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1. Introduction

The study of the motion of water waves, such as those on the surface of the ocean, is a
classical question, and one of the main problems in fluid dynamics. The origins of water-
wave theory can be traced back(!) at least to the work of Laplace, Lagrange, Cauchy
[11], Poisson, and then Russel, Green, and Airy, among others. Classical studies include
those by Stokes [62], Levi-Civita [53], and Struik [63] on progressing waves, the instability
analysis of Taylor [65], the works on solitary waves by Friedrichs and Hyers [31], and on
steady waves by Gerber [32].

The main questions one can ask about water waves are the typical ones for any
physical evolution problem: the local-in-time well-posedness of the Cauchy problem,
the regularity of solutions and the formation of singularities, the existence of special
solutions (such as solitary waves) and their stability, and the global existence and long-
time behavior of solutions. There is a vast body of literature dedicated to all of these
aspects. As it would be impossible to give exhaustive references, we will mostly mention
works that are connected to our results, and refer to various books and review papers
for others (see, e.g., [18], [26], [52], and [64]).

Our main interest here is the existence of global solutions for the initial value prob-
lem. In particular, we will consider the full irrotational water-wave problem for a 3-dim-
ensional fluid occupying a region of infinite depth and infinite extent below the graph of
a function. This is a model for the motion of waves on the surface of the deep ocean.
We will consider such dynamics under the influence of the gravitational force and surface
tension acting on particles at the interface. Our main result is the existence of global

classical solutions for this problem, for sufficiently small initial data.

1.1. Free boundary Euler equations and water waves

The evolution of an inviscid perfect fluid that occupies a domain Q;CR", for n>2, at
time t€R, is described by the free-boundary incompressible Euler equations. If v and
p denote respectively the velocity and the pressure of the fluid (with constant density

equal to 1) at time ¢ and position x€§);, these equations are
(Or+v-V)v=—=Vp—ge,, V-v=0, xz€, (1.1)

where ¢ is the gravitational constant. The first equation in (1.1) is the conservation

of momentum equation, while the second one is the incompressibility condition. The

(1) We refer to the review paper of Craik [27], and references therein, for more details about these
early studies.
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free surface S;:=0€; moves with the normal component of the velocity according to the
following kinematic boundary condition:

dy+v-V is tangent to |J, Sy C R (1.2)

Z,

The pressure on the interface is given by
p(x,t)=0x(x,t), xS (1.3)

where s is the mean-curvature of S; and 0>0 is the surface tension coefficient. At
liquid-air interfaces, the surface tension force results from the greater attraction of water
molecules to each other, rather than to the molecules in the air.

One can also consider the free-boundary Euler equations (1.1)—(1.3) in various types
of domains €; (bounded, periodic, unbounded), and study flows with different char-
acteristics (rotational/irrotational, with gravity and/or surface tension), or even more
complicated scenarios where the moving interface separates two fluids.

In the case of irrotational flows, curlv=0, one can reduce (1.1)—(1.3) to a system
on the boundary. Indeed, assume also that Q; CR" is the region below the graph of a
function h: R?~!x I; +R, that is

Q={(z,y) eER" xR :y<h(x,t)} and S;={(x,y):y=h(z,1)}.
Let @ denote the velocity potential, V, ,®(x,y,t)=v(z,y,t) for (x,y)€Q,. If
oz, t) :=P(x, h(x,t),t)

is the restriction of ® to the boundary S, the equations of motion reduce to the following
system for the unknowns h, ¢: R? 1 x [, »R:

ath = G(h)¢7

3t¢=—gh+adiv< Vh

(1+[Vh[2)172

CLio,2, (G()e+Vh-Ve) (1.4)
>2|V¢|+ 2(1+|Vh)%)

Here

G(h) := V1+|Vh|*N(h), (1.5)

and NV (h) is the Dirichlet—-Neumann map associated with the domain €;. Roughly speak-
ing, one can think of G(h) as a first-order, non-local, linear operator that depends non-
linearly on the domain. We refer to [64, Chapter 11] or the book of Lannes [52] for
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the derivation of (1.4). For sufficiently small smooth solutions, this system admits the

conserved energy

1 g 2 |Vh|2
H(h,¢):== G(h)o- dx+f/ hdm—l—o/ ———dx
(h: ¢) 2 Jrn-1 (h)¢-¢ 2 Jrn—1 rr-1 14+/14+|Vh|2 (1.6)

~ (1917261 + (g = 2) /Al 7.
which is the sum of the kinetic energy corresponding to the L? norm of the velocity field
and the potential energy due to gravity and surface tension. It was first observed by
Zakharov [75] that (1.4) is the Hamiltonian flow associated with (1.6).
One generally refers to the system (1.4) as the gravity water-wave system when g>0
and 0=0, as the capillary water-wave system when g=0 and 0>0, and as the gravity-

capillary water-wave system when g>0 and o>0.

1.2. The main theorem

Our results in this paper concern the gravity-capillary water-wave system (1.4), in the
case n=3. In this case, h and ¢ are real-valued functions defined on R? x I.

To state our main theorem, we introduce some notation. The rotation vector field
Q:=210y, — 20, (1.7)

commutes with the linearized system. For N >0 let H N denote the standard Sobolev

spaces on R2. More generally, for N, N'>0 and be [—%7 %], b< N, we define the norms
Il grvrn == D2 19 fllw and (1l = [ (V1T +IV)F] - (1.8)
JSN!
For simplicity of notation, we sometimes let H = g "% Our main theorem is the

following.

THEOREM 1.1. (Global regularity) Let g,0>0, let >0 be sufficiently small, and
No, N1, N3, and Ny be sufficiently large(?) (for example §=51=, No:=4170, N;:=2070,

2000°
N3:=30, and N,:=70; ¢f. Definition 2.5). Assume that the data (ho, ¢o) satisfies
U0l gy gy 31N + sup H(1—|—|alc|)1_505D°‘le/{0HL2 =gq < &y,
Q 2m+|a| <N1+Ny (1.9)

Uy = (g—aA)1/2h0+i|V|1/2(bo,

(?) The values of Ng and N1, the total number of derivatives we assume under control, can certainly
be decreased by reworking parts of the argument. We prefer, however, to simplify the argument wherever
possible, instead of aiming for such improvements. For convenience, we arrange that

No— N3 1

Ni—Ny= ~Ni= 5.
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where &y is a sufficiently small constant and Da:aflagz, a=(at,a?). Then, there is
a unique global solution (h, ¢)€C([0,00): HNot1x HNot1/21/2) of the system (1.4), with
(h(0),#(0))=(ho, o). In addition,

() WU | g ggovs S0 and (L)Y |U(@) | oo Seo, (110)

for any t€[0,00), where U:=(g—cA)/?h+i|V|/2¢.

Remark 1.2. (i) One can derive additional information about the global solution

(h,®). Indeed, by rescaling, we may assume that g=1 and c=1. Let

Ut):=(1=A)V2h4i| VY20, V()= U(t), and A€):=/|¢[+[€3.  (1.11)

Here, A is the linear dispersion relation and V is the profile of the solution /. The proof

of the theorem gives the strong uniform bound

sup [[V(t)]lz S eo; (1.12)
t€[0,00)

see Definition 2.5. The pointwise decay bound in (1.10) follows from this and the linear
estimates in Lemma 7.5 below.

(ii) The global solution U scatters in the Z norm as t— o0, i.e. there is Voo €7 such
that

: Ay gy _
Jim (AU (1) Vel ; =0,

However, the asymptotic behavior is somewhat non-trivial since [//(¢, t)|>log t—s 0o for
frequencies € on a circle in R? (the set of space-time resonance outputs) and for some
data. This unusual behavior is due to the presence of a large set of space-time resonances.

(iii) The function
U:=(g—0A)*h+ilV['?¢
is called the “Hamiltonian variable”, due to its connection to the Hamiltonian (1.6). This

variable is important in order to keep track correctly of the relative Sobolev norms of

the functions h and ¢ during the proof.
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1.3. Background

We now discuss some background on the water-wave system and review some of the

history and previous work on this problem.

1.3.1. The equations and the local well-posedness theory

The free-boundary Euler equations (1.1)—(1.3) are a time-reversible system of evolution
equations which preserve the total (kinetic plus potential) energy. Under the Rayleigh—
Taylor sign condition [65]

7Vn(w,t)p(xa t) <0, wze€ Stv (113)

where n is the outward-pointing unit normal to €, the system has a (degenerate) hy-
perbolic structure. This structure is somewhat hard to capture because of the moving
domain and the quasilinear nature of the problem. Historically, this has made the task
of establishing local well-posedness (existence and uniqueness of smooth solutions for the
Cauchy problem) non-trivial.

Early results on the local well-posedness of the system include those by Nalimov
[55], Yosihara [74], Kano-Nishida [48], and Craig [22]; these results deal with small
perturbations of a flat interface for which (1.13) always holds. It was first observed by
Wu [71] that in the irrotational case the Rayleigh-Taylor sign condition holds without
smallness assumptions, and that local-in-time solutions can be constructed with initial
data of arbitrary size in Sobolev spaces [70], [71].

Following the breakthrough of Wu, in the recent years the question of local well-
posedness of the water waves and free-boundary Euler equations has been addressed by
several authors. Christodoulou-Lindblad [15] and Lindblad [54] considered the gravity
problem with vorticity, Beyer—Gunther [9] took into account the effects of surface tension,
and Lannes [51] treated the case of non-trivial bottom topography. Subsequent works by
Coutand-Shkoller [20] and Shatah—Zeng [59], [60] extended these results to more general
scenarios with vorticity and surface tension, including two-fluid systems [12], [60], where
surface tension is necessary for well-posedness. Some recent papers that include surface
tension and/or low regularity analysis are those by Ambrose-Masmoudi [8], Christianson—
Hur-Staffilani [13], Alazard-Burq—Zuily [1], [2], and de Poyferré-Nguyen [56].

Thanks to all the contributions mentioned above, the local well-posedness theory is
presently well-understood in a variety of different scenarios. In short, one can say that
for sufficiently nice initial configurations, it is possible to find classical smooth solutions
on a small time interval, which depends on the smoothness of the initial data.
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1.3.2. Asymptotic models

We note that many simplified models have been derived and studied in special regimes,
with the goal of understanding the complex dynamics of the water-wave system. These
include the Korteweg—de Vries (KdV) equation, the Benjamin—-Ono equation, and the
Boussinesq and the Kadomtsev-Petviashvili (KP) equations, as well as the non-linear
Schrédinger equation. We refer to [7], [19], [22]-[25], [57], [66] and to the book [52] and

references therein for more about approximate models.

