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1. Introduction

1.A. Higher-rank Cremona groups

The Cremona group of rank-n, denoted by Birk(Pn), or simply Bir(Pn) when the ground

field k is implicit, is the group of birational transformations of the projective space.

The classical case is n=2, where the group is already quite complicated but is

now well described, at least when k is algebraically closed. In this case, the Noether–

Castelnuovo theorem [Cas], [AC] asserts that Bir(P2) is generated by Aut(P2) and a single
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standard quadratic transformation. This fundamental result, together with the strong

factorisation of birational maps between surfaces helps to have a good understanding of

the group.

The dimension n⩾3 is more difficult, as we do not have any analogue of the Noether–

Castelnuovo theorem (see §1.C for more details) and also no strong factorisation. Here

is an extract from the article “Cremona group” in the Encyclopedia of Mathematics,

written by V. Iskovskikh [I1] in 1982 (and translated in 1987) (who uses the notation

Cr(Pnk) for the Cremona group):

One of the most difficult problems in birational geometry is that of de-

scribing the structure of the group Cr(P3k), which is no longer gener-

ated by the quadratic transformations. Almost all literature on Cremona

transformations of 3-dimensional space is devoted to concrete examples

of such transformations. Finally, practically nothing is known about the

structure of the Cremona group for spaces of dimension higher than 3.

More than thirty years later, there are still very few results about the group structure

of Bir(Pn) for n⩾3, even if there were exciting recent developments using a wide range

of techniques. After the pioneering work [Dem] on the algebraic subgroups of rank-n in

Bir(Pn), we should mention the description of their lattices via p-adic methods [CX], the

study of the Jordan property [PS], and the fact that Cremona groups of distinct ranks

are non-isomorphic [Can].

For n=3, there is also a classification of the connected algebraic subgroups [U],

[BFT1], and partial classification of finite subgroups [Pr1]–[Pr3]. There are also numerous

articles devoted to the study of particular classes of examples of elements in Bir(Pn),
especially for n small (we do not attempt to start a list here, as it would always be very

far from exhaustive).

The question of the non-simplicity of Cremona groups of higher rank was up to now

left open. Using modern tools such as the Minimal model programme and factorisation

into Sarkisov links, we will be able in this text to give new insight on the structure of

the Cremona groups Bir(Pn) and of its quotients.

1.B. Normal subgroups

The question of the non-simplicity of Bir(Pn) for each n⩾2 was also mentioned in the

article of V. Iskovskikh[I1] in the Encyclopedia:

It is not known to date (1987) whether the Cremona group is simple.
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The question was in fact asked much earlier, and is explicitly mentioned in a book

by F. Enriques [E, p. 116] in 1895:

Tuttavia altre questioni d’indole gruppale relative al gruppo Cremona nel

piano (ed a più forte ragione in Sn, n>2) rimangono ancora insolute;

ad esempio l’importante questione se il gruppo Cremona contenga alcun

sottogruppo invariante (questione alla quale sembra probabile si debba

rispondere negativamente).(1)

The feeling expressed by F. Enriques that the Cremona group should be simple was

perhaps supported by the analogy with biregular automorphism groups of projective

varieties, such as Aut(Pn)=PGLn+1(k). In fact in the trivial case of dimension n=1, we

have Bir(P1)=Aut(P1)=PGL2(k), which is indeed a simple group when the ground field

k is algebraically closed. Another evidence in favour of the simplicity of the Cremona

groups is that one can endow BirC(Pn) with two topologies: the Zariski or the Euclidean

one (see [Bla], [BF]), and that in both cases all closed normal subgroups are either trivial

or the whole group, as proven in [Bla] for n=2 and generalised in [BZ] to any dimension.

The non-simplicity of Bir(P2) as an abstract group was proven, over an algebraically

closed field, by S. Cantat and the second author [CL]. The idea of proof was to apply

small cancellation theory to an action of Bir(P2) on a hyperbolic space. A first instance

of roughly the same idea was [Dan], in the context of plane polynomial automorphisms

(see also [FL]). The modern small cancellation machinery as developed in [DGO] allowed

A. Lonjou to prove the non-simplicity of Bir(P2) over an arbitrary field, and the fact that

every countable group is a subgroup of a quotient of Bir(P2) [Lon].
Another source of normal subgroups for Bir(P2), of a very different nature, was

discovered by the third author, when the ground field is R [Z]. In contrast with the

case of an algebraically closed field where the Cremona group of rank 2 is a perfect

group, she proved that the abelianisation of BirR(P2) is an uncountable direct sum of

Z/2. Here the main idea is to use an explicit presentation by generators and relations.

In fact a presentation of Bir(P2) over an arbitrary perfect field is available since [IKT],

but because they insist in staying inside the group Bir(P2), they obtain very long lists.

In contrast, if one accepts to consider birational maps between non-isomorphic varieties,

the Sarkisov programme provides more tractable lists of generators. Using this idea

together with results of A.-S. Kaloghiros [Kal], the existence of abelian quotients for

Bir(P2) was extended to the case of many non-closed perfect fields by the second and

third authors [LZ].

(1) “However, other group-theoretic questions related to the Cremona group of the plane (and, even

more so, of Pn, n>2) remain unsolved; for example, the important question of whether the Cremona
group contains any normal subgroup (a question which seems likely to be answered negatively).”
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The present paper is a further extension in this direction, this time in arbitrary

dimension, and over any ground field k which is a subfield of C. Our first result is the

following:

Theorem A. For each subfield k⊆C and each n⩾3, there is a group homomor-

phism

Birk(Pn)
⊕
I

Z/2

where the indexing set I has the same cardinality as k, and such that the restriction to

the subgroup of birational dilatations given locally by

{(x1, ..., xn) (x1α(x2, ..., xn), x2, ..., xn) :α∈k(x2, ..., xn)
∗}

is surjective. In particular, the Cremona group Birk(Pn) is not perfect and thus not

simple.

We give below a few immediate comments, and a quick preview of the rest of the

introduction where we will present several statements that generalise or complement

Theorem A in different directions.

First we emphasise that this result contrasts with the situation in dimension 2 (over

C). Indeed, as BirC(P2) is generated by the simple group Aut(P2)=PGL3(C) and one

quadratic map birationally conjugated to a linear map, every non-trivial quotient of

BirC(P2) is non-abelian and uncountable.

Another intriguing point at first sight is the indexing set I. We shall be more precise

later, but the reader should think of I as a kind of moduli space of some irreducible

varieties of dimension n−2. Indeed to construct the group homomorphism we will see Pn

as being birational to a P1-bundle over Pn−1, and each factor Z/2 is related to the choice

of a general hypersurface in Pn−1 of sufficiently high degree, up to some equivalence.

Observe that in dimension n=2 an irreducible hypersurface of Pn−1 is just a point, and

so cannot be of high degree, at least over C: this explains why the homomorphism of

Theorem A becomes trivial in the case of BirC(P2).
The next natural question is to understand the kernel of the group homomorphism.

As will soon become clear, it turns out that

Aut(Pn)=PGLn+1(k)

is contained in the kernel. This implies that the normal subgroup generated by Aut(Pn)
and any finite subset of elements in Birk(Pn) is proper. Theorem C below will be a

stronger version of this fact. We also point out that because of the already mentioned

result from [BZ], the kernel of all our group homomorphisms is dense in Bir(Pn), so
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the group homomorphisms Bir(Pn)!Z/2 that we construct are not continuous (when

putting the non-trivial topology on Z/2).

One can also ask about the possibility to get a homomorphism to a free product of

Z/2, instead of a direct sum. We will see that is is indeed possible, and is related to the

existence of many conic bundle models for Pn which are not pairwise square birational.

See Theorems D and E below.

Finally, one can ask about replacing Pn by a nonrational variety. In this direction,

we will prove the following result about the group Bir(X) of birational transformations

of a conic bundle X/B.

Theorem B. Let B⊆Pm be a smooth projective complex variety with dimB⩾2,

P!Pm be a decomposable P2-bundle (projectivisation of a decomposable rank-3 vector

bundle) and X⊂P be a smooth closed subvariety such that the projection to Pm gives a

conic bundle η:X!B. Then, there exists a group homomorphism

Bir(X)
⊕
Z

Z/2,

the restriction of which to

Bir(X/B)= {φ∈Bir(X) : η�φ= η}

is surjective.

Moreover, if there exists a subfield k⊆C over which X, B and η are defined, the

image of elements of Bir(X/B) defined over k is also infinite.

Theorem B applies to any product X=P1×B, to smooth cubic hypersurfaces

X ⊆Pn+1

(see §8.E and in particular Corollary 8.8 and Proposition 8.9), and to many other vari-

eties of dimension n⩾3 which are very far from being rational (see for instance [Kol5,

Theorem 3] and [AO, Theorem 1.1 and Corollary 1.2]). Of course it also includes the

case of X=P1×Pn−1 which is birational to Pn, but observe that Theorem A is slightly

stronger in this case, since there the set indexing the direct sum has the same cardinality

as the ground field, and also because we can give an explicit subgroup, easy to describe,

whose image is surjective.

1.C. Generators

As already mentioned, the Noether–Castelnuovo theorem provides simple generators of

Bir(P2) when k is algebraically closed. Using Sarkisov links, there are also explicit (long)
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lists of generators of Bir(P2) for each field k of characteristic zero or more generally for

each perfect field k [I2], [I3]. In dimension n⩾3, we do not have a complete list of all

Sarkisov links and thus are far from having an explicit list of generators for Bir(Pn). The
lack of an analogue to the Noether–Castelnuovo theorem for Bir(Pn) and the question

of finding good generators was already cited in the article of the Encyclopedia above, in

[HM2, Question 1.6], and also in the book of Enriques [E, p. 115]:

Questo teorema non è estendibile senz’altro allo Sn dove n>2; resta

quindi insoluta la questione capitale di assegnare le più semplici trasfor-

mazioni generatrici dell’intiero gruppo Cremona in Sn per n>2.(2)

A classical result, due to H. Hudson and I. Pan [Hud], [Pa], says that Bir(Pn),
for n⩾3, is not generated by Aut(Pn) and finitely many elements, or more generally

by any set of elements of Bir(Pn) of bounded degree. The reason is that one needs at

least, for each irreducible variety Γ of dimension n−2, one birational map that contracts

a hypersurface birational to P1×Γ. These contractions can be realised in Bir(Pn) by

Jonquières elements, i.e. elements that preserve a family of lines through a given point,

which form a subgroup

PGL2(k(x2, ..., xn))⋊Bir(Pn−1)⊆Bir(Pn).

Hence, it is natural to ask whether the group Bir(Pn) is generated by Aut(Pn) and
by Jonquières elements (a question for instance asked in [PS]).

We answer this question by the negative, in the following stronger form:

Theorem C. Let k be a subfield of C, and n⩾3. Let S be a set of elements in the

Cremona group Birk(Pn) that has cardinality smaller than the one of k (for example S

finite, or S countable if k is uncountable), and let G⊆Birk(Pn) be the subgroup generated

by Autk(Pn), by all Jonquières elements and by S.

Then, G is contained in the kernel of a surjective group homomorphism

Birk(Pn) Z/2.

In particular, G is a proper subgroup of Birk(Pn), and the same is true for the normal

subgroup generated by G.

It is interesting to make a parallel between this statement and the classical Tame

Problem in the context of the affine Cremona group Aut(An), or group of polynomial

(2) “This theorem cannot be easily extended to Pn where n>2; therefore, the main question of

finding the most simple generating transformations of the entire Cremona group of Pn for n>2 remains
open.”
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automorphisms. This is one of the “challenging problems” on the affine spaces, de-

scribed by H. Kraft in the Bourbaki seminar [Kra]. Recall that the tame subgroup

Tame(An)⊆Aut(An) is defined as the subgroup generated by affine automorphisms and

by the subgroup of elementary automorphisms of the form

(x1, ..., xn) 7−! (ax1+P (x2, ..., xn), x2, ..., xn).

This elementary subgroup is an analogue of the PGL2(k(x2, ..., xn)) factor in the Jon-

quières group, and of course the affine group is PGLn+1(k)∩Aut(An). The Tame Problem

asks whether the inclusion Tame(An)⊆Aut(An) is strict in dimension n⩾3. It was solved

in dimension 3 over a field of characteristic zero in [SU], and remains an open problem

otherwise.

On the one hand, one could say that our Theorem C is much stronger, since we

consider the normal subgroup generated by these elements, and we allow some extra

generators. It is not known (even if not very likely) whether one can generate Aut(A3)

with linear automorphisms, elementary automorphisms and one single automorphism,

and not even whether the normal subgroup generated by these is the whole group Aut(A3)

(this last statement, even without the extra automorphism, seems more plausible).

On the other hand, even in dimension 3 we should stress that Theorem C does not

recover a solution to the Tame Problem. Indeed, it seems plausible that the whole group

Aut(An) lies in the kernel of the group homomorphism to Z/2 of Theorem C. In fact,

every element of Bir(Pn) that admits a decomposition into Sarkisov links that contract

only rational varieties (or more generally varieties birational to P2×B for some variety

B of dimension n−3) is in the kernel of all our group homomorphisms (all are given by

the construction of Theorem D below), and it seems natural to expect that elements of

Aut(An) are of this type, but we leave this as an open question. In fact we are not aware

of any element of Aut(A3) which has been proved to lie outside the group generated,

in Bir(P3), by linear and Jonquières maps: see [BH, Proposition 6.8] for the case of the

Nagata automorphism, which can be generalised to any other automorphism given by a

Ga action, as all algebraic subgroups of Bir(P3) isomorphic to Ga are conjugate [BFT2].

1.D. Overwiew of the strategy

To give an idea of the way we construct group homomorphims from birational groups

to Z/2, first consider as a toy model the signature homomorphism on the symmetric

group Sn. One possible proof of the existence of the signature goes as follows. A presen-

tation by generators and relations of Sn is

Sn= ⟨τi=(i i+1) : τ2i =1, (τiτi+1)
3 =1 and (τiτj)

2 =1⟩
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where the relations are for all i=1, ..., n−1 and all n⩾j⩾i+2. Then, by sending each τi

to the generator of Z/2, one gets a group homomorphism because each relation has even

length and so is sent to the trivial element.

Now we would like to apply the same strategy for a group Bir(Z) of birational trans-

formations: use a presentation by generators and relations, send some of the generators

to the generator of Z/2, and check that all relations are sent to the trivial element. The

trick is that we do not apply this strategy directly to Bir(Z), but to a larger groupoid

containing Bir(Z), where we are able to produce a nice presentation (as a groupoid) by

generators and relations.

To define this groupoid, first recall that by the Minimal model programme, every

variety Z which is covered by rational curves is birational to a Mori fibre space, and

every birational map between two Mori fibre spaces is a composition of simple birational

maps, called Sarkisov links (see Definition 3.8). We are also able to give a description of

the relations between Sarkisov links, in terms of elementary relations (see Definition 4.4

and Theorem 4.28). We associate with Z the groupoid BirMori(Z) of all birational maps

between Mori fibre spaces birational to Z. The main idea is that even if we are primarily

interested in describing homomorphisms from the group Bir(Z) to Z/2, it turns out to

be easier to first define such a homomorphism on the larger groupoid BirMori(Z), and

then restrict to Bir(Z).

1.E. Construction of the groupoid homomorphism

Now we describe Theorem D, our main technical result, which is the base for all other

theorems in this paper.

We concentrate on some special Sarkisov links, called Sarkisov links of conic bundles

of type II (see Definitions 3.8 and 3.9). With each such link, we associate a marked conic

bundle, which is a pair (X/B,Γ), where X/B is a conic bundle (a terminal Mori fibre

space with dimB=dimX−1) and Γ⊂B is an irreducible hypersurface (see Definition 3.22

and Lemma 3.23). We also define a natural equivalence relation between marked conic

bundles (Definition 3.22).

For each variety Z, we denote by CB(Z) the set of equivalence classes of conic bundles

X/B with X birational to Z, and for each class of conic bundles C∈CB(Z) we denote

by M(C) the set of equivalence classes of marked conic bundles (X/B,Γ), where C is the

class of X/B.

The Sarkisov programme is established in every dimension [HM2] and relations

among them are described in [Kal]. Inspired by the latter, we define rank-r fibrations

X/B (see Definition 3.1); rank-1 fibrations are terminal Mori fibre spaces and rank-2
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fibrations dominate Sarkisov links (see Lemma 3.7). We prove that the relations among

Sarkisov links are generated by elementary relations (Definition 4.4), which we define as

relations dominated by rank-3 fibrations (see Theorem 4.28).

We associate with each such Sarkisov link χ an integer cov. gon(χ) that measures

the degree of irrationality of the base locus of χ (see §2.G). The BAB conjecture, proven

in [Bir1], [Bir2], tells us that the set of weak Fano terminal varieties of dimension n

form a bounded family and the degree of their images by a (universal) multiple of the

anticanonical system is bounded by a (universal) integer d (see Proposition 5.1). As a

consequence, we show that any Sarkisov link χ of conic bundles of type II appearing in

an elementary relation over a base of small dimension satisfies cov. gon(χ)⩽d (see Propo-

sition 5.3). This and the description of the elementary relations over a base of maximal

dimension and including a Sarkisov link of conic bundles of type II (Proposition 5.5)

allows us to prove the following statement in §5.C. (Here we use the notation � for a

free product of groups.)

Theorem D. Let n⩾3. There is an integer d>1 depending only on n, such that

for every conic bundle X/B, where X is a terminal variety of dimension n, we have a

groupoid homomorphism

BirMori(X)−! �
C∈CB(X)

( ⊕
M(C)

Z/2

)

that sends each Sarkisov link of conic bundles χ of type II with

cov. gon(χ)>max{d, 8 conn. gon(X)}

onto the generator indexed by its associated marked conic bundle, and all other Sarkisov

links and all automorphisms of Mori fibre spaces birational to X onto zero.

Moreover, it restricts to group homomorphisms

Bir(X)−! �
C∈CB(X)

( ⊕
M(C)

Z/2

)
and Bir(X/B)−!

⊕
M(X/B)

Z/2.

In order to deduce Theorem A, we study the image of the group homomorphisms

from Bir(X) and Bir(X/B) provided by Theorem D, for some conic bundle X/B. In

particular, we must check that these restrictions are not the trivial morphism. We give a

criterion to compute the image in §6.A. We apply this criterion to show that the image is

very large if the generic fibre of X/B is P1 (or equivalently if X/B has a rational section,

or is equivalent to (P1×B)/B). This is done in §6.B and allows us to prove Theorem A.

Then, in §6.C, we study the more delicate case where the generic fibre X/B is not P1 (or
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equivalently if X/B has no rational section), and show that for each conic bundle X/B,

the image of Bir(X/B) by the group homomorphism of Theorem D contains an infinite

direct sum of Z/2 (Proposition 6.9). This allows to prove Theorem B.

Finally, let us mention that [Z], [LZ], [Schn] construct homomorphisms from plane

Cremona groups over certain non-algebraically closed perfect fields, which we can see as

two-dimensional special cases of the homomorphisms from Theorem D. The homomor-

phism in [LZ], [Schn] is in fact constructed with the same strategy as the one employed

here, replacing the covering gonality with the size of Galois orbits, while [Z] works with

generators and relations inside BirR(P2).

1.F. Non-equivalent conic bundle structures

Coming back to the case of Pn, we study the free product structure appearing in Theorem

D. We want to prove that the indexing set CB(Pn) is large. This is equivalent to the

question of existence of many non-equivalent conic bundle structures on Pn: Indeed it

follows from our description of relations (Proposition 5.5) that two Sarkisov links of

sufficiently high covering gonality on non-equivalent conic bundles cannot be part of a

same elementary relation, as reflected also in Theorem D. Using conic bundles over P2

with discriminant an elliptic curve, we manage to produce such examples, and we get

the following.

Theorem E. Let n⩾3 and let k⊆C be a subfield. There is a surjective group

homomorphism

Birk(Pn) �
J
Z/2,

where the indexing set J has the same cardinality as k. In particular, every group

generated by a set of involutions with cardinality smaller or equal than |k| is a quotient

of Birk(Pn). Moreover, the group homomorphism that we construct admits a section, so

Birk(Pn) is a semi-direct product with one factor being a free product.

A first consequence is Theorem C. Other complements are given in §8.

First we get the SQ-universality of Birk(Pn), meaning that any countable group is a

subgroup of a quotient of Birk(Pn). But in fact, many natural subgroups are quotients of

Birk(Pn), with no need to passing to a subgroup: this includes dihedral and symmetric

groups, linear groups, and the Cremona group of rank 2 (see §8.A).

Another consequence of our results is that the group Birk(Pn) is not Hopfian if it

is generated by involutions, for each subfield k⊆C and each n⩾3 (Corollary 8.5). This

is another difference with the dimension 2, as BirC(P2) is Hopfian and generated by

involutions (see §8.B).
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All our results hold over any field abstractly isomorphic to a subfield of C (§8.C).

This is the case of most field of characteristic zero that are encountered in algebraic

geometry: for instance, any field of rational functions of any algebraic variety defined

over a subfield of C.

Another feature of the Cremona groups in higher dimension is that the group

BirC(Pn) is a free product of uncountably many distinct subgroups, amalgamated over

the intersection of the subgroups, which is the same for any two subgroups. This strong

version of an amalgamated product (Theorem 8.6) is again very different from BirC(P2)
(which is not a non-trivial amalgam, as already explained) and generalises to other vari-

eties as soon as they have two non-equivalent conic bundle structures. Again this result

can be generalised to subfields of C.

Theorem 8.6 implies that Bir(Pn) acts non-trivially on a tree. More generally, for

each conic bundle X/B, we provide a natural action of Bir(X) on a graph constructed

from rank-r fibrations birational to X (see §8.F).

Acknowledgements

We thank Hamid Ahmadinezhad, Marcello Bernardara, Caucher Birkar, Christian Böhnig,
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2. Preliminaries

Unless explicitly stated otherwise, all ambient varieties are assumed to be projective,

irreducible, reduced and defined over the field C of complex numbers.

This restriction on the ground field comes from the fact that this is the setting of

many references that we use, such as [BCHM], [HM2], [Kal], [KKL]. It seems to be

folklore that all the results in these papers are also valid over any algebraically closed

field of characteristic zero, but we let the reader take full responsibility if he is willing to

deduce that our results automatically hold over such a field. However, in §6 and §7, see

also §8.C, we will show how to work over fields that can be embedded in C.

General references for this section are [KM2], [Laz], [BCHM].
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2.A. Divisors and curves

Let X be a normal variety, Div(X) the group of Cartier divisors, and Pic(X)=Div(X)/∼
the Picard group of divisors modulo linear equivalence. The Néron-Severi space

N1(X)=Div(X)⊗R/≡

is the space of R-divisors modulo numerical equivalence. This is a finite-dimensional

vector space whose dimension ρ(X) is called the Picard rank of X. We denote N1(X)

the dual space of 1-cycles with real coefficients modulo numerical equivalence. We have

a perfect pairing N1(X)×N1(X)!R induced by intersection. If we need to work with

coefficients in Q we will use notation such as

N1(X)Q :=Div(X)⊗Q/≡ or Pic(X)Q :=Pic(X)⊗Q.

We say that a Weil divisor D on X is Q-Cartier if mD is Cartier for some integer m>0.

The variety X is Q-factorial if all Weil divisors on X are Q-Cartier. An element in

Div(X)⊗Q is called a Q-divisor.

First we recall a few classical geometric notions attached to a Q-divisor D. Let m

be a sufficiently large and divisible integer. D is movable if the base locus of the linear

system |mD| has codimension at least 2. D is big if the map associated with |mD|
is birational. Similarly, D is semiample if |mD| is base point free, and D is ample if

furthermore the associated map is an embedding. Finally, D is nef if for any curve C

we have D·C⩾0.

Now we recall how the numerical counterparts of these notions define cones in

N1(X). The effective cone Eff(X)⊆N1(X) is the cone generated by effective divisors

on X. Its closure Eff(X) is the cone of pseudo-effective classes. Similarly we denote

NE(X)⊆N1(X) the cone of effective 1-cycles, and NE(X) its closure. By Kleiman’s cri-

terion, a divisor D is ample if and only if D·C>0 for any 1-cycle C∈NE(X). It follows

that the cone Ample(X) of ample classes is the interior of the closed cone Nef(X)⊆N1(X)

of nef classes. Similarly, the interior of the pseudo-effective cone Eff(X) is the big cone

Big(X): Indeed a class D is big if and only if D≡A+E with A ample and E effective.

A class is semiample if it is the pull-back of an ample class by a morphism. Finally the

movable cone Mov(X) is the closure of the cone spanned by movable divisors, and we

will denote by IntMov(X) its interior.

One should keep in mind the following inclusions between all these cones:

Ample(X)⊆Semiample(X)⊆Nef(X)⊆Mov(X)⊆Eff(X)

= =

Ample(X) Big(X)

We say that a 1-cycle C∈NE(X) is extremal if any equality C=C1+C2 inside NE(X)

implies that C, C1 and C2 are proportional.
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2.B. Maps

Let π:X!Y be a surjective morphism between normal varieties. We shall also denote

X/Y such a situation. The relative Picard group is the quotient

Pic(X/Y ) :=Pic(X)/π∗ Pic(Y ).

We say that a curve C⊆X is contracted by π if π(C) is a point. The subsets

NE(X/Y )⊆N1(X/Y )⊆N1(X)

are respectively the cone and the subspace generated by curves contracted by π. The

relative Néron-Severi space N1(X/Y ) is the quotient of N1(X) by the orthogonal of

N1(X/Y ). The dimension ρ(X/Y ) of N1(X/Y ), or equivalently N1(X/Y ), is the relative

Picard rank of π. If π has connected fibres, then ρ(X/Y )=0 if and only if π is an

isomorphism, because a bijective morphism between normal varieties is an isomorphism.

We denote by Eff(X/Y ), Nef(X/Y ), Ample(X/Y ), Big(X/Y ) and Mov(X/Y ) the

images of the corresponding cones of N1(X) in the quotient N1(X/Y ). If D∈N1(X) is

a class that projects to an element in Nef(X/Y ), we says that D is π-nef. Equivalently,

D is π-nef if D·C⩾0 for any C∈NE(X/Y ). Similarly, we define the notion of π-ample,

π-big, π-effective. In particular, a class D is π-ample if D·C>0 for any C∈NE(X/Y ).

Geometrically, a Q-divisor D is π-ample if the restriction of D to each fibre is ample,

and D is π-big if the restriction of D to the generic fibre is big. We have the following

characterisation for this last notion:

Lemma 2.1. ([KM2, Lemma 3.23]) Let π:X!Y be a surjective morphism between

normal varieties. A Q-divisor D on X is π-big if and only if we can write D as a sum

D=π-ample+effective.

When the morphism π:X!Y is birational, the exceptional locus Ex(π) is the set

covered by all contracted curves. Assume moreover that ρ(X/Y )=1, and that X is Q-

factorial. Then, we are in one of the following situations [KM2, Proposition 2.5]: either

Ex(π) is a prime divisor, and we say that π is a divisorial contraction, or Ex(π) has

codimension at least 2 in X, and we say that π is a small contraction. In this case, Y is

not Q-factorial.

Given three normal varieties X, Y andW together with surjective morphisms X/W ,

Y/W , we say that φ:X Y is a rational map over W if we have a commutative diagram

X Y

W.

φ
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Now let φ:X Y be a birational map. Any Weil divisor D on X is sent to a

well-defined cycle φ(D) on Y , and by removing all components of codimension ⩾2 we

obtain a well-defined divisor φ∗D: one says that φ induces a map in codimension 1. If

codimφ(D)⩾2 (and so φ∗D=0), we say that φ contracts the divisor D. A birational

contraction is a birational map such that the inverse does not contract any divisor, or

equivalently a birational map which is surjective in codimension 1. A pseudo-isomorphism

is a birational map which is an isomorphism in codimension 1. Birational morphisms and

pseudo-isomorphisms (and compositions of those) are examples of birational contractions.

We use a dashed arrow to denote a rational (or birational) map, a plain arrow

! for a morphism, and a dotted arrow , or simply a dotted line , to indicate a

pseudo-isomorphism.

We denote by Bir(X) the group of birational transformations of X. Given a surjec-

tive morphism η:X!B, we denote by Bir(X/B) the subgroup of Bir(X) consisting of

all birational transformations over B, i.e.

Bir(X/B) := {φ∈Bir(X) : η�φ= η}⊆Bir(X).

