natural generalization to a more genuinely 2-dimensional situation.

The idea that underlies the Its—Takhtajan approach, as well as the classical Riemann—
Hilbert approach to orthogonal polynomials, is the expectation that one may construc-
tively obtain an approximate solution ?:?mn(z) to the problem (7.1) (or the corre-

sponding RHP), which should then produce an entry (Y., ,)1,1 which is approximately

equal to Ty, ,(2).
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7.2. Integration of Riemann—Hilbert problems along curve families

Unfortunately, it has proven difficult to solve the problem (7.1) constructively. The
following simple observation shows how our orthogonal foliation flow reduces the O-
problem to a family of more classical Riemann—Hilbert problems along closed curves.

In order to describe this problem, we denote by J(z) a 2x2 jump matrix and let T’
be an oriented smooth simple closed curve in C. We denote by Q% and Q~ the interior
and exterior components of the complement C\T', respectively. If f is a function defined
on C\I', which is continuous up to the boundary I' as seen from each component, we
define the two boundary value functions f* and f~ on I by

fE5(¢) = lim f(z), Cel.

z—C
2€Q*
We consider the Riemann—Hilbert problem of finding a 2 x 2 matrix-valued function Y (z)

which meets
Y is holomorphic on C\T,

YH2) =Y (2)+Y (2)J(2), for zeT, (7.3)
Y(z):(I+O(z_1))(Zg Z‘_)n), as |2] = oo,

In order to analyze this problem, we need a variant of the Cauchy transform, which

applies to functions defined on I'. For smooth I'" and reasonable f, we write

L[ fw),
21 Jp w—=z

Crf(z)= w, z€C\I.

As is well known, the classical Plemelj formula is a useful tool in the study of Riemann—

Hilbert problems:
(Crf)"(2)=(Crf) (2)+[f(2). (7.4)

We now connect the more classical Riemann-Hilbert problem (7.3) with the matrix 0-
problem (7.2).

PROPOSITION 7.1. Let {T't}ser be a smooth strictly expanding flow of positively ori-
ented simple closed curves, and denote by D the union D=, ;I's. Let w(z) denote a
smooth positive function on D, and denote by & D—C the vector field vij, where n(z)
denotes the outward unit normal field to the curve family and v denotes the scalar nor-
mal velocity of the flow. Then, for each t€l, there is a unique solution Yi(z) to the

Riemann—Hilbert problem (7.3) with jump matriz

Jo <0 2w£>.
0 0
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Also, if there exists a continuous positive function A(t) such that (Y;)1,1 and A(t)(Yi)21

are independent of t, then the matriz-valued function
V(z)= A7 / A()Yi(2) dt A"
I

is the unique solution to (7.2), with

W= ( 0 1Dw > 7
0 0
provided that

A(t):<(1) A?t))’ Al:((l) fIA(()t)dt)’ and A2:<|g| (1)>

Proof. We first establish the existence of solutions to the problem (7.3) of I';, which
may be expressed in terms of a family of t-dependent orthogonal polynomials. We recall
that £ factors as v7, where v denotes the speed of the boundary in the normal direction,
while 7 denotes the outward pointing unit normal field. Since arc-length measure |dz| on
T'; relates to the complex line element dz by dz=7|dz| where T denotes the unit tangent

vector field along T, it follows that

1 1 .
%dZ—g(—ZTNdZ‘—ndS (7.5)

where we recall the convention ds=|dz|/27. From this, it follows that (27i)~'édz=vds,

and we may consequently define an inner product by

T 2mi

rghei= [ F(2)a(0(=) ds(z) = = /f(Z)Q(Z)ﬁ(Z)dZ~
Iy Iy

Let {m, ;}» denote the sequence of monic orthogonal polynomials with respect to this
inner product, such that 77, ; has degree n, and denote by &}, ;, the leading coefficient of
the corresponding normalized orthogonal polynomial P , =k}, ;77 ;. It is straightforward
to check that the function

( Tt 2Cr, [}, jw] )

%(Kzfl,t)%r;;fl,t _(’ifzfl,t)QCFt[7?271,#5}(2)
supplies a solution to the Riemann—Hilbert problem (7.3).
As for the uniqueness, it is clear from Plemelj’s formula (7.4) and the jump condition
that any solution Y;(z) must take the form

Yi(z) = (at(Z) uy(2)+2Cr, [atwfl(z))

bi(2)  vi(2)+2Cr, [brt](2)
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where a;, b;, us, and v; are entire functions. From the growth constraint at infinity,
we see that these four functions are all polynomials. Moreover, u;=v,=0 for the same
reason. A standard expansion of the Cauchy kernel at infinity shows that a; is a monic
polynomial of degree n which is orthogonal to the lower-degree polynomials Pol,, with
respect to wfdz on I'y. It follows that a;=m}, ;. Analogously, b; is given by

by =— (’*'7*1—1,75)277;—1,#

I

We have established the unique solvability of the Riemann—Hilbert problem (7.3) with
the given jump matrix.

Next, we turn to the connection with the d-problem (7.2). Under the assumption
that (Y;)1,1=a;=A is independent of ¢, and that for some t-dependent parameter A(t),
the expression A(t)(Y:)2,1=A(t)b;=B is also independent of ¢, we may consequently write

B A(z) QCFt[ACUf](Z)
At)Yi(2)= <B(z) 2Cr, [ng](z)>’

where we recall that A(t) is the matrix given in the proposition. Recall that we may

integrate over the flow {I';}; using the disintegration

(2 wmerae) o= [ aae,

for functions w such that the indicated integrals have a well-defined meaning. It now
follows that if (X\);= [, A(t) dt, the matrix-valued function

11| A(z) fC[z}wlD](Z) )A_1
II|B(z) —C[Bwlpl(z))

_ ( A(2) —C[;lwlg](z) )
((N1)7'B(2) —((M1)"'C[Bwlp|(2)

P [ Aoy gt =

solves

)= (8 <<A>j>lwllgwlp) :‘m@ w(l)D>

with asymptotics

z" 0

Po-uro (7 0,

), as |z| = +o0,

as a consequence of the corresponding asymptotics of Y; for each tel. O
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Remark 7.2. (a) For the orthogonal foliation flow, in the context of a neighborhood
of the boundary curve of the droplet S; with 7=n/m, the (approximate) orthogonal
polynomial of degree n is also approximately orthogonal to the lower-degree polynomials
along the individual flow loops corresponding to w=e~?™?. So, in view of Proposi-

tion 7.1, the conditions
0:(Y2)1,=0 and O;(A(t)(Yi)2,1)=0 (7.6)

should be met at least approximately for some appropriate scalar-valued function A(¢)
(cf. the presentation in §1.6). Alternatively, we could use (7.6) as a criterion to define a
flow of curves. In the given setting, this should give us back our orthogonal foliation flow.
In other words, (7.6) should be analogous to the condition (6.19), once the Riemann—
Hilbert problems of Proposition 7.1 are approximately solved in a constructive fashion,

and we would expect that, in an approximate sense,

Ft ~ ¢;1(wm,n,7t(’]r))‘

It is entirely possible that the conditions (7.6) would be more stable close to the zeros
of the orthogonal polynomial 7, ,. For instance, this might be the case with a highly
eccentric ellipse.

(b) In their work, Its and Takhtajan use a bounded domain € to address possible
convergence issues. Here, the potential ) grows sufficiently rapidly, so there is no need

for us to consider such a truncation.
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