1.3.3. Previous work on long-time existence

The problem of long time existence of solutions is more challenging, and fewer results
have been obtained so far. As in all quasilinear problems, the long-time regularity has
been studied in a perturbative (and dispersive) setting, that is in the regime of small and
localized perturbations of a flat interface. Large perturbations can lead to breakdown in
finite time, see for example the papers on “splash” singularities [10], [21].

The first long-time result for the water-wave system (1.4) is due to Wu [72], who
showed almost global existence for the gravity problem (g>0 and =0) in two dimensions
(1-dimensional interfaces). Subsequently, Germain-Masmoudi-Shatah [34] and Wu [73]
proved global existence of gravity waves in three dimensions (2-dimensional interfaces).
Global regularity in three dimensions was also proved for the capillary problem (g=0
and 0>0) by Germain—Masmoudi—-Shatah [35]. See also the recent work of Wang [67],
[69] on the gravity problem in three dimensions over a finite flat bottom.

Global regularity for the gravity water-wave system in two dimensions (the harder
case) has been proved by two of the authors in [44] and, independently, by Alazard-Delort
(3], [4]. A different proof of Wu’s 2-dimensional almost global existence result was later
given by Hunter—Ifrim—Tataru [38], and then complemented to a proof of global regularity
in [39]. Finally, Wang [68] proved global regularity for a more general class of small data
of infinite energy, thus removing the momentum condition on the velocity field that
was present in all the previous 2-dimensional results. For the capillary problem in two
dimensions, global regularity was proved by two of the authors in [46] and, independently,
by Ifrim—Tataru [40] in the case of data satisfying an additional momentum condition.

We remark that all the global regularity results that have been proved so far require
three basic assumptions: small data (small perturbations of the rest solution), trivial
vorticity inside the fluid, and flat Euclidean geometry. Additional properties are also
important, such as the Hamiltonian structure of the equations, the rate of decay of the

linearized waves, and the resonance structure of the bilinear wave interactions.



220 Y. DENG, A. D. IONESCU, B. PAUSADER AND F. PUSATERI

1.4. Main ideas

The classical mechanism to establish global regularity for quasilinear equations has two
main components:
(1) propagate control of high frequencies (high-order Sobolev norms);

(2) prove dispersion/decay of the solution over time.

The interplay of these two aspects has been present since the seminal work of Klain-
erman [49], [50] on non-linear wave equations and vector fields, Shatah [58] on Klein—
Gordon and normal forms, Christodoulou-Klainerman [14] on the stability of Minkowski
space, and Delort [28] on 1-dimensional Klein—Gordon equations. We remark that, even
in the weakly non-linear regime (small perturbations of trivial solutions), smooth and
localized initial data can lead to blow-up in finite time, see John [47] on quasilinear wave

equations and Sideris [61] on compressible Euler equations.

In the last few years, new methods have emerged in the study of global solutions
of quasilinear evolutions, inspired by the advances in semilinear theory. The basic idea
is to combine the classical energy and vector-field methods with refined analysis of the
Duhamel formula, using the Fourier transform. This is the essence of the “method
of space-time resonances” of Germain-Masmoudi-Shatah [33]-[35], see also Gustafson—
Nakanishi-Tsai [37], and of the refinements in [29], [30], [36], [41]- [46], using atomic

decompositions and more sophisticated norms.

The situation we consider in this paper is substantially more difficult, due to the
combination of the following factors:

e Strictly less than [¢t|~! pointwise decay of solutions. In our case, the dispersion
relation is A(f):\/m, and the best possible pointwise decay, even for solutions
of the linearized equation corresponding to Schwartz data, is [t| =5/ (see Figure 1 below).

e Large set of time resonances. In certain cases, one can overcome the slow pointwise
decay using the method of normal forms of Shatah [58]. The critical ingredient needed
is the absence of time resonances (or at least a suitable “null structure” of the quadratic
non-linearity matching the set of time resonances). Our system, however, has a full
(codimension-1) set of time resonances (see Figure 2 below) and no meaningful null

structures.

We remark that all the previous work on long-term solutions of water-wave models
was under the assumption that either g=0 or ¢=0. This is not coincidental: in these
cases the combination of slow decay and full set of time resonances was not present. More
precisely, in all the previous global results in three dimensions in [34], [35], [67], [69], [73]
it was possible to prove 1/t pointwise decay of the non-linear solutions and combine this
with high-order energy estimates with slow growth.
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On the other hand, in all the 2-dimensional models analyzed in [3], [4], [38]-[40],
[44], [46], [68], [72] there were no significant time resonances for the quadratic terms.(?)
As a result, in all of these papers it was possible to prove a quartic energy inequality of

the form

t
|5N(7f)—<51v(0)|§/0 ENGIU )3y w/zt a0 ds,

for a suitable functional Ex(t) satisfying En(t)=||U(¢t)||3;~. The point is to get two
factors of ||U(s)||y~/244.00 in the right-hand side, in order to have suitable decay, and
simultaneously avoid loss of derivatives. A quartic energy inequality of this form cannot
hold in our case, due to the presence of large resonant sets.

To address these issues, in this paper we use a combination of improved energy
estimates and Fourier analysis. The main components of our analysis are the following:

e The energy estimates, which are used to control high Sobolev norms and weighted
norms (corresponding to the rotation vector field). They rely on several new ingredients,
most importantly on a strongly semilinear structure of the space-time integrals that con-
trol the increment of energy, and on a restricted non-degeneracy condition (see (1.24)) of
the time resonant hypersurfaces. The strongly semilinear structure is due to an algebraic
correlation (see (1.28)) between the size of the multipliers of the space-time integrals and
the size of the modulation, and is related to the Hamiltonian structure of the original
system.

e The dispersive estimates, which lead to decay and rely on a partial bootstrap
argument in a suitable Z norm. We analyze carefully the Duhamel formula, in particular
the quadratic interactions related to the slowly decaying frequencies and to the set of
space-time resonances. The choice of the Z norm in this argument is very important;
we use an atomic norm, based on a space-frequency decomposition of the profile of the
solution, which depends in a significant way on the location and the shape of the space-
time resonant set, thus on the quadratic part of the non-linearity.

We hope that such ideas can be used in other quasilinear problems in two and three
dimensions (such as other fluid and plasma models) that involve large resonant sets and
slowly decaying solutions. We illustrate some of these main ideas in a simplified model

below.

(3) More precisely, the only time resonances are at the zero frequency, but they are canceled by
a suitable null structure. Some additional ideas are needed in the case of capillary waves [46] where
certain singularities arise. Moreover, new ideas, which exploit the Hamiltonian structure of the system
as in [44], are needed to prove global (as opposed to almost global) regularity.
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1.5. A simplified model

To illustrate these ideas, consider the initial-value problem
(0, +iNU=VV-VU+3AV-U, U(0)="Uy,
A©) = VIE[+IER, V :=P_10,10) Re U.

Compared to the full equation, this model has the same linear part and a quadratic

(1.14)

non-linearity leading to similar resonant sets. It is important that V is real-valued, such

that solutions of (1.14) satisfy the L? conservation law
IU@)[ L2 = 1Uollz2, ¢ €[0,00). (1.15)

The model (1.14) carries many of the difficulties of the real problem and has the
advantage that it is much more transparent algebraically. There are, however, signifi-
cant additional issues when dealing with the full problem; see §1.5.3 below for a short
discussion.

The specific dispersion relation A(f):\/w in (1.14) is important. It is radial
and has stationary points when |£|=79:=(2/v/3—-1)1/2~0.393 (see Figure 1 below). As

a result, linear solutions can only have |t|_5/ 6 pointwise decay, i.e.
e 46 o |17,

even for Schwartz functions ¢ whose Fourier transforms do not vanish on the sphere

{&:1¢l=0}-

1.5.1. Energy estimates

We would like to control the increment of both high-order Sobolev norms and weighted
norms for solutions of (1.14). It is convenient to do all the estimates in the Fourier space,
using a quasilinear I-method, as in some of our earlier work. This has similarities with
the well-known I-method of Colliander—Keel-Staffilani-Takaoka—Tao [16], [17] used in
semilinear problems, and to the energy methods of [3], [4], [33], [38]. Our main estimate
is the following partial bootstrap bound:

it sup ((146)"0 E()Y2+ e U(t)||z) <e1, then sup (1+t) E(#)/2<eq+e/?,
te[0,T] te[0,T]
(1.16)

where U is a solution on [0,T] of (1.14),

EW) = U@ IE~+IU O
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Dispersion relation and degenerate frequencies

3.0

2.5

2.0

1.5

\ ! ——
1.0 T

0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 1. The curves represent the dispersion relation A(r)=+/r3 +r and the group velocity X,
for g=1=0. Notice that A" (r) vanishes at 7=0~0.393. The frequency ~1=1v/2 corresponds
to the sphere of space-time resonant outputs. Notice that while the slower decay at 7o is due
to some degeneracy in the linear problem, ; is unremarkable from the point of view of the
linear dispersion.
and the initial data has small size \/£(0)+||U(0)||z<eo. The Z norm is important
and will be discussed in detail in the next subsection. For simplicity, we focus on the

high-order Sobolev norms, and divide the argument into four steps.

Step 1. For N sufficiently large, let

W:=Wy:=(V)YU and EN(t)::/ W (&, 1)[? de. (1.17)
R2
A simple calculation, using the equation and the fact that V is real, shows that
d — - ~
GEx= [ mlenW@W (&P (-n)dsdn (115)
R2 xR?
where SN SN
E—n)-(&+ 1+ —(1+¢
e — o€ (L nP)Y (L) (L19)

2 (1+[n2)N/2(1+|g2) N2
Notice that |¢ —n|€[27 11, 211] in the support of the integral, due to the Littlewood—Paley
operator in the definition of V. We notice that m satisfies

(€, m) =o(€mym! (€, ), where a(¢, ) = LEZD(EED

dm' ~1. 1.20
Thletap (1.20)
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The depletion factor 0 is important in establishing energy estimates, due to its correlation
with the modulation function ® (see (1.28) below). The presence of this factor is related

to the exact conservation law (1.15).