2.C. Mori dream spaces and Cox sheaves

We shall use a relative version of the usual definition of Mori dream space (compare with

[KKL, Definition 2.2]). Before giving the definition we recall the following notions.

Let π:X!Y be a surjective morphism, and F a sheaf on X. The higher direct

images of F are the sheaves Riπ∗F , i⩾0, which are defined on each affine subset U⊂Y
as Riπ∗F(U)=Hi(π−1(U),F).

We say that a normal variety Y has rational singularities if for some (hence any)

desingularisation π:X!Y , we have Riπ∗OX=0 for all i>0.

Recall also that a variety is rationally connected if any two general points are con-

tained in a rational curve (see [Kol3, IV.3]).

Definition 2.2. Let η:X!B be a surjective morphism between normal varieties. We

say that X/B is a Mori dream space if the following conditions hold:

(MD1) X is Q-factorial, and both X and B have rational singularities;

(MD2) a general fibre of η is rationally connected and has rational singularities.

(MD3) Nef(X/B) is the convex cone generated by finitely many semiample divisors;

(MD4) there exist finitely many pseudo-isomorphisms fi:X Xi over B, such that

each Xi is a Q-factorial variety satisfying (MD3), and

Mov(X/B)=
⋃
i

f∗i (Nef(Xi/B)).
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Lemma 2.3. Let η:X!B be a surjective morphism between normal varieties, and

F a general fibre. Assume that X and B have rational singularities, and assume

(i) F is rationally connected and has rational singularities.

Then, the following properties hold true:

(ii) Hi(F,OF )=0 for all i>0;

(iii) η∗OX=OB and Riη∗OX=0 for all i>0;

(iv) H1(η−1(U),Oη−1(U))=0 for each affine open set U⊂B;

(v) Pic(X/B)Q=N1(X/B)Q.

Remark 2.4. Condition (i) from Lemma 2.3 is our condition (MD2). The lemma

implies that we would obtain a more general definition replacing (MD2) by condition

(iv), which is the choice of [BCHM], or by condition (v), which is a relative version of

the choice made in [KKL]. However our more restrictive definition suits to our purpose

and seems easier to check in practice.

Proof. (i)⇒ (ii). Consider a resolution of singularities π: F̂!F . Since F has rational

singularities, we have Riπ∗OF̂=0 for i>0. Then, [Har, III, Exercise 8.1] implies that

Hi(F̂ ,OF̂ )≃H
i(F, π∗OF̂ )=H

i(F,OF ) for all i⩾0. Finally, Hi(F,OF )=H
i(F̂ ,OF̂ )=0

for i>0, by [Kol3, Chapter IV, Corollary 3.8].

(i)⇒ (iii). Since X has rational singularities, without loss in generality we can

replace X by a desingularisation and assume X smooth. Since η has connected fibres, we

get η∗OX=OB . We just saw that Hi(F,OF )=0 for all i>0, and since we assume that

B has rational singularities, the result follows from [Kol1, Theorem 7.1].

(iii)⇒ (iv). This is just the definition of R1η∗OX=0.

(iii)⇒ (v). Let D∈Div(X)Q a divisor which is numerically trivial against the con-

tracted curves. We want to show that D is trivial in Pic(X/B)Q, that is, a multiple of

D is a pull-back. This is exactly the content of [KM1, Proposition 12.1.4]. Observe that

here again we only need the vanishing assumption for i=1.

Let η:X!B be a surjective morphism between normal varieties, and L1, ... , Lr

some Q-divisors on X. We define the divisorial sheaf R(X/B;L1, ..., Lr) to be the sheaf

of graded OB-algebras defined on every open affine set U⊂B as

R(X/B;L1, ..., Lr)(U)=
⊕

(m1,...,mr)∈Nr

H0(η−1(U)/U,m1L1+...+mrLr),

where, for any D∈Pic(X)Q,

H0(η−1(U)/U,D)

= {f ∈k(η−1(U))∗ : div(f)+D+η∗L⩾ 0 for some L∈PicQ(U)}∪{0}.
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If moreover Eff(X/B)⊆
∑

R+Li, which ensures that we would get the same algebras

using a Zr-grading instead ofNr, then we say that the sheaf is a Cox sheaf, and we denote

Cox(X/B;L1, ..., Lr) :=R(X/B;L1, ..., Lr).

We say that a divisorial sheaf R(X/B;L1, ..., Lr) is finitely generated if for every affine

set U the Nr-graded OB(U)-algebra R(X/B;L1, ..., Lr)(U) is finitely generated.

As the following lemma shows, for Cox sheaves this property of finite generation is

independent of the choice of the Li, and therefore we shall usually omit the reference to

such a choice and denote a Cox sheaf simply by Cox(X/B).

Lemma 2.5. ([ADHL, §1.1.2]) Let η:X!B be a surjective morphism between nor-

mal varieties, L1, ..., Lr∈Pic(X)Q such that Eff(X/B)⊆
∑
iR

+Li, and

Cox(X/B;L1, ..., Lr)

be the associated Cox sheaf. Let L′
1, ..., L

′
s∈Pic(X)Q. If Cox(X/B;L1, ..., Lr) is finitely

generated, then the divisorial sheaf R(X/B;L′
1, ..., L

′
s) also is finitely generated. In par-

ticular, the property of finite generation of a Cox sheaf of X/B does not depend on the

choice of the Li.

Lemma 2.6. Let X/B be a surjective morphism between normal varieties, whose

general fibres are rationally connected. Assume that X is Q-factorial, and that X, B

and the general fibres have rational singularities. Then, X/B is a Mori dream space if

and only if its Cox sheaf is finitely generated.

Proof. The proof is similar to the proofs in the non-relative setting of [KKL, Corol-

laries 4.4 and 5.7].

Example 2.7. Standard examples of Mori dream spaces in the non-relative case

(i.e. when B is a point) are toric varieties and Fano varieties. Both of these classes

of varieties are special examples of log Fano varieties, which are Mori dream spaces by

[BCHM, Corollary 1.3.2]. If F is a log Fano variety, and B is any smooth variety, then

(F×B)/B is a basic example of relative Mori dream space.

2.D. Minimal model programme

Let X be a normal Q-factorial variety, and C∈NE(X) an extremal class. We say that

the contraction of C exists (and in that case it is unique), if there exists a surjective

morphism π:X!Y with connected fibres to a normal variety Y , with ρ(X/Y )=1, and

such that any curve contracted by π is numerically proportional to C. If π is a small
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contraction, we say that the log-flip of C exists (and again, in that case it is unique)

if there exists a pseudo-isomorphism X X ′ over Y which is not an isomorphism, such

that X ′ is normal Q-factorial and X ′
!Y is a small contraction that contracts curves

proportional to a class C ′. For each D∈N1(X), if D′ is the image of D under the pseudo-

isomorphism, we have a sign change between D·C and D′ ·C ′. We say that X X ′ is a

D-flip, resp. a D-flop, resp. a D-antiflip when D ·C<0, resp. D·C=0, resp. D·C>0.

If D is nef on X, we say that X is a D-minimal model. If there exists a contraction

X!Y with ρ(X/Y )=1, dimY <dimX and −D relatively ample, we say that X/Y is a

D-Mori fibre space.

A step in the D-Minimal Model Programme (D-MMP for short) is the removal of

an extremal class C with D ·C<0, either via a divisorial contraction, or via a D-flip. In

this paper we will ensure the existence of each step in a D-MMP by working in one the

following contexts. Either D=KX+∆ will be an adjoint divisor with ∆ ample and we

can apply the main result of [BCHM], or we will assume that X is a Mori dream space,

and rely on Lemma 2.8 below (which is the reason for the name). By running a D-MMP

from X, we mean performing a sequence of such steps, replacing each time D by its

image, until reaching one of the following two possible outputs: a D-minimal model or a

D-Mori fibre space. In particular, observe that for us the output of a D-MMP is always

of the same dimension as the starting variety, and the whole process makes sense even

for D not pseudo-effective (in contrast with another possible convention which would be

to define the output of a D-MMP as

Proj

(⊕
n

H0(X,nD)

)
.

We will often work in a relative setting where all steps are maps over a base variety B,

and we will indicate such a setting by saying that we run a D-MMP over B.

When D=KX is the canonical divisor, we usually omit the mention of the divisor in

the previous notation. So, for instance, given a small contraction contracting the class

of a curve C, we speak of the flip of C only if KX ·C<0, of the D-flip of C if D ·C<0,

and of the log-flip of C when we do not want to emphasise the sign of the intersection

against any divisor.

Lemma 2.8. (see [HK, Proposition 1.11] or [KKL, Theorem 5.4]) If X/B is a Mori

dream space, then for any class D∈N1(X) one can run a D-MMP from X over B, and

there are only finitely many possible outputs for such MMP.
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2.E. Singularities

Let X be a normal Q-factorial variety, and let π:Z!X be a resolution of singularities,

with exceptional divisors E1, ..., Er. We say that X has terminal singularities, or that X

is terminal, if KX is Q-Cartier and in the ramification formula

KZ =π∗KX+
∑
i

aiEi,

we have ai>0 for each i. Similarly, we say that X has Kawamata log terminal (klt for

short) singularities, or that X is klt, if ai>−1 for each i. Each coefficient ai, which

is often called the discrepancy of Ei, does not depend on a choice of resolution in the

sense that it is an invariant of the geometric valuation associated with Ei. Let ∆ be an

effective Q-divisor on X. We call (X,∆) a klt pair if KX+∆ is Q-Cartier and if for a

(and hence any) resolution of singularities π:Z!X such that the divisor (π−1)∗∆∪Ex(π)
has normal crossing support, we have

KZ =π∗(KX+∆)+
∑
i

aiEi,

where π∗
(∑

i aiEi
)
+∆=0 and ai>−1 for all i. Observe that, if (X,∆) is a klt pair and

X is Q-factorial, then for any ∆⩾∆′⩾0 the pair (X,∆′) also is klt. In particular, taking

∆′=0, we get that X is klt.

Lemma 2.9. Let X and Y be Q-factorial varieties, and π:X!Y be the divisorial

contraction of an extremal curve C, with exceptional divisor E=Ex(π). If D∈Div(X)

and D′=π∗D, then in the ramification formula

D=π∗D′+aE,

the numbers a and D ·C have opposite signs. In particular, if X is terminal, then Y is

terminal if and only if KX ·C<0.

Proof. We have D·C=aE ·C, so the claim follows from E ·C<0. For this, see for

instance [BCHM, Lemma 3.6.2 (3)]. The last assertion follows by taking D=KX and

D′=KY .

If we start with a Q-factorial terminal variety and we run the classical MMP (that

is, relatively to the canonical divisor), then each step (divisorial contraction or flip)

of the MMP keeps us in the category of Q-factorial terminal varieties (for divisorial

contractions, this follows from Lemma 2.9). Moreover, when one reaches a Mori fibre

space X/B, the base B is Q-factorial as mentioned above, but might not be terminal.

However, by the following result, B has at worst klt singularities.
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Proposition 2.10. ([F1, Corollary 4.6]) Let X/B be a Mori fibre space, where X

is a Q-factorial klt variety. Then, B also is a Q-factorial klt variety.

We will also use the following related result.

Proposition 2.11. ([F2, Theorem 1.5]) Let (X,∆) be a klt pair, and consider the

log canonical model

Y =Proj

(⊕
m

H0(X,m(KX+∆))

)
,

where the sum is over all positive integers m such that m(KX+∆) is Cartier. Then,

there exists an effective Q-divisor ∆Y such that the pair (Y,∆Y ) is klt.

The following class of Mori fibre spaces will be of special importance to us.

Definition 2.12. A conic bundle is a Q-factorial terminal Mori fibre space X/B with

dimB=dimX−1. The discriminant locus of X/B is defined as the union of irreducible

hypersurfaces Γ⊂B such that the preimage of a general point of Γ is not irreducible.

We emphasise that the terminology of conic bundle is often used in a broader sense (for

instance, for any morphism whose general fibre is isomorphic to P1, with no restriction

on the singularities of X or on the relative Picard rank), but for our purpose we will

stick to the above more restricted definition.

We say that two conic bundles X/B and X ′/B′ are equivalent if there exists a

commutative diagram

X X ′

B B′,

ψ

θ

where ψ and θ are birational.

The singular locus of a terminal variety has codimension at least 3 ([KM2, Corol-

lary 5.18]). This fact is crucial in the following result.

Lemma 2.13. Let π:X!Y be a divisorial contraction between Q-factorial terminal

varieties, with exceptional divisor E, and assume that Γ=π(E) has codimension 2 in Y .

Then, the following hold :

(1) There is an open subset U⊆Y such that U∩Γ, U and π−1(U) are non-empty

and contained in the smooth locus of Γ, Y and X, respectively.

(2) For each choice of U as in (1), π|π−1(U):π
−1(U)!U is the blow-up of U∩Γ

(with reduced structure). In particular, for each p∈U , the fibre f=π−1({p}) is a smooth

rational curve such that KX ·f=E ·f=−1.
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Proof. Assertion (1) follows from the fact thatX and Y are smooth in codimension 2.

Let U be as in (1), let p∈Γ∩U and take a general smooth surface S⊆Y containing p.

Up to shrinking U , we may assume that p is the only intersection point of S and Γ. The

strict transform S̃ of S is again a smooth surface. Let C1, ..., Cm be the irreducible curves

contracted by the birational morphism S̃!S, which is the composition of m blow-ups.

We now show that m=1. The condition ρ(X/Y )=1 implies that all Ci are numerically

equivalent in X, so for each i and j we have

(C2
i )S̃ =Ci ·E=Cj ·E=(C2

j )S̃ .

Since at least one of the self-intersections (C2
i )S̃ must be equal to −1, and the exceptional

locus of S̃!S is connected, we conclude that m=1. So S̃!S is the blow-up of p, and

hence π−1(U)!U is the blow-up of U∩Γ, which gives (2).

Lemma 2.14. Let η:X!B be a morphism between normal varieties with X terminal

(resp. klt). Then, for a general point p∈B, the fibre η−1(p) also is terminal (resp. klt),

so in particular it has rational singularities.

Proof. The fact that η−1(p) is terminal (resp. klt) follows from [Kol4, Proposi-

tion 7.7] by taking successive hyperplane sections on B locally defining p. As already

mentioned klt singularities are rational; see [KM2, Theorem 5.22].

Lemma 2.15. (1) Let (X,∆) be a klt pair, and π:X!Y be a morphism with con-

nected fibres such that −(KX+∆) is π-big and π-nef. Then, for every p∈Y the fibre

π−1(p) is covered by rational curves, and for a general p∈Y the fibre π−1(p) is rationally

connected with klt singularities.

(2) Let (Y,∆Y ) be a klt pair, and π:X!Y be a birational morphism. Then, every

fibre of π is covered by rational curves.

(3) Let φ:X X ′ be a sequence of log-flips between Q-factorial klt varieties, and

Γ⊂X be a codimension-2 subvariety contained in the base locus of φ. Then, Γ is covered

by rational curves.

Proof. (1) and (2) follow from [HM1, Corollaries 1.3 (1) and 1.5 (1)]. Then, (3) is a

straightforward consequence of (1) applied in the case of a small contraction.

Lemma 2.16. Let X!Y be a morphism that factorises as X!W and W!Y , where

W is a Q-factorial klt variety. If X/Y is a Mori dream space, then W/Y also is a Mori

dream space.

Proof. The general fibres of W/Y are rationally connected because they are im-

ages of the rationally connected fibres of X/Y , and they have rational singularities by
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Lemma 2.14. For any affine open subset U⊂Y , the algebra Cox(W/Y )(U) embeds by

pull-back as a subalgebra of Cox(X/Y )(U), hence is finitely generated by Lemma 2.5.

We conclude by Lemma 2.6.

2.F. Two-rays game

A reference for the notion of 2-rays game is [Cor2, §2.2]. We use a slightly different setting

in the discussion below. Namely, first we ensure that all moves do exist by putting a Mori

dream space assumption, and secondly we do not put strong restrictions on singularities

(this will come later in Definition 3.1).

Let Y!X be a surjective morphism between normal varieties, with ρ(Y/X)=2.

Assume also that there exists a morphism X/B such that Y/B is a Mori dream space.

In particular, by Lemma 2.8 for any divisor D on Y one can run a D-MMP over B,

hence a fortiori over X. Then, NE(Y/X) is a closed 2-dimensional cone, generated by

two extremal classes represented by curves C1 and C2. Let D=−A, where A is an ample

divisor on Y , so that a D-minimal model does not exist. Then, by Lemma 2.8 for each

i=1, 2 we can run a D-MMP from Y over X, which starts by the divisorial contraction

or log-flip of the class Ci, and produce a commutative diagram that we call the 2-rays

game associated with Y/X (and which does not depend on the choice of D):

Y1 Y Y2

X1 X2

X.

Here Y Yi is a (possibly empty) sequence of D-flips, and Yi!Xi is either a divisorial

contraction or a D-Mori fibre space.

Now we give a few direct consequences of the 2-rays game construction.

Lemma 2.17. Let Y1/B be a Mori dream space, Y1!X1 a morphism over B with

ρ(Y1/X1)=1, and X1 X2 a sequence of relative log-flips over B. Then, there exists a

sequence of log-flips Y1 Y2 over B such that the induced map Y2!X2 is a morphism,

of relative Picard rank-1 by construction. Moreover, if Y1/X1 is a divisorial contraction

(resp. a Mori fibre space), then Y2/X2 also is.

Proof. By induction, it is sufficient to consider the case where X1 X2 is a single
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log-flip over a non-Q-factorial variety X dominating B, given by a diagram

X1 X2

X

B.

In this situation, the 2-rays game Y1/X gives a diagram

Y1 Y2

X1 X ′

X,

where Y1 Y2 is a sequence of log-flips and Y2!X
′ is a morphism of relative Picard

rank-1, with X ′ a Q-factorial variety. If Y1/X1 is a divisorial contraction, then Y2/X
′

must be birational hence also is a divisorial contraction. On the other hand, if Y1/X1

is a Mori fibre space, then Y2/X
′ cannot be birational, otherwise X ′/X would be a D-

Mori fibre space for some divisor D; impossible since X ′ is Q-factorial but not X. By

uniqueness of the log-flip associated with the small contraction X1!X, we conclude in

both cases that X ′=X2.

Lemma 2.18. Let φ:Y Y ′ be a pseudo-isomorphism over X, where X, Y and Y ′

are Q-factorial varieties, and assume we are in one of the following situations:

(1) Y/X and Y ′/X are Mori fibre spaces;

(2) Y/X and Y ′/X are divisorial contractions.

Then, φ is an isomorphism.

Proof. Assertion (1) is [Cor1, Proposition 3.5] (the proof given there extends verba-

tim in the higher dimensional case). We now give a proof of (2), which is very similar. Let

E and E′ be the exceptional divisors of π:Y!X and π′:Y ′
!X, respectively. Observe

that φ∗E=E′. Pick a general ample divisor A on X and 0<ε≪1, and consider

H =π∗A−εE and H ′ =π′∗A−εE′.

Both H and H ′ are ample, and we have H ′=φ∗H, so by [Cor1, Proposition 2.7] we

conclude that Y Y ′ is an isomorphism.
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Lemma 2.19. Suppose that T!Y and Y!X are two divisorial contractions between

Q-factorial varieties, with respective exceptional divisors E and F . Assume that there

exists a morphism X!B such that T/B is a Mori dream space. Then, there exist two

others Q-factorial varieties T ′ and Y ′, with a pseudo-isomorphism T T ′ and birational

contractions T ′
!Y ′

!X, with respective exceptional divisors the strict transforms of F

and E, such that the following diagram commutes:

T T ′

Y Y ′

X.

E F

F E

Proof. The diagram comes from the 2-rays game associated with T/X. The only

thing to prove is that the divisors are not contracted in the same order on the two

sides of the 2-rays game. Assume that both π:Y!X and π′:Y ′
!X contract the strict

transforms of the same divisor F . Then, T!Y and T ′
!Y ′ both contract a same divisor

E and T T ′ descends to a pseudo-isomorphism Y Y ′. By Lemma 2.18 (2), the pseudo-

isomorphism Y Y ′ is an isomorphism. Then, applying again Lemma 2.18 (2) to the

two divisorial contractions from T nd T ′ to Y ≃Y ′, with same exceptional divisor E, we

obtain that T T ′ also is an isomorphism. The morphisms T/Y and T/Y ′ are then

divisorial contractions of the same extremal ray, contradicting the assumption that the

diagram was produced by a 2-rays game.

2.G. Gonality and covering gonality

Recal that the gonality gon(C) of a (possibly singular) curve C is defined to be the least

degree of the field extension associated with a dominant rational map C P1.
Note that gon(C)=1 if and only if C is rational. Moreover, for each smooth curve

C⊂P2 of degree >1 we have gon(C)=deg(C)−1. Indeed, the inequality

gon(C)⩽deg(C)−1

is given by the projection from a general point of C and the other inequality is given by

a result of Noether (see for instance [BDE+]).

The following definitions are taken from [BDE+] (with a slight change, see Re-

mark 2.21).
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Definition 2.20. For each variety X we define the covering gonality of X to be

cov. gon(X)=min

c> 0 :

there is a dense open subset U ⊆X such

that each point x∈U is contained in an

irreducible curve C ⊆X with gon(C)⩽ c

 .

Similarly we define the connecting gonality of X to be

conn. gon(X)=min

c> 0 :

there is a dense open subset U ⊆X such

that any two points x, y ∈U are contained in

an irreducible curve C ⊆X with gon(C)⩽ c

 .

Remark 2.21. (1) Our definitions of the covering and connecting gonality slightly

differ from those of [BDE+], as we ask gon(C)⩽c where they ask gon(C)=c. Lemma 2.23

shows that the covering gonality is the same for both definitions. A similar argument

should also work for the connecting gonality, but we do not need it here, as we will not

use any result of [BDE+] involving the connecting gonality.

(2) The covering gonality and connecting gonality are integers which are invariant

under birational maps.

(3) For each variety X, we have

cov. gon(X)⩽ conn. gon(X).

Moreover, if dim(X)=1, then

cov. gon(X)= conn. gon(X)= gon(X).

(4) If cov. gon(X)=1 one says that X is uniruled. This corresponds to asking that

the union of all rational curves on X contains an open subset of X. Similarly, X is

said to be rationally connected if conn. gon(X)=1. As already mentioned in §2.C, this

corresponds to asking that a rational curve passes through two general points.

(5) Each rationally connected variety is uniruled. However, the converse does not

hold in general. Indeed, for each variety B, we have cov. gon(B×Pn)=1 for each n⩾1, but

conn. gon(B×Pn)=conn. gon(B) as the following lemma shows: Lemma 2.22 (2) applied

to (B×Pn)/B gives conn. gon(B×Pn)⩾conn. gon(B), and the other inequality is given

by taking sections in B×Pn of curves in B.

We recall the following classical facts.

Lemma 2.22. Let X and Y be varieties and φ:X!Y a surjective morphism.

(1) If X and Y have dimension 1, then gon(X)⩾gon(Y ).
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(2) We have conn. gon(X)⩾conn. gon(Y ) (but not cov. gon(X)⩾cov. gon(Y ) in gen-

eral ; see Remark 2.21 (5)).

(3) If dimX=dimY , denote by deg(φ) the degree of the associated field extension

C(Y )⊆C(X). Then,

cov. gon(X)⩽ cov. gon(Y )·deg(φ).

(4) If X⊆Pn is a closed subvariety, then cov. gon(X)⩽deg(X).

Proof. (1) See for instance [Po, Proposition A.1 (vii)].

(2) We take two general points y1, y2∈Y , choose then two general points x1, x2∈X
with φ(xi)=yi for i=1, 2, and take an irreducible curve C⊂X of gonality ⩽conn. gon(X)

which contains x1 and x2. We have that the image φ(C) is an irreducible curve of gonality

⩽conn. gon(X) (by (1)), containing y1 and y2.

(3) By definition of cov. gon(Y ), the union of irreducible curves C of Y with gon(C)⩽

cov. gon(Y ) covers a dense open subset of Y . Taking the preimages of general such curves,

we obtain a covering of a dense open subset of X by irreducible curves D of X with

gon(D)⩽ cov. gon(Y )·deg(φ).

(4) If X⊆Pn is a closed subvariety, we apply (3) to the projection onto a general

linear subspace Y ⊆Pn of dimension dim(Y )=dim(X).

Lemma 2.23. Let X be a variety with cov. gon(X)=c. There is a smooth projective

morphism C!T over a quasi-projective irreducible base variety T , with irreducible fibres

of dimension 1 and of gonality c, together with a dominant morphism C!X such that a

general fibre of C/T is birational to its image in X. In particular, there is a dense open

subset U of X such that through every point p∈U there is an irreducible curve C⊆X
with gon(C)=c.

Proof. The proof is analogue to the one of [GK, Lemma 2.1]. We consider the

Hilbert scheme H of all 1-dimensional subschemes of X, which is not of finite type, but

has countably many components. One of the irreducible components contains enough

curves of gonality ⩽cov. gon(X) to get a dominant map to X. We then look at the

set of gonality i, for each i, and obtain algebraic varieties parameterising these, as in

[GK, Lemma 2.1]. Having finitely many constructible subsets in the image, at least one

integer i⩽cov. gon(X) gives a dominant map to X parameterising curves of gonality i.

By definition of cov. gon(X), this integer i has to be equal to cov. gon(X).

The following result gives a bound from below that complements the easy bound

from above from Lemma 2.22.
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Theorem 2.24. ([BDE+, Theorem A]) Let X⊂Pn+1 be an irreducible hypersurface

of degree d⩾n+2 with canonical singularities. Then, cov. gon(X)⩾d−n.

We now recall the following definition of [BDE+], which is a birational version of

the classical p-very ampleness criterion, which asks that every subscheme of length p+1

imposes independent conditions on the sections of a line bundle.

Definition 2.25. Let X be variety and let p⩾0 be an integer. A line bundle L on

X satisfies property BVAp if there exists a proper Zariski-closed subset Z=Z(L)⊊X
depending on L such that the restriction map H0(X,L)!H0(X,L⊗Oξ) is surjective for

every finite subscheme ξ⊂X of length p+1 whose support is disjoint from Z.

The line bundle is moreover p-very ample if one can choose Z to be empty.

The property BVA0 corresponds to asking that L is effective, and BVA1 is usually

called “birationally very ample”. This explains the notation. This notion is related to

the covering gonality via the following result, which essentially follows from the fact

that if the canonical divisor KC of a smooth irreducible curve C satisfies BVAp, then

gon(C)⩾p+2 (see [BDE+, Lemma 1.3]).

Theorem 2.26. ([BDE+, Theorem 1.10]) Let X be a variety, and p⩾0 be an integer.

If KX satisfies BVAp, then cov. gon(X)⩾p+2.

We will use the following observations of [BDE+] to check the hypothesis of Theo-

rem 2.26.

Lemma 2.27. Let X be a variety, L a line bundle on X and p⩾0 an integer.

(1) If L satisfies BVAp and E is an effective divisor on X, then OX(L+E) satisfies

BVAp.

(2) Suppose that f :Y!X is a morphism which is birational onto its image, that L

satisfies BVAp and that the closed set Z⊆X from Definition 2.25 does not contain the

image of f . Then, f∗L satisfies BVAp.

(3) For each d⩾0, OPn(p) is p-very ample, i.e. satisfies BVAp with an empty closed

set Z⊆Pn.

Proof. The three assertions follow from the definition of BVAp, as mentioned in

[BDE+, Example 1.2].

3. Rank-r fibrations and Sarkisov links

In this section we introduce the notion of rank-r fibration, recovering the notion of

Sarkisov link for r=2. Then, we focus on rank-r fibrations and Sarkisov links with

general fibre a curve.
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3.A. Rank-r fibrations

The notion of rank-r fibration is a key concept in this paper. Essentially these are

(relative) Mori dream spaces with strong constraints on singularities. The cases r=1, 2, 3

will allow us to recover respectively the notion of terminal Mori fibre spaces, of Sarkisov

links, and of elementary relations between those. The precise definition is as follows.

Definition 3.1. Let r⩾1 be an integer. A morphism η:X!B is a rank-r fibration if

the following conditions hold:

(RF1) X/B is a Mori dream space (see Definition 2.2);

(RF2) dimX>dimB⩾0 and ρ(X/B)=r;

(RF3) X is Q-factorial and terminal, and for any divisor D on X, the output of any

D-MMP from X over B is still Q-factorial and terminal (recall that such an output has

the same dimension as X by definition, see §2.D);

(RF4) there exists an effective Q-divisor ∆B such that (B,∆B) is klt;

(RF5) the anticanonical divisor −KX is η -big (see Lemma 2.1).