Step 2. We would like to estimate now the increment of En(t). We use (1.18) and
consider only the main case, when [£|, ||~2¥>>1 and |¢ —7n)| is close to the slowly decaying

frequency ~y. So, we need to bound space-time integrals of the form
t — S ~
Fim [ [ (e PV (1. PV (€, )0 (61 5)xay (€ 1) d s,
0 JR2xR

where x,, is a smooth cutoff function supported in the set {5:’|f|—ﬂm’<<1}, and we
replaced V by U (replacing V by U leads to a similar calculation). Notice that it is not
possible to estimate |I| by moving the absolute value inside the time integral, due to the
slow decay of U in L*°. So we need to integrate by parts in time; for this, define the
profiles

u(t):=e™U(t) and w(t) =" W (t). (1.21)

Then, decompose the integral in dyadic pieces over the size of the modulation and over
the size of the time variable. In terms of the profiles v and w, we need to consider the

space-time integrals

Ik:,m7p::/RQ7n<5> /Rz . &M m (&, ) Pow(n, s) Pew(—¢, s)
XU(E =17, 8) X (§—=1)pp(P(E, 7)) dE dn ds,

(1.22)

where ®(&,1):=A(§)—A(n)—A(£—n) is the associated modulation, ¢, is smooth and
supported in the set {s:s~2™}, and ¢, is supported in the set {z:|z|~2P}.

Step 3. To estimate the integrals I}, ,,, ,, We consider several cases depending on the
relative size of k, m, and p. Assume that k and m are large, i.e. 2°>>1 and 2™>>1, which
is the harder case. To deal with the case of small modulation, when one cannot integrate

by parts in time, we need an L? bound on the Fourier integral operator
Tiosmp (F)(€) = /2 e PEM o1 () o <p(B(E 1) X0 (€= 1).f (1) i,
R
where s~2™ is fixed. The critical bound we prove in Lemma 4.7 (“the main L? lemma”)
is
Tk ()2 Se 277 (230D pap=k2mmiSy | p a0 e >0, (1.23)

provided p—1k€[—0.99m, —0.01m]. The main gain here is the factor 5 in 2(3/2)(P=k/2)
in the right-hand side (Schur’s test would only give a factor 1).
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The proof of (1.23) uses a TT* argument, which is a standard tool to prove L?
bounds for Fourier integral operators. This argument depends on a key non-degeneracy
property of the function ®, more precisely on what we call the restricted non-degeneracy

condition:

T(&,m) = V2, 2(&n)[Ve®(E,n), V(& n)] £0, if ®(¢n)=0. (1.24)

This condition, which appears to be new, can be verified explicitly in our case, when
||§—77|—’yo|<<1. The function YT does in fact vanish at two points on the resonant set
{n:®(&,n)=0} (where ||§—n\ —fyO| ~27%), but our argument can tolerate vanishing up to
order 1.

The non-degeneracy condition (1.24) can be interpreted geometrically: the non-
degeneracy of the mixed Hessian of ® is a standard condition that leads to optimal L2
bounds on Fourier integral operators. In our case, however, we have the additional cutoff
function @<, (®(&,n)), so we can only integrate by parts in the directions tangent to
the level sets of ®. This explains the additional restriction to these directions in the
definition of Y in (1.24).

Given the bound (1.23), we can control the contribution of small modulations, i.e.
p—ik<—2m—em. (1.25)
Step 4. In the high-modulation case, we integrate by parts in time in formula (1.22).

The main contribution is when the time derivative hits the high-frequency terms, so we

focus on estimating the resulting integral

, d — _
Tompi= [[an(s) [ ™Dl 2 (Fran, ) Prin(~6,5)
R R2 xR2 s

1.26)
) (¢, (
a6, 6 g 0 de .
Notice that 0;w satisfies the equation

dw= (V)N (VV-VU+3AV-U). (1.27)

The right-hand side of (1.27) is quadratic. We thus see that replacing w by d;w essentially

gains a unit of decay (which is [¢t|~5/6%), but loses a derivative. This causes a problem in

some range of parameters, for example when 2P ~2%/2-2m/3 and 1«28« 2™; cf. (1.25).

We then consider two cases: if the modulation is sufficiently small, then we can use

the depletion factor ? in the multiplier m (see (1.20)), and the following key algebraic
correlation:

if [B(€,7)] S 1, then |m(€,m)| 2. (1.28)
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Figure 2. The left picture illustrates the resonant set {n:0=®(&,n)=A(&)—A(n)—A(E—n)}
for a fixed large frequency ¢ (in the picture £=(100,0)). The picture on the right illustrates
the intersection of a neighborhood of this resonant set with the set where | —n] is close to vo.
Note in particular that, near the resonant set, £—n is almost perpendicular to £ (see (1.20)
and (1.28)). Finally, the colors show the level sets of log |®].

See Figure 2. As a result, we gain one derivative in the integral I ,’C’m)p, which compensates
for the loss of one derivative in (1.27), and the integral can be estimated again using
(1.23).

On the other hand, if the modulation is not small, 2P >1, then the denominator
®(&,n) becomes a favorable factor, and one can use formula (1.27) and reiterate the
symmetrization procedure implicit in the energy estimates. This symmetrization avoids
the loss of one derivative and gives suitable estimates on [[; ,, [ in this case. The proof
of (1.16) follows.

1.5.2. Dispersive analysis

It remains to prove a partial bootstrap estimate for the Z norm, i.e.
if sup ((1+t)_525(t)1/2—|—HeitAU(t)HZ) <ey, then sup [ U(1)]z Seo+e2. (1.29)

te[0,7] te[0,7]

This complements the energy bootstrap estimate (1.16), and closes the full bootstrap
argument.
The first main issue is to define an effective Z norm. We use the Duhamel formula,

written in terms of the profile u (recall equation (1.14)):

t
(6 ) =i(,0)~ 5 /0 /R P =)V (€=, s)e™ NPy, 5) dnds. (1.30)
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For simplicity, consider one of the terms, namely that corresponding to the component
U of V (the contribution of U is similar). So, we are looking to understand bilinear

expressions of the form

t
ety [ [ (e myie—n.syitn.s) dnds,

n(&,n) = ([€12 = In*)(-10,10/(E—m), (&) =A(&) —Aln) —A(E—n).

(1.31)

The idea is to estimate the function h by integrating by parts either in s or in 7. This
is the method of space-time resonances of Germain-Masmoudi-Shatah [34]. The main
contribution is expected to come from the set of space-time resonances (the stationary

points of the integral), that is

SR:={(&mn): ®(&,n) =0 and (V,;®)(& 1) =0}. (1.32)

To illustrate how this analysis works in our problem, we consider the contribution

of the integral over s~2™>>1 in (1.31), and assume that the frequencies are ~1.

Case 1. Start with the contribution of small modulations,
ilm,l(f) ::/RQm(S) /R2 o<1 (®(&,n))e**EMn (g nya(E—n, s)i(n, s) dnds, (1.33)

where [=—m+dm (§ is a small constant) and g, (s) restricts the time integral to s~2™.
Assume that u(-, s) is a Schwartz function supported at frequency =1, independent of s
(this is the situation at the first iteration). Integration by parts in 7 (using formula (7.30)
to avoid taking n derivatives of the factor p<;(®(£,n))) shows that the main contribution
comes from a small neighborhood of the stationary points where |V, ®(&,n)| Lo —m/2Hom.
up to negligible errors. Thus, the main contribution comes from space-time resonant
points as in (1.32).

In our case, the space-time resonant set is
{(&,n) eR*xR?: |¢| =7, = V2 and n= 3£} (1.34)

Moreover, the space-time resonant points are non-degenerate (according to the termi-
nology introduced in [42]), in the sense that the Hessian of the matrix V7, ®(£,7) is

non-singular at these points. A simple calculation shows that

hin 1 (§) = c(§)p<—m (€] =),

up to smaller contributions, where we have also ignored factors of 29, and ¢ is smooth.



228 Y. DENG, A. D. IONESCU, B. PAUSADER AND F. PUSATERI

We are now ready to describe more precisely the Z space. This space should include
all Schwartz functions. It also has to include functions like 4(£§)=p<_m(|{|—71), due to
the calculation above, for any m large. It should measure localization in both space and
frequency, and be strong enough, at least, to recover the t~°/6% pointwise decay.

We use the framework introduced by two of the authors in [41], which was later
refined by some of the authors in [30], [36], [42]. The idea is to decompose the profile as
a superposition of atoms, using localization in both space and frequency:

F=>_Qjuf, where Qjif=;(x) Ppf(x).
7,k

The Z norm is then defined by measuring suitably every atom. We first define

17120 =sup 2’ lel—n]* QT ©)
J»

Lg’ (1.35)
up to small corrections (see Definition 2.5 for the precise formula, including the small but
important J-corrections), and then we define the Z norm by applying a suitable number
of vector fields D and 2.

These considerations and (1.30) can also be used to justify the approximate formula

1 .
(0:11)(&,t) = . Z 9;(€)et® &M E) Liower order terms, (1.36)
J

as t— 00, where 7;(£) denote the stationary points where V,®(&,7;(£))=0. This approx-
imate formula, which holds at least as long as the stationary points are non-degenerate,
is consistent with the asymptotic behavior of the solution described in Remark 1.2 (ii).
Indeed, at space-time resonances, ®(,7;(£))=0, which leads to logarithmic growth for
@(&,t), while, away from these space-time resonances, the oscillation of e t®(&m;(6)) Jeads

to convergence.

Case 2. Consider now the case of higher modulations, say {>—m+dm. We start
from a formula similar to (1.33) and integrate by parts in s. The main case is when d/ds
hits one of the profiles u. Using again the equation (see (1.30)), we have to estimate

cubic expressions of the form

> oi(®(E:1m)) s N

Pni(©):= [ ants) [ EEED iomcnnie page—n,s

R r2xrz  P(€,7) (1.37)
X ei‘“I)/(""’)Tz(??7 o)i(n—o,s)i(o,s)dndo ds,
where ®'(n,0)=A(n)+A(n—o0)—A(c). Assume again that the three functions u are
Schwartz functions supported at frequency ~1. We combine ® and ®’ into a combined
phase:
(&,n,0) =2, +2'(n,0) = A(§) —A—n)+A(n—0)—A(0).
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We need to estimate h;, ; according to the Z; norm. Integration by parts in § (approxi-
mate finite speed of propagation) shows that the main contribution in Qjxh;, ; is when
91 <om,

We have two main cases: if | is not too small, say ZEfﬁm, then we use first

Ay in L™ and one in L?,

multilinear Holder-type estimates, placing two of the factors e’
together with analysis of the stationary points of ® in 7 and ¢. This suffices in most
cases, except when all the variables are close to 7g. In this case we need a key algebraic

property: when [£—n)|, [np—0], and |o]| are all close to 7o, we have that

if Vmg(i)(f, n,0) =0 and &)(5, n,0) =0, then Vgi)(f,n, o) =0. (1.38)

1
14
(1.37) is dangerous. However, we can restrict to small neighborhoods of the stationary

On the other hand, if [ is very small, say < —=>m, then the denominator ®(£,7) in
points of ® in 7 and o, and thus to space-time resonances. This is the most difficult case

in the dispersive analysis. We need to rely on one more algebraic property, of the form
if V, »®(&,m,0) =0 and |®(&,1)|+|®(n,0)| < 1, then Ve (&, n,0) =0. (1.39)

See Lemma 10.6 for the precise quantitative claims for both (1.38) and (1.39).

The point of both (1.38) and (1.39) is that in the resonant region for the cubic integral
we have Vgé(f, n,0)=0. We call them slow propagation of iterated resonances properties;
as a consequence, the resulting function is essentially supported when |z| <2, using the
approximate finite speed of propagation. This gain is reflected in the factor 27 in (1.35).

We remark that the analogous property for quadratic resonances, namely

if V,®(&,m)=0 and ®(&,n) =0, thenVe®(&, 1) =0,

fails. In fact, in our case |V:®(&,n)|~1 on the space-time resonant set.

In proving (1.29), there are, of course, many cases to consider. The full proof covers
88 and §9. The type of arguments presented above are typical in the proof: we decompose
our profiles in space and frequency, localize to small sets in the frequency space, keeping
track in particular of the special frequencies of size 7o, v1, %’yl, and 27, use integration
by parts in & to control the location of the output, and use multilinear Holder-type
estimates to bound L? norms. We remark that the dispersive analysis in the Z norm is

much more involved in this paper than in the earlier papers mentioned above.

1.5.3. The special quadratic structure of the full water-wave system

The model (1.14) is useful in understanding the full problem. There are, however, addi-
tional difficulties to keep in mind.
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In this paper we use Fulerian coordinates. The local well-posedness theory, which is
non-trivial because of the quasilinear nature of the equations and the hidden hyperbolic
structure, then relies on the so-called “good unknown” of Alinhac [1], [4], [5], [6]

In our problem, however, this is not enough. Alinhac’s good unknown w is suitable
for the local theory, in the sense that it prevents loss of derivatives in energy estimates.
However, for the global theory, we need to adjust the main complex variable U which
diagonalizes the system, using a quadratic correction of the form T, w (see (3.4)). In
this way, we can identify certain special quadratic structure, somewhat similar to the
structure in the non-linearity of (1.14). This structure, which appears to be new, is
ultimately responsible for the favorable multipliers of the space-time integrals (similar to
(1.20)), and leads to global energy bounds.

Identifying this structure is, unfortunately, technically involved. Our main result is
in Proposition 3.1, but its proof depends on paradifferential calculus using the Weyl quan-
tization (see Appendix A) and on a suitable paralinearization of the Dirichlet—-Neumann
operator. We include all the details of this paralinearization in Appendix B, mostly
because its exact form has to be properly adapted to our norms and suitable for global
analysis. For this, we need some auxiliary spaces: (1) the O,,, hierarchy, which mea-
sures functions, keeping track of both multiplicity (the index m) and smoothness (the
index p), and (2) the M%L™ hierarchy, which measures the symbols of the paradifferential
operators, keeping track also of the order .

1.5.4. Additional remarks

We list below some other issues one needs to keep in mind in the proof of the main
theorem.

(1) Another significant difficulty of the full water-wave system, which is not present
in (1.14), is that the “linear” part of the equation is given by a more complicated paradif-
ferential operator T, not by the simple operator A. The operator 1% includes non-linear
cubic terms that lose % derivatives, and an additional smoothing effect is needed.

(2) The very low frequencies |£|<1 play an important role in all the global results
for water-wave systems. These frequencies are not captured in the model (1.14). In our
case, there is a suitable null structure: the multipliers of the quadratic terms are bounded
by [¢| min(|n|, |€—n|)*/? (see (7.11)), which is an important ingredient in the dispersive
part of the argument.

(3) Tt is important to propagate energy control of both high Sobolev norms and
weighted norms using many copies of the rotation vector field. Because of this control,
we can pretend that all the profiles in the dispersive part of the argument are almost
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radial and located at frequencies <1. The linear estimates (in Lemma 7.5) and many of
the bilinear estimates are much stronger, because of this almost radiality property of the
profiles.

(4) At many stages, it is important that the four spheres, namely the sphere of slow
decay {&:1€]=20}, the sphere of space-time resonant outputs {£:|{|=21}, the sphere of
space-time resonant inputs {£:¢|=371}, and the sphere {¢:|¢|=2v0}, are all separated
from each other. Such separation property played an important role also in other papers,
such as [30], [33], [36].

1.6. Organization

The rest of the paper is organized as follows: in §2 we state the main propositions and
summarize the main definitions and notation of the paper.

In §§3-6 we prove Proposition 2.2, which is the main improved energy estimate.
The key components of the proof are Proposition 3.1 (derivation of the main quasilinear
scalar equation, identifying the special quadratic structure), Proposition 4.1 (the first
energy estimate, including the strongly semilinear structure), Proposition 4.2 (reduction
to a space-time integral bound), Lemma 4.7 (the main L? bound on a localized Fourier
integral operator), and Lemma 5.1 (the main interactions in Proposition 4.2). The proof
of Proposition 2.2 also uses the material presented in the appendices, in particular the
paralinearization of the Dirichlet—Neumann operator in Proposition B.1.

In §87-9 we prove Proposition 2.3, which is the main improved dispersive estimate.
The key components of the proof are the reduction to Proposition 7.1, the precise analysis
of the time derivative of the profile in Lemmas 8.1 and 8.2, and the analysis of the
Duhamel formula, divided in several cases, in Lemmas 9.4-9.8.

In §10 and §11 we collect estimates on the dispersion relation and the phase functions.
The main results are Proposition 10.2 (structure of the resonance sets), Proposition 10.4
(bounds on sublevel sets), Lemma 10.6 (slow propagation of iterated resonances), and

Lemmas 11.1-11.3 (restricted non-degeneracy property of the resonant hypersurfaces).
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2. The main propositions

Recall the water-wave system with gravity and surface tension:

ath = G(h)d),

(1+|Vh2)1/2

(G(h)p+Vh-V¢)® (2.1)
2(14|Vh|?)

Lo 2
—=|V
)-3lve+
where G(h)¢ denotes the Dirichlet—Neumann operator associated with the water domain.
Theorem 1.1 is a consequence of Propositions 2.1-2.3 below.
PROPOSITION 2.1. (Local existence and continuity)

(i) Let N>10. There is £>0 such that, if

||h0||HN+1+||¢0HHN+1/2,1/2 <E, (2.2)

then there is a unique solution (h,)eC([0,1]: HN+1x HN+1/21/2) of the system (2.1)
with g=1 and o=1, with initial data (hg, ¢o).

(i) Let To=1, N=N;+Ns, and (h,»)€C([0, To]: HN ' x HN+1/2:1/2) be g solution
of the system (2.1) with g=1 and c=1. With the Z norm as in Definition 2.5 below and
the profile V defined as in (1.11), assume that, for some to€0,Ty],

V(te) e HYNHY ™M NZ and ||V(to)| v <26 (2.3)
Then, there is T=7(||V(t0)||grvonmN1.¥snz) Such that the mapping
t— ||V(t)||HNoﬂHg1*N3mZ

is continuous on [0, To]N[to, to+7], and

sup V()
t€[0,To]N[to,to+7]

<2[V(to) (2.4)

HHNomHgl'N%Z ||HNomHg1*Nsz'
Proposition 2.1 is a local existence result for the water-wave system. We will not
provide the details of its proof in the paper, but only briefly discuss it. Part (i) is a
standard well-posedness statement in a sufficiently regular Sobolev space; see for example
[1] and [70].
Part (ii) is a continuity statement for the Sobolev norm H™°, as well as for the
Hgl’% and Z norms.(*) Continuity for the H¥° norm is standard. A formal proof

N3

of continuity for the Hg 78 and Z norms and of (2.4) requires some adjustments of

(%) Notice that we may assume uniform-in-time smallness of the high Sobolev norm HY with
N=N1+ N3, due to the uniform control on the Z norm; see Proposition 2.2 and Definition 2.5.
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the arguments given in the paper, due to the quasilinear and non-local nature of the
equations.

More precisely, we can define e-truncations of the rotation vector field €2, that is
Q. :=(14€2|z|?)~1/2Q, and the associated spaces Hg:’NS‘

of the norm in (1.8). Then, we notice that

, with the obvious adaptation

Q.Tob=To ob+TuQb+R

where R is a suitable remainder bounded uniformly in . Because of this, we can adapt
the arguments in Proposition 4.1 and in Appendices A and B to prove energy estimates
in the e-truncated spaces Hgﬁ UNsFor the Z norm, one can proceed similarly using an
e-truncated version Z. (see the proof of [42, Proposition 2.4] for a similar argument) and
the formal expansion of the Dirichlet—Neumann operator in §C.2. The conclusion follows
from the uniform estimates by letting ¢ —0.

The following two propositions summarize our main bootstrap argument.

PROPOSITION 2.2. (Improved energy control) Assume that T>1 and let
(h,$) € C([0,T]: HNoH x FyNo+1/21/2)

be a solution of the system (2.1) with g=1 and o=1, with initial data (ho, Po). Assume
that, with U and V defined as in (1.11),

AN g0 g% FIV(0) | 2 S €0 <L, (2.5)
and, for any t€[0,T],
52
(L) NUD o s HIV D 2 Ser <1, (2.6)

where the Z norm is as in Definition 2.5. Then, for any t€[0,T),

(L) " [UD) | oo g Seoted ™. 2.7)

Q
ProPOSITION 2.3. (Improved dispersive control) With the same assumptions as in
Proposition 2.2 above, in particular (2.5) and (2.6), we have, for any t€[0,T],

IV(#)llz Seotel. (2.8)

It is easy to see that Theorem 1.1 follows from Propositions 2.1-2.3 by a standard
continuity argument and (7.44) (for the L bound on i in (1.10)). The rest of the paper
is concerned with the proofs of Propositions 2.2 and 2.3.
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2.1. Definitions and notation

We summarize in this subsection some of the main definitions we use in the paper.

2.1.1. General notation

We start by defining several multipliers that allow us to localize in the Fourier space.