We say that a rank-r fibration X/B factorises through a rank-r′ fibration X ′/B′, or

that X ′/B′ is dominated by X/B, if the fibrations X/B and X ′/B′ fit in a commutative

diagram

X B

X ′ B′

where X X ′ is a birational contraction, and B′
!B is a morphism with connected

fibres. This implies r⩾r′.

The notion of rank-r fibration bears some resemblance with the notion of fibration of

Fano type in [Bir1]. Note however that our condition (RF3) imposing strong restriction

on singularities does not seem to appear previously in the literature.

Example 3.2. (1) If X is a Q-factorial terminal Fano variety of rank-r, then X/pt

is a rank-r fibration. Indeed, as already mentioned in Example 2.7, X is a Mori dream

space, and moreover, for any divisor D, the output of a D-MMP is Q-factorial and

terminal. Both assertions follow from the fact that we can pick a small rational number

ε>0 such that −KX+εD is ample, and then writing εD=KX+(−KX+εD) we see that

a D-MMP is also a (KX+ ample)-MMP.

(2) Let p1 and p2 be two distinct points on a fibre f of P1×P1/P1, and consider

the blow-up S!P1×P1 of p1 and p2. Then, S is a weak del Pezzo toric surface of

Picard rank 4, and hence in particular S/pt is a Mori dream space. However, S/pt is

not a rank-4 fibration, because, when contracting the strict transform of f , one gets a
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singular point (hence non-terminal as we work here with surfaces), which is forbidden by

condition (RF3) of Definition 3.1.

Other basic examples are terminal Mori fibre spaces.

Lemma 3.3. Let η:X!B a surjective morphism between normal varieties. Then,

X/B is a rank-1 fibration if and only if X/B is a terminal Mori fibre space.

Proof. Observe that, if ρ(X/B)=1, the notions of η -ample and η -big are equivalent.

So the implication

X/B is a rank-1 fibration =⇒ X/B is a terminal Mori fibre space

is immediate from the definitions, and we need to check the converse.

Assume X/B is a terminal Mori fibre space. Then, dimX>dimB and ρ(X/B)=1,

which is (RF2), by Proposition 2.10 the base B is klt, which gives (RF4), and −KX is

η -ample, which gives (RF5).

We now prove that X/B is a Mori dream space, which is (RF1). Condition (MD1)

holds by assumption. By Lemma 2.15 (1), the general fibre ofX/B is rationally connected

with rational singularities, which gives (MD2). Moreover, since ρ(X/B)=1, we have

Ample(X/B)=Nef(X/B)=Mov(X/B)

equal to a single ray, and so conditions (MD3) and (MD4) are immediate.

Finally, we prove (RF3). By assumption, X is terminal and Q-factorial. For any

divisor D, either D is η -nef and X/B is a D-minimal model, or −D is η -ample and X/B

is a D-Mori fibre space. So X is the only possible output for a D-MMP, which proves

the claim.

Lemma 3.4. Let X/B be a rank-r fibration.

(1) If X ′ is obtained from X by performing a log-flip(resp. a divisorial contraction)

over B, then X ′/B is a rank-r fibration (resp. a rank-(r−1)-fibration).

(2) Assume that X/B factorises through a rank-s fibration X ′/B′ such that the

birational map X!X ′ is a morphism. Let t=ρ(X/B′). Then X/B′ is a rank-t fibration.

Proof. (1) Let π:X!X ′ be a divisorial contraction over B, with exceptional divisor

E (the case of a log-flip, which is similar and easier, is left to the reader).

(RF1) The general fibre of X ′/B remains rationally connected, and is terminal

by Lemma 2.14, so it remains to show that a Cox sheaf of X ′/B is finitely generated

(Lemma 2.6).
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Let L1, ..., Lp∈Pic(X)Q and L′
1, ..., L

′
q∈PicQ(X ′) such that Eff(X/B)⊆

∑
iR+Li

and Eff(X ′/B)⊆
∑
iR+L′

i. For each open set U⊆B, by pulling-back we get an injective

morphism of algebras

Cox(X ′/B;L′
1, ..., L

′
q)(U) �

�
// Cox(X/B;E, π∗L′

1, ..., π
∗L′

q, L1, ..., Lp)(U).

Since X/B is a rank-r fibration, its Cox sheaf is finitely generated by Lemma 2.6, and

so Cox(X ′/B;L′
1, ..., L

′
q) also is finitely generated by Lemma 2.5.

(RF2) By definition of a divisorial contraction we have dimX ′=dimX>dimB, and

ρ(X ′)=ρ(X)−1, so ρ(X ′/B)=r−1.

(RF3) The output of any MMP from X ′ also is the output of a MMP from X, and

so is Q-factorial and terminal by assumption.

Condition (RF4) holds by assumption.

Condition (RF5) follows from the fact that the image of a big divisor by a birational

morphism is still big.

(2) Conditions (RF2) and (RF4) hold by assumption. (RF3) follows because any

MMP over B′ also is a MMP over B. For (RF5) we observe that a curve contracted by

X/B′ also is contracted by X/B, so a divisor relatively ample for X/B also is relatively

ample for X/B′. Then, we can restrict a decomposition −KX=η-ample+effective for

X/B to get a similar decomposition for X/B′.

Finally, we show (RF1). Let L1, ..., Lr be Q-divisors on X such that Eff(X/B)⊆∑
iR+Li, which implies Eff(X/B′)⊆

∑
iR+Li. Let φ:B

′
!B be the morphism given by

assumption. Then, for each affine open set U ′⊂B′, we have

Cox(X/B′;L1, ..., Lr)(U
′)=Cox(X/B;L1, ..., Lr)(φ(U

′)),

and the latter is finitely generated by assumption. A general fibre of X/B′ is rationally

connected because it is birational to a fibre of X ′/B′, and it has rational singularities by

Lemma 2.14. We conclude by Lemma 2.6.

Lemma 3.5. Any rank-r fibration X/B is pseudo-isomorphic, via a sequence of an-

tiflips over B, to another rank-r fibration Y/B such that −KY is relatively nef and big

over B.

Proof. We run a (−K)-MMP from X over B (recall that by Lemma 2.8, one can run

a D-MMP for an arbitrary divisor D). It is not possible to have a divisorial contraction,

because by Lemma 2.9 the resulting singularity would not be terminal, in contradiction

with assumption (RF3) in the definition of rank-r fibration. If there exists an extremal

class that gives a small contraction, we anti-flip it. After finitely many such steps, either

−K is relatively nef, or there exists a fibration such that K is relatively ample. But
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this last situation contradicts the assumption (RF5) that the anti-canonical divisor is big

over B. So finally −K is also relatively nef over B, as expected.

Corollary 3.6. Let η:Y!B be a rank-r fibration, p∈B be a general point, and

Yp=η
−1(p) be the fibre over p.

(1) If −KY is relatively nef and big over B, then the curves C⊂Yp which satisfy

KYp ·C=0 cover a subset of codimension at least 2 in Yp.

(2) Without assumption on −KY , the fibre Yp is pseudo-isomorphic to a weak Fano

terminal variety, and the curves C⊂Yp which satisfy KYp ·C⩾0 cover a subset of codi-

mension at least 2 in Yp.

Proof. (1) By Lemma 2.14, there is a dense open subset U⊆B such that, for each

p∈U , the fibre Yp is terminal. As KYp
=KY |Yp

is big and nef for each p∈U , [Kol2,

Theorem 1.1] gives an integer m such that −mKYp
is base-point free for each p∈U . In

particular, the rational φ:=|−mKY |×η:Y PN×B is a morphism on YU :=η
−1(U),

and φ induces a birational contraction over U from YU onto its image XU⊂PN×U . Let

Γ⊂YU be the subset covered by curves contracted by YU/U that are trivial against the

canonical divisor. Write

KYU
=φ∗KXU

+
∑
i

aiEi,

where the Ei run over all the divisors contained in Γ. Each ai is positive because X is

terminal by definition of a rank-r fibration, but since KY is φ-nef the negativity lemma

also says that ai<0 for all i. In conclusion, Γ does not contain any divisor. So Γ has

codimension at least 2 in YU , and hence Γp=Γ∩Yp has codimension at least 2 in Yp for

a general p.

(2) By Lemma 3.5, the rank-r fibration Y/B is pseudo-isomorphic, via a sequence

of antiflips over B, to another rank-r fibration Y ′/B such that −KY ′ is relatively nef

and big over B. For a general p∈B, the fibre Yp⊂Y is pseudo-isomorphic to the fibre

Y ′
p⊂Y ′. Denote by F⊆Yp (resp. F ′⊆Y ′

p) the closure of the union of the curves C⊂Yp
that satisfy C ·KYp⩾0 (resp. C⊂Y ′

p that satisfy C ·KY ′
p
⩾0). We want to prove that the

codimension of F in Yp is at least 2.

By (1), the set F ′ has codimension at least 2 in Y ′
p . As −KY is relatively big,

the divisor −KYp
is big. Hence, for some large m>0, the base-locus B of −mKYp

has

codimension⩾2. It remains to see that each curve C⊂Yp such that C ·KYp
⩾0 is contained

either in B or is the strict transform of a curve C ′⊂F ′. If C ·KYp
>0, then C ·(−mKYp

)<0,

so C is contained in B. If C ·KYp
=0 and C is not contained in B, then C is disjoint from

a general member of the linear system |−mKY |, and so is not affected by the sequence

of antiflips. Hence, the strict transform of C is a curve C ′⊂Y ′
p that is also disjoint from

a general member of |−mKY ′
p
|, whence C ′ ·KY ′

p
=0.
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3.B. Sarkisov links

The notion of rank-2 fibration recovers the notion of Sarkisov link.

Lemma 3.7. Let Y/B be a rank-2 fibration. Then, Y/B factorises through exactly

two rank-1 fibrations X1/B1 and X2/B2, which both fit into a diagram

· Y ·

· ·

B,

where the top dotted arrows are sequences of log-flips, and the other four arrows are

morphisms of relative Picard rank-1.

Proof. The diagram comes from the 2-rays game associated with Y/B, as explained

in §2.F. Morever, since dimY >dimB, on each side of the diagram exactly one of the two

descending arrows corresponds to a morphisms Xi!Bi with dimY =dimXi>dimBi.

If Bi=B, then Xi/Bi is a rank-1 fibration by Lemma 3.4 (1). If ρ(Bi/B)=1, we can

use Lemma 3.4 (2), or alternatively use the following simpler argument. Since −KXi
is

relatively big over and B, we have −KXi
·C>0 for a general contracted curve of Xi/Bi

(write −KXi=A+E with A relatively ample and E effective, and take C not contained

in E). So −KXi is relatively ample over Bi, and hence Xi/Bi is a terminal Mori fibre

space, or equivalently a rank-1 fibration (Lemma 3.3).

Definition 3.8. In the situation of Lemma 3.7, we say that the birational map

χ:X1 X2 is a Sarkisov link. The diagram is called a Sarkisov diagram. Observe

that a rank-2 fibration uniquely defines a Sarkisov diagram, but such a diagram does not

have a canonical “left side” or “right side”. In other words, when χ is not an involution,

the rank-2 fibration only defines the unordered pair {χ, χ−1} of a Sarkisov link and its

inverse. Nevertheless we will commit the slight abuse of speaking of the Sarkisov link

associated with a rank-2 fibration.

If a rank-r fibration factorises through Y/B, we equivalently say that it factorises

through the Sarkisov link associated with Y/B.

We say that the Sarkisov link associated with a rank-2 fibration Y/B is a Sarkisov

link of conic bundles if dimB=dimX−1. Observe that in this situation both X1/B1

and X2/B2 are indeed conic bundles in the sense of Definition 2.12.
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· X2

X1 B2

B1 =B

div fibχ

fib

· ·

X1 X2

B1 =B=B2

div div

χ

fib fib

I II

X1 ·

B1 X2

B=B2

χfib div

fib

X1 X2

B1 B2

B

χ

fib fib

III IV

Figure 1. The four types of Sarkisov links.

Definition 3.9. In the diagram of Lemma 3.7, there are two possibilities for the

sequence of two morphisms on each side of the diagram: either the first arrow is already

a Mori fibre space, or it is divisorial and in this case the second arrow is a Mori fibre

space. This gives four possibilities, which correspond to the usual definition of Sarkisov

links of type I, II, III and IV, as illustrated in Figure 1.

Remark 3.10. The definition of a Sarkisov link in the literature is usually not very

precise about the pseudo-isomorphism involved in the top row of the diagram. An ex-

ception is [CPR, Definition 3.1.4(b)], but even there they do not make clear that there

is at most one flop, and that all varieties admit morphisms to a common B. Observe

that our definition is a priori more restrictive, notably because we assume the anticanon-

ical divisor of a rank-2 fibration to be relatively big. However one could check that the

definition is equivalent to the usual one.

It follows from our definition that there are strong constraints about the sequence

of antiflips, flops and flips (that is, about the sign of the intersection of the exceptional

curves against the canonical divisor). Precisely, the top row of a Sarkisov diagram has
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the following form:

Ym ... Y0 Y ′
0 ... Y ′

n

· ·

B

where Y0 Y ′
0 is a flop over B (or an isomorphism), m,n⩾0, and each Yi Yi+1,

Y ′
i Y ′

i+1 is a flip over B. This follows from the fact that for Y =Yi or Y ′
i , a gen-

eral contracted curve C of the fibration Y/B satisfies KY ·C<0, hence at least one of the

two extremal rays of the cone NE(Y/B) is strictly negative against KY .

Observe also that both Y0/B and Y ′
0/B are relatively weak Fano (or Fano if the

flop is an isomorphism) over B, as predicted by Lemma 3.5. All other Yi/B and Y ′
i /B

are not weak Fano over B, but still each is a rank-2 fibration that uniquely defines the

Sarkisov diagram.

Example 3.11. We give some simple examples of Sarkisov links of each type in di-

mension 3. Here all varieties are smooth, and the pseudo-isomorphisms in the top rows of

the Sarkisov diagrams are isomorphisms. For more complicated (and typical) examples,

see §4.D. Observe that (1) and (2) are examples of Sarkisov links of conic bundles, while

(3) and (4) are not.

(1) Let X1/B1=P1×P2/P2, and let X2!X1 be the blow-up of one fibre. Then,

X2=P1×F1 is a Mori fibre space over the Hirzebruch surface B2=F1. The map

χ:X1/B1 X2/B2

is a link of type I, or equivalently

χ−1:X2/B2 −!X1/B1

is a link of type III.

(2) Take again X1/B1=P1×P2/P2, let L⊂P2 be a line, and Γ={0}×L⊂X1. Let

Y!X1 be the blow-up of Γ, and denote by D the strict transform on Y of P1×L⊂X1.

Then, there is a divisorial contraction Y!X2 that contracts D to a curve, and X2/P2

is still a P1-bundle (but not a trivial product). The map

χ:X1/P2 X2/P2

is a link of type II.
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(3) A general cubo-cubic map in Bir(P3) provides an example of link of type II,

with X1 and X2 equal to P3 and B1=B2={pt} a point. Indeed the resolution of such

a map consists in blowing-up a smooth curve of genus 3 and degree 6 in X1, and then

contracting a divisor onto a curve of the same kind in X2. This is the only example of

a link of type II from P3 to P3 starting with the blow-up of a smooth curve where the

pseudo-isomorphism is in fact an isomorphism; see [Kat].

(4) Finally, take X1=X2=P1×P2, B1=P1, B2=P2, and let X1/B1 and X2/B2 be

respectively the first and second projection. Then, the identity map

id:X1/B1 −!X2/B2

is a link of type IV.

Lemma 3.12. Consider a Sarkisov link of type II:

Y1 Y2

X1 X2

B,

φ

π1 π2

χ

and denote E1 and E2 the respective exceptional divisors of π1 and π2. Then, φ∗E1 ̸=E2.

Proof. Assume that φ∗E1=E2. Then, χ:X1 X2 is a pseudo-isomorphism, hence

an isomorphism by Lemma 2.18 (1). Then, Lemma 2.18 (2) implies that the pseudo-

isomorphism φ:Y1 Y2 also is an isomorphism. The morphisms Y1/X1 and Y1/X2 are

then divisorial contractions of the same extremal ray, contradicting the assumption that

the diagram was the result of the 2-rays game from Y1/B.

Lemma 3.13. Let X/B be a rank-2 fibration that factorises through a rank-1 fibration

σ:X!B′, with dimX−1=dimB′>dimB (i.e. through a conic bundle X/B′). Then,

η:B′
!B is a klt Mori fibre space, and in particular for each p∈B, the fibre η−1(p) is

covered by rational curves.

Proof. Note that B′ is Q-factorial and klt (Proposition 2.10). We need to show that

−KB′ is η -ample, and then the fibre η−1(p) is covered by rational curves for each p∈B
by Lemma 2.15 (1), applied with ∆=0.

By assumption, ρ(B′/B)=1, so we only need to show that there exists a contracted

curve C⊆B′ such that −KB′ ·C>0. Since dimB′>dimB, the contracted curves cover
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B′, so we can choose C sufficiently general in a fibre η−1(q) of a general point q∈B such

that the following holds:

(i) C is not contained in the discriminant locus ∆′⊂B′ of the conic bundle σ:X!B′;

(ii) the surface σ−1(C) does not contain any of the curves C ′⊆X contracted by η�σ

with −KX ·C ′⩽0;

(iii) the fibre F=(η�σ)−1(q) of η�σ:X!B containing the surface σ−1(C) is general,

so that (−KX)|F is big.

More precisely, for (i) it suffices to choose η−1(q) not contained in the hypersur-

face ∆′⊂B′. We can ensure (ii), because by Corollary 3.6 such curves cover at most a

codimension-2 subset of F . Finally, for (iii) recall first that, since X/B is a rank-2 fibra-

tion, −KX is relatively big by (RF5). Moreover, the intersection (−KX)|F ·σ−1(C) is a

non-trivial effective 1-cycle. Indeed, since (−KX)|F is big, we can take a large integer

m>0 and find that (−mKX)|F induces a rational morphism contracting no curve on

the complement of a divisor of F . It suffices then to choose C such that σ−1(C) is not

contained in this divisor.

As in [MM, Corollary 4.6], we have

−4KB′ ≡σ∗(−KX)2+∆.

Intersecting with C, we obtain

−4KB′ ·C =σ∗(−KX)2 ·C+∆·C ⩾ (−KX)|F ·(−KX)|F ·σ∗C > 0,

where the last inequality follows by our choice of C.

3.C. Rank-r fibrations with general fibre a curve

Let η:T!B be a rank-r fibration, with dimB=dimT−1. If Γ⊂B is an irreducible

hypersurface, we define η♯(Γ)⊆T to be the Zariski closure of all fibres of dimension 1

over Γ. The reason for introducing this notion is twofold: first B might not beQ-factorial,

so we cannot consider the pull-back of Γ as a Q-Cartier divisor, and second the preimage

η−1(Γ) might contain superfluous components (see Example 3.15).

Now we distinguish two classes of special divisors in T , and we shall show in Propo-

sition 3.16 below that they account for the relative rank of T/B. Let D⊂T be a prime

divisor. If η(D) has codimension at least 2 in B, we say that D is a divisor of type I. If

η(D) is a divisor in B, and the inclusion D⊊η♯(η(D)) is strict, we say that D is a divisor

of type II.

Remark 3.14. The similarity between the terminology for Sarkisov links and for

special divisors of type I or II is intentional. See Lemma 3.19 (2) below.
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Example 3.15. We give an example illustrating the definitions above, which also

shows that the inclusion η♯(Γ)⊆η−1(Γ) might be strict. For an arbitrary smooth variety

B, consider Y =P1×B with Y/B the second projection. Let Γ⊂B be any irreducible

smooth divisor, D=P1×Γ be the pull-back of Γ in Y , Γ′={t}×Γ⊂D be a section and

p∈D\Γ′ be a point. Let T!Y be the blow-up of Γ′ and p, with respective exceptional

divisors D′ and E, and denote again D the strict transform of P1×Γ in T . Then, one

can check that the induced morphism η:T!B is a rank-3 fibration (see Example 4.33

for the case B=P2), E is a divisor of type I, D∪D′ is a pair of divisors of type II, and

η♯(Γ)=D∪D′⊊D∪D′∪E= η−1(Γ).

Proposition 3.16. Let η:T!B be a rank-r fibration, with dimB=dimT−1.

(1) For any rank-r′ fibration T ′/B′ such that T/B factorises through T ′/B′, any

divisor contracted by the birational contraction T T ′ is a divisor of type I or II for

T/B.

(2) Divisors of type II always come in pairs: for each divisor D1 of type II, there

exists another divisor D2 of type II such that

D1∪D2 = η♯(η(D1))= η♯(η(D2)).

(3) If D1∪D2 is a pair of divisors of type II, and p is a general point of

η(D1)= η(D2),

then η−1(p)=f1∪f2 with fi⊆Di, i=1, 2, some smooth rational curves satisfying

KT ·fi=−1, Di ·fi=−1 and D1 ·f2 =D2 ·f1 =1.

(4) Let D⊂T be a divisor of type I or II. Then, there exists a birational contraction

over B

T X −!B

that contracts D and such that ρ(X)=ρ(T )−1.

(5) Assume that B is Q-factorial. Let d1 (resp. d2) be the number of divisors of

type I (resp. the number of pairs of divisors of type II). Then,

r=1+d1+d2.
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Proof. (1) Assume that D is a prime divisor contracted by T T ′, which is neither

of type I nor of type II for T/B. So η(D)⊂B is a divisor, and D=η♯(η(D)). By running

a D-MMP over B, we produce a sequence of log-flips T T1, and then a divisorial

contraction π:T1!T2 contracting D. Since a log-flip does not change the type of special

divisors, without loss of generality we may assume T=T1. Since η(D)⊂B is a divisor,

π(D) has codimension 2 in T2. By Lemma 2.13, a general fibre f of π is an irreducible

curve, and since D=η♯(η(D)), we have f=η−1(p) for some p∈η(D). So f is proportional

to a general fibre of η, in contradiction with the fact that the extremal contraction of f

is divisorial.

(2), (3) Let D1 be a divisor of type II, and let D2, ..., Ds be the other divisors of

type II such that

η♯(η(D1))=D1∪...∪Ds.

By definition of η♯, for each i the general fibres of Di!η(Di) are curves. Hence, Γ=η(Di)

is a hypersurface in B, which does not depend on i. Let p∈Γ be a general point, and

write f :=η−1(p)=f1+...+fs, with fi being a curve in Di. We have Di ·η−1(p)=0 for

each i, Di ·fj>0 for at least one j, by connectedness of f , which gives Di ·fi<0.

Then, by running a Di-MMP from T over B, we obtain a sequence of log-flips that

does not affect f , and then a divisorial contraction of Di to a center of codimension 2. By

Lemma 2.13, this implies that fi is smooth with KT ·fi=Di ·fi=−1. But KT ·f=−2, so

we conclude that s=2 as expected. The equality D1 ·f2=D2 ·f1=1 follows immediately

from Di ·f=0.

To prove (4), we show that the divisor D is covered by curves ℓ such that D ·ℓ<0,

and then we get the expected birational contraction by running a D-MMP. When D has

type II, we showed in (3) that D is covered by such curves. Now, let D be a divisor of

type I, p be a general point in η(D), and let d⩾0 be the dimension of η(D). By definition

of a divisor of type I, we have n−3⩾d, where n=dimT . Now, consider a surface S⊂T
obtained as

S=

n−2−d⋂
i=1

Hi∩
d⋂
j=1

η∗H ′
j ,

where the Hi are general hyperplane sections of T , and the H ′
j are general hyperplane

sections of B through p. By construction, ℓ:=S∩D is an irreducible curve contracted to

p by η. Moreover, η(S) is a surface; indeed, each Hi is transverse to the general fibres

of η, which are curves, and n−2−d⩾1. Since a curve contracted by a morphism between

two surfaces has negative self-intersection, we obtain D·ℓ=(ℓ·ℓ)S<0 as expected.

To prove (5), first observe that the contraction of a divisor of type I does not affect

the other special divisors, and the contraction of a divisor of type II only affects the other

divisor in the pair, which is not special anymore. So, by applying several times (4), we
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may assume d1=d2=0, and we want to show r=1, or equivalently, that T/B is a terminal

Mori fibre space. We now run a MMP from T over B. A flip does not change d1 nor d2,

so we may assume that we have a divisorial contraction or a Mori fibre space. By (1),

a divisorial contraction would contradict our assumption d1=d2=0. On the other hand,

if T!B′ is a Mori fibre space, then both B′ and B are (n−1)-dimensional varieties,

and B′ is Q-factorial klt, by Proposition 2.10. If the birational morphism B′
!B is not

an isomorphism, it must contracts at least one divisor D, because B is Q-factorial by

assumption. By Lemma 2.16, B′/B is a Mori dream space, so we may run a D-MMP

from B′ over B. After a sequence of D-flips, this produces a divisorial contraction, and

hence a divisor of type I on T by pulling-back, and again a contradiction. In conclusion,

B′ ∼−!B is an isomorphism and T/B is a Mori fibre space, as expected.

Lemma 3.17. Let η:T!B be a rank-r fibration with dimB=dimT−1. Assume that

D is a divisor of type II for T/B, with cov. gon(η(D))>1 (i.e. η(D) is not uniruled).

Then, for any rank-r′ fibration T ′/B′ that factorises through T/B, with

dimB′ =dimT ′−1=dimB,

the strict transform of D is a divisor of type II for T ′/B′.

Proof. Recall that T ′ T is a birational contraction and that π:B!B′ is a mor-

phism with connected fibres between klt pairs (Definition 3.1 (RF4)), which in our situ-

ation is birational, as dim(B)=dim(B′). We write D=D1 and, by Proposition 3.16 (2),

we have a pair D1∪D2 of divisors of type II for T/B, where Γ=η(D1)=η(D2) is a divisor

of B and

D1∪D2 = η♯(Γ).

We first observe that the image of Γ in B′ is again a divisor Γ′⊂B′. Indeed, oth-

erwise, the divisor Γ⊂B is one of the divisors contracted by the birational morphism

π:B!B′. By Lemma 2.15 (2), this implies that Γ is covered by rational curves, in

contradiction with our assumption cov. gon(Γ)>1.

Writing η′:T ′
!B′ the rank-r′ fibration, one observe that the strict transforms D̃1

and D̃2 of D1 and D2, respectively, are such that D̃1∪D̃2⊆η♯(Γ′). Hence, D̃1 and D̃2

are divisors of type II for T ′/B′.

Lemma 3.18. Let T/B be a rank-r fibration with dimB=dimT−1 and with B being

Q-factorial. Assume that, for each divisor D of type II for T/B, we have

cov. gon(η(D))> 1.

Then, T/B factorises through a rank-1 fibration T ′/B′ such that T T ′ is a pseudo-

isomorphism if and only if T/B does not admit any divisor of type II.
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If this holds, then dimB′=dimT−1, B′
!B is a birational morphism and

ρ(B′/B)= r−1.

Proof. If T/B factorises through a rank-r′ fibration T ′/B′ such that T T ′ is a

pseudo-isomorphism, first observe that ρ(B′/B)=r−r′, and B′
!B is birational, since

dim(B)=dim(B′), which follows from

dim(T )=dim(T ′)>dim(B′)⩾dim(B)=dim(T )−1.

If D1∪D2 is a pair of divisors of type II for T/B, then their strict transforms D̃1

and D̃2 have the same image in B′, which is a divisor because B′
!B is birational. So,

if T/B admits at least one divisor of type II, then, by Proposition 3.16 (3), some fibres

of T ′/B′ have the form f1+f2, with f1 and f2 non-proportional. In particular, we have

r′=ρ(T ′/B′)⩾2, and so T ′/B′ is not a Mori fibre space.

To prove the converse, we assume that T/B does not admit any divisor of type II,

and we proceed by induction on the number d1 of divisors of type I. If d1=0, then, by

Proposition 3.16 (5), T/B is already a rank-1 fibration, so we just take T ′/B′=T/B.