We fix an even smooth function ¢:R—10,1] supported in [—%, %] and equal to 1 in

[—g, g} For simplicity of notation, we also let ¢:R?—[0,1] denote the corresponding

radial function on R2. Let

x x
(pk_(g;);:<p<| |)—<p<2|k|1> for any k€ Z, ¢r:= Z @m for any I CR,

ok
meINZ

OB =P(—00,B]y P2B =P[B,cc)y P<B=P(~c0,B), aNd P>BI=Y(B o)

For any a<b€Z and j€la,bNZ, let

05, ifa<j<b,
;=1 p<ar if j=a, (2.9)
P>b, lfj:b

For any z€R, let z*=max(x,0) and z~:=min(z,0). Let
J:={(k,j) €ELXZy :k+5>0}.
For any (k,j)eJ, let

p<—k(x), if k+j=0and k<0,
0 (), if k+j=1and j>1,

and notice that, for any k€Z fixed, >, min(k.0) @(k)zl.

Let Py, k€Z, denote the Littlewood—Paley projection operators defined by the
Fourier multipliers £&—¢y(€). Let P<p (resp. Psp) denote the operators defined by
the Fourier multipliers &—p<p(§) (resp. &—9=p(§)). For (k,j)eJ let Qi denote the

operator
(@) (@) :=5}" (x)-Pf (). (2.10)

In view of the uncertainty principle, the operators @ are relevant only when 27 2k>1,
which explains the definitions above.
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We will use two sufficiently large constants D>>D;>>1 (D; is only used in §10 and
811 to prove properties of the phase functions). For k, k1, ke €Z, let

Dreky ko 1 ={(&,m) € (R?)?: ¢ € [2574, 28] | € [2F24 2R
and |¢—n| e [2F1 74, 25 4]}

Let A(r)=+/|r|+]|r|?> and A(&)=A(|€))=+/|€]+|€]3, A:R?—[0,0). Let

U =U, U :=U, V)=V (t):="Ut), and V_(t):=e MU (t). (2.12)

(2.11)

Let A, =A and A_:=—A. For o, u,ve{+, —}, we define the associated phase functions

Qo (§m) 1= Ao (&) —Ap(§—n)—Au(n),

) (2.13)
(I)o'pvﬁ(ga 7, J) = Aa’(f) 7A,u(€777) 7AV(7770') 7Aﬁ(0-)

2.1.2. The spaces Oy, p

We will need several spaces of functions, in order to properly measure linear, quadratic,
cubic, quartic, and higher-order terms. In addition, we also need to track the Sobolev
smoothness and angular derivatives. Assume that Ny=40>N3+10 and that Ny (the
maximum number of Sobolev derivatives), N; (the maximum number of angular deriva-

tives), and N3 (additional Sobolev regularity) are as before.
Definition 2.4. Assume T>1 and let pe[—N3, 10]. For m>1, we define O, ), as the
space of functions fe€C([0,77]:L?) satisfying

_ _ 2y _ ¢2
110, 2= sup (L) DEO=200=0( £(8) | oo+ £ (D) v v+

te(0,7) (2.14)

_os52
+ (L) 2 @)l 20 0] < 00,

where, with Pj denoting standard Littlewood—Paley projection operators,

. |
lgllgn == 2V I Pagll e and gl i= D 19 gl
kEZ G<NY

The spaces W are used in this paper as substitutes of the standard L* based Sobolev
spaces, which have the advantage of being closed under the action of singular integrals.
Note that the parameter p in O, , corresponds to a gain at high frequencies and

does not affect the low frequencies. We observe that (see Lemma A.2)

OmpCOnp if1<n<m and  OppOnpC Omyny if 1<m,n. (2.15)
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Moreover, by our assumptions (2.6) and Lemma 7.5, the main variables satisfy

~

1(1=2)2hlo,, +[IVIV20] 5, , Ser. (2.16)

The spaces O,,, are used mostly in the energy estimates in §3 and in the (elliptic)
analysis of the Dirichlet—Neumann operator in Appendix B. However, they are not precise
enough for the dispersive analysis of our evolution equation. For this, we need the more

precise Z-norm defined below, which is better adapted to our equation.

2.1.3. The Z norm

Let vo:=4/ %(2\/5—3) denote the radius of the sphere of slow decay, and v;:=+/2 denote
the radius of the space-time resonant sphere. For n€Z, ICR, and v€(0, c0) we define

A F(€) = o (210]¢] =) £ (6),

AM::ZAM, Acpryi=A ooy, and Asp.i=Ap o)
nel

(2.17)

Given an integer j >0, we define the operators ASLJ;)W, n€{0,...,j+1} and y=>2759 by

Aﬁjﬁlﬁ = Z Ay s A((){,)y = Z Ay, and A1(1]7)7 =A,, f1<n<y. (2.18)
n'>j+1 n/<0

These operators localize to thin annuli of width 27" around the circle of radius . Most

of the times, for us y=~y or y=v;. We are now ready to define the main Z norm.

Definition 2.5. Let 6, Ny, N1, and N4 be as in Theorem 1.1. We define

Zi={f €@ fllz, = s Qs s, <oo), (2.19)
7)€
where
lolls, =207 sup 270/299mAQ), g (2:20)
INXJ

Then we define, with D“::8?1820‘2, a=(at,a?),

z::{feLQ(Rz):nfnZz: sup ||Da9mf||zl<oo}- (2.21)
2m+|a| < N1+ Ny
m< N1 /2420

We remark that the Z norm is used to estimate the linear profile of the solution,
which is V(t):=e" (t), not the solution itself.
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2.1.4. Paradifferential calculus

We need some elements of paradifferential calculus in order to be able to describe the
Dirichlet-Neumann operator G(h)¢ in (2.1). Our paralinearization relies on the Weyl
quantization. More precisely, given a symbol a=a(z, () and a function f€L?, we define

the paradifferential operator T, f according to

O R (= L (e (222

where @ denotes the Fourier transform of @ in the first coordinate and x=p<_20. In

Appendix A we prove several important lemmas related to the paradifferential calculus.

3. The “improved good variable” and strongly semilinear structures
3.1. Reduction to a scalar equation

In this section we assume that (h, ¢): R?x[0,7] >R xR is a solution of (2.1) satisfying
the hypotheses of Proposition 2.2; in particular (see (2.16)),

KT hlloys +IV1V26]l,, | Ser- (3.1)

Our goal in this section is to write the system (2.1) as a scalar equation for a suitably
constructed complex-valued function (the “improved good variable”). The main result

is the following.

PROPOSITION 3.1. Assume (3.1) holds and let Apy be the symbol of the Dirichlet-
Neumann operator defined in (B.5), let A:=+/g|V|+c|V|3, and let

0;h0;h
Y4 _Lz i —A2h Lz: g 574_ () 92
(1’7C) ](x)C Cj ) J 1 | h|2 ( j 1 | h|2) (3 )

be the mean curvature operator coming from the surface tension. Define the symbol

Y:=+/Apn(g+f) (3.3)

and the complex-valued unknown

L ) . , 1 divV ~11
U .7T\/mh+zTgT1/\/mw+sz/w, m = iﬁ S 51MN372’ (34)

where B, and V and (the “good variable”) w=¢—Tgh are defined in (B.3). Then,

U=1/g+0|V[2h+i|V|"2w+e20, (3.5)
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and U satisfies the equation
(8t+iTg+iTV.<)U:/\/U+Q5+CU, (36)

where

e the quadratic term Ny has the special structure
NU::T.Y(ClU#*CQU) (37)
for some constants c1,co€C, where

~v(z, ) :=|<é_|<;V|1/2818j(ImU)(x); (3.8)

e the quadratic terms Qg have a gain of one derivative, i.e. they are of the form
Qs=A, (UU)+A, (UU)+A__(U,U)€€3041, (3.9)
with symbols a.,., satisfying, for all k,ki,ka€Z, and (e1e2)€{(++), (+—),(——)},

||ak‘,k‘17k‘2 ||S8o 5 2— max(kl,kg,O) (1+23 min(kl,kQ)); (3.10)

€1€2

e Cy is a cubic term, Cy 65?03’0.

Let us comment on the structure of the main equation (3.6). In the left-hand side,
we have the “quasilinear” part (0;+:Tx+iTv.c)U. In the right-hand side we have three
types of terms:

(1) a quadratic term Ny with special structure;

(2) a strongly semilinear quadratic term Qg, given by symbols of order —1;

(3) a semilinear cubic term Cy €503 o, whose contribution is easy to estimate.

The key point is the special structure of the quadratic terms, which allows us to
obtain favorable energy estimates in Proposition 4.1. This special structure is due to the
definition of the variable U, in particular to the choice of the symbol m’ in (3.4). We

observe that

0.0 == T T T )
and we remark that the angle (-7 in this expression gives us the strongly semilinear
structure that we will use later (see also the factor d in (4.6)). For comparison, the use
of the standard “good unknown” of Alinhac leads to generic quadratic terms that do not
lose derivatives. This would suffice to prove local regularity of the system, but would not
be suitable for global analysis.
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This proposition is the starting point of our energy analysis. Its proof is technically
involved, as it requires the material in Appendices A and B. One can start by understand-
ing the definition A.6 of the decorated spaces of symbols ML™ the simple properties
(A.43)—(A.54), and the statement of Proposition B.1 (the proof is not needed). The
spaces of symbols ML™ are analogous to the spaces of functions Om,p; for symbols, how-
ever, the order [ is important (for example a symbol of order 2 counts as two derivatives),
but its exact differentiability (measured by the parameter r) is less important.

In Proposition 3.1 we keep the parameters g and o due to their physical significance.

Remark 3.2. (i) The symbols defined in this proposition can be estimated in terms
of the decorated norms introduced in Definition A.6. More precisely, using hypothesis
(3.1), the basic bounds (A.43) and (A.45), and definition (B.5), it is easy to verify that

(g-l—f): (g+0-|d2) (1_U(th’)2 _ A*h
VI+|Vh[? (g+0lCl?)  (g+0lC?)
IC12|VR[2—(C-VR)? | [(]PAh—(;C10;0kh

=il

'C'< e T AP
+etMYE_,+e 3M;,§f’2),

+51MN3 2‘“51/\/11\13 2)

=0(C) (3.11)

uniformly for every ¢€[0,T]. Thus, with A=+/g|V|+0|V|3, we derive the following

expansion for X:

Y=A+314+E5, (3.12)
vt 1A(Q) GiG I<|
. S 2 1/2,1
Y= 1 |C\ (Ah Cé%h) o(¢)— QA(C)A heeiMy.",
and

3/2,2
E>2 S ElMN/372'

The formulas are slightly simpler if we disregard quadratic terms, i.e.

o
A%NICI”(HP |é| 19 FeIMY 2>
A%h
(g+£)p—(g+a|C|2)p<1M%%M%b), (3.13)

E:A<1+21(X’O MY 2)

for pe[—2, 2], where
I¢[*PAh—(;Cr00kh

(0) _
>\1 (l‘vC)_ 2‘C|2

©>0(C),
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as in Remark B.2.
In addition, the identity 9;h=G(h)p=|V|w+£e1Os _1/2 shows that

A(g—oA)w _
/i = (arolcl) 2 (ST ) i oMt e

1 _
OV Apn = 7@)\&0) +55M}V/32;24 € slMNiQAil—kefM}\éQ;QAl, (3.14)

2/l

05 =0T +EIMYE €l My + MY

(ii) Tt follows from Proposition B.1 that V€e;O; _1/5. Therefore, m’ea/\/lj_vifQ
and the identity (3.5) follows using also Lemma A.7. Moreover, using Proposition B.1
again,

V=Vi+Va, Vi:=|V|712VInU, V2€£i0; 1o,
i |VP2ImU(x) (3.15)

2 g+tolcl?

—1,2 -
m' = m’1+€fMN3_2, mh(z,():=

3.2. Symmetrization and special quadratic structure

In this subsection we prove Proposition 3.1. We first write (2.1) as a system for h
and w, and then symmetrize it. We start by combining Proposition B.1 on the Dirichlet—
Neumann operator with a paralinearization of the equation for 9;¢, to obtain the follow-

ing lemma.

LEMMA 3.3. (Paralinearization of the system) With the notation of Propositions B.1

and 3.1, we can rewrite the system (2.1) as

{ath:T/\DNw—diV(th)+G2+€‘;’03,17 (3.16)
Oy = —gh—Tgh—T\/VUJ‘FQz‘f‘E%O&h .
where £ is given in (3.2) and

Q1= FH(|V|w, |VIw) = $H(Vew, Vi) € 1055, (8.17)

Proof. First, we see directly from (2.1) and Proposition B.1 that, for any t€[0,T],
G(h)QSaBa‘/aathGElOl,—l/% Op€€101 1, (3.18)
B=|V|w+ei0s _1/3, V=Vw+eiOs 1.

The first equation in (3.16) comes directly from Propostion B.1. To obtain the second
equation, we use Lemma A.4 (ii) with Fj(z)=x;/1/14]|z|? to see that

F{(Vh)=Tp, 5, (vh)Okh+€103 3,
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and hence

h
o div <V> = Ty h 463051,

JI+|VA]

Next, we paralinearize the other non-linear terms in the second equation in (2.1). Recall
the definition of V' and B in (B.3). We first write

—1|V</>|2 (G(h)qb+Vh~2qu)2 _ VBV N (1+|Vh[)B? _ BQ—QBV-Vh—\V\Z.
2 2(1+|Vh[?) 2 2 2
Using (2.1), we calculate 9;h=G(h)¢p=B—V -Vh, and
Oww=0:p—Ty,ph—Tp0O:h
=—gh—T5,.¢;¢c.h+3(B*—2BV -Vh—|V|*) =Ty, gh—TpB+Tp(V -Vh)+£}03 1.
Then, since V=V¢—BVh, we have
TyVw=TyNV¢—Ty(VTph)=TyV+Tyv(BVh)—Ty(VTgh),
and we can write
Oww=—gh—T¢, ¢;¢c,+0,8h—Ty Vw+I+II,
1:=1B*~TpB- LV +TyV = JH(B,B)— s H(V,V) =Qa+£703 1,
I1:=—-BV-Vh+Tg(V-Vh)+Ty(BVh)~Ty (VTgh)+£303 ;.
Using (3.18), (B.3), (2.1), and Corollary C.1 (ii), we easily see that
LjnCiC+0iB = LjrCiCe+|V|0ip+e102 o =Ll+£705 5.
Moreover, we can verify that II is an acceptable cubic remainder term:
M= -Ty.vnB+H(B,V-Vh)+Ty(BVh)~TyTgVh—TyTyph+ei03,1
=Ty vuB+TyTynB+TyH(B,Vh)~TyTyph+ei03 1 =303,
and the desired conclusion follows. O

Since our purpose will be to identify quadratic terms as in (3.9)—(3.10), we need a

more precise notion of strongly semilinear quadratic errors.

Definition 3.4. Given te0,T], we define 705 ; to be the set of finite linear combi-
nations of terms of the form S[Ty, Ty, where Ty, To€{U(t),U(t)}, and S satisfies

FSUf D)= 15 - s(&m).f(E=m)g(n) dn,

||5k’k1,k2 ”S?zo <2- max(k17k2’0)(1+23 min(kl’k2)).

(3.19)

These correspond precisely to the acceptable quadratic error terms according to (3.10).
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We remark that, if S is defined by a symbol as in (3.19) and pe[—5, 5], then
S[Om,pa On,p] g Om-{—n,p-{—l- (320)
This follows by an argument similar to that used in Lemma A.2. As a consequence, given
the assumptions (3.1), and with U being defined as in (3.4), we have that O3 ; CO3 ;.

Proof of Proposition 3.1. Step 1. To diagonalize the principal part of the system
(3.16), we define the symmetrizing variables (H, ¥) by

H:= T\/mh and W:= Tng/\/mw—i—Tm/w, (321)

where m/ is as in (3.4). Using (3.13) and Lemma A.7, we see that

H:Re(U)"'E%OQ,Q, \/g—I—U\VPh:Re(U)—i—E%Og,Q,

(3.22)
U=TIm(U)+e20q 0, V[ 2w=Tm(U)+£?0q.

As a consequence, if T1, Toc{U,U, H, ¥, (g—cA)*/?h,|V|'/?w}, and S is as in (3.19),
then
S[T1,Ty) € €105  +€1O30. (3.23)

We will show that

{ O H—TsV+iTy.cH=-T,H—3T /irpaqi, vh—Tmsw+ei05 | +£303., (3.24)

OV+TsH+iTy .V =—3T, V=T, (g1 0)h+ 3T o gy yw €103 1 +6503. 6.

Step 2. We examine now the first equation in (3.24). The first equation in (3.16)
and the identity div Ty h=23Ty vh+iTy.ch show that
8tH_T2\I’+iTv.CH+T7H+%T\/mdivvh-i-Tm/gw
= (T\/WT/\DN _TETETI/\/W)W_ (Tsz/ —Tmlg)w (3 25)
+i(Ty.cH =T sg57Tv.ch—iT,T s757h)
+ T, yareh— 5 (Lygrlav v —Tygrran v) i+ T gmaGateiT 5O,
We will treat each line separately. For the first line, we notice that the contribution of
low frequencies P<_gw is acceptable. For the high frequencies we use Proposition A.5 to
write
(T\/gWT/\DN _TETETl/\/W)Pkfg*}
= (Dapvaret 2T vareanny — (oo pvgret 5Tz 1 jvgrn)) Po-sw - (3.26)

1
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Since

¥2 1
AoNVg+H=—, {Vg+{ Apn}= 22,},
o= oy Wrtaon= {2 7

we observe that the expression in (3.26) vanishes. Using (3.13) and Lemma A.8, we see

that, up to acceptable cubic terms, we can rewrite the second line of (3.25) as

(E(A,S1)+E(21,A))(g—0A) /2

2
E 27)\(0) E(_ Ah , >_
(Bl A+ (gt ¢
A2h

1 )
_E(A, — 20 ) oB(AY, ——— ) = T —E(A,m)) ) Ps
( 72(g+a|c|2)3/2) ( 1 /7g+a_|<_|2> 2 {Am]} ( ml)) >-—8W

3
+€103’0.

Using (A.39), these terms are easily seen to be acceptable 8%05,1 quadratic terms.
To control the terms in the second line of the right-hand side of (3.25), we observe
that

TvTygrah—Tygmlv.ch=ilT /5
=i(Tyy.c,vgrny — Tyygro) hHE(V -V g+0)h (3.28)
—E(\/g+0,V-Oh+5T, yarnyh—iE(y, Vg+0)h.

Using (3.13) and (3.15), we notice that

Ok Vi(z)-0C  0¢Cr-0;0,|V |72 Im(U) ()

(V- g+l =22 22 My, =
Votol(p e NZELIE

Using definition (3.8), it follows that T{V(,\/W}—W\/Whe‘e%o;,lJFE%O&O as desired.

24 41,2
+ei My, o

The terms in the second line of (3.28) are also acceptable contributions, as one can see
easily by extracting the quadratic parts and using (A.39).

Finally, for the third line, using (3.14), (3.15), and Lemmas A.7 and A.8, we observe
that

_ 3
Ty, ygrah= T<1/2>A<g—omw/\/.q+a\<|2h+5103’0’
(T\/QWTdiVV _Tdiv V\/gﬂ)h = (iT{\/m,div i} +E( \% g+U|C|2a div Vl))h+‘€?o370’

T\/chvz +€?T\/m0371 = T\/WGQ‘FE?O_&O.

Using (A.39), the bounds for G5 in (B.6)—(B.7), and collecting all the estimates above,
we obtain the identity in the first line in (3.24).
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Step 3. To prove the second identity in (3.24), we first use (3.21) and (3.16) to

compute

VAT H+iTy .Y+ 5T V4T (g1 0)h— 3T sxo div v
=TT =TTy ) ygre Lo+ )+ (Lo (gr0) = T Tg10)
+i(Ty.c U =i T,V —(TeTy ) g+ T ) Ty cw) (3.29)
+3(TeTy ) ygmeTav v —Tysp aiv v)@+ 3 T Taiv v
+(0, TS Ty ) ygro+ T Jw+ (T5Ty ) g+ T ) (246303 1).

Again, we verify that all lines after the equality sign give acceptable remainders.

For the terms in the first line, using Proposition A.5, (3.13), and Lemma A.8,

(TeT o Ts Ty ) e Tyl

1
= -TSE| ——,g+¢)h
¥ (\/9+€g )

A%h 1
BN 7] (R 2>—E<,A2h>)h+e3(’) |
(2 zgrramre o+ ) -2 e e
Using also (A.39), this gives acceptable contributions. In addition,

(T To e =T (94.0) = 31T gy h+ E(m' g+ O)h
=ioTev,mh+E(m, o|C*)h+e}05 0.