Now, if d1>0, by Proposition 3.16 (4), there exists a birational contraction over B,

T X1 −!B,

which contracts one divisor D of type I. Since the contraction is obtained by running a

D-MMP, in fact it factorises as

T T1 −!X1,

where T T1 is a sequence of D-flips and T1!X1 is a divisorial contraction. Then, by

induction hypothesis, X1/B factorises through a rank-1 fibration X2/B2, with X1 X2

being a pseudo-isomorphism (here, we use Lemma 3.17, which shows that X1/B does not

admit any divisor of type II). By Lemma 2.17, there exist a pseudo-isomorphism T1 T2

and a divisorial contraction T2!X2 that makes the diagram in Figure 2 commute. Fi-

nally, we play the 2-rays game T2/B2. Since T2/B2 admits one divisor of type I and no

divisor of type II (by our assumption on the covering gonality and by Lemma 3.17), the

other side of the 2-rays game must be a Mori fibre space, which gives the expected rank-1

fibration T ′/B′.

3.D. Sarkisov links of conic bundles

In this subsection, by applying Proposition 3.16 to the case r=2, we classify Sarkisov

links of conic bundles.
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T T1 T2 T ′

X1 X2 B′

B2

B.

Figure 2.

Lemma 3.19. Let Y/B be a rank-2 fibration with dimB=dimY −1, and χ be the

associated Sarkisov link, well defined up to taking inverse.

(1) χ has type IV if and only if B is not Q-factorial.

(2) If B is Q-factorial, let d1 (resp. d2) be the number of special divisors of type I

(resp. of type II) for Y/B. Then,

� χ has type I or III if and only if (d1, d2)=(1, 0).

� χ has type II if and only if (d1, d2)=(0, 1).

Proof. (1). If B is not Q-factorial, then it follows directly that χ has type IV,

from the fact that the base of a terminal Mori fibre space if always Q-factorial (Propo-

sition 2.10), and by inspection of the diagrams in Figure 1. Conversely, assuming that

χ:X1/B1 X2/B2

is a link of type IV, we show that B is not Q-factorial. As

dimB=dimY −1,

the morphisms B1/B and B2/B are birational. If B is Q-factorial, then B1/B and

B2/B are birational contractions with respective exceptional divisors E1 and E2. If the

birational map B1 B2 sends E1 onto E2, then the map is a pseudo-isomorphism, and

hence an isomorphism, by Lemma 2.18 (2). Then, X1 X2 also is an isomorphism, by

Lemma 2.18 (1), which yields a contradiction. Otherwise, the pull-backs of E1 and E2,

together with the choice of any ample divisor, give three independent classes in N1(Y/B),

in contradiction with ρ(Y/B)=2.

To prove (2), first we observe that Proposition 3.16 (5) gives d1+d2=1, and hence the

two possibilities (d1, d2)=(1, 0) or (d1, d2)=(0, 1). Recall also from Proposition 3.16 (1)
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that any divisor contracted by a birational contraction from Y over B must be of type I

or II. If the link χ is of type II, then Lemma 3.12 gives two birational contractions from

Y contracting distinct prime divisors, and this is possible only in the case (d1, d2)=(0, 1),

where there is a pair of divisors of type II available. Conversely, if (d1, d2)=(0, 1), we have

two distinct prime divisors, which we can contract via two distinct birational contractions

(Proposition 3.16 (4)). These are the two starting moves of a 2-ray game which provides

a link of type II.

Corollary 3.20. Let χ be a Sarkisov link of conic bundles of type I:

Y1 X2

X1 B2

B1.

π1 η2
χ

η1

Let E1 be the exceptional divisor of the divisorial contraction π1. Then, η1�π1(E1) has

codimension at least 2 in B1.

Proof. Follows from the fact that E1 is a divisor of type I for Y1/B1.

Remark 3.21. There are examples of link of type IV as in Lemma 3.19 (1) only when

dimB⩾3, and hence dimY ⩾4. See the discussion on the two subtypes of type IV links

in [HM2, p. 391 after Theorem 1.5]. For instance, take B1 and B2 that differ by a log-flip,

and let B be the non-Q-factorial target of the associated small contractions. Then, the

birational map from (P1×B1)/B1 to (P1×B2)/B2 induced by the log-flip is a link of

type IV.

We now focus on the case of Sarkisov links of conic bundles of type II. First, we

introduce the following definition.

Definition 3.22. A marked conic bundle is a triple (X/B,Γ), where X/B is a conic

bundle in the sense of Definition 2.12, and Γ⊂B is an irreducible hypersurface, not

contained in the discriminant locus of X/B (i.e. the fibre of a general point of Γ is

isomorphic to P1). The marking of the marked conic bundle is defined to be Γ.

We say that two marked conic bundles (X/B,Γ) and (X ′/B′,Γ′) are equivalent if
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there exists a commutative diagram

X X ′

B B′,

ψ

θ

where ψ and θ are birational, and such that the restriction of θ induces a birational map

Γ Γ′ between the markings. In particular, if (X/B,Γ) and (X ′/B′,Γ′) are equivalent,

then the conic bundles X/B and X ′/B′ are equivalent in the sense of Definition 2.12.

For each variety Z, we denote by CB(Z) the set of equivalence classes of conic bundles

X/B with X birational to Z, and denote, for each class of conic bundles C∈CB(Z), by
M(C) the set of equivalence classes of marked conic bundles (X/B,Γ), where C is the

class of X/B.

The next lemma explains how a Sarkisov link of conic bundles of type II gives rise

to an equivalence class of marked conic bundles.

Lemma 3.23. Let χ be a Sarkisov link of conic bundles of type II between varieties

of dimension n⩾2. Recall that χ fits in a commutative diagram of the form

Y1 Y2

X1 X2

B

φ

π1 π2

χ

η1 η2

where X1, X2, Y1 and Y2 are Q-factorial terminal varieties of dimension n, B is a Q-

factorial klt variety of dimension n−1, φ is a sequence of log-flips over B, and each πi

is a divisorial contraction with exceptional divisor Ei⊂Yi and centre Γi=πi(Ei)⊂Xi.

Then, there exists an irreducible hypersurface Γ⊂B (of dimension n−2) such that

the following conditions hold.

(1) For i=1, 2, the centre Γi=πi(Ei) has codimension 2 in Xi, and the restriction

ηi|Γi
: Γi!Γ is birational. In particular, for each i we have ηi�πi(Ei)=Γ, and the marked

conic bundles (X1/B,Γ) and (X2/B,Γ) are equivalent.

(2) Let Y be equal to Y1, to Y2, or to any of the intermediate varieties in the sequence

of log-flips φ. Then, E1∪E2 is a pair of divisors of type II for Y/B.
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(3) Γ is not contained in the discriminant locus of η1, or equivalently of η2, which

means that a general fibre of ηi: η
−1
i (Γ)!Γ is isomorphic to P1.

(4) At a general point x∈Γi, the fibre of Xi/B through x is transverse to Γi.

Proof. (1), (2) By Lemma 3.19, Y1/B admits no divisor of type I, and exactly one

pair of divisors of type II. By Lemma 3.12, we have φ∗E1 ̸=E2, so the birational contrac-

tions Y1 X1 and Y1 X2 contract distinct divisors. It follows from Proposition 3.16

that the pair of divisors of type II is E1∪E2. So, by definition, E1 and E2 project to the

same hypersurface Γ⊂B. By Proposition 3.16 (3), both finite maps Γi!Γ are birational,

otherwise the fibre in Yi over a general point of Γ would have more than two components.

(3) and (4) follow from Proposition 3.16 (3). Indeed, if Γ was in the discriminant

locus of η1, then the preimage in Y1 of a general point p∈B would have three irreducible

components, instead of two. Moreover, writing f1∪f2 the fibre through x, with fi⊆Ei,
the fact that the fibre is transverse to Γi is equivalent to f1 ·E2=f2 ·E1=1.

Definition 3.24. By Lemma 3.23 (1), with each Sarkisov link of conic bundles of

type II χ:X1 X2 we may associate the equivalence class of the marked conic bundle

(X1/B,Γ) given in this lemma. We define the marking of χ to be Γ⊂B. We say that two

Sarkisov links of conic bundles of type II are equivalent if their corresponding marked

conic bundles are equivalent.

We also extend the notion of covering gonality (see §2.G) to Sarkisov links of conic

bundles of type II.

Definition 3.25. Let χ be a Sarkisov of conic bundles of type II between varieties of

dimension n⩾3. We define cov. gon(χ) to be cov. gon(Γ), where Γ is the marking of χ.

Remark 3.26. If two Sarkisov links of conic bundles of type II are equivalent, then

their markings are birational to each other. In particular, the number cov. gon(χ) only

depends on the equivalence class of χ.

The above definition makes sense if the varieties Xi have dimension ⩾2, but it is

not a very good invariant if the dimension is 2, as the centre is always a point, and there

is only one class of marked conic bundles, given by a point in the base of a Hirzebruch

surface. However, the analogue definition over Q or over a finite field, instead of over C,

is interesting even for surfaces.

4. Relations between Sarkisov links

The fact that one can give a definition of Sarkisov links in terms of relative Mori dream

spaces of Picard rank 2 as in the previous section was independently observed in [AZ1,
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§2] and [LZ, §2.3]. Our next aim is to extend this observation to associate some relations

between Sarkisov links with each rank-3 fibration. First we define elementary relations,

and then we relate this notion to the work of Kaloghiros about relations in the Sarkisov

programme.

4.A. Elementary relations

Definition 4.1. Let X/B and X ′/B′ be two rank-r fibrations, and T X and

T X ′ be two birational maps from the same variety T . We say that X/B and X ′/B′

are T -equivalent (the birational maps being implicit) if there exist a pseudo-isomorphism

X X ′ and an isomorphism B
∼−!B′ such that all these maps fit in the following com-

mutative diagram:

T

X X ′

B B′.∼

One should think of the maps T X and T X ′ as providing a marking with

respect to a preferred model variety T . See §8.F for an illustration of this point of view.

In particular, we do not assume T X and T X ′ to be birational contractions, even

if it happens to be the case in the proof of the following lemma.

Lemma 4.2. Let X3/B3 be a rank-3 fibration that factorises through a rank-1 fibra-

tion X1/B1. Then, up to X3-equivalence, there exist exactly two rank-2 fibrations that

factorise through X1/B1, and that are dominated by X3/B3.

Proof. We distinguish three cases, according to ρ(B1/B3).

If ρ(B1/B3)=2, then B1 – being the base of a klt Mori fibre space – is Q-factorial klt

(Proposition 2.10), and B1/B3 is a Mori dream space by Lemma 2.16. The associated

2-rays game yields exactly two non-isomorphic B2, B
′
2 with ρ(B2/B3)=ρ(B

′
2/B3)=1.

Then, Lemma 2.17 provides sequences of log-flips over B3, X1 X2 and X1 X ′
2, such

that X2/B2, X
′
2/B

′
2 are the expected rank-2 fibrations.

If ρ(B1/B3)=1, then the base B2 of any of the expected rank-2 fibrations must

be equal to B1 or B3, because by assumption we have morphisms B1!B2!B3. By

Lemma 3.4 (1) X1/B3 is the first expected rank-2 fibration, and up to equivalence it is
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the only one with base B3, because any rank-2 fibration X2/B3 satisfies ρ(X2)=ρ(X1),

so the birational contraction X2 X1 is a pseudo-isomorphism. Let D be the pull-back

on X3 of an ample divisor on X1. The birational contraction X3 X1 is a D-MMP over

B3, and as ρ(X3)−ρ(X1)=1, it decomposes as a sequence of D-flips X3 X ′
3, a divisorial

contraction X ′
3!X

′
1, and a sequence of D-flips X ′

1 X1. Then, Lemma 2.17 provides

a sequence of log-flips over B3, X
′
3 X2, such that X2!X1 is a divisorial contraction,

and by Lemma 3.4 X2/B1 is the second expected rank-2 fibrations. Any other rank-

2 fibration X ′
2/B1 satisfying the lemma is equivalent to X2/B1, because as before the

condition on Picard numbers forces X2 X ′
2 to be a pseudo-isomorphism.

If ρ(B1/B3)=0, then ρ(X3)−ρ(X1)=2, and B1=B3 must be the base of any of

the expected rank-2 fibrations. By applying several times Lemma 2.17, we construct a

sequence of log-flips over B3, X3 X ′
3, such that X ′

3!X1 is a morphism. The associated

2-rays game yields exactly two divisorial contractions X2!X1 and X ′
2!X1. Moreover,

X2 and X ′
2 are not pseudo-isomorphic, by Lemma 2.19, and are uniquely determined up

to equivalence by Lemma 2.18 (2). Then, X2/B1 and X ′
2/B1 are the expected rank-2

fibrations.

Proposition 4.3. Let T/B be a rank-3 fibration. Then, there are only finitely many

Sarkisov links χi dominated by T/B, and they fit in a relation

χt�...�χ1 = id .

Proof. Since T/B is a Mori dream space, by Lemma 2.8 there are only finitely many

rank-1 or rank-2 fibrations dominated by T/B. We construct a bicolored graph Γ as

follows. Vertices are rank-1 or rank-2 fibrations dominated by T/B, up to T -equivalence,

and we put an edge between X2/B2 and X1/B1 if X2/B2 is a rank-2 fibration that

factorises through the rank-1 fibration X1/B1. By construction, two vertices of rank-1

of Γ are at distance 2 if and only if there is a Sarkisov link between them. Then, by

Lemmas 3.7 and 4.2, we obtain that Γ is a circular graph, giving the expected relation.

Definition 4.4. In the situation of Proposition 4.3, we say that

χt�...�χ1 = id

is an elementary relation between Sarkisov links, coming from the rank-3 fibration T/B.

Observe that the elementary relation is uniquely defined by T/B, up to taking the inverse,

cyclic permutations and insertion of isomorphisms.
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4.B. Geography of ample models

In this section, we recall some preliminary material from [BCHM], [HM2], [KKL]. The

aim is to explain the construction of a polyhedral complex attached with the choice of

some ample divisors on a smooth variety, and to state some properties (Proposition 4.14

and Lemma 4.18) that we will use in the next section to understand relations between

Sarkisov links.

Definition 4.5. ([BCHM, Definition 3.6.5]) Let Z be a terminal Q-factorial variety,

D be an R-divisor on Z and φ:Z Y be a dominant rational map to a normal variety

Y . We take a resolution
W

Z Y,

p q

φ

where W is smooth, p is a birational morphism and q is a morphism with connected

fibres. We say that φ is an ample model of D if there exists an ample divisor H on Y

such that p∗D is linearly equivalent to q∗H+E, where E⩾0, and if for each effective

R-divisor R linearly equivalent to p∗D, we have R⩾E.

If φ is a birational contraction, we say that φ is a semiample model of D if H=φ∗D

is semiample (and hence in particular R-Cartier), and if p∗D=q∗H+E, where E⩾0 is

q -exceptional.

We recall some properties related to these notions. The first lemma gives some direct

consequences of the definition of a semiample model, we leave the proof to the reader

(hint: use the negativity lemma).

Lemma 4.6. Let φ:Z Y be a birational contraction between Q-factorial varieties.

(1) For any DY ∈Nef(Y ), φ is a semiample model of φ∗DY .

(2) If {Di}i is a finite collection of classes in N1(Z) such that φ is a semiample

model of each, then φ is a semiample model for any convex combination of the Di.

(3) If φ′:Y Y ′ is a birational contraction to a Q-factorial varietiy, and φ′
�φ is

the ample model of a divisor D on Z, then φ′ is the ample model of φ∗D.

Lemma 4.7. ([BCHM, Lemma 3.6.6]) Let Z be a terminal Q-factorial variety and

D a R-divisor on Z.

(1) If φi:Z Yi, i=1, 2, are two ample models of D, then there exists an isomor-

phism θ:Y1
∼−!Y2 such that φ2=θ�φ1.

(2) If a birational map ψ:Z X is a semiample model of D, then the ample model

φ:Z Y exists and φ=θ�ψ for some morphism θ:X!Y . Moreover, ψ∗D=θ∗H, where

H is the ample divisor H=φ∗D.
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(3) A birational map φ:Z Y is the ample model of D if and only if it is a semi-

ample model of D and φ∗D is ample.

Note that composing with an isomorphism of the target does not change the notion

of ample or semiample model, therefore it is natural to say that two ample or semiample

models φ1:Z Y1 and φ2:Z Y2 are equivalent if there is an isomorphism θ:Y1
∼−!Y2

such that φ2=θ�φ1. Then, Lemma 4.7 (1) says that, up to equivalence, if an ample

model exists, then it is unique. This justifies that we can speak of the ample model of a

divisor D.

Definition 4.8. We say that two divisors D and D′ are Mori equivalent if they have

the same ample model.

Remark 4.9. For a Q-divisor, the ample model of D, if it factorises through a semi-

ample model, is the rational map φD associated with the linear system |mD| for m≫0,

whose image is

ZD =Proj

(⊕
m

H0(Z,mD)

)
,

where the sum is over all positive integers m such that mD is Cartier (see, for example,

[KKL, Remark 2.4 (ii)]). It does exist if the ring⊕
m

H0(Z,mD)

is finitely generated, which is for instance true if D=KZ+A for some ample Q-divisor

A (follows from [BCHM, Corollary 1.1.2]).

Set-up 4.10. Let Z be a smooth variety withKZ not pseudo-effective and letA1, ..., As

be ample Q-divisors that generate the R-vector space N1(Z). Assume that there exist

ample effective Q-divisors A,A′
1, ..., A

′
s such that, for each i, Ai=A+A′

i. Define

C=

{
D∈Div(Z)R :D= a0KZ+

s∑
i=1

aiAi, a0, ..., as⩾ 0 and D is pseudo-effective

}
.

Then, every element of C has an ample model, and the Mori equivalence classes give a

partition

C=
∐
i∈I

Ai.

For each i∈I, we denote by φi:Z Zi the common ample model of all D∈Ai.

Let VQ be a Q-vector space, and VR=VQ⊗R be the associated real vector space.

Recall that a rational polytope in VR is the convex hull of finitely many points lying

in VQ. In particular, it is convex and compact.
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Proposition 4.11. Assume Set-up 4.10. Then, the index set I is finite, the set C
is a cone over a rational polytope, and each Ai is a finite union of relative interiors of

cones over rational polytopes.

Proof. This follows from [HM2, Theorem 3.3]. Indeed, we can apply their result with

(in their notation) the affine subspace V ⊂Div(Z)R generated by A′
1, ..., A

′
s and −A. Ob-

serve that they normalise their divisors by a0=1, and they put a log-canonical condition

on the log-pairs, so they work with an affine section of a subset of our cone C. Precisely,
by choosing representatives for the Ai with simple normal crossing support and very

small positive coefficients, we can obtain all divisors of the form

D= a0

(
KZ+

s∑
i=1

ai
a0
Ai

)

for a0 greater than a given constant ε0>0. When ε0 is sufficiently small, the missing

divisors are all ample, so our cone C minus a small portion of the chamber containing

the ample divisors correspond to their cone. In a moment, we will work up to numerical

equivalence, and this awkward issue will disappear: see Set-up 4.15 and Remark 4.16.

We say that a Mori chamber has maximal dimension if it spans N1(Z).

Recall that a fan is a collection of rational strongly convex polyhedral cones, such

that each face (of any dimension) of a cone is also part of the collection, and such that

the intersection of two cones is a face of each.

Lemma 4.12. The closures of the chambers of maximal dimension yield a fan struc-

ture on C, which is the same as the fan structure considered in [KKL, Theorems 3.2 and

4.2].

Proof. The fan structure in [KKL], which slightly generalises [ELM+, Theorem 4.1],

is constructed as follows. One considers the coarsest polyhedral decomposition C=
⋃
i Ci

such that, for any geometric valuation Γ, the asymptotic order function oΓ is linear in

restriction to each Ci. Moreover, this decomposition is a fan by convexity of the oΓ.

Then, one writes C=
∐
iA′

i as the disjoint union of the relative interiors of the faces of

this fan. The Mori chamber Aj of ample divisors corresponds to one of the A′
i, since its

closure Āj=Nef(Z)∩C is characterised as the set of divisors in C on which all oΓ vanish.

Then, the result follows from [KKL, Lemma 2.11] combined with the following fact, which

can be extracted from the proof of [KKL, Corollary 4.4] or [HM2, Theorem 3.3 (4)]: for

each Mori chamber Ai of maximal dimension, associated with a birational contraction

φi:Z Zi, the closure ofAi is the intersection of C with the closed convex cone generated

by φ∗
i Nef(Zi) and by the exceptional divisors of φi.
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Notation 4.13. We will usually denote by F a face of the fan C given by Lemma

4.12, and F̊ its relative interior. We emphasise that [HM2] and [KKL] use the notation

Ai in a non-compatible way, so the reader should be aware of the following convention

when checking these references.

� First, our Ai are the same as in [HM2], and are the Mori chambers defined above.

� We denote Āi the closure of Ai in the ambiant real vector space, these are the Ci
of [HM2].

� The relative interior F̊ of faces are the Ai of [KKL] (and also the A′
i in the proof

of Lemma 4.12).

� Our faces F are the Āi in [KKL].

Proposition 4.14. Assume Set-up 4.10. Then, the following holds (each i and j

are always assumed to be in I in the next statements):

(1) For each i, the following are equivalent :

(i) the image of Ai in N1(Z) has non-empty interior ;

(ii) φi is birational and Zi is Q-factorial ;

(iii) φi is a birational contraction that is the output of a (KZ+∆)-MMP for

some KZ+∆∈C.
(2) If φj is birational, then Āj is a cone over a rational polytope, and we have

Āj = {D∈C :φj is a semiample model of D}.

(3) If i and j are such that Āj∩Ai ̸=∅, then there exists a morphism φji:Zj!Zi

with connected fibres such that φi=φji�φj. If moreover φj is birational, then we have

Āj∩Āi= {D∈ Āj :φj∗D·C =0 for each C ∈N1(Zj/Zi)}.

(4) For each i, the variety Zi is normal, and there exists an effective Q-divisor ∆i

such that (Zi,∆i) is klt. In particular, it has rational singularities.

(5) For each numerically equivalent divisors D,D′∈C and each i, we have

D∈Ai ⇐⇒ D′ ∈Ai and D∈ Āi ⇐⇒ D′ ∈ Āi.

Proof. (1) [HM2, Theorem 3.3 (3)].

(2) [KKL, Theorem 4.2 (1) and (4)].

(3) The first claim is [HM2, Theorem 3.3 (2)] or [KKL, Theorem 4.2 (3)]. The second

claim follows from (2) and the negativity lemma.

(4) The variety Zi is normal by definition of an ample model. If Ai satisfies the

equivalent conditions of (1), then Zi is terminal as the output of a (KZ+∆)-MMP.

Otherwise, there exists a chamber Aj satisfying the conditions of (1), such that

Āj∩Ai ̸=∅.
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So, Zj is Q-factorial and terminal, by (3) there is a contraction φji:Zj!Zi, and so the

claim follows from Proposition 2.11 and Remark 4.9.

(5) [KKL, Lemma 3.11] is the big case. In the non-big case, we pick Aj of maximal

dimension such that Āj∩Ai ̸=∅. By (3), there exists φji:Zj!Zi, so we reduce to the

big case by pulling back divisors to Zj .

Set-up 4.15. Let Z be a smooth variety withKZ not pseudo-effective and letA1, ..., As

be ample Q-divisors that generate the R-vector space N1(Z). We still denote

C=

{
D∈N1(Z) :D= a0KZ+

s∑
i=1

aiAi, a0, ..., as⩾ 0 and D is pseudo-effective

}
.

This is the image under the natural map Div(Z)R!N
1(Z) of the cone from Proposi-

tion 4.14, for some choice of ample effective Q-divisors A,A′
1, ..., A

′
s such that, for each

i,

Ai≡A+A′
i.

By Proposition 4.14 (5), the decomposition C=
∐
i∈I Ai (hence also its image in N1(Z))

does not depend on such a choice of effective representatives. So, from now on, we will

work directly in the finite-dimensional R-vector space N1(Z), and use the notation C,Ai

in this context only.

Remark 4.16. One advantage of working up to numerical equivalence is that we

may always assume that the pairs (Z,∆) in Set-up 4.15 are klt with arbitrary small

discrepancies, where

∆=
1

a0

s∑
i=1

aiAi.

Indeed, by expressing each Ai as

Ai≡
1

N

N∑
j=1

Hi,j

for some large integer N and some general members Hi,j∈|Ai|, we can ensure that

the union of the supports of the Hi,j is a simple normal crossing divisor and that all

coefficients appearing in the convex combination ∆ are positive and very small.

Assuming Set-up 4.15, we introduce some terminology. Recall that we say that

a chamber Ai has maximal dimension if it has non-empty interior in N1(Z), which

corresponds to the equivalent assertions of Proposition 4.14 (1). We say that a chamber

Ai is big if all divisors (or equivalently, one divisor) in Ai are big. By the codimension
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of a face in C we always mean the codimension in N1(Z) of the smallest vector subspace

containing it. We will usually denote by Fr a face of codimension r in C, and by 8Fr its

relative interior.

We denote by ∂+C the set of non-big divisors in C. As ∂+C is the intersection of

C with the boundary of the pseudo-effective cone, the set ∂+C is a closed subset of the

boundary of C. We have Ai⊆∂+C if dimZi<Z and Ai⊆C\∂+C if dimZi=Z.

By definition, the cone C⊂N1(Z) is equal to the intersection of two convex closed

cones, namely C=C′∩Eff(Z), with C′ being the convex cone generated by KZ and the

Ai. We will say that a face F⊆C is inner if it meets the interior of C′. In particular, F
is inner if for any D′∈ 8F , there exists a neighborhood V of D′ in N1(Z) such that

Eff(Z)∩V = C∩V.

Equivalently, a face is inner if it meets either the interior of C or the relative interior

of ∂+C.

Remark 4.17. If F is an inner face, then, for any D∈Eff(Z) and any D′∈ 8F , we have

D′+εD∈C for sufficiently small ε⩾0. Indeed, with the notation above, one can choose

a neighborhood V ⊂C′ of D′ such that Eff(Z)∩V =C∩V . Then, it suffices to choose ε

such that D′+εD∈V . As D and D′ are both pseudo-effective, the segment [D,D′] also

is contained in the convex cone Eff(Z), and the claims follows.

Lemma 4.18. (1) Any inner face Fr⊆C is of the form Fr=Fji :=Āj∩Āi, for

some chamber Aj of maximal dimension, and some chamber Ai containing 8Fr.

(2) If Fji is such an inner face, then the vector space

Vji := {D∈N1(Z) :φj∗D·C =0 for each C ∈N1(Zj/Zi)}

is spanned by Ex(φj) and φ∗
i Nef(Zi), has codimension ρ(Zj/Zi) in N1(Z), and Vji is

also the vector space spanned by Fji.

Proof. Statement (1) follows from [KKL, Theorem 4.2 (2)].

Statement (2) can be extracted from the proof of [HM2, Theorem 3.3 (4)]. (In

particular ,the k in their statement is the number of prime divisors in Ex(φj).)

Notation 4.19. Lemma 4.18 (1) provides the following indexing system for faces. Any

inner face can be written as Fji :=Āj∩Āi, for some chamber Aj of maximal dimension

and some chamber Ai such that 8F ji⊆Ai. The index i is uniquely defined by this last

property, but there might be several possible choices for the index j. For instance, if we

have a log-flip from Zj to Zk, over a non-Q-factorial Zi, then we have Fji=Fki.
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Figure 3. Ample models and faces in Example 4.20.

Example 4.20. We illustrate the definition of Mori chambers and faces on the simple

example of the blow-up Z!P2 at two distinct points p1 and p2. Using the notation

above, there are eight Mori chambers A0, ...,A7, corresponding to morphisms φi:Z!Zi,

i=0, ..., 7, to the varieties Z0=Z, Z1=Z2=F1, Z3=F0, Z4=P2, Z5=Z6=P1 and Z7={pt}
in the commutative diagram on Figure 3 (φ0 being the identity). The two morphisms

φ14, φ24:F1!P2 are the blow-ups of p1, p2∈P2, respectively, and φ1, φ2:Z!F1 are the

blow-ups of the images of p1 and p2, respectively. The morphisms φ15, φ26:F1!P1

correspond to the P1-bundle of F1 and φ3=φ5×φ6:Z!F0=P1×P1.
We give the detail of the relation between these Mori chambers and the faces of

the cone C in Figure 3. We denote by E1, E2⊂Z the curves contracted onto p1, p2∈P2,
respectively, by L the strict transform of the line through p1 and p2, and by

H =L+E1+E1

the pull-back of a general line. The cone Eff(Z) is the closed convex cone generated by
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E1, E2 and L, which are the only (−1)-curves on Z, while the cone Nef(Z) is the closed

convex cone generated by H, H−E1 and H−E2. The anti-canonical divisor

−KZ =3H−E1−E2 =3L+2E1+2E2

is ample. In the figure, we represent an affine section of the cone, and all divisors must be

understood up to rescaling by an adequate homothety: for instance, this is really − 1
7KZ

that is in the same affine section as E1, E2 and L, but for simplicity we write −KZ .