This gives acceptable contributions, in view of (3.21) and (A.39).
For the terms in the second line of the right-hand side of (3.29), we observe that

TVC\I’ - %ZT,Y\I/ — (TETl/\/m+Tm’)TV~Cw
= (TV~<TET1/\/W—TETU\/WTVC)W— %inyTETl/\/mw-Fé‘%Og,o
= (TVI'CT]C\I/Z —ﬂ<|1/2TV1.C)w— %iT’YﬂC\l/zw—’_Ei’O&O'

Using the definitions (3.15) and (3.8), we notice that, for p€|0, 2],
{(Vi-G [P} =7-pIC|” on R?xR2. (3.30)
Thus, the terms in the second line of the right-hand side of (3.29) are acceptable
€105 1 +€7 050

contributions.
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It is easy to see, using Lemma A.8 and the definitions, that the terms in the third
line of the right-hand side of (3.29) are acceptable. Finally, for the last line in (3.29), we

observe that

[8t, Tng/\/m—l—Tm/}w = TatETl/\/mw—I—TETat(l/\/m)w—l-Tatm/w
=Tom: Tgtalc2)-1/20 = ATA (G- A)w/2(g+ac[2)3/2

. 3
+31T5,div V) (g+olcl2)-1/2@+€103.0,

where we used (3.13) and (3.14). Since
Oth=|V|w+ei0y 12 and 8V =-V(g+0|V[*)h+e10s >

(see Lemma 3.3 and Proposition B.1), it follows that the terms in the formula above are

acceptable. Finally, using the relations in Lemma 3.3, we have
(TETl/\/m+Tm’)(QQ) = 8?0370 +€%0;71 and (TETl/\/m+Tm’)(€§03,l) = 6:%@370.
Therefore, all the terms in the right-hand side of (3.29) are acceptable, which completes

the proof of (3.24).

Step 4. Starting from the system (3.24), we now want to write a scalar equation for
the complex unknown U=H +iV defined in (3.4). Using (3.24), we readily see that

atU+’iTZU+iTV-CU = QU+NU +sf(9§,1 +5i)03,0a
Qu = (—3T/graivv =T (g+0) hH (= Tows + 31T 55y aiv v )@ =0,
Ny:=—T,H— %iTV\I/ = f%T7(3U+U)+€§03,0,

where Qu vanishes in view of our choice of m/, and Ny has the special structure as

claimed. 0

3.3. High-order derivatives

To derive higher-order Sobolev and weighted estimates for U, and hence for h and
|V|'/2w, we need to apply (a suitable notion of) derivatives to the equation (3.6). We

will then consider quantities of the form

Wn = (TZ)nUa ne Oa 2]\70 3
[0, 2o] (3.31)
Yinp =P (Ts)™U, pe[0,N1] and m € [0, 2N3],

for U asin (3.4) and ¥ as in (3.3). We have the following consequence of Proposition 3.1.
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PROPOSITION 3.5. With the notation above and 7 as in (3.8), we have
W +iTs Wy +iTyv. Wy =Ty (ca Wy +dnWy) +Bw,, +Cw,, (3.32)
and
Y p+iTs Y p+iTy .Y p =Ty (Cm Y p+dmYm p)+By,, , +Cv,., (3.33)

for some complex numbers ¢, and d,,. The cubic terms Cw, and Cy,,  satisfy the bounds

n,p

ICw, 2 +Cy,, , 12 S 1+ (3:34)
The quadratic strongly semilinear terms By, have the form

BW" = Z ngz [ULN Ulg]a (335)

t1,026{+,-}

where U,:=U, U_=U, and the symbols f=f]., of the bilinear operators F}  satisfy

L1l

”fk,khkz ”SOQ S 2(371/271) max(kq,k2,0) (1+23 min(kl,kg)). (336)

The quadratic strongly semilinear terms By, , have the form

BYm,p = Z (GZLLS[ULU QPUL2]+ Z Hzlzg,plypz [Qpl U//17 QpQU&z]) )

t1,t2€{+,-} p1+pP2<p
max(p1,p2) <p—1

(3.37)

where the symbols g=g;\2 and h=h]";P"P1P2 of the operators G*:2 and H,PPL-P2 satisfy

”gk,khkz ”SOO < 2(3m/2—1) max(k1,k2,0) (1 +23 min(kl,kz)),

3.38
||hk,k1,k2 HSOO < 2(3m/2+1) max(k1,k2,0) (1+2min(k1,k2)). ( )

We remark that we have slightly worse information on the quadratic terms By, ,,
than on the quadratic terms Byy, . This is due mainly to the commutator of the operators
O and Ty.c, which leads to the additional terms in (3.37). These terms can still be
regarded as strongly semilinear, because they do not contain the maximum number
of Q derivatives (they do contain, however, two extra Sobolev derivatives, but this is
acceptable due to our choice of Ny and Ny).
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Proof. In this proof we need to expand the definition of our main spaces O, to

exponents p<—N3. More precisely, we define, for any ¢€[0, T,

Ifllor = { ”f”(’)m,pv if p> —Njs,
;n.p T m— _ 2y _§2 o582 .
P LI f g (1) O | f i), i p< =N
(3.39)

compare with (A.7). As in Lemmas A.7 and A.8, we have the basic imbeddings
Tu05p S Orimy poty ad (TaTo—=Tup) Oy, C Oy oty — 1o 15 (3.40)
if ae M5;™ and be ME;™. In particular, recalling that (see (3.12))
S-AeeMYPy, and T-A-3; €MD, (3.41)

it follows from (3.40) that, for any ne [O, %Ng],

n—1
TRU €610] 3,y and TEU-A"U=Y A" N T p\)THU €610, g, 5. (3.42)
=0

Step 1. For ne [0, %Ng], we first prove that the function W, =(Tx)"U satisfies

(i +iTe+iTy. )W =Ty (cnWn+dnWi) +Ns n+2105 3,9,
Nsn= Z B! U, Usl € 8%0/2773n/2+17 (3.43)

t1,t2€{+,-}

H(bn )k’kl’k2||soo < (1+23min(k1,k2))(1_|_2max(k1,k2))3n/271'
&~

L1t

Indeed, the case n=0 follows from Proposition 3.1. Assuming that this is true for some

n<§No and applying Ty, we find that

(815 +ZTE +iTV~C)Wn+1 = T’y (Can—i-l +d7LWn+1)+i[TV~(; TZ]Wn“‘ [ata TZ]Wn
+ [Tg, T’Y] (Can +ann)+T2NS,n +€?T20é7_3n/2.

Using (3.40)—(3.42) and (3.14), it follows that
[0, Te]Wn = To,2, A"U+€105 _311)j2: ToNsn=ANsn+e705 004125
and, using also (3.30),
[T, Ty (cn Wi +dnWo) = [Ta, To) (cn A" U +dn A U) 4305 5011y /25

[Ty, TolWn = [Tv,.¢, TAIWn+€705 _30011) /0
= 3T Wy AN (Im U, A"U)+€70% _50,41) 95
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where N'(Im U, A"U) is an acceptable strongly semilinear quadratic term as in (3.43).
Since 0;h=|V|w+e30s _1 /2, and recalling formulas (3.12) and (3.22), it is easy to see
that all the remaining quadratic terms are of the strongly semilinear type described in

(3.43). This completes the induction step.

Step 2. We can now prove the proposition. The claims for W, follow directly from
(3.43). It remains to prove the claims for the functions Y, ,. Assume that me[0, 2 N3] is
fixed. We start from the identity (3.43) with n=m, and apply the rotation vector field .
Clearly,

(8,5 +iTs +iTv.<)Ym7p = T’Y (CmYm,p +dm?m7p)+ﬂp./\/sﬁm +€:{)Qp03,_3m/2

—i [P TS Wi — [, Ty )W+ [Q27, T ) (Con W+ o W ).

The terms in the first line of the right-hand side are clearly acceptable. It remains to
show that the commutators in the second line can also be written as strongly semilinear
quadratic terms and cubic terms. Indeed, for c€{%,V-(,v} and We{W,,, W,,.},

p—1
[, T,IW = cp,p,TQI;_Cp,UQP’ w, (3.44)
p'=0 :

as a consequence of (A.25). In view of (3.42), we have

1Y Wi 2+ ()N 12 S0 (1)

(3.45)
QN (Wi, = AU || 2+ (V) N0 N3 (W, = AU || 2 S €3 (1) 2107 5/6
and, for g€ [0, %Nﬂ,
QWi |55 S0 ()20 75/6, 5.16)
199 (W = AU |55 S £3(8)235° 573, '

By interpolation, and using the fact that Ny—N3> %Nl, it follows from (3.45) that

QU3 2 W, || 12 S e (8)

(3.47)
||QQ<v>3/2(Wm_AmU)”L2 §€%<t>2162—5/6
for ¢€[0, Ny —1]. Moreover, for c€{3,V-(,v} and g€[1, N1], we have
2
C*S/QQQ o ge t26,
||< > z,¢ ||M20,2 1< > (348)

— 27
(G220 (0—01)l|man 2 ST 0,

~
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while, for ge [1, %Nl], we also have

p— 2_
QY2208 (0l Mo e SEL()* /S,

(3.49)
E)™3/2Q% (0= 01) | ptao o S 221 75/3,

See (A.20) for the definition of the norms Msg 4. In these estimates o1 denotes the linear
part of o, i.e. 01€{¥1,V1-(,v}. Therefore, using Lemma A.7 and (3.46)—(3.49),

T

o W =T,y AUt} ()L =T, QP A"Usted(t) /L
@, x

p; Q.
for p’€[0,p—1] and W €{W,,, W,,}. Notice that TQZ,lcffl QP2 A™U, can be written as

™,p,p1,P2 [()P1 P2
HDPor QP U, QP2 U,

with symbols as in (3.38), up to acceptable cubic terms (the loss of one high derivative

comes from the case o1 =V;-(). The conclusion of the proposition follows. O

4. Energy estimates I: Setup and the main L? lemma

In this section we set up the proof of Proposition 2.2 and collect some of the main
ingredients needed in the proof. From now on, we set g=1 and c=1. With W,, and Y,,, ,,

as in (3.31), we define our main energy functional

1 1
Sy X Mallety Y Wasli (41)
0<n<2No/3 0<m<2N3/3
0<p<N1
We start with the following proposition.
PROPOSITION 4.1. Assume that (3.1) holds. Then,
Y s 90 S Ee ()42 and v (0) S U s 3 (42
where U(t)=(V)h(t)+i|V|*/24(t) as in Proposition 2.2. Moreover,
d
Z &t =Bo+Bi+Bp, with [Be(t)| Sei(1+6)". (4.3)

The (bulk) terms By and By are finite sums of the form

B~ 3 L menGen T oW (-gdcan @)
W,W’ew,
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where U and ¥ are defined as in Proposition 3.1, U,:=U, U_:=U, and
G:={Q*V)’Us:a< 3Ny and b< N3+2},
Wy:= {QaTgbUi . esther (a:O and m < %NO) or (a< Ny and m < %Ng,)}, (4.5)
Wi : :WOU{(lfA)Q“Tg’Ui :a<Ni—1 and m< %Ng}.
The symbols =, w,wry, 1€{0, 1}, satisfy

e 3/2 _ |§—n>(§—n §+77)2 dceC
po(&m) = cl§=nl*"70(&,m), (& n): X(|£+n e iern ) el

(4.6)
Hﬂllc,lm,lm ”Soo S/ 92— max(kl,k2,0)23kT7

for any k, ki, k2 €Z; see definitions (A.5)—(A.6).

Notice that the a-priori energy estimates we prove here are stronger than standard
energy estimates. The terms By and B; are strongly semilinear terms, in the sense that
they either gain one derivative or contain the depletion factor d (which effectively gains

one derivative when the modulation is small, compare with (1.28)).
Proof. The bound (4.2) follows from (3.5) and (3.42),

(V) R(1)] :

ZNOQHS];]LNB +H|v|1/2¢(t)||HNomHglfN3 S ||U(t)||iIN0anlvN3 +E% Sgtot(t)-i-é";’.

To prove the remaining claims we start from (3.32) and (3.33). For the terms W,

we have
d1l
dt 2
since, as a consequence of Lemma A.3 (ii),

W22 =Re(T, (cn Wy +dn W), Wo) +Re(Bw,, , W,) +Re(Cw,, , W,,), (4.7)

Re(iTan JriTv.an, Wn> =0.

Clearly, [(Cyw, , W) <e3(t)=3/2+25% 5o the last term can be placed in Bg(t). Moreover,
using (3.8) and the definitions, (T}, (c, W, +d,W,), W,,) can be written in the Fourier
space as part of the term By(¢) in (4.4).

Finally, (Byw, ,W,) can be written in the Fourier space as part of the term B;(¢) in
(4.4) plus acceptable errors. Indeed, given a symbol f as in (3.36), one can write

FEm =m(E)((L+AE—)") +A+AM™). m(Em) = 5

2+ A(E—n)"+ A"

The symbol p; satisfies the required estimate in (4.6). The summands 1+A(§—n)™ and
1+A(n)" can be combined with the functions U,, (¢—n) and U,, (1), respectively. Recall-
ing that A”U—Wn65%057_3n/2 (see (3.42)), the desired representation (4.4) follows, up
to acceptable errors.

The analysis of the terms Y, , is similar, using (3.37)—(3.38). This completes the
proof. 0
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In view of (4.2), to prove Proposition 2.2 it suffices to prove that
[Eiot (1) —Eion (0)| S 3(8)2" for any t € [0,T].

In view of (4.3), it suffices to prove that, for 1€{0, 1},

/Ot Bi(s) ds

for any t€[0,T]. Given t€[0,T], we fix a suitable decomposition of the function 1,

<ed(141)®

i.e. we fix functions qo, ..., qr+1: R—[0,1], |L—log,(241t)|<2, with the properties

supp go € [0,2], suppqri1 C [t—2,t], supp gy, C[2™ 1, 2™ for me {1,..., L},

L+1 t (4.8)
Z am(8)=110,4(s), ¢m €C'(R), and / g0, (8)]ds 1 for me{1,...,L}.
0
It remains to prove that, for [€{0,1} and me{0,..., L+1},
/ By(8)gm (s) ds| < £3225°m. (4.9)
R

In order to be able to use the hypothesis ||[V(s)||z<e1 (see (2.6)), we need to modify
slightly the functions G that appear in the terms B;. More precisely, we define

G ={QV)U, 1 e{+,-},a< LNy and b< N3+2}, (4.10)

where U=(V)h+i|V|/2¢, U, =U, and U_=U. Then, we define the modified bilinear
terms

s= Y [[ menGenn T oW ended, @)

Geg’
W, W'’'ew,;

where the sets Wy and W, are as in (4.5), and the symbols pg and pq are as in (4.6).
In view of (3.5), U(t)—U(t)€e?Os. Therefore, simple estimates as in the proof of
Lemma A.2 show that

1Bi(s)| Se3(14s)"%° and  |Bi(s)—Bj(s)| Se3(1+5)78/°.

As a result of these reductions, for Proposition 2.2 it suffices to prove the following.
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PROPOSITION 4.2. Assume that (h,®) is a solution of the system (2.1) with g=1,
o=1 on [0,T], and let U=(V)h+i|V|'/2p, V(t)=e™ U(t). Assume that
52
(O MU o ppgzvs FIV O 2 <en, (4.12)

Q

for any t€[0,T), see (2.6). Then, for any me[D? L] and 1€{0,1},

<e32m o (4.13)

/ // Gon () 1€, )G (E— 11, )W (0, )W (—€, 5) dE d s
R R2 xR2

where GG’ (see (4.10)), and W, W eW":=W, (see (4.5)), and gm are as in (4.8). The
symbols po and py satisfy the bounds (compare with (4.6))

e 13/2 — |§—n|)<€—n.€+n )2
o) =ls=nP i), a(em=x( [0 ) ()

(4.14)
Hullc,k1,k2 ”Sm <2~ max(kl,kz,O)QSkf.

The proof of this proposition will be done in several steps. We remark that both
the symbols pp and w1 introduce certain strongly semilinear structures. The symbols g
contain the depletion factor 0, which counts essentially as a gain of one high derivative
in resonant situations. The symbols p; clearly contain a gain of one high derivative.

We will need to further subdivide the expression in (4.13) into the contributions of

“good frequencies” with optimal decay and the “bad frequencies” with slower decay. Let
Xba () : =927 (|2 =70)) +¢ (27 (J2] =71))  and  Xgo() := 1= xpa(@), (4.15)

where vy = %(2\/5 —3) is the radius of the sphere of degenerate frequencies, and v, =+/2
is the radius of the sphere of space-time resonances. We then define, for 1€{0,1} and
Y e{go,ba},

AL [P Hy, Hy) / / . mxy (E—mEE—mI () Hx(~¢)dedn.  (4.16)
R2 xR2

In the proof of (4.13) we will need to distinguish between functions G and W that
originate from U=U, and functions that originate from U=U_. For this, we define, for
ve{+ -},

G :={Q"V)"U, :a<iN; and b< N3+2} (4.17)

and

W, = {(V)°Q*TH'U, : either (a=c=0 and m < 22Ny) (418)
or (ce{0,2}, 1c+a <Ny, and m<2Ns) ). .
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4.1. Some lemmas

In this subsection we collect some lemmas that are used often in the proofs in the next

section. We will often use the following Schur’s test.

LEMMA 4.3. (Schur’s lemma) Consider the operator T given by

71 = [ Kensman

Assume that

sup/ K(En)dn <K, and sup/ K (€, n)| dé < K.
& JR? n JR2

Then,
I1TfllL: SV KiKal fllLz-

We will also use a lemma about functions in G/, and W.

LEMMA 4.4. (i) Assume GeG' (see (4.17)). Then,

o IDQ ™ GOz, Ser, NGO ya,—anyyirz-ro Se(t)” (4.19)
for any t€[0,T). Moreover, G satisfies the equation
@ +iMG=Na, NGO yx, —appyyirz-20 ST 0T, (4.20)
(ii) Assume WeW! ((4.18)). Then,

W ()| z2 Ser(t)” (4.21)

for any t€[0,T). Moreover, W satisfies the equation
(O i)W = Qw +Ew, (4.22)

where, with ¥>q:=X—A—3 65%/\/1%2;22 as in (3.12),
Qw = —iTs ,W—iTy..W, (V) 2Ew |2 Sed(ty=/6F. (4.23)

Using Lemma A.3, we see that, for all k€Z and t€]0,T],

+ _
[(PeTy.cW) (1)l 2 Se12" (L) 5/6+5||P[k—2,k+2]W(t)HL2a

(4.24)
(P T, W)(#) 2 S 3258 72() 75/ 340 | Py g W (1) 2
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Proof. The claims in (4.19) follow from Definition 2.5, the assumptions (4.12), and
interpolation (recall that No—N3=2N;). The identities (4.20) follow from (3.4)—(3.6),
since (9;+iA)U€e?Os 5. The inequalities (4.21) follow from (3.42). The identities
(4.22)~(4.23) follow from Proposition 3.5, since all quadratic terms that lose up to 1
derivatives can be placed into &y . Finally, the bounds (4.24) follow from (A.22) and
(A.48). O

Next, we summarize some properties of the linear profiles of the functions in G.

LEMMA 4.5. Assume G€G', as before, and let f=e"™G. Recall the operators Qjk
and AnmAszj,)v defined in (2.10)—(2.18). For (k,j)€J and ne{0,...,j+1} let

fir=PragsnQinf and fixn:=AY) fik.
Then, if m>0, for all t€[2™—1,2™1] we have
2
sup D f()llzy Sevs IO, 2ppyyisz-ro SE127,
|| +2a<30 (4.25)
—8kt —5m m —1 —5m m
[Ps0 f(1)]| 2 S 72738 275m/600m | Pe™ A0, f (1) oo SET27OM/AEOM
Also, the following L™ bounds hold for any k€7 and s€R with |s—t|<2m~™:

e Ao g P (8)| e S 1 min(28/2, 27 4)p-mg520m,

, (4.26)
||e_ZSAA>2D+1,'yOPkf(t)||Loo 5512—5m/6+362m.
Moreover, we have
le™™ A fj ()l oo S €1 min(2¥, 2745)277+5097, Lo
e AL O], <eqmin(23F/2, 2742 —m 508 i k] > 10. (4:27)
7y Lo ~
Away from the bad frequencies, we have the stronger bound
le™ ™A Acop o Acop i fi k()] oo S €127 min(2¥,274)277/4, (4.28)
provided that j<(1—62)m+3|k| and |k|+D<im.
Finally, for all n€{0,1,...,5}, we have
| fsnllzee S 122 ma kT 930, 9=(1/2=550)G=n),
(4.29)

< 512252m2—4k+ 9n/29—5+5585
L2(rdr)

H sup \fj,k,n(re)\‘

Proof. The estimates in the first line of (4.25) follow from (4.19). The estimates
(4.26), (4.27), and (4.29) then follow from Lemma 7.5, while the estimate (4.28) follows
from (7.53). Finally, the estimate on 0, f in (4.25) follows from the bound (8.7). O
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We prove now a lemma that is useful when estimating multilinear expression con-

taining a localization in the modulation ®.

LEMMA 4.6. Assume that k, ki, ko €7, m>D, k:=max(k, k1, ko), |l€|<%m7 p=—m.
Assume that po and py are symbols supported in the set Dy, px, and satisfying

H0(§7n):MO(£an)n(€?n)v Hl(gan):/’['l(gan)n(f7n)7 Hn”S‘” 51’

gt (4.30)
po(&,m) =1E=nP20(&,n),  lpa(& )]s~ S2