Since −KZ is ample, one can choose the Ai in Set-up 4.10 such that −KZ is contained

in the cone generated by the Ai, and then C=Eff(Z).

The faces F0
i =Āi, i=0, ..., 4, are the faces of maximal dimension, the faces Fji

(written Fr
ji, where r is the codimension as usual) are as above Fji=Āj∩Āi. Every face

of C=Eff(Z) is inner. We can notice that the ample chamber A0 is the only open one and

that A7 is the only closed one. Moreover, as a hint that the behaviour of non-maximal

Mori chambers can be quite erratic, observe that A7=Ā7 is not connected, and that

neither Ā5 nor Ā6 is a single face.

This example will be continued in Example 4.26 below.

As a warm-up before the next section, we let the reader check that Proposition 4.14

implies the following facts about codimension-1 faces of C.

Remark 4.21. Let F1 be an inner codimension-1 face of the cone C⊆N1(Z) from

Set-up 4.15, and Ai be the Mori chamber containing 8F1 given by Lemma 4.18 (1). Then,

F1 is contained in the closure of exactly one or two chambers of maximal dimension,

depending on whether F1 is in the boundary of C or not.

(1) Assume first that F1⊂Āj for a unique chamber Aj of maximal dimension, so F1

is in the boundary of C. Moreover, since F1 is inner, we have F1⊆∂+C, so dimZi<dimZj .

The associated map φji:Zj!Zi satisfies ρ(Zj/Zi)=1. Moreover, −KZj
is relatively am-

ple, so that Zj/Zi is a terminal Mori fibre space ([Kal, Lemma 3.2]; see also Proposi-

tion 4.25 below for a generalisation).

(2) Now, consider the case where F1=Āj∩Āk for some distinct chambers Aj and

Ak of maximal dimension. We distinguish two subcases.

(i) If Ai is of maximal dimension, up to renumbering, we may assume Ai=Ak, so

that Āj∩Ai⊇ 8F1. In this situation both Zj and Zi are Q-factorial and terminal, so the

morphism φji:Zj!Zi with relative Picard rank 1 given by Proposition 4.14 is a divisorial

contraction.

(ii) Finally, if Ai is not of maximal dimension, both birational morphisms φji and

φki given by Proposition 4.14 have relative Picard rank 1 and target variety Zi, which is

not Q-factorial, so φji and φki are small contractions. By uniqueness of the log-flip, the

induced birational map Zj Zk must be the associated log-flip.
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Remark 4.22. Let ∆∈C be an ample divisor. Then, the successive chambers of

maximal dimension that are cut by the segment [∆,KZ ] can be interpreted as successive

steps in a KZ-MMP from Z. In [BCHM, Remark 3.10.10] this is called a KZ-MMP with

scaling of ∆. Moreover, by perturbing ∆, we may assume that the segment is transverse

to the polyhedral decomposition. Then, as mentioned in Remark 4.21, each intermediate

face of codimension 1 that the segment meets corresponds either to a flip or to a divisorial

contraction, and the last codimension-1 face in the boundary of the pseudo-effective cone

corresponds to a Mori fibre space structure on the output of the MMP.

4.C. Generation and relations in the Sarkisov programme

The goal of this section is to prove Theorem 4.28, which will allow us to define the

group homomorphisms of the main theorems. The main technical intermediate step is

Proposition 4.25, which explains the relation between our notion of rank-r fibration and

the combinatorics of the non-big boundary of the cone C as given in [Kal].

The following lemma can be extracted from [HM2, Lemma 4.1] and [Kal, Proposi-

tion 3.1 (ii)].

Proposition 4.23. Let t⩾2 be an integer. For i=1, ..., t, let ηi:Xi!Bi be a ter-

minal Mori fibre space and let θi:Xi Xi+1 be a birational map (here θt goes from Xt

to Xt+1 :=X1). We assume moreover that θt�...�θ1=idX1
.

There exists a smooth variety Z, together with birational morphisms πi:Z!Xi,

i=1, ..., t, and ample Q-divisors A1, ..., Am on Z such that the following hold :

(1) The divisors A1, ..., Am generate the R-vector space N1(Z).

(2) For i=1, ..., t, the birational morphism πi and the morphism ηi�πi are ample

models of an element of

C=

{
a0KZ+

m∑
i=1

aiAi : a0, ..., am⩾ 0

}
∩Eff(Z).

(3) For i=1, ..., t, we have θi�πi=πi+1 (with πt+1 :=π1). We then have a commu-

tative diagram as in Figure 4.

In the following discussion (and until Corollary 4.27) we work with the setting given

by Proposition 4.23, that is, the commutative diagram of Figure 4 and an associated

choice of cone C⊂N1(Z). Also, recall that ∂+C⊂C is the subset of non-big divisors.

Lemma 4.24. ∂+C is the cone over a polyhedral complex homeomorphic to a disc or

a sphere of dimension ρ(Z)−2.



266 j. blanc, s. lamy and s. zimmermann

Z

X1

π1
X2

π2

X3 π3

X4

π4

X5

π5

Xt

πt

Xt−1
πt−1

θ1

θ2

θ3

θ4

...

θt−1

θt

Figure 4. The commutative diagram in Proposition 4.23

Proof. Consider the auxiliary cone C′ of classes of the form∑
i

aiAi where ai⩾ 0 for all i.

In other words, C′ is the cone over the convex hull of the Ai, and in particular C′ is a

closed subcone of the ample cone of Z. Let ∂+C′ be the points in the boundary of C′

that are visible from the point KZ . Formally,

∂+C′ =D∈C′ : [D,KZ ]∩C′ = {D}.

By an elementary convexity argument (using the fact that a closed convex set with non-

empty interior is homeomorphic to a ball), this cone ∂+C′ is homeomorphic to the cone

over a sphere or a disc of dimension ρ(Z)−2, the first case occurring precisely if −KZ is

in the interior of C′. Then, we have a continuous map

π: ∂+C′ −! ∂+C,

D 7−!π(D),

that sends D to the intersection of the segment [D,KZ ] with ∂+C. The intersection

exists because KZ /∈Eff(Z), while D∈C, and the intersection is unique by convexity of C.
The injectivity of π follows directly from the definition of ∂+C′, and π is also surjective,

because by definition the cone C in contained in the cone over the convex hull of KZ and

the Ai, which is the same as the cone over the convex hull of KZ and C′. In conclusion,

π is a homeomorphism, as expected.

Recall that the codimension of a face is taken relatively to the ambient space N1(Z),

so in particular if Fk⊆∂+C we have k⩾1.

By Remark 4.21, a face F1 of codimension 1 in ∂+C corresponds to a Mori fibre

space, or equivalently to a rank-1 fibration (Lemma 3.3). More generally, we now prove

that inner codimension-r faces in ∂+C correspond to rank-r fibrations.
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Proposition 4.25. Let Fr⊆∂+C be an inner codimension-r face. As a consequence

of Lemma 4.18 (1), we can write Fr=Āj∩Āi, with Aj being a chamber of maximal

dimension and Ai⊆∂+C being the Mori chamber containing the interior of Fr. Then,

(1) the associated morphism φji:Zj!Zi is a rank-r fibration;

(2) if Fs⊆∂+C is an inner codimension-s face and Fr⊆Fs, then the rank-r fibration

associated with Fr from (1) factorises through the rank-s fibration associated with Fs.

Proof. (1) We check the assertions of Definition 3.1:

(RF2) By Lemma 4.18 (2), φji:Zj!Zi is a morphism with relative Picard rank

equal to r, and dimZi<dimZj , because Ai⊆∂+C.
(RF4) This is Proposition 4.14 (4).

(RF5) To show that −KZj
is φji-big, we take D∈Āj∩Ai. By Proposition 4.14 (2),

we have D=KZ+∆ for some ample divisor ∆, and φj∗D∈Nef(Zj) is φji-trivial. By

Lemma 4.7 (3), φj is a semiample model of any element of Aj . So, φj is a birational

contraction and φj∗KZ=KZj , which we rewrite as

−KZj
=φj∗∆−φj∗D.

Since ∆ is ample and φj is birational, the divisor φj∗∆ is big , which means that we

can write it as a sum of an ample and an effective divisor. So, −KZj
is the sum of a

φji-ample and an effective divisor, and hence is φji-big by Lemma 2.1.

(RF1) We prove that Zj/Zi is a Mori dream space:

(MD1), (MD2) By Proposition 4.14, Zj is Q-factorial terminal, Zi has rational

singularities and dimZj>dimZi. A general fibre of φji has rational singularities by

Lemma 2.14. By Remark 4.16, we may assume that (Z,∆), and also (Zj , φj∗∆), are klt

pairs. By Proposition 4.14 (3), the divisor KZj
+φj∗∆=φj∗D is φji-trivial. We have just

seen that −KZj
is φji-big. Then, it follows from Lemma 2.15 (1) that a general fibre of

φji is rationally connected.

(MD3) We show that the nef cone Nef(Zj/Zi) is generated by finitely many semi-

ample divisors.

We take Dj∈Nef(Zj) and set D=φ∗
jDj∈N1(Z). Choose D′∈ 8Fr⊆Ai∩Āj . By Re-

mark 4.17, for t≫0 we have D+tD′∈C. By Lemma 4.6 (1) and (2), we have D+tD′∈Āj .

Since φj∗D
′ is φji-trivial by Proposition 4.14 (3), we get that

φj∗(D+tD′)=Dj+tφj∗D
′

is equivalent to Dj in Nef(Zj/Zi). Hence, any class in Nef(Zj/Zi) can be represented by

a divisor in φj∗Āj . We conclude that Nef(Zj/Zi) is generated by finitely many divisors

of the form φj∗(KZ+∆), where KZ+∆ runs over the vertices of a polytope generating

the cone Āj , and the φj∗(KZ+∆) are semiample by Proposition 4.14 (2).
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(MD4) Let Dj∈IntMov(Zj). In particular, Dj is big. Set D=φ∗
jDj and pick D′∈

8Fr⊆Ai∩Āj . By Remark 4.17, for t≫0 we have D̂:=D+tD′∈C.
Replacing D by an arbitrary close class in C, we may assume that D̂=D+tD′∈Ak,

where Ak is of maximal dimension. We also replace Dj by φj∗D, which is a small

perturbation of the initial class, hence still in IntMov(Zj). We keep the same notation,

for simplicity. (Observe that after perturbation we lose the property D=φ∗
jDj , but we

will not need it.) By finiteness of the chamber decomposition, Ak does not depend on the

choice of the large real t, which also implies D′∈Āk∩Ai. So, we have Fji⊆Fki, and hence

a similar inclusion for the vector subspaces spanned by these faces. By Lemma 4.18 (2),

this implies that all divisors contracted by φj are also contracted by φk, and hence

fk :=φk �φ
−1
j :Zj Zk

is a birational contraction.

As above, Dj and D̂j :=Dj+tφj∗D
′ represent the same class in N1(Zj/Zi). More-

over, by Lemma 4.7 (2), we have φj∗D
′=φ∗

jiDi, and as the pull-back of an ample divisor

is movable, we have φj∗D
′∈Mov(Zj). So, we have D̂j∈IntMov(Zj), and φj∗D̂=D̂j with

D̂∈Ak.

By Lemma 4.6 (3), the birational contraction fk:Zj Zk is the ample model of D̂j .

Since D̂j∈IntMov(Zj), its ample model fk is a pseudo-isomorphism. Finally,

D̂j ∈ f∗k (Ample(Zk/Zi)),

where Zk is Q-factorial, and by taking closures we obtain

Mov(Zj/Zi)⊆
⋃
l

f∗l (Nef(Zl/Zi))

for some finite collection of pseudo-isomorphisms fl:Zj Zl over Zi to Q-factorial vari-

eties.

For the other inclusion, we note that, for any pseudo-isomorphism fl:Zj Zl over

Zi, we have f∗l Ample(Zl/Zi)⊂Mov(Zl/Zi), and the claim follows by taking closures.

(RF3) Let Dj∈N1(Zj) be a divisor. We now show that the output of any Dj-MMP

from Zj over Zi can be obtained by running a KZ-MMP from Z. Let D′∈Fr⊆Āj .

Then, by Proposition 4.14 (2), φj is a semiample model of D′, φi is its ample model,

and by Lemma 4.7 (2), we have φj∗D
′=φ∗

jiHi for some ample divisor Hi on Zi. To run

a Dj-MMP from Zj over Zi, we pick Hj∈Ample(Zj) and consider all pseudo-effective

convex combinations

Dt := ε(tDj+(1−t)Hj)+φ
∗
ijHi
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for some 1≫ε>0. The set of the φ∗
jDt is a segment in a small neighborhood of D′

inside C. Therefore, any intermediate variety in this Dj-MMP over Zi can be obtained

by running a KZ-MMP from Z. In particular, the output of this MMP has the form

ProjH0(Zj , Dt0)=ProjH0(Z,φ∗
jDt0)

for some t0∈(0, 1), and by Proposition 4.14 (1), this is a Q-factorial and terminal variety,

as expected.

(2) (Analogous to [LZ, Proposition 3.10 (2)]) Let Ai,Ak⊆∂+C be the chambers con-

taining the interior of Fr and Fs, respectively. By Lemma 4.18 (1), there exist maximal

chambers Aj and Al such that Fr=Āj∩Āi and Fs=Āl∩Āk. Since moreover Fr⊆Fs

implies that Āl∩Ai ̸=∅, by Proposition 4.14 (3), we have a commutative diagram induced

by the maps from Z:

Zj Zl

Zi Zk.

We want to prove that the birational map Zj Zl is a birational contraction.

Let D∈ 8Fr⊆Ai. There exists an ample class ∆∈C and t1>0 such that

D=(1−t1)∆+t1KZ .

For t1>t0>0 sufficiently close to t0, any chamber of maximal dimension Aj0 such that

(1−t0)∆+t0KZ ∈Aj0

satisfies Fr⊂Āj0 . Now, there exists a small perturbation ∆′ of ∆ such that the segment

[∆′,KZ ] meets successively a chamber Aj0 and then the chamber Al. Indeed, t1>t0 and

the ordering is preserved under a small perturbation. Up to replacing j by this j0, by

Remark 4.22 this segment corresponds to a KZ-MMP with scaling of ∆′, and provides

the expected birational contraction from Zj to Zl.

Example 4.26. On Figure 5, we label the boundary faces from Example 4.20 with

their corresponding rank-r fibration, as given by Proposition 4.25 (r∈{1, 2}). We also

indicate the images of ample models corresponding to chambers of maximal dimension.

Applying Proposition 4.25 to faces of codimension 2 or 3, we obtain the following

corollary. Observe that the first point is well known (see e.g. [HM2, Theorem 3.7]), and

the second one is a natural generalisation.
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F1
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F1
35 F1

36

F1
26

F1
47

F1
14 F1

24

F1
01 F1

02

F1
03
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� �

�

F2
17

F2
05

F2
37

F2
06

F2
27

F2
04

F0
4=Ā4

F0
1=Ā1

F0
3=Ā3

F0
2=Ā2

F0
0=Ā0

Z1/Z5=P1

Z3/Z5=P1 Z3/Z6=P1

Z2/Z6=P1

Z4/Z7=pt

�

��

� �

�

Z1/Z7=pt

Z0/Z5=P1

Z3/Z7=pt

Z0/Z6=P1

Z2/Z7=pt

Z4=P2

Z1=F1

Z3=F0

Z2=F1

Z0=Z

Figure 5. Rank-r fibrations in Example 4.20.

Corollary 4.27. (1) If the intersection F1
i ∩F1

j of non-big codimension-1 faces

has codimension 2, then there is a Sarkisov link between the corresponding Mori fibre

spaces.

(2) Let F3 be a face in ∂+C of codimension 3 and T/B be the associated rank-

3 fibration, as given in Proposition 4.25. Then, the elementary relation associated with

T/B corresponds to the finite collection of codimension-1 faces F1
1 , ...,F1

s containing F3,

and ordered such that F1
j and F1

j+1 share a codimension-2 face for all j (where indices

are taken modulo s).

Proof. (1) By Proposition 4.25, there is a rank-2 fibration corresponding to the

codimension-2 face F2 :=F1
i ∩F1

j that factorises through the rank-1 fibrations associated

with F1
i and F1

j . This is exactly the definition of a Sarkisov link (Definition 3.8).

(2) This is just a rephrasing of Proposition 4.3, using Proposition 4.25 to associate

a rank-1 or rank-2 fibration dominated by T/B with each face of codimension 1 or 2

containing F3, and using (1) to associate a Sarkisov link with each pair of codimension-1

faces sharing a common codimension-2 face.

Let X/B be a terminal Mori fibre space. We denote by BirMori(X) the groupoid

of birational maps between terminal Mori fibre spaces birational to X. The group of

birational self-maps Bir(X) is a subgroupoid of BirMori(X). The motivation for in-

troducing the notion of elementary relation is the following result. The first part is a

reformulation of [HM2, Theorem 1.1]. The second part is strongly inspired by [Kal, The-

orem 1.3], observe however that our notion of elementary relation is more restrictive, and

so Theorem 4.28 (2) does not follow from [Kal].

In the statement, we use the formalism of presentations by generators and relations

for groupoids. This is very similar to the more familiar setting of groups: we have natural
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notions of a free groupoid, and of a normal subgroupoid generated by a set of elements.

We refer to [Bro, §8.2 and §8.3] for details.

Theorem 4.28. Let X/B be a terminal Mori fibre space.

(1) The groupoid BirMori(X) is generated by Sarkisov links and automorphisms.

(2) Any relation between Sarkisov links in BirMori(X) is generated by elementary

relations.

Proof. Statement (1) is the main result of [HM2]. The idea of the proof is to take

Z a resolution of a given birational map φ:X1/B1 X2/B2, and to consider the cone C
with a choice of ample divisors as given by Proposition 4.23 (applied with t=2, θ1=φ,

θ2=φ
−1). Then, one takes a general 2-dimensional affine slice of C that passes through

the codimension 1 faces associated with X1/B1 and X2/B2. The intersection of this slice

with ∂+C is a polygonal path corresponding to successive pairwise neighbour codimension

1 faces, and by Corollary 4.27 (1) this gives a factorisation of φ into Sarkisov links.

(2) The proof is essentially the same as in [LZ, Proposition 3.15], we repeat the

argument for the convenience of the reader.

Let

X0/B0
χ1 X1/B1

χ2 ...
χt Xt/Bt

be a relation between t Sarkisov links, meaning that χt�...�χ1 is the identity on X0=Xt.

We take a smooth resolution Z dominating all theXi/Bi, and consider the cone C⊂N1(Z)

constructed from a choice of ample divisors as in Proposition 4.23. We may assume

ρ(Z)⩾4 (otherwise we simply blow-up some points on Z), so that by Lemma 4.24 the

non-big boundary ∂+C is a cone over a polyhedral complex S homeomorphic to a disc or

a sphere of dimension ρ(Z)−2⩾2. In particular, the section S is simply connected. Now,

we construct a 2-dimensional simplicial complex B embedded in S as follows. Vertices

are the barycenters p(Fk) of codimension-k faces Fk, for k=1, 2, 3. We call k the type

of the vertex. We put an edge between p(F j) and p(Fk) if F j is a proper face of Fk,

and a 2-simplex for each sequence F3⊂F2⊂F1. The complex B is homeomorphic to the

barycentric subdivision of the 2-skeleton of the dual cell complex of S. It follows that

B is simply connected (recall that the 2-skeleton of a simply connected complex is again

simply connected, see e.g. [Hat, Corollary 4.12]). Then, we restrict to the subcomplex

I⊆B corresponding to inner faces, which are the ones that intersect the relative interior

of S. The simplicial complex I is a deformation retract of the interior of B, so I again

is simply connected. By Proposition 4.25, we can associate a rank-r fibration with each

vertex of type r, and two vertices are connected by an edge if and only if the corresponding

fibrations factorise through each other. By Corollary 4.27 (2), around each vertex of type

3 there is a unique disc whose boundary loop encodes an elementary relation. The 2-
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X =X0 X1 ... Xt−1 Xt=Y

B0 =B B1 ... Bt−1 Bt=B

B

φ

ηX

χ1 χ2 χt−1 χt

ηY

id id

Figure 6. The diagram of Lemma 4.29.

dimensional components of the complex I are unions of these discs. The initial relation

corresponds to a loop in I that only passes through vertices of types 1 and 2. We

can realise the homotopy of this loop to the constant loop inside the simply connected

complex I by using these elementary relations, and this translates as a factorisation of

the initial relation as a product of conjugates of elementary relations.

The whole construction leading to the previous theorem can be made in a relative

setting, that is, where all involved varieties admit a morphism to a fixed base variety B.

In fact, the paper [BCHM] on which relies [HM2] is written with this level of generality.

In the particular case where the base B has dimension n−1, we obtain the following

statement, slightly more precise than Theorem 4.28 (1).

Lemma 4.29. Let ηX :X!B and ηY :Y!B be two conic bundles over the same base.

Then, any birational map φ:X Y over B decomposes into a sequence of Sarkisov links

of conic bundles over B. More precisely, we have a commutative diagram as in Figure 6,

such that, for each i=1, ..., t, Bi/B is a birational morphism, Xi/Bi is a conic bundle

and χi is a Sarkisov link.

4.D. Examples of elementary relations

In this section we give examples of elementary relations, mostly in dimension n=3.

Example 4.30. Let X be a Fano variety with Q-factorial terminal singularities and

Picard rank 3. Then, X/{pt} is a rank-3 fibration (Example 3.2 (1)), and hence there

is an associated elementary relation. In the case where X is smooth of dimension 3,

these relations were studied systematically by Kaloghiros, using a classification result by

Mori–Mukai: see [Kal, Example 4.9 and Figures 3–5]. With respect to the setting of

§4.C, in these examples we have Z=X, N1(Z)≃R3 and ∂+C is the cone over a complex

homeomorphic to a circle, which encodes the elementary relation. Observe that the

simple 2-dimensional Example 4.26 also belongs to this family of examples.
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pt

P1

P3

T T ′
X X ′

Y Y ′

E
E′

P

E′

E

P

flop

χ1

χ2

χ3

flop

χ4

χ5

Figure 7. The elementary relation from Example 4.31.

Example 4.31. Let L∪L′⊂P3 be two secant lines, and P be the plane containing

them. Let X!P3 be the blow-up of L, with exceptional divisor E, let ℓ⊂E be the

fibre intersecting the strict transform of L′, and let T!X be the blow-up of L′, with

exceptional divisor E′.

From T we can flop ℓ to get a 3-fold T ′, which is obtained by the same two blow-ups

in the reverse order: first the blow-up X ′
!P3 of L′⊂P3 and then the blow-up T ′

!X ′

of (the strict transform of) L on X ′.

From T or T ′ one can contract the strict transform of P onto a smooth point,

obtaining two 3-folds Y and Y ′ also related by the flop of ℓ.

The elementary relation associated with the rank-3 fibration T/{pt} (or equivalently

to T ′/{pt}), is depicted on Figure 7. There are five links in the relation, where χ1 has

type I, χ2 and χ4 have type II, χ3 has type IV, and χ5 has type III.

Example 4.32. Consider the blow-up F1!P2 of a point, with exceptional curve

Γ⊂F1. In P1×F1, write D=P1×Γ, and C={0}×Γ. Let T be the blow-up of C, with

exceptional divisor E. Then, T/P2 is a rank-3 fibration, and we now describe the associ-

ated elementary relation (see Figure 8). We let the reader verify the following assertions

(since all varieties are toric, one can for instance use the associated fans).

First, the 2-rays game T/F1 gives a link of type II:

χ1:P1×F1 P1⊠F1,

where P1⊠F1 denotes a smooth Mori fibre space over F1 that is a non-trivial but locally

trivial P1-bundle. The link χ1 involves the pair D∪E of divisors of type II for T/F1.
The divisor D on T can be contracted in two ways to a curve P1, that is, T domi-

nates a flop between P1⊠F1 and another variety X. This variety X admits a divisorial
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T

P1×F1

P1⊠F1 X

P2F1 P1×P2

EI/EII

DII

DI

DI

EI

χ1

χ2

χ3

flop

Figure 8. The elementary relation from Example 4.32. We indicate the type of contracted

divisors in index.

contraction to P1×P2, with exceptional divisor the strict transform of E, which here is

a divisor of type I for X/P2. This corresponds to a link of type III:

χ2:P1⊠F1 P1×P2.

Finally, the 2-rays game P1×F1/P2, which factorises via F1 and P1×P2, gives a link

of type I:

χ3:P1×P2 P1×F1.

In conclusion, we get an elementary relation χ3�χ2�χ1=id.

In contrast with Lemma 3.17, observe that D and E are divisors of type II for T/F1,
but divisors of type I for T/P2.

Example 4.33. (Example 3.15 over B=P2) Consider P1×P2, and let Γ⊂P2 be a line,

D≃P1×Γ be the pull-back of Γ in P1×P2, Γ′={t}×Γ⊂D be a section and p∈D\Γ′ be

a point. Let T!P1×P2 be the blow-up of Γ′ and p, with respective exceptional divisors

D′ and E, and denote again by D the strict transform of P1×Γ in T . Then, the induced

morphism η:T!P2 is a rank-3 fibration that gives rise to the relation in Figure 9.

The figure was computed using toric fans in Z3, starting from the standard fan of

P1×P2 with primitive vectors

(1, 0, 0), (0, 1, 0), (−1,−1, 0), (0, 0, 1) and (0, 0,−1),

and with the following choices:

D: (1, 0, 0), D′: (1, 0, 1) and E: (1, 1,−1).
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P2 T

T ′

T ′′

X

W ′

W

P1⊠F1

Y

F1

P1×P2

P1⊠P2 E

D

D′

D

D′

D′

D

E

E

flip

flip flip

flop

χ1

χ2

χ3

χ4

Figure 9. Elementary relation from Example 4.33.

The varieties T ′ andW ′ both have one terminal singularity, all other varieties are smooth.

There are two distinct Francia flips from T ′, which are T ′ T and T ′ T ′′. Observe

also that the link χ1 is exactly Example 3.11 (2).

Example 4.34. The article [AZ2] contains a beautiful example of an elementary

relation involving five Sarkisov links. In Figure 10 we reproduce the diagram from [AZ2,

§5.2], and we refer to their paper for a detailed description of the varieties. The Sarkisov

links χ1 and χ3 have type II, χ2 has type I, χ4 has type IV and χ5 has type III. The

relation is associated with the rank-3 fibration Z ′
1/{pt}, or equivalently with Z ′

2/{pt}. In
fact, other equivalent choices of varieties of Picard rank 3 are omitted from the picture

(dominating Y ′
1 , X

′
3, X

′
1 and X ′′

1 , respectively). The morphisms from Z, 	Z and Z̃ to

P1 are fibrations in cubic surfaces. Observe that the top rows of the Sarkisov diagrams

display non-trivial pseudo-isomorphisms, involving flips and flops. Note that each pseudo-

isomorphism labeled “n flops” really corresponds to a single flop with n components

(which by definition are all numerically proportional), in accordance with Remark 3.10.

5. Elementary relations involving Sarkisov links of conic bundles of type II

This section is devoted to the study of elementary relations involving Sarkisov links of

conic bundles of type II that are complicated enough, meaning their covering gonality is
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flip
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χ1

χ2

χ3

≃ χ4

χ5

Figure 10. Elementary relation from Example 4.34.

large. We give some restriction on such relations that will allow us to prove Theorem D.

Firstly, in Proposition 5.3, we cover the case of relations over a base of dimension ⩽n−2,

where n is the dimension of the Mori fibre spaces, using the BAB conjecture and working

with Sarkisov links of large enough covering gonality. Secondly, the case of relations over

a base of dimension n−1 is handled in Proposition 5.5, using only the assumption that

the covering gonality is >1.

5.A. A consequence of the BAB conjecture

The following is a consequence of the BAB conjecture, which was recently established in

arbitrary dimension by C. Birkar.

Proposition 5.1. Let n be an integer, and let Q be the set of weak Fano terminal

varieties of dimension n. There are integers d, l,m⩾1, depending only on n, such that,

for each X∈Q, the following hold :

(1) dim(H0(−mKX))⩽l;

(2) the linear system |−mKX | is base-point free;

(3) the morphism

φ:X
|−mKX |−−−−−−−!Pdim(H0(−mKX))−1

is birational onto its image and contracts only curves C⊆X with C ·KX=0;

(4) degφ(X)⩽d.
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Proof. By [Bir2, Theorem 1.1], varieties in Q form a bounded family (here we use the

observation that, for a given X∈Q, the pair (X,∅) is ε-lc for any 0<ε<1). In particular,

by [Bir1, Lemma 2.24], the Cartier index of such varieties is uniformly bounded. Then,

[Kol2, Theorem 1.1] gives the existence of m=m(n) such that |−mKX | is base-point free
for each X∈Q. By [Bir1, Theorem 1.2], we can increase m if needed, and assume that

the associated morphism

φ:X
|−mKX |−−−−−−−!Pdim(H0(−mKX))−1

is birational onto its image. As it is a morphism, this implies that it contracts only

curves C⊆X with C ·KX=0. Finally, since Q is a bounded family, the two integers

dim(H0(−mKX)) and degφ(X) are bounded.

Corollary 5.2. Let π:Y!X be the blow-up of a reduced but not necessarily ir-

reducible codimension-2 subvariety Γ⊂X, Y Ŷ be a pseudo-isomorphism, and assume

that both X and Ŷ are weak Fano terminal varieties of dimension n⩾3, whose loci cov-

ered by curves with trivial intersection against the canonical divisor has codimension at

least 2. Let φ be the birational morphism associated with the linear system |−mKX |,
with m given by Proposition 5.1, and assume that Γ is not contained in the exceptional

locus Ex(φ). Then, through any point of Γ\Ex(φ), there is an irreducible curve C⊆Γ

with

gon(C)⩽ d and C ·(−mKX)⩽ d,

where d is the integer from Proposition 5.1.

Proof. We choose the integers d, l,m⩾1 associated with the dimension n in Propo-

sition 5.1. We write

a=dim(H0(−mKX))−1 and b=dim(H0(−mKY ))−1.

Using the pseudo-isomorphism Y Ŷ , we also have

b=dim(H0(−mKŶ ))−1.

By Proposition 5.1, the morphisms given by the linear systems |−mKX | and |−mKŶ | are
birational onto their images and are moreover pseudo-isomorphisms onto their images,

because of the assumption that the locus covered by curves with non-positive intersection

against the canonical divisor has codimension at least 2.

Since Y!X is the blow-up of Γ, each effective divisor equivalent to −mKY is the

strict transform of an effective divisor equivalent to −mKX passing through Γ (with
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some multiplicity). In particular, we have b⩽a and obtain a commutative diagram

X Y Ŷ

Pa Pb,

|−mKX |φ
|−mKY | |−mK

Ŷ
|

π

where π is a linear projection away from a linear subspace L≃Pr of Pa containing the

image of Γ. Recall that we write φ:X!Pa for the morphism given by |−mKX |. The

variety φ(X)⊆Pa has dimension n and degree ⩽d (Proposition 5.1), and is not contained

in a hyperplane section. Since by assumption Γ⊊Ex(φ), we get that φ induces a birational

morphism from Γ to φ(Γ).

We now prove that there is no (irreducible) variety S⊆φ(X)∩L of dimension n−1

(recall that φ(Γ)⊆φ(X)∩L has dimension n−2). Indeed, otherwise the strict transform

of S on X would be a variety SX⊂X birational to S, so its strict transform in Ŷ , and in

Pb is again birational to S (as the birational map from Y to its image in Pb is a pseudo-

isomorphism). The linear system of the rational map X Pb is obtained from the linear

system associated with X Pa by taking the subsystem associated with hyperplanes

through L. Hence, if S⊆L, then every element of the linear system |−mKY | contains
the strict transform SY of S in Ŷ . This is impossible, as |−mKŶ | is base-point free

(Proposition 5.1).

Now, the fact that φ(X)∩L⊆Pa does not contain any variety of dimension ⩾n−1

implies, by Bézout theorem, that all its irreducible components of dimension n−2 have

degree ⩽d (indeed, φ(X) is irreducible of degree ⩽d and dimension n−1, and L is a

linear subspace). Therefore, each of the irreducible components of φ(Γ) (birational to Γ)

has degree ⩽d.

We are now able to finish the proof, by showing that through any point q∈Γ\Ex(φ)
there is an irreducible curve C⊆Γ with gon(C)⩽d and C ·(−KX)⩽d. Since Γ!φ(Γ) is a

local isomorphism at q, it suffices to take a general linear projection from Pa to a linear

subspace of dimension n−2, and to take C equal to the preimage of a line through the

image of φ(q).

Proposition 5.3. For each dimension n⩾3, there exists an integer dn⩾1 depending

only on n such that the following holds. If χ is a Sarkisov link of conic bundles of type

II that arises in an elementary relation induced by rank-3 fibration T/B with dim(T )=n

and dim(B)⩽n−2, then cov. gon(χ)⩽max{dn, 8 conn. gon(T )}.

Proof. We choose dn⩾8 to be bigger than the integers d given by Proposition 5.1

for the dimensions 3, ..., n, and prove the result for this choice of dn.
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The Sarkisov link χ, which is dominated by T/B by assumption, has the form

Y1 T Y2

X1 X2

B̃

B,

χ

where X1, X2, Y1 and Y2 have dimension n and B̃ has dimension n−1. Since dimB⩽

n−2, we have ρ(B̃/B)⩾1, and on the other hand ρ(Yi/B)⩽3, for i=1, 2, which implies

that ρ(B̃/B)=1, and that the birational contractions T Y1 and T Y2 are pseudo-

isomorphisms. Moreover, Y1!X1 contracts a divisor E onto a variety Γ1⊂X1 of dimen-

sion n−2, birational to its image Γ̃⊂B̃ via the morphism X1!B̃ (Lemma 3.23). We

need to check that cov. gon(Γ1)=cov. gon(Γ̃)⩽dn, where dn is chosen as above. We may

then assume that cov. gon(Γ̃)>1.

Now, B̃/B is a klt Mori fibre space by Lemma 3.13 and X1/B is a rank-2 fibration

by Lemma 3.4 (1). By Lemma 3.5, the rank-2 fibration X1/B is pseudo-isomorphic, via a

sequence of log-flips over B, to another rank-2 fibration X/B such that −KX is relatively

nef and big over B. We then use Lemma 2.17 to obtain a sequence of log-flips Y1 Y

over B such that the induced map Y!X is a divisorial contraction. By Lemma 3.5

again, we get a sequence of log-flips over B from Y/B to another rank-3 fibration Ŷ /B

such that −KŶ is relatively nef and big over B:

Y1 Y Ŷ

X1 X

B.

As cov. gon(Γ̃)>1, by Lemma 2.15 (3) the codimension-2 subvariety Γ1⊂X1 is not con-

tained in the base-locus of the pseudo-isomorphism X1 X. So, the image Γ⊂X of Γ1

is birational to Γ1, and it suffices to show that cov. gon(Γ)⩽dn.
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We take a general point p∈B, and consider the fibres over p in X, Y and Ŷ , respec-

tively, that we denote by Xp, Yp and Ŷp, and which are varieties of dimension

n0 =n−dimB ∈{2, ..., n}.

By Corollary 3.6, the two varieties Xp and Ŷp are weak Fano terminal varieties.

Moreover, Yp and Ŷp are pseudo-isomorphic, as Y Ŷ is a sequence of log-flips over B.

Observe that Γ̃⊂B̃ is a hypersurface and that Γ̃!B is surjective. Indeed, otherwise

Γ̃ would be the preimage of a divisor on B, and we would have cov. gon(Γ̃)=1, as the

preimage of each point of B̃!B is covered by rational curves (Lemma 3.13), in con-

tradiction with our assumption. This implies that the morphism Γ!B induced by the

restriction of X/B is again surjective.

We then denote by Γp⊂Xp the codimension-2 subscheme Γp=Γ∩Xp, which is the

fibre of Γ!B over p, and which is not necessarily irreducible. Observe that Yp!Xp is

the blow-up of Γp, as Y!X is locally the blow-up of Γ (by Lemma 2.13) and because

the fibre over p is transverse to Γ (Lemma 3.23 (4)).

Suppose first that n0=2, which corresponds to dim(Γ)=dim(B). In this case, Xp

and Yp≃Ŷp are smooth del Pezzo surfaces, because by Corollary 3.6 the locus covered

by curves trivial against the canonical divisor has codimension 2, and hence is empty in

the case n0=2. Moreover, Γp is a disjoint union of r points, where r is the degree of the

field extension C(B)⊆C(Γ1). As Yp is obtained from Xp by blowing-up Γp, the degree

of the field extension is at most 8, which implies (Lemma 2.22) that

cov. gon(Γ)⩽ 8·cov. gon(B)⩽ 8 conn. gon(T ).

We now consider the case n0⩾3, which implies that Γp has dimension n0−2⩾1.

We consider the morphism φ:=|−mKX |×η:X PN×B, where η:X!B is the mor-

phism already considered and m is given by Proposition 5.1 applied in dimension n0.

The restriction of φ to the fibre of p is a birational morphism φp:Xp!PN , described

in Proposition 5.1. We apply Corollary 5.2 to the blow-up Yp!Xp of Γp, the pseudo-

isomorphism Yp Ŷp. The fact that the loci on Xp or Ŷp covered by curves with trivial

intersection against the canonical divisor has codimension at least 2 follows from Corol-

lary 3.6. Lemma 2.15 (3) implies that Γp is not contained in Ex(φp), because

cov. gon(Γp)> 1.

We obtain from Corollary 5.2 that, for a general p, Γp\Ex(φp) is covered by curves of

gonality at most dn. In conclusion, we have found an open set U=Γ\Ex(φ)⊆Γ covered

by curves of gonality at most dn, as expected.
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Remark 5.4. It is not clear to us whether Proposition 5.3 could also hold for a link

χ of type II between arbitrary Mori fibre spaces.

For instance in the case of threefolds, if χ is a link of type II between del Pezzo

fibrations that starts with the blow-up a curve of genus g contained in one fibre, we

suspect that g cannot be arbitrary large but we are not aware of any bound in the

literature.

5.B. Some elementary relations of length 4

Proposition 5.5. Let χ1 be a Sarkisov link of conic bundles of type II with

cov. gon(χ1)> 1.

Let T/B be a rank-3 fibration with dimB=dimT−1, which factorises through the Sark-

isov link χ1. Then, the elementary relation associated with T/B has the form

χ4�χ3�χ2�χ1 = id,

where χ3 is a Sarkisov link of conic bundles of type II that is equivalent to χ1.

Proof. The Sarkisov link χ1 is given by a diagram

Y1 Y2

X1 X2

B̂,

π1 π2

χ1

where X1, X2, Y1 and Y2 are varieties of dimension n, and dim B̂=n−1. Denote by

E1⊂Y1 and E2⊂Y2 the respective exceptional divisors of the divisorial contractions π1

and π2. We denote again by E1, E2⊂T the strict transforms of these divisors, under

the birational contractions T Y1 and T Y2. Then, by Lemma 3.23 (2), E1∪E2 is

a pair of divisors of type II for Y1/B̂, and hence also for T/B by Lemma 3.17. By

Proposition 3.16 (5), we are in one of the following mutually exclusive three cases:

(1) B is Q-factorial, and there exists a divisor G of type I for T/B;

(2) B is not Q-factorial;

(3) B is Q-factorial, and there exists another pair F1∪F2 of divisors of type II for

T/B.
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Figure 11. The elementary relation associated with T/B in cases (1)–(3) of the proof of

Proposition 5.5. Varieties are organised in circles according to their Picard rank over B.

We denote by {Xi/Bi} the finite collection of all rank-1 fibrations dominated by

T/B. In each case we are going to show that this collection has cardinality 4.

Suppose first that (1) holds. By Proposition 3.16 (1) and (4), and Lemma 3.18, we

can obtain such an Xi/Bi by a birational contraction contracting one the following four

sets of divisors: {E1}, {E2}, {E1, G} and {E2, G}. Moreover, Xi/Bi is determined up

to isomorphism by such a choice of contracted divisors:

� If T Xi contracts {E1, G} or {E2, G}, then ρ(Xi)=ρ(T )−2, which implies

ρ(Bi/B)= 0,

that is, Bi!B is an isomorphism. Then, Xi is uniquely determined by Lemma 2.18 (1).
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� If T Xi contracts {E1} or {E2}, then

ρ(Bi/B)= 1,

and Bi B is a birational contraction contracting the image of the divisor G. Then,

such a Bi is uniquely determined by Lemma 2.18 (2).

In conclusion, the relation given by Proposition 4.3 has the form

χ4�χ3�χ2�χ1 = id,

and more precisely, up to a cyclic permutation exchanging the role of χ1 and χ3, we have

a commutative diagram as in Figure 11, top-left, where χ2 and χ4 have respectively type

III and I, and χ1 and χ3 are equivalent Sarkisov links of type II.

Now consider case (2). As B̂ is Q-factorial (Proposition 2.10), we have B̂ ̸=B, and

hence ρ(B̂/B)=1 and the morphism B̂!B is a small contraction. By uniqueness of

log-flip, there are exactly two small contractions from a Q-factorial variety to B. Denote

by B̂′
!B the other one. Then, for each Xi/Bi, we have Bi≃B̂ or B̂′, and ρ(Xi/B)=2.

Hence, the birational contraction T Xi contracts exactly one divisor, which must be

E1 or E2. Again, this gives four possibilities. The actual existence of X3/B̂
′ and X4/B̂

′

arises from the 2-rays games X1/B and X2/B. We get a relation as in Figure 11, top-

right, with χ1 and χ3 of type II, and χ2 and χ4 of type IV.

Finally, consider case (3). Then, by Proposition 3.16 (1) and (4), each birational

contraction T Xi contracts one divisor among E1∪E2, and another one among F1∪F2.

Again, this gives four possibilities. In each case ρ(Bi/B)=0, and hence Bi is isomorphic

to B, and then Lemma 2.18 (1) says that Xi is determined, up to isomorphism, by such

a choice. We obtain a relation with four links of type II, as in Figure 11, bottom.

Remark 5.6. Example 4.32 illustrates why the assumption on the covering gonality

is necessary in Proposition 5.5.

5.C. Proof of Theorem D

In order to prove Theorem D, we use the generators and relations of BirMori(X) which

are given in Theorem 4.28. The key results are then Propositions 5.3 and 5.5.

Proof of Theorem D. We choose the integer d associated with the dimension n by

Proposition 5.3, and setM=max{d, 8 conn. gon(X)}. By Theorem 4.28 (1), the groupoid

BirMori(X) is generated by Sarkisov links and automorphisms of Mori fibre spaces. By
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Theorem 4.28 (2), the relations are generated by elementary relations, so it suffices to

show that every elementary relation is sent to the neutral element in the group

�
C∈CB(X)

( ⊕
M(C)

Z/2

)
.

Let χt�...�χ1=id be an elementary relation, coming from a rank-3 fibration T/B.

We may assume that one of the χi is a Sarkisov link of conic bundles of type II with

cov. gon(χi)>M , otherwise the relation is sent onto the neutral element, as all χi are

sent to the neutral element. We may moreover conjugate the relation and assume that χ1

is a Sarkisov link of conic bundles of type II with cov. gon(χ1)>M . By Proposition 5.3,

we have dim(B)=n−1. Then, Proposition 5.5 implies that t=4 and that χ1 and χ3

are equivalent Sarkisov links of conic bundles of type II. Applying the same argument

to the relation χ1�χ4�χ3�χ2=id, we either find that both χ2 and χ4 are sent to the

neutral element, or are equivalent Sarkisov links of conic bundles of type II (again by

Proposition 5.5). Moreover, all the conic bundles involved in this relation are equivalent.

This proves the existence of the groupoid homomorphism.

The fact that it restricts to a group homomorphism from Bir(X) is immediate, and

the fact that it restricts as a group homomorphism

Bir(X/B)−!
⊕

M(X/B)

Z/2

follows from Lemma 4.29.

6. Image of the group homomorphism given by Theorem D

In this section we study the image of Bir(X) under the group homomorphism given by

Theorem D, and more precisely the image of

Bir(X/B)−!
⊕

M(X/B)

Z/2,

for some conic bundles X/B.

6.A. A criterion

Given a birational map between conic bundles over a curve B, for each point p∈B one

can define the number of base-points that lies on the fibre p, as proper or infinitely near

points. This amounts to counting how many links one has to perform above the point.
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In the next definition we generalise this to any dimension, by replacing the point p with

an irreducible hypersurface of B. As the targets of our group homomorphisms are direct

sums of Z/2Z, it is natural to only count the parity of the multiplicity.

Definition 6.1. Let (X/B,Γ) be a marked conic bundle, and φ:X/B Y/B a bira-

tional map over B between conic bundles. For a general point p∈Γ, and an irreducible

curve C⊆B transverse to Γ at p, let b∈N be the number of base-points of the birational

surface map η−1
X (C) η−1

Y (C) induced by φ that are equal or infinitely near to a point

of the fibre of p. We call the class b̄∈Z/2 the parity of φ along Γ.

The following lemma shows that this definition does not depend on the choice of p

or C. We shall use it to compute the image of the group homomorphism of Theorem D

by studying locally a birational map near a hypersurface Γ of the base.

Lemma 6.2. Let ηX :X!B and ηY :Y!B be two conic bundles, φ:X Y be a

birational map over B, and Γ⊂B be an irreducible hypersurface not contained in the

discriminant locus of X/B.

For any decomposition φ=χt�...�χ1 as in Lemma 4.29, the parity of φ along Γ is

equal to the parity of the number of indices i∈{1, ..., t} such that χi is a Sarkisov link of

type II whose marking Γi⊂Bi is sent to Γ via Bi/B.

Proof. Fix a decomposition φ=χt�...�χ1 as in Lemma 4.29, a general point p∈Γ and

an irreducible curve C⊆B transverse to Γ at p. In particular, p is a smooth point of both

Γ and C. For i=0, ..., t, we denote by ηi:Xi!B the morphism given by the composition

Xi−!Bi−!B.

It suffices to prove, for i=0, ..., t, that the following conditions hold:

(a) The morphism η−1
i (C)!C has general fibre P1, and the fibre over p is P1 (this

means that Γ is not in the discriminant locus).

(b) If i⩾1, then χi�...�χ1 induces a birational map between surfaces over C:

η−1
0 (C)= η−1

X (C) η−1
i (C),

and the number of base-points that are equal or infinitely near to a point of the fibre of

p has the same parity as the number of integers j∈{1, ..., i} such that χj is a Sarkisov

link of type II with marking Γj⊂Bj , sent to Γ via Bj/B.

We proceed by induction on i. If i=0, (a) follows from the assumption that Γ is not

contained in the discriminant locus of X/B, and (b) is clear.

For i⩾1, the birational map χi induces a birational map over C:

θi: η
−1
i−1(C) η−1

i (C).
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If χi is a Sarkisov link of type II with marking Γi⊂Bi, sent to Γ via Bi/B, it follows from

the description of χi given in Lemma 3.23 that the restriction θi is the composition of the

blow-up of a point on the fibre of p, the contraction of the strict transform of the fibre

and of a birational map that is an isomorphism over an open subset of C that contains

the fibre of p. This achieves the proof of (a) and (b) in this case, using the induction

hypothesis.

If χi is a Sarkisov link of type II with a marking not sent to Γ or if χi is a Sarkisov

link of type I or III, then the restriction θi of χi is an isomorphism over an open subset

of C that contains the fibre of p. This follows again from Lemma 3.23 if the Sarkisov

link is of type II, and from Corollary 3.20 if it is of type I or III. As before, this gives the

result by applying the induction hypothesis.

To simplify the notation in the group
⊕

M(X/B) Z/2, we will identify an equivalence

class of marked conic bundles in M(X/B) with the associated generator of Z/2. We can

then speak about sums of elements of M(X/B), which we see in
⊕

M(X/B) Z/2, twice the

same class being equal to zero.

Corollary 6.3. Let X/B be a conic bundle, where dim(X)⩾3, and φ∈Bir(X/B).

The image of φ under the group homomorphism

Bir(X/B)−!
⊕

M(X/B)

Z/2

of Theorem D is equal to the sum of equivalence classes of marked conic bundles (X/B,Γ)

with cov. gon(Γ)>max{d, 8 conn. gon(X)} such that the parity of φ along Γ is odd.

Proof. Set M=max{d, 8 conn. gon(X)}. Using Lemma 4.29, we decompose φ as

φ=χt�...�χ1, where each χi is a Sarkisov link of conic bundles from Xi−1/Bi−1 to Xi/Bi.

Denote by J⊆{1, ..., t} the subset of indices i such that the Sarkisov link χi is of type II

and satisfies cov. gon(χi)>M . By definition of the group homomorphism

Bir(X/B)−!
⊕

M(X/B)

Z/2

in Theorem D, the image of φ is the sum of the equivalence classes of marked conic

bundles of χi, where i runs over J . For each i∈J , the marked conic bundle of χi is equal to

(Xi/Bi, Γ̂i) for some irreducible hypersurface Γ̂i⊂Bi (see Definition 3.24); moreover, one

has cov. gon(χi)=cov. gon(Γ̂i) (Definition 3.25), so cov. gon(Γ̂i)>M . Hence, (Xi/Bi, Γ̂i)

is equivalent to (X/B,Γi), where Γi⊂B is the image of Γ̂i⊂Bi via Bi/B. This implies

that the image of φ is the sum of the classes of (X/B,Γi), where i runs over J .

By Lemma 6.2, this sum is equal to the sum of equivalence classes of marked conic

bundles (X/B,Γ) with cov. gon(Γ)>M and such that the parity of φ along Γ is odd.
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6.B. The case of trivial conic bundles and the proof of Theorem A

Given a varietyB, letX=P1×B andX/B be the second projection. The group Bir(X/B)

is canonically isomorphic to PGL2(C(B)), via the action

PGL2(C(B))×X X,((
a(t) b(t)

c(t) d(t)

)
, ([u : v], t)

)
([a(t)u+b(t)v : c(t)u+d(t)v], t).

For B=Pn−1, the group Bir(X/B) corresponds, via a birational map X Pn send-

ing the fibres of X/B to lines through a point p∈Pn, to the subgroup of the Jonquières

group associated with p consisting of birational maps of Pn that preserves a general

line through p (in general, a Jonquières element permutes such lines). Hence, Bir(X/B)

corresponds to the factor PGL2(C(x2, ..., xn)) of the group

PGL2(C(x2, ..., xn))⋊Bir(Pn−1)⊆Bir(Pn)

described in §1.C.

For B general, we obtain many different varieties X=P1×B. It can also be that X is

rational even if B is not (in [BCSS, Théorème 1], a non-rational variety Y of dimension 3

is given such that Y ×P3 is rational, so B=Y or B=Y ×P1 or B=Y ×P2 gives such an

example), but then the conic bundle X/B is not equivalent to the trivial one Pn×P1/Pn.

Lemma 6.4. Any surjective group homomorphism τ : PGL2(C(B)) G that is not

an isomorphism factorises through the quotient

PGL2(C(B))/PSL2(C(B))≃C(B)∗/(C(B)∗)2,

where the isomorphism corresponds to the determinant. In particular, the target group

G is abelian of exponent 2.

Proof. There exists a non-trivial element A∈Ker τ , by assumption. Since the group

PGL2(C(B)) has trivial centre, we can find N∈PGL2(C(B)) that does not commute

with A. Then, id ̸=ANA−1N−1∈PSL2(C(B))∩Ker τ , and since PSL2(C(B)) is a simple

group, we get PSL2(C(B))⊆Ker τ , which gives the result.

Write div:C(B)∗!Div(B) for the classical group homomorphism that sends a ratio-

nal function onto its divisor of poles and zeros, and whose image is the group of principal

divisors on B. Denoting by PB the set of prime divisors on B, the group homomorphism

div naturally gives a group homomorphism

PGL2(C(B))/PSL2(C(B))≃C(B)∗/(C(B)∗)2 −!
⊕
PB

Z/2.
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We project onto the sum of prime divisors with large enough covering gonality, and

identify the ones which are equivalent, up to a birational map of B. This identification

corresponds to taking orbits of the action of AutC(C(B)) on C(B). The following lemma

shows that the resulting group homomorphism extends from Bir(X/B) to Bir(X), and

coincides with the group homomorphism from Theorem D.

Observe that, for each A∈PGL2(C(B)), we can speak about the parity of the mul-

tiplicity of det(A)∈C(B)∗/(C(B)∗)2 as pole or zero along an irreducible hypersurface

Γ⊂B, as the multiplicity of an element of (C(B)∗)2 is always even.

Lemma 6.5. Let B be a smooth variety of dimension at least 2, X=P1×B, and let

φM∈Bir(X/B)≃PGL2(C(B)) be the birational map

φM : ([u : v], t) ([a(t)u+b(t)v : c(t)u+d(t)v], t),

where

M =

(
a(t) b(t)

c(t) d(t)

)
∈PGL2(C(B)).

The image of φM under the group homomorphism

Bir(X/B)−!
⊕

M(X/B)

Z/2

in Theorem D is equal to the sum of the equivalence classes of marked conic bundles

(X/B,Γ) such that Γ⊂B is a irreducible hypersurfaces of B with

cov. gon(Γ)>max{d, 8 conn. gon(X)},

and such that the multiplicity of det(M) along Γ is odd.

Proof. We first observe that the image of

PSL2(C(B))⊆PGL2(C(B))≃Bir(X/B)

under the group homomorphism

Bir(X/B)−!
⊕

M(X/B)

Z/2

is trivial, since PSL2(C(B)) is simple and not abelian. Hence, the image of an element

φ∈Bir(X/B)≃PGL2(C(B))
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is uniquely determined by its determinant δ∈C(B)∗/(C(B)∗)2 (Lemma 6.4), and is the

same as the image of the dilatation

ψδ: ([u : v], t) 7−! ([δ(t)u : v], t).

So, we only need to prove the result for M equal to such a dilatation.

We denote as before by PB the set of prime divisors on B. For δ∈C(B)∗ and Γ∈PB ,
we denote by mδ(Γ)∈Z the multiplicity of δ along Γ, so that

div(δ)=
∑

Γ∈PB

mδ(Γ) Γ.

We also denote by Pδ(Γ)∈{0, 1} the parity of ψδ along Γ, as defined in Definition 6.1 and

Lemma 6.2. The image of the dilatation ψδ∈Bir(X/B) under the group homomorphism

Bir(X/B)−!
⊕

M(X/B)

Z/2

is equal to the sum of equivalence classes of marked conic bundles (X/B,Γ) such that

Γ⊂B is an irreducible hypersurface with

cov. gon(Γ)>max{d, 8 conn. gon(X)},

and such that Pδ(Γ) is odd (Corollary 6.3). To prove the result, it suffices to show that

Pδ(Γ) and mδ(Γ) have the same parity. For all δ, δ′∈C(B)∗, we have

mδ(Γ)+mδ′(Γ)=mδ·δ′(Γ) and Pδ(Γ)+Pδ′(Γ)≡Pδ·δ′(Γ) (mod 2).

Indeed, the first equality follows from the definition of the multiplicity and the second

follows from Lemma 6.2, as ψδ �ψδ′=ψδ·δ′ . The local ring OΓ(B) being a discrete valua-

tion ring (DVR), the group C(B)∗ is generated by elements δ∈C(B)∗, with mδ(Γ)=0,

and by one single element δ0 which satisfies mδ0(Γ)=1. It therefore suffices to consider

the case where mδ(Γ)∈{0, 1}.
We take a general point p∈Γ, an irreducible curve C⊆B transverse to Γ at p, and

compute the number of base-points of the birational map θ:P1×C P1×C given by

([u:v], t) 7!([δ(t)u:v], t) that are equal or infinitely near to a point of the fibre of p. If

mδ(Γ)=0, then δ is well defined on p, so the birational map θ induces an isomorphism

P1×{p}!P1×{p}, which implies that Pδ(Γ)=0. If mδ(Γ)=1, then δ has a zero of

multiplicity 1 at p, so θ has exactly one base-point on P1×{p}, namely ([1:0], p). The

composition of θ with the blow-up of Z!P1×C of ([1:0], p) yields a birational map

Z P1×C with no more base-point on the exceptional divisor, as the multiplicity of

both δ and v/u at the point is 1, so Pδ(Γ)=1. This achieves the proof.
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We can now give the proof of Theorem A.

Proof of Theorem A. We denote by Dilk the subgroup of birational dilatations

Dilk = {(x1, ..., xn) (x1α(x2, ..., xn), x2, ..., xn) :α∈k(x2, ..., xn)
∗}

⊆Birk(Pn)≃Autk(k(x1, ..., xn)).

We set B=Pn−1, and use the birational map (defined over k)

X =P1×B Pn,

([u : 1], [t1, ..., tn−1 : 1]) [1 :u : t1 : ... : tn−1],

that conjugates Bir(X) to Bir(Pn), sending elements of the form

{([u : v], t) ([α(t)u : v], t) :α∈C(B)∗}

onto elements locally given by (x1, ..., xn) (x1α(x2, ..., xn), x2, ..., xn).

We pick a large enough integer D and consider the set HD of degree-D irreducible

hypersurfaces in Pn−1. For each element Γ∈HD, we consider an irreducible polynomial

P∈k[x0, ..., xn] of degree D defining the hypersurface Γ, choose α=P/xD0 ∈k(Pn−1) and

associate with Γ the element φα∈Bir(X/B) given by

φα: ([u : v], t) ([α(t)u : v], t).

By Lemma 6.5, the image of φα under the group homomorphism

Bir(X/B)−!
⊕

M(X/B)

Z/2

in Theorem D is the unique marked conic bundle (X/B,Γ) (as the hypersurface Γ0⊂B
given by x0=0 satisfies cov. gon(Γ0)=1). It remains to observe that we have enough

elements in HD, up to birational maps of Pn−1, namely as much as in the field k.

Indeed, if we take two general hypersurfaces Γ1,Γ2⊂Pn−1 of degree ⩾n+1, then every

birational map Γ1 Γ2 extends to a linear automorphism of Pn−1; this can be shown

by taking the suitable Veronese embedding of Pn−1 such that the canonical divisors of

Γ1 and Γ2 become hyperplane sections. The dimension of PGLn(k) being bounded, for

a large enough degree D we obtain a quotient of HD by PGLn(k) which has positive

dimension, and hence which has the same cardinality as the ground field k. This quotient

can be taken as the indexing set I in the statement of Theorem A.
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Remark 6.6. (1) As all birational dilatations in Theorem A belong to the Jonquières

subgroup of elements preserving a pencil of lines, the restriction of the group homomor-

phism Bir(Pn)!
⊕

I Z/2 to the Jonquières subgroup also is surjective. We will need

other conic bundle structures on rational varieties to obtain Theorem C.

(2) The proof of Theorem A uses Lemma 6.5 in the case where B=Pn−1. For a

general basis B, we can prove along the same lines that the image of the subgroup of

Bir(X/B) given by

{([u : v], t) ([δ(t)u : v], t) : δ ∈C(B)∗}

under the group homomorphism

Bir(X/B)−!
⊕

M(X/B)

Z/2

in Theorem D is infinite. We omit the proof here, as it is similar to the case of B=Pn−1,

and moreover we will prove a more general result in Proposition 6.9.

6.C. The case of non-trivial conic bundles and the proof of Theorem B

Recall that, given a smooth conic C⊂P2 and a point p∈P2\C, there is an involution

ι(p, C)∈Bir(P2) that preserves the conic C. It is defined on each general line L through

p as the involution that fixes p and exchange the two intersection points L∩C. We

say that ι(p, C) is the involution induced by the projection from p. We now use this

construction in family to produce interesting involutions on some conic bundles.

Lemma 6.7. Let B be a smooth variety, η̂:P!B be a locally trivial P2-bundle, and
X⊂P be a closed subvariety such that the restriction of η̂ is a conic bundle η:X!B.

Let s:B P be a rational section (i.e. a rational map, birational to its image, such that

η̂�s=idB), whose image is not contained in X. Let ι∈Bir(X/B) be the birational involu-

tion whose restriction to a general fibre η−1(b) is the involution induced by the projection

from s(b). Let Γ⊂B be an irreducible hypersurface not contained in the discriminant

locus of η, and let F be a local equation of X in P .

If the multiplicity of F (s) along Γ is equal to 0 or 1, then the parity of ι along Γ

(in the sense of Definition 6.1) is equal to this multiplicity (modulo 2).

Proof. We choose a dense open subset U⊆B that intersects Γ and trivialises the P2-
bundle. Inside P2×U , a local equation of X is given by F∈C(B)[x, y, z], homogeneous

of degree 2 in x, y and z. The fibre of η:X!B over a general point of Γ (resp. of B)

is a smooth conic. The section s corresponds to [α:β :γ], where α, β, γ∈C(B) are not all

zero and are uniquely determined up to multiplication by an element of C(B)∗. As Γ
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is a hypersurface of B, the local ring OΓ(B) is a DVR. One can choose α, β, γ∈OΓ(B),

not all vanishing on Γ: this defines α, β and γ uniquely, up to multiplication by an

element of OΓ(B)∗. The evaluation F (α, β, γ)∈C(B) at s is then uniquely determined

by s, up to multiplication by the square of an element of OΓ(B)∗, so that the multiplicity

of F (α, β, γ) along Γ is well defined.

The restriction of α, β and γ gives an element (ᾱ, β̄, γ̄)∈C(Γ)3\{0}. There exists

a matrix in GL3(C(Γ)) that sends (ᾱ, β̄, γ̄) to (1, 0, 0). By extending this matrix as an

element of GL3(OΓ(B)), we may assume that (α, β, γ)=(1, 0, 0). We write the equation

of X as

F = ax2+bxy+cxz+dy2+eyz+fz2

where a, b, c, d, e, f∈C(B) have no pole along Γ and are not all simultaneously zero on Γ,

and obtain that F (α, β, γ)=F (1, 0, 0)=a. As s is not contained in X, we have that

a∈C(B) is not identically zero. With these coordinates, one checks that the involution

ι∈Bir(P/B) is given by the simple expression

ι: [x : y : z] 7−!
[
−
(
x+

b

a
y+

c

a
z

)
: y : z

]
.

We now proceed to show that the parity of the multiplicity r∈{0, 1} of F (s)=a along

Γ is equal to the parity of ι along Γ. For this, we take, as in Definition 6.1, a general

point p∈Γ and an irreducible curve C⊆B transverse to Γ at p, and show that r is the

number of base-points of the birational surface map ιC : η
−1(C) η−1(C) induced by ι

that are equal or infinitely near to a point of the fibre of p.

If r=0, then a does not vanish on Γ, and hence the involution ι is a local isomorphism

above a general point of Γ, so ιC is an isomorphism on the fibre of p. This achieves the

proof in this case.

We now assume that r=1, or equivalently that a is a generator of the maximal ideal

m of OΓ(B). It implies that either b or c is not zero on Γ, otherwise Γ would be contained

in the discriminant locus of η. As Γ is an irreducible hypersurface of B, the local ring

OB,Γ of rational functions of B defined on an open subset of Γ is a DVR. We write

ιC∈Bir(η−1(C)) as the restriction of ν−1
�θ�ν, where θ, ν∈AutC(C)(P2)⊂Bir(C×P2) are

the birational maps

ν: [x : y : z] 7−! [ax : y : z] and θ: [x : y : z] 7−! [−(x+by+cz) : y : z] .

We set S=ν(η−1(C))⊂P2×C, and one checks that S is the surface with equation

x2+bxy+cxz+a(dy2+eyz+fz2)= 0.
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The fibre η−1(p)⊂η−1(C) is a smooth conic. On the other hand, the fibre of p in S

is ℓ∪ℓ′, where ℓ and ℓ′ are the lines given by

x=0 and x+by+cz=0,

respectively. Observe that ℓ ̸=ℓ′, since (b(p), c(p)) ̸=(0, 0).

Since S is the image of η−1(C) by ν, the map θ induces a birational involution

θS :S S. The map θS is a local isomorphism in a neighborhood of the fibre of p, which

exchanges ℓ and ℓ′. Moreover, ν maps the conic η−1(p) to the line ℓ, ν is not defined at the

point q=[1:0:0], and ν−1: [x:y :z] 7![x:ay :az] contracts ℓ′ on q. As a has multiplicity 1,

ν is simply the blow-up of q, so the birational map ιC : η
−1(C) η−1(C) is given, in a

neighbourhood of η−1(p), by the blow-up of q followed by the contraction of the strict

transform of η−1(p). So, the parity of ιC along Γ is 1, as desired.

Definition 6.8. We say that a conic bundle X/B is a decomposable conic bundle if

X and B are smooth, and if we have closed embeddings B↪!Pm and X↪!P where P is

a P2-bundle over Pm that is the projection of a decomposable vector bundle of rank 3,

i.e. P=P(OPm⊕OPm(a)⊕OPm(b)) for some a, b∈Z. We moreover ask that the morphism

X/B comes from the restriction of the P2-bundle P!Pm and that X⊂P is locally given

by equations of degree 2 in the P2-bundle.

Proposition 6.9. For each decomposable conic bundle η:X!B with dimB⩾2,

there are infinitely many involutions in Bir(X/B) which have distinct images via the

group homomorphism

Bir(X/B)−!
⊕

M(X/B)

Z/2

of Theorem D. In particular, the image is infinite.

Proof. We can see B as a closed subset B⊆Pm, and obtain that X⊂P , where

η̂:P!Pm is the projectivisation of a rank-3 vector bundle. We can thus write

P =P(OPm⊕OPm(a)⊕OPm(b))

for some a, b⩾0 (up to twisting and exchanging the factors). We view P as the quotient

of (A3\{0})×(Am+1\{0}) by (Gm)2 via

((λ, µ), (x0, x1, x2, y0, ..., ym)) 7−! (λx0, λµ
−ax1, λµ

−bx2, µy0, ..., µym),

and denote by [x0:x1:x2; y0: ... : ym] the class of (x0, x1, x2, y0, ..., ym) (see [AO, Defini-

tion 2.3, Remark 2.4] for more details).
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Then, X is equal to the preimage of B cut by the zero locus of an irreducible

polynomial G∈C[x0, x1, x2, y0, ..., ym], that has degree 2 in x0, x1 and x2 (and suitable

degree in y0, ..., ym, so that the polynomial is homogeneous for the above action). For

each integer d⩾1, and for general homogeneous polynomials

u0, v0 ∈C[y0, ..., ym]d, u1, v1 ∈C[y0, ..., ym]d+a, u2, v2 ∈C[y0, ..., ym]d+b,

(the subscript corresponding to the degree), the closed subvariety Γ̂⊂X of codimension 2

given by

Γ̂=

{
([x0 :x1 :x2; y0 : ... : ym])∈X ⊆P :

2∑
i=0

xiui=

2∑
i=0

xivi=0

}
is smooth, by Bertini theorem.

We now prove that the projection X!B induces a birational morphism from Γ̂ to

its image Γ⊂B, an irreducible hypersurface of B. Solving the linear system

2∑
i=0

xiui=

2∑
i=0

xivi=0

in x0, x1 and x2, we obtain that the preimage of [y0 :...:ym] is

[u1v2−u2v1 :u2v0−u0v2 :u0v1−u1v0; y0 : ... : ym],

so the projection induces a birational morphism from Γ̂ to the hypersurface Γ⊂B given

by the polynomial G(P0, P1, P2, y0, ..., ym), where P0, P1, P2∈C[y0, ..., ym] are the poly-

nomials P0=u1v2−u2v1, P1=u2v0−u0v2 and P2=u0v1−u1v0.
We now show that the covering gonality cov. gon(Γ̂)=cov. gon(Γ) is large if d is large

enough. We denote byHi, Fj⊂P the hypersurfaces given respectively by xi=0 and yj=0,

and obtain that

Pic(P )=ZHi⊕ZFj

for all i∈{0, 1, 2}, j∈{0, ...,m}. The class of all Fj is the same and denoted by F and

H0 ∼H1+aF ∼H2+bF.

Note that Γ̂ is a complete intersection in η̂−1(B)⊆P of three hypersurfaces equivalent to

H0+dF , H0+dF and 2H0+d0F for some d0∈Z (depending on the equation of X). The

canonical divisor of P being equivalent to

−H0−H1−H2−F0−...−Fm=−3H0−(m+1−a−b)F,
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we obtain by adjunction that the canonical divisor of Γ̂ is the restriction to Γ̂ of a divisor

of P equivalent to H0+(2d+d0−m−1+a+b)F . The morphism associated with F is

simply the projection Γ̂!Pm, which is birational onto its image. By Lemma 2.27 (2)

and (3), the divisor pF satisfies BVAp, for each integer p⩾0, and thus KΓ̂ satisfies BVAp

for p=2d+d0−m−1+a+b⩾0, if d is large enough, by Lemma 2.27 (1). This implies

that cov. gon(Γ̂)⩾p+2, by Theorem 2.26. By choosing d large enough, we obtain that

cov. gon(Γ)=cov. gon(Γ̂) is large.

We now use the construction in Lemma 6.7 of the involution ι∈Bir(X/B) associated

with the P2-bundle P/B and the rational section s:B P given by

[y0 : ... : ym] [u1v2−u2v1 :u2v0−u0v2 :u0v1−u1v0; y0 : ... : ym].

By Lemma 6.7, the parity of ι along Γ is 1 and the parity of ι along any other

irreducible hypersurface of B is zero (as Γ is the zero locus of G(s) by construction). For

a large integer d, the image of ι under the group homomorphism

Bir(X/B)−!
⊕

M(X/B)

Z/2

of Theorem D is the equivalence class of (X/B,Γ). Taking larger and larger d, we obtain

infinitely many involutions in the image of the group homomorphisms, which are distinct,

and thus generate a group isomorphic to an infinite direct sum of Z/2, as the covering

gonality of the hypersurfaces goes to infinity with d.

Proof of Theorem B. We use the group homomorphism

Bir(X)−! �
C∈CB(X)

( ⊕
M(C)

Z/2

)

of Theorem D. By assumption, X/B is a decomposable conic bundle (in the sense of

Definition 6.8). By Proposition 6.9, the image of Bir(X/B) contains a group isomorphic

to an infinite direct sum of Z/2.

To finish the proof of Theorem B, we take a subfield k⊆C over which X, B and

η are defined, and check that the involutions in Bir(X/B) that are used to provide the

large image are defined over k. Firstly, the involutions provided by Lemma 6.7 are

defined over k as soon as the rational section s:B P is. Secondly, the construction of

Proposition 6.9 works for general polynomials in C[y0, ..., ym] of some fixed degrees.

Since a dense open subset of an affine space AnC contains infinitely many k-points

for each subfield k⊆C (follows from the fact that the Q-points of An are dense), we may

assume that the polynomials, and thus the section, are defined over k.
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7. Non-equivalent conic bundles

In this section, we construct infinitely many non-equivalent conic bundles on Pn, showing
that the set CB(Pn) is infinite for n⩾3 (by contrast, observe that CB(P2) consists of one
element). This allows us to prove Theorems E and C.

7.A. Studying the discriminant locus

The main result of this section is Proposition 7.10. We prove in particular that if two

standard conic bundles (defined in Definition 7.3) X1/P2 and X2/P2, with discriminants

∆1 and ∆2, such that the conic bundles (X1×Pn)/(P2×Pn) and (X1×Pn)/(P2×Pn) are
equivalent, then there exist surjective morphisms ∆1 ∆2 and ∆2 ∆1. The standard

conic bundles are classical in the literature and are conic bundles having nice properties.

They can be in particular embedded in a P2-bundle, as it was the case for the decom-

posable conic bundles (Definition 6.8). This notion is defined below as embedded conic

fibration. See remark 7.4 for a comparison of the different notions.

The following notion is called an embedded conic in [Sar, p. 358].

Definition 7.1. Let V be a smooth quasi-projective variety. An embedded conic

fibration is a projective morphism η:X!V that is the restriction of a locally trivial

P2-bundle η̂:P!V , and such that X⊂P is a closed subvariety, given locally by an

equation of degree 2. Precisely, for each p∈V , there exists an affine open subset U⊆V
containing p such that η̂−1(U) is isomorphic to U×P2, and the image of η−1(U)⊂U×P2

is a closed subvariety, irreducible overC(U), and defined by a polynomial F∈C[U ][x, y, z]

homogeneous of degree 2 in the coordinates x, y and z.

Remark 7.2. Let η:X!V be a flat projective morphism between smooth quasi-

projective varieties, with generic fibre an irreducible conic. Then, η is an embedded

conic fibration in a natural way. This is done by taking the locally trivial P2-bundle
P=P(η∗(ω−1

X )) over V , where ωX is the canonical line bundle of X (see [Sar, §1.5]). If η

is not flat, this is false, as some fibres can for instance have dimension ⩾3 even if X/V

is a Mori fibre space and thus a conic bundle (see [AR, Example 5]).

The following definition is equivalent to the one of [Sar, Definition 1.4].

Definition 7.3. A standard conic bundle is a morphism η:X!B which is a conic

bundle (in the sense of Definition 2.12), and which is moreover flat, withX and B smooth.

This implies that η is also an embedded conic fibration in the P2-bundle P(η∗(ω−1
X ))!B

(see Remark 7.2).

Remark 7.4. Let us make some comparisons between the above definitions.
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An embedded conic fibration (Definition 7.1) over a projective base is not necessarily

a conic bundle (Definition 2.12), as the relative Picard rank can be >1. Conversely, a

conic bundle X/B is not necessarily an embedded conic fibration (for instance when some

fibres have dimension ⩾3), but it is one if the conic bundle is standard (Definition 7.3)

(as explained just above) or decomposable (Definition 6.8).

Moreover, a decomposable conic bundle is not always standard, as some fibres can

be equal to P2. It is not clear to us if there exist standard conic bundles which are not

decomposable.

Definition 7.5. Let V be a smooth quasi-projective variety and η:X!V be a flat

embedded conic fibration.

For each irreducible closed subset Γ⊆V , we define themultiplicity of the discriminant

of η along Γ as follows. We take an open subset U⊆V that intersects Γ and such

that η−1(U) is a closed subset of U×P2, of degree 2, and consider a symmetric matrix

M∈Mat3×3(C(U)) that defines the equation of η−1(U). We choose M such that all

coefficients of M are contained in the local ring OΓ(U)⊂C(U) of rational functions

defined on a general point of Γ, and such that the residue matrix �M∈Mat3×3(C(Γ))

is not zero. This is possible as the morphism is flat, and defines M uniquely, up to

multiplication by an invertible element of OΓ(U).

We now define the multiplicity of the discriminant of η along Γ to be the least integer

m⩾0 such that the determinant lies in mΓ(U)m, where mΓ(U) is the maximal ideal of

OΓ(U), kernel of the ring homomorphism OΓ(U) C(Γ).

We define the discriminant divisor of η to be
∑
DmDD, where the sum runs over

all irreducible hypersurfaces D⊂V , and where mD∈N is the the multiplicity of the

discriminant of η along D as defined above.

Remark 7.6. If η:X!V is moreover a conic bundle, the definition of the discrimi-

nant given in Definition 7.5 is compatible with the definition of discriminant locus given

in Definition 2.12: the discriminant locus is the reduced part of the discriminant divisor

of η. Moreover, if η is a standard conic bundle, the discriminant divisor is reduced [Sar,

Corollary 1.9]. The multiplicity of the discriminant divisor along irreducible hypersur-

faces of V is always 0 or 1 in this case. We will however not only consider hypersurfaces,

but also closed subvarieties of lower dimension.

Using the local description of the matrix that defines η as a flat embedded conic

fibration, one can prove the following.

Proposition 7.7. ([Sar, Proposition 1.8]) Let V be a smooth quasi-projective va-

riety, let η:X!V be a flat embedded conic fibration, such that X is smooth. The dis-

criminant divisor ∆ of η has the following properties: for each point p∈V , the fibre
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fp=η
−1(p) is given as follows:

fp is


a smooth conic,

the union of two distinct lines,

a double line,

⇐⇒ p is


not on ∆,

a smooth point of ∆,

a singular point of ∆.

We shall need the following folklore result.

Lemma 7.8. Let V be a smooth quasi-projective variety, and let η1:X1!V and

η2:X2!V be two flat embedded conic fibrations. Let ψ:X1 X2 be a birational map

over V . Let ∆⊆V be a closed irreducible subvariety such that the preimage η−1
1 (∆) is

not contained in the base-locus of ψ, the preimage η−1
2 (∆) is irreducible and a general

fibre of η−1
2 (∆)!∆ is the union of two distinct lines. We moreover assume that the

multiplicity of the discriminant of η2 along ∆ is 1. Then, one of the following holds:

(1) every fibre of η−1
1 (∆)!∆ is a double line (non-reduced fibre);

(2) the preimage η−1
1 (∆) is irreducible and a general fibre of η−1

1 (∆)!∆ is the

union of two distinct lines.

Proof. Replacing V by an open subset that intersects ∆, we may assume that X1

and X2 are closed subvarieties of V ×P2 given by a polynomial of degree 2 in the co-

ordinates of P2. We denote by O∆(V )⊂C(V ) the subring of rational functions that

are defined on a general point of ∆, and consider the surjective residue homomorphism

O∆(V ) C(∆). The quadratic equations of X1 and X2 correspond to symmetric ma-

trices M1,M2∈Mat3×3(C(V )), defined up to scalar multiplication. As both η1 and η2

are flat, we can choose M1,M2∈Mat3×3(O∆(V )) such that the corresponding residue

matrices �M1,�M2∈Mat3×3(C(∆)) are not zero.

The fact that η−1
2 (∆) is irreducible and that a general fibre of η−1

2 (∆)!∆ is the

union of two distinct lines is equivalent to asking that the quadratic form associated with

M2 corresponds to a singular irreducible conic over the field C(∆). It then corresponds

to the union of two lines defined over an extension of degree 2 of C(∆), which intersect

into a point defined over C(∆). After a change of coordinates on X2⊂V ×P2, applying an

element of PGL3(C(V )) which restricts to an element of PGL3(C(∆)), we may assume

that the point is [0:0:1], and completing the square we assume that the restriction is

given by F=ax2+by2 for some a, b∈C(∆)∗, where −a/b∈C(∆)∗ is not a square. This

corresponds to saying that �M2 is equal to the diagonal matrix diag(a, b, 0).

The birational map ψ is given byv,
xy
z




v,A(v)·
xy
z



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for some A∈GL3(C(V )). This implies that the matrices M1 and tA·M2 ·A are collinear

in Mat3×3(C(V )).

Since η−1
1 (∆) is not contained in the base-locus of ψ, we may assume that the

matrix A∈Mat3×3(O∆(V )) is such that its residue Ā∈Mat3×3(C(∆)) is not zero. We can

moreover choose an element S∈GL3(O∆(V )), with residue 	S∈GL3(C(∆)), and replace

A by A·S. This corresponds to a coordinate change of P2×V at the source, which only

affects X1, and not X2. We can then reduce to the following possibilities for Ā, according

to the rank of the 2×3 matrix obtained from the first two rows of Ā: 1 0 0

0 1 0

µ1 µ2 µ3

 ,

 α 0 0

β 0 0

µ1 µ2 µ3

 and

 0 0 0

0 0 0

µ1 µ2 µ3

 ,

where α, β, µ1, µ2, µ3∈C(∆) and (α, β) ̸=(0, 0).

In the first case, we have
tĀ·�M2 ·Ā=�M2,

so η−1
2 (∆) has the same properties as η−1

1 (∆), which gives (2).

The second case gives

tĀ·�M2 ·Ā=diag(α2a+β2b, 0, 0).

As (α, β) ̸=(0, 0) and −a/b∈C(∆)∗ is not a square, we have α2a+β2b ̸=0. The quadratic

form associated with this matrix is then a double line, and we obtain (1).

It remains to study the last case, which yields tĀ·�M2 ·Ā=0. This means that all

coefficents of tA·M2 ·A belong to the maximal ideal m=m∆(V ) of O∆(V ), kernel of the

residue homomorphism O∆(V ) C(∆). Applying S as before, we may assume that

µ1=1 and µ2=µ3=0, since the rank of Ā is 1. We write

M2 =diag(a, b, 0)+(νi,j)
3
i,j=1,

where νi,j∈m for all i, j, and obtain

det(M2)≡ a·b·ν3,3 (mod m2).

As the multiplicity of the discriminant of η2 along ∆ is 1, this implies that ν3,3∈m\m2.

We compute
tA·M2 ·A≡diag(ν3,3, 0, 0) (mod m2).

The quadratic form associated with this matrix is a double line, so again we obtain

condition (1).
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We give two examples to illustrate the need for all the assumptions in Lemma 7.8:

Example 7.9. We work over the affine plane V =A2 and consider

X1 = {([x : y : z], (u, v))∈P2×A2 :x2v+y2−z2 =0},

X2 = {([x : y : z], (u, v))∈P2×A2 :x2v+y2−u2z2 =0},

X ′
2 = {([x : y : z], (u, v))∈P2×A2 :x2uv+y2−z2 =0}.

The projection onto the second factor gives three flat embedded conic fibrations

η1:X1 −!A2, η2:X2 −!A2 and η′2:X
′
2 −!A2,

with discriminant divisors being respectively given by v=0, u2v=0 and uv=0. The

birational maps of P2×A2 given by

([x : y : z], (u, v)) 7−! ([xu : yu : z], (u, v))

and

([x : y : z], (u, v)) 7−! ([2x : (u+1)y+(u−1)z : (u−1)y+(u+1)z], (u, v))

provide two birational maps ψ:X1 X2 and ψ′:X1 X ′
2 over A2.

Choosing ∆⊂A2 to be the line {u=0}, the result of Lemma 7.8 does not hold for

ψ and for ψ′, because a general fibre of η−1
1 (∆)!∆ is a smooth conic. In both cases,

exactly one hypothesis is not satisfied. Namely, the multiplicity of the discriminant of η2

along ∆ is 2 instead of 1, and the surface η′−1
2 (∆) is not irreducible.

The idea of the proof of the following statement was given to us by C. Böhnig and

H.-C. Graf von Bothmer.

Proposition 7.10. Let B be a smooth surface and, for i=1, 2, let ηi:Xi!B be a

standard conic bundle with discriminant a smooth irreducible curve ∆i⊂B. Assume that

there exists a commutative diagram

X1×Y X2×Y

B×Y B×Y

η1×id

ψ

η2×id

θ

where Y is smooth, and ψ and θ are birational.

Then, for a general point p∈Y , the image of ∆1×{p} is contained in ∆2×Y and

the morphism ∆1!∆2 obtained by composing

∆1
∼−!∆1×{p} θ ∆2×Y

pr1−−−!∆2

is surjective (here, pr1: ∆2×Y!∆2 is the first projection).
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Proof. For i=1, 2, the discriminant divisor of ηi is reduced [Sar, Corollary 1.9], so

consists of ∆i. Since ∆i is smooth, η−1
i (p) is the union of two distinct lines for each

p∈∆i (Proposition 7.7). Since ρ(Xi/Bi)=1, the preimage η−1
i (∆i) is irreducible. The

morphism (Xi×Y )/(B×Y ) is a standard conic bundle whose discriminant divisor is

reduced, consisting of the smooth hypersurface ∆i×Y ⊂B×Y .

We choose a dense open subset U⊆B×Y on which θ is defined and whose com-

plement is of codimension 2 (since B×Y is smooth). In particular, U∩(∆1×Y ) is not

empty, so U∩(∆1×{p}) ̸=∅ for a general point p∈Y . After restricting the open subset,

we can moreover assume that η−1
1 (U) is a closed subset of U×P2, given by the quadratic

form induced by a matrix M1∈GL3(C(U)). The coefficients of the matrix can moreover

be chosen in C(B)⊆C(B×Y )=C(U), as the equation of X1×Y in P2×Y is locally the

equation of X1 in P2, independent of Y .

We define C⊂B×Y to be the image of ∆1×{p} by θ, which is a point or an irre-

ducible curve, as ∆1 is an irreducible curve. The aim is now to show that C⊆∆2×Y and

that pr1(C)=∆2. We choose an open subset V ⊆B×Y intersecting C such that η−1
2 (V )

is contained in P2×V and is given by the quadratic form given by a symmetric matrix

M2∈Mat3×3(C(V )). The morphism η2 being flat, we can choose the coefficients of M2

to be defined on C and such that the residue matrix in �M2∈Mat3×3(C(C)) is not zero.

The birational map ψ is locally given by

U×P2 V ×P2,u,
xy
z




θ(u), A(u)·
xy
z




for some A∈GL3(C(U)). The explicit form of the map ψ gives

λ·M1 =
tA·θ∗(M2)·A

where λ∈C(U)∗ is a scalar and θ∗(M2) is the matrix obtained from M2 by applying to

its coefficients the field isomorphism θ∗:C(V )!C(U). As the rational map θ induces a

dominant rational map ∆1×{p} C, we have a field homomorphism

C(C)−!C(∆1×{p})≃C(∆1),

that we denote by θ̄∗. It induces a commutative diagram

OC(V )

��

θ∗ // O∆1×{p}(U)

��

C(C)
θ̄∗ // C(∆1×{p})≃C(∆1).
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We denote by X ′⊂U×P2 the subvariety given by the quadratic form associated

with the matrix θ∗(M2). We observe that the coefficients of θ∗(M2) are defined over

∆1×{p}, and that the residue gives a matrix θ∗(M2)∈Mat3×3(C(∆1)) which is obtained

by applying the field homomorphism �θ∗ to the entries of �M2∈Mat3×3(C). The morphism

pr1:X
′
!U is then an embedded conic fibration, which is flat after maybe reducing the

open subset U (but still having U∩(∆1×{p}) ̸=∅).
We can apply Lemma 7.8 to the birational map X ′ X given byu,

xy
z




u,A(u)−1 ·

xy
z




and to ∆=∆1×{p}. Indeed, (η1×id)−1(∆1×{p}) is irreducible as η−1
1 (∆1) is irreducible,

and every fibre of

(η1×id)−1(∆1×{p})−!∆1×{p}

is the union of two distinct lines, as the same holds for η−1
1 (∆1)!∆1 by Proposition 7.7.

Lemma 7.8 gives two possibilities for the matrix θ̄∗(M2)∈Mat3×3(C(∆1)): either it is of

rank 1 (case (1)) or it is of rank 2, corresponding to a singular irreducible conic (case (2)).

This gives the same two possibilities for �M2∈Mat3×3(C), as θ̄
∗ is a field homomorphism.

As the rank of M2 is smaller than 3, the variety C is in the discriminant of

(X2×Y )/(B×Y ),

and is thus contained in ∆2×Y , as desired. It remains to see that C is not contained

in {q}×Y for any point q. Indeed, the preimage (η2×id)−1({q}×Y ) is isomorphic to

η−1
2 ({q})×Y , which is not irreducible, as η−1

2 ({q}) is the union of two lines (again by

Proposition 7.7), but which is reduced.

7.B. Conic bundles associated with smooth cubic curves

The principal result in this section is Proposition 7.15, which provides a family of conic

bundles that we shall use in the next section to prove Theorem E.

Lemma 7.11. For each p=[α:β]∈P1, the set

Sp= {[x0 :x1 :x2]∈P2 :αx20+βx1x2 =αx21+βx0x2 =αx22+βx0x1 =0}

consists of three points if α(α3+β3)=0, and is empty otherwise.
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Proof. As S[0:1]={[1:0:0], [0:1:0], [0:0:1]} and S[1:0]=∅, we may assume that α∈C∗

and β=1. If [x0 :x1 :x2]∈Sp, then

α(x30−x31)=x0(αx
2
0+x1x2)−x1(αx21+x0x2)= 0.

The equations being symmetric, we get x30=x
3
1=x

3
2. In particular, x0x1x2 ̸=0, so the

three equations are equivalent to

α=−x1x2
x20

=−x0x1
x22

=−x0x2
x21

,

which implies that α3=−1. For the three possible values of α, we observe that

S[α:1] =
{[

1 :x1 :−
α

x1

]
:x31 =1

}
consists of three points.

Lemma 7.12. For each ξ∈C such that ξ3 ̸=− 1
8 , the hypersurface Xξ⊂P2×P2 of

bidegree (2, 1) given by

Xξ =

{
([x0 :x1 :x2], [y0 : y1 : y2])∈P2×P2 :

2∑
i=0

(
x2i+2ξ

x0x1x2
xi

)
yi=0

}
is smooth, irreducible, rational over Q(ξ), and satisfies ρ(Xξ)=2. The second projection

gives a standard conic bundle Xξ/P2. The discriminant curve ∆ξ⊂P2 is given by

−ξ2(y30+y31+y32)+(2ξ3+1)y0y1y2 =0,

and is the union of three lines if ξ=0 or if ξ3=1, and is a smooth cubic otherwise.

Proof. In order to show that Xξ is smooth, irreducible, rational over Q(ξ) and that

ρ(Xξ)=2, it suffices to show that the first projection Xξ!P2 is a (Zariski locally trivial)

P1-bundle. This amounts to showing that the coefficients of the linear polynomial in the

variables yi defining Xξ are never zero, i.e. that for each [x0 :x1 :x2]∈P2 we cannot have

x20+2ξx1x2 =x21+2ξx0x2 =x22+2ξx0x1 =0.

This follows from Lemma 7.11 and from the hypothesis ξ3 ̸=− 1
8 .

The equation of Xξ is given by

(x0 x1 x2)·M ·

x0

x1

x2

=0, with M =

 y0 ξy2 ξy1

ξy2 y1 ξy0

ξy1 ξy0 y2

∈Mat3×3(C[y0, y1, y2]).
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The polynomial det(M) is equal to

det(M)=λ(y30+y
3
1+y

3
2)+µy0y1y2, with λ=−ξ2 and µ=2ξ3+1.

In particular, the fibres of the second projection Xξ/P2 are all conics (the coefficient of

x2i is yi, so not all coefficients can be zero), and a general one is irreducible. As the

threefold Xξ is smooth, irreducible and satisfies ρ(Xξ)=2, the morphism Xξ/P2 is a

standard conic bundle. Its discriminant is given by the zero locus of det(M), which is a

polynomial of degree 3 which has the classical Hesse Form. The discriminant corresponds

to a smooth cubic if λ(27λ3+µ3) ̸=0, and to the union of three lines in general position

otherwise. To prove this classical fact, we compute the partial derivatives of det(M),

which are (3λy20+µy1y2, 3λy
2
1+µy0y2, 3λy

2
2+µy0y1). By Lemma 7.11, this has no zeroes

in P2 if λ(27λ3+µ3) ̸=0, and has three zeroes otherwise. It remains to observe that

27λ3+µ3 =(8ξ3+1)(ξ3−1)2.

Remark 7.13. Let k be a subfield of C and ξ∈k. Then, the curve ∆ξ of Lemma 7.12

is defined over k and has a k-rational point, namely the inflexion point [0:1:−1]. When

k=C, one can prove that all elliptic curves are obtained in this way; for smaller fields

this does not seem to be true. We will however show that there are enough such curves.

We thank P. Habegger for helpful discussions concerning the next lemma.

Lemma 7.14. Let k⊆C be a subfield.

(1) For each ξ∈k, with ξ3 /∈{0,− 1
8 , 1}, we denote (as in Lemma 7.12) by ∆ξ the

smooth cubic curve defined over k given by

−ξ2(y30+y31+y32)+(2ξ3+1)y0y1y2 =0.

The j-invariant of ∆ξ is equal to(
16ξ12+464ξ9+240ξ6+8ξ3+1

ξ2(8ξ9−15ξ6+6ξ3+1)

)3
.

(2) There is a subset J⊆k having the same cardinality as k such that for all ξ, ξ′∈J ,
the following are equivalent :

(i) there exist surjective morphisms ∆ξ ∆ξ′ and ∆ξ′ ∆ξ defined over C;

(i) ξ=ξ′.

Proof. (1) By Lemma 7.12, ∆ξ is a smooth cubic curve if ξ3 /∈
{
0,− 1

8 , 1
}
. We choose

the inflexion point [0:1:−1]∈∆ξ to be the origin, make a coordinate change so that the

inflexion line is the line at infinity, and thusly obtain a Weierstrass form. Then, we
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compute the j-invariant as in [Sil, §III.1, p. 42]; this is tedious but straightforward. This

can also be done using the formulas from [AD, p. 240].

(2) Let ξ, ξ′∈k be such that ξ3, (ξ′)3 /∈
{
0,− 1

8 , 1
}
. We see the curves ∆ξ and ∆ξ′ as

elliptic curves defined over k with origin O=[0:1:−1]. Suppose that there is a surjective

morphism φ: ∆ξ ∆ξ′ defined over C. It sends the origin of ∆ξ onto a C-rational point

of ∆ξ′ . Applying a translation at the target, we may assume that φ(O)=O, which means

that φ is an isogeny, and that ∆ξ and ∆ξ′ are isogenous over C (see [Sil, Definition, §III.4

p. 66]).

We now choose a sequence p1, p2, ... of increasing prime numbers such that, for

each i⩾2, the prime number pi does not appear in the denominator of the j-invariant

of ∆pi′ for each i′<i. For each i⩾1, the j-invariant of ∆pi is an element of Q having

a denominator divisible by pi (follows from (1)), so ∆pi does not have potential good

reduction modulo pi but this does not hold for ∆pi′ for i′>i, which then has potential

good reduction modulo pi [Sil, Proposition 5.5, §VII.5, p. 197]. This implies that there

is no isogeny ∆pi!∆pi′ defined over any number field K and where one curve has good

reduction and the other has bad reduction [Sil, Corollary 7.2, §VII.7, p. 202], and thus

no isogeny defined over C [MW, Lemma 6.1]. If k is countable, this achieves the proof

of (2).

It remains to consider the case where k is an uncountable subfield of C. The set

of j-invariants of curves ∆ξ, where ξ∈k is such that ξ3 /∈
{
0,− 1

8 , 1
}
, is then uncountable

too.

We denote by Ω⊆C2 the set consisting of pairs (j1, j2)∈
Q2 such that the curves of

j-invariants j1 and j2 are isogenous. The set Ω is a countable union of algebraic curves

defined over Q, given by the zero set of the so-called modular transformation polynomials

(see [Lan, Theorem 5, p. 59]). Moreover, these curves are irreducible and invariant under

the exchanges of variables (x, y) 7!(y, x) [Lan, Theorem 3, p. 55], so are not vertical or

horizontal lines in C2.

We write S=
{
ξ∈k:ξ3 /∈

{
0,− 1

8 , 1
}}

. Then, by the previous paragraph, for each

element ξ∈S, the curve ∆ξ is isogeneous (over C) to only countably many isomorphism

classes of ∆ξ′ with ξ
′∈k. Putting an equivalence relation on S saying that two elements

are equivalent if the curves are isogeneous over C (see [Sil, §III.6, Theorem 6.1 (a)]), we

obtain that each equivalence class is countable, so the set of equivalence classes has the

cardinality of S, or equivalently of k. This achieves the proof.

Proposition 7.15. Let k be a subfield of C. For each n⩾3, there is a set J having

the cardinality of k indexing decomposable conic bundles Xi/Bi defined over k, where

Xi and Bi are smooth varieties rational over k, and such that two conic bundles Xi/Bi

and Xj/Bj are equivalent (over C) if and only if i=j.



306 j. blanc, s. lamy and s. zimmermann

Proof. We choose the set J⊆k of Lemma 7.14 (2), and consider, for each ξ∈J , the
hypersurface Xξ⊂P2×P2 of Lemma 7.12, which is given by

Xξ =

{
([x0 :x1 :x2], [y0 : y1 : y2])∈P2×P2 :

2∑
i=0

(
x2i+2ξ

x0x1x2
xi

)
yi=0

}
.

By Lemma 7.12, the second projection gives a standard conic bundle Xξ!P2 whose

discriminant curve ∆ξ⊂P2 is given by

−ξ2(y30+y31+y32)+(2ξ3+1)y0y1y2.

Note that (Xξ×Pn−3)/(P2×Pn−3) (or simply Xξ/P2 if n=3) is a decomposable conic

bundle defined over k, as it is embedded in the trivial P2-bundle

(P2×P2×Pn−3)/(P2×Pn−3),

by construction. Moreover, Xξ×Pn−3 is birational to Pn over k (Lemma 7.12). By Propo-

sition 7.10, two conic bundles (Xξ×Pn−3)/(P2×Pn−3) and (Xξ′×Pn−3)/(P2×Pn−3) are

equivalent only if there exist surjective morphisms ∆ξ ∆ξ′ and ∆ξ′ ∆ξ. This is only

possible if ξ=ξ′, by Lemma 7.14 (2).

7.C. Proofs of Theorems E and C

Proof of Theorem E. By Theorem D, we have respectively a group homomorphism

and a groupoid homomorphism:

Bir(Pn) �
C∈CB(Pn)

( ⊕
M(C)

Z/2

)

BirMori(Pn)

⊆

For each subfield k⊆C, we can embed Birk(Pn) into BirC(Pn) and look at the image in

�
C∈CB(Pn)

( ⊕
M(C)

Z/2

)
.

We consider the set of decomposable conic bundles Xi/Bi defined over k indexed by J of

Proposition 7.15, which give pairwise distinct elements of Ci∈CB(Pn), and associate with

these birational maps ψi:Xi Pn defined over k. For each i∈J , there is an involution

ιi ∈ψi Birk(Xi/Bi)ψ
−1
i ⊆Birk(Pn)
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whose image in
⊕

M(Ci)
Z/2 is not trivial, by Proposition 6.9. One can thus take a pro-

jection
⊕

M(Ci)
Z/2!Z/2 such that the image of ιi is non-trivial. We obtain a surjective

group homomorphism from Birk(Pn) to �i∈J Z/2, where J has the cardinality of k and

such that each involution ιi∈Birk(Pn) is sent onto the generator indexed by i. There is

thus a section of this surjective group homomorphism.

Remark 7.16. As Proposition 7.15 gives an infinite image, the above proof naturally

gives a surjective homomorphism to the group�J(
⊕

Z Z/2), but since there is an abstract

surjective homomorphism from �J Z/2 to this group, we chose not to mention the direct

sum in the statement of the theorem.

Moreover, with the alternative form, the existence of a section would be far less clear.

Indeed, (Z/2)3 does not embed in Bir(X/B), and (Z/2)7 does not embed in Bir(X), for

X rationally connected of dimension 3 [Pr1], [Pr3], so it seems probable that
⊕

Z Z/2

does not embed in Bir(X) for any variety X.

Proof of Theorem C. We consider a subfield k of C, an integer n⩾3, and a subset

S⊂Birk(Pn) of cardinality smaller than the one of k. We want to construct a surjective

homomorphism Birk(Pn) Z/2 such that the group G generated by Autk(Pn), by all

Jonquières elements and by S is contained in the kernel. We use the group homomorphism

τ : Birk(Pn)−!�
J
Z/2

given by Theorem E. Each j∈J corresponds to a conic bundle Xj/Bj . The group

Autk(Pn) is in the kernel of τ . The group of Jonquières elements is conjugated to the

subgroup J⊂Bir(P1×Pn−1) consisting of elements sending a general fibre of

(P1×Pn−1)/Pn−1

onto another one. The action on the base yields an exact sequence

1−!Bir((P1×Pn−1)/Pn−1)−! J −!Bir(Pn−1)! 1.

This gives

J =Bir((P1×Pn−1)/Pn−1)⋊J ′,

where J ′⊂J is the group isomorphic to Bir(Pn−1) that acts on P1×Pn−1 with trivial

action on the first factor. We may assume that

(P1×Pn−1)/Pn−1 =Xj0/Bj0

for some j0∈J . The image of Bir((P1×Pn−1)/Pn−1) by τ is contained in the group Z/2

indexed by j0. Now, observe that J ′⊂Ker τ . Indeed, we first decompose an element of

J ′ ≃Bir(Pn−1)
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as a product of Sarkisov links between terminal Mori fibre spaces Yi!Si, where Yi

has dimension n−1, and observe that taking the product with P1 gives Sarkisov links

between the Mori fibre spaces Yi×P1!Si×P1 of dimension n. Each of the Sarkisov links

of type II arising in such decomposition has covering gonality 1, as cov. gon(Γ×P1)=1

for each variety Γ.

We consider the group homomorphism

τ̂ : Birk(Pn)−! �
J\{j0}

Z/2

obtained by composing τ with the projection

�
J
Z/2−! �

J\{j0}
Z/2

obtained by forgetting the factor indexed by j0.

The image by τ̂ of all Jonquières elements is trivial, and hence the group τ̂(G) has

at most the cardinality of S, which by assumption is strictly smaller than the cardinality

of J . We construct the expected morphism by projecting from τ̂(Birk(Pn)) onto a factor

Z/2 which is not in the image of G.

8. Complements

8.A. Quotients and SQ-universality

A direct consequence of Theorem E is that Birk(Pn) has a lot of quotients for n⩾3.

Firstly, we can have quite small quotients (which is not the case for BirC(P2), which
has no non-trivial countable quotient, as mentioned before):

Corollary 8.1. For each n⩾3, each subfield k⊆C, and each integer m⩾1, there

are (abstract) surjective group homomorphisms from Birk(Pn) to the dihedral group D2m

of order 2m and to the symmetric group Symm. In particular, there is a normal subgroup

of Birk(Pn) of index r for each even integer r>1.

Proof. The result follows from Theorem E and the fact that D2m and Symm are

generated by involutions.

Secondly, we get much larger quotients.

Corollary 8.2. For any n⩾3, any subfield k⊆C and any integer m⩾1, there are

(abstract) surjective group homomorphisms

Birk(Pn) SLm(k) and Birk(Pn) Bir

Q(P2).



quotients of higher-dimensional cremona groups 309

Proof. We observe that SLm(k) has the cardinality of k, and that Bir

Q(P2) is count-

able. Hence, both groups have at most the cardinality of k. Both groups are generated

by involutions: for Bir

Q(P2) this is by the Noether–Castelnuovo theorem which says that

Bir

Q(P2) is generated by the standard quadric involution and by

Aut

Q(P3)≃PGL3(
Q)=PSL3(
Q),

and thus is generated by involutions. Hence, the two groups are quotients of �J Z/2.

The result then follows from Theorem E.

Similarly, over C we get the following result.

Corollary 8.3. For any n⩾3, there exists a surjective group homomorphism

BirC(Pn) BirC(P2).

Recall that a group G is SQ-universal if any countable group embeds in a quotient

of G. The free group Z∗Z was an early example of SQ-universal group. More generally,

any non-trivial free product G1∗G2 distinct from (Z/2)∗(Z/2) is SQ-universal, see [Schu,

Theorem 3]. From a modern point of view, this also follows from [MO], by looking at

the action of any loxodromic isometry on the associated Bass-Serre tree. In particular,

taking

G1 =(Z/2)∗(Z/2) and G2 =Z/2,

we get that (Z/2)∗(Z/2)∗(Z/2) is SQ-universal.

Corollary 8.4. For any field k⊆C and any n⩾3, the Cremona group Birk(Pn)
admits a surjective morphism to the SQ-universal group (Z/2)∗(Z/2)∗(Z/2). In partic-

ular, Birk(Pn) also is SQ-universal.

Proof. The result follows from Theorem E and the fact that (Z/2)∗(Z/2)∗(Z/2) is
SQ-universal.

8.B. Hopfian property

Recall that a group G is Hopfian if every surjective group homomorphism G G is an

isomorphism. It was proven in [Dés1] that the group BirC(P2) is Hopfian. An open

question, asked by Dolgachev (see [Dés2]), is whether the Cremona group BirC(Pn) is

generated by involutions for each n, the answer being yes in dimension 2 and open in

dimension ⩾3. Theorem E relates these two notions and shows that we cannot generalise

both results at the same time (being Hopfian and generated by involutions) to higher

dimension.
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Corollary 8.5. For each n⩾3 and each subfield k⊆C, the group Birk(Pn) is not

Hopfian if it is generated by involutions.

Proof. Follows from Theorem E, as the group homomorphisms provided by Theo-

rem E is not injective, and because Birk(Pn) has the same cardinality as k (the set of all

polynomials of degree n with coefficients in k has the same cardinality as k).

8.C. More general fields

Every field isomorphism k
∼−!k′ naturally induces an isomorphism Birk(Pn)

∼−!Birk′(Pn).
More generally, it associates with each variety and each rational map defined over k, a

variety and a rational map defined over k′. It then induces an isomorphism between the

group of birational maps defined over k and k′ of the varieties obtained. This implies

that the five Theorems A–E also hold for each ground field which is abstractly isomorphic

to a subfield of C. This includes any field of rational functions of any algebraic vari-

ety defined over a subfield of C, as these fields have characteristic zero and cardinality

smaller or equal than the one of C.

8.D. Amalgamated product structure

We work over the field C. In the next result, an element of CB(X) is said to be decom-

posable if it is the class of a decomposable conic bundle (in the sense of Definition 6.8).

Theorem 8.6. Let n⩾3 be an integer, and let X/B be a conic bundle, where X is

a terminal variety of dimension n. We denote by ρ the group homomorphism

ρ: Bir(X)−! �
C∈CB(X)

( ⊕
M(C)

Z/2

)

given by Theorem D. For each C∈CB(X), we fix a choice of representative XC/BC , and

we set

GC = ρ−1(ρ(Bir(XC/BC)))⊆Bir(X).

Then, the following hold :

(1) For all C ̸=C ′ in CB(X), the group A=GC∩GC′ contains ker ρ and does not

depend on the choice of C and C ′.

(2) The group Bir(X) is the free product of the groups GC , C∈CB(X), amalgamated

over their common intersection A:

Bir(X)=�
A
GC .
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(3) For each decomposable C∈CB(X) we have A⊊GC . Moreover, the free product

of (2) is non-trivial (i.e. A⊊GC⊊Bir(X) for each C) as soon as CB(X) contains two

distinct decomposable elements. This is for instance the case when X is rational, as

CB(X) then contains uncountably many decomposable elements.

Proof. (1) For each C∈CB(X), we denote by HC=
(⊕

M(C) Z/2
)
the factor indexed

by C in the free product

�
C∈CB(X)

( ⊕
M(C)

Z/2

)
= �
C∈CB(X)

HC .

By definition of the group homomorphism, for each C∈CB(X) we have

ρ(Bir(XC/BC))⊆HC .

As HC is a F2-vector space with basis M(C) and ρ(Bir(XC/BC)) is a linear subspace,

there exists a projection HC!ρ(Bir(XC/BC)). We then denote by

ρ′: Bir(X)−! �
C∈CB(X)

ρ(Bir(XC/BC))

the group homomorphism induced for each C by the projection

HC −! ρ(Bir(XC/BC)).

By definition of the free product, we obtain HC∩HC′=id for all C ̸=C ′. This implies

GC∩GC′ =ker ρ′ ⊇ ker ρ.

(2) We first observe that, by construction, the groups GC generate the group Bir(X).

The fact that Bir(X)=�AGC corresponds to saying that all relations in Bir(X) lie in

the groups GC . This follows from the group homomorphism ρ to a free product, where

no relation between the groups HC exists.

(3) The fact that A⊊GC for each decomposable C follows from Proposition 6.9.

Hence, the free product of (2) is non-trivial if there are at least two C corresponding to

decomposable conic bundles. If X is rational, then we moreover have uncountably many

such elements by Proposition 7.15.

In Theorem 8.6, one could be tempted to say that A=ker ρ, but this is not clear.

Indeed, it could be that some elements of
⊕

M(C) Z/2 are in the image of Bir(X) but not

in the image of Bir(X/B).
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8.E. Cubic varieties

Here again we work over C. We recall the following result, which allows to apply Theo-

rem B to any smooth cubic hypersurface of dimension ⩾3:

Lemma 8.7. Let n⩾4 and let ℓ⊂X⊂Pn be a line on a smooth cubic hypersurface.

We denote by X̂ and P the respective blow-ups of X and Pn along ℓ. Then, the projection

prℓ away from ℓ gives rise to a decomposable conic bundle and a decomposable P2-bundle

X̂ ⊂P =P(OPn−2⊕OPn−2⊕OP2(1))
prℓ−−−!Pn−2.

Moreover, the discriminant of the conic bundle is a hypersurface of degree 5.

Proof. We take coordinates [y0 :y1 :...:yn−2 :u:v] on Pn and assume that ℓ⊂Pn is the

line given by y0=y1=...=yn−2=0. The equation of X is then given by

Au2+2Buv+Cv2+2Du+2Ev+F =0

where A,B,C,D,E, F∈C[y0, ..., yn−2] are homogeneous polynomials of degree 1, 1, 1, 2,

2 and 3, respectively.

As in the proof of Proposition 6.9, we view P=P(OPn−2⊕OPn−2⊕OPn−2(1)) as the

quotient of (A2\{0})×(An−1\{0}) by (Gm)2 via

((λ, µ), (x0, x1, x2, y0, y1, ..., yn−2)) 7−! (λx0, λx1, λµ
−1x2, µy0, ..., µyn−2),

and denote by [x0:x1:x2; y0: ... : yn−2]∈P the class of (x0, x1, x2, y0, ..., yn−2). The bira-

tional morphism

P −!Pn,

[x0:x1:x2; y0: y1: y2: ... : yn−2] 7−! [x2y0: ... :x2yn−2 :x0 :x1],

is the blow-up of ℓ, so X̂ is given by

Ax20+2Bx0x1+Cx
2
1+2Dx2x0+2Ex2x1+Fx

2
2 =0,

which is then a conic bundle over P2. The discriminant of the curve gives a hypersurface

∆⊂P2 of degree 5, given by the determinant ofA B D

B C E

D E F

 .
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Corollary 8.8. For each n⩾4 and each smooth cubic hypersurface X⊂Pn, there
exists a surjective group homomorphism

Bir(X)
⊕
Z

Z/2.

Proof. The result follows from the application of Theorem B to the conic bundle

associated with the blow-up of a line of X (Lemma 8.7).

Every smooth cubic threefold X⊂P4 is not rational, and moreover two such cubics

are birational if and only if they are projectively equivalent, i.e., equal up to an element

of Aut(P4)=PGL5(C) [CG]. We moreover get the following result.

Proposition 8.9. Let X⊂P4 be a general smooth cubic hypersurface. We have a

surjective group homomorphism

Bir(X) �
J
Z/2,

where J has the cardinality of C.

Proof. The map of Lemma 8.7 associates with each smooth cubic threefold X and

each line ℓ⊂X a quintic curve ∆⊂P2 and also a theta-characteristic; this induces a bira-

tional map between the pairs (ℓ,X) of lines on smooth cubic threefolds, up to PGL5(C),

and the pairs (θ,∆), where ∆⊂P2 is a smooth quintic and θ is a theta-characteristic,

again up to PGL3(C) [CF, Theorem 4.1 and Proposition 4.2].

In particular, taking a general smooth cubic hypersurface X⊂P4 and varying the

lines ℓ⊂X (which form a 2-dimensional family), we obtain a family J of dimension 2

of smooth quintics ∆⊂P2, not pairwise equivalent modulo PGL3(C). This yields conic

bundles that are not pairwise equivalent, parameterised by a complex algebraic variety

of dimension 2. Applying the group homomorphism of Theorem D and projecting on

the corresponding factors provides a surjective group homomorphism Bir(X) �J Z/2,

similarly as in the proof of Theorem E.

8.F. Fibrations graph

We explain how to get a natural graph structure from the set of rank-r fibrations, similarly

as in [LZ].

Let Z be a variety birational to a Mori fibre space. We construct a sequence of

nested graphs Gn, n⩾1, as follows. The set of vertices of Gn are rank-r fibrations X/B,

for any r⩽n, with a choice of a birational map φ:Z X, and modulo Z-equivalence

(Definition 4.1). We denote by (X/B,φ) such an equivalence class. We put an oriented
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edge from (X/B,φ) to (X ′/B′, φ′) if and only if ρ(X ′/B′)=ρ(X/B)−1 and the birational

maps from Z induce a factorisation of X/B through X ′/B′, i.e., if there is a morphism

B′
!B and a birational contraction X X ′ such that the following diagram commutes:

Z

X X ′

B B′.

φ′φ

We call the graph G :=
⋃
n Gn the fibrations graph associated with Z. The group Bir(Z)

naturally acts on each graph Gn, and so also on G, by precomposition:

g ·(X/B,φ) := (X/B,φ�g−1).

The fact that Sarkisov links generate BirMori(Z) is equivalent to the fact that G2 is a

connected graph. Lemma 4.2 implies that G3 is the 1-skeleton of a square complex, where

each square has one vertex of rank 3, one vertex of rank 1 and two vertices of rank 2.

The fact that elementary relations generate all relations in BirMori(Z) is equivalent to

the fact that this square complex is simply connected.

It is not clear to us if, for n⩾4, the graph Gn is still the 1-skeleton of a cube complex.
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[Lon] Lonjou, A., Non simplicité du groupe de Cremona sur tout corps. Ann. Inst. Fourier
(Grenoble), 66 (2016), 2021–2046.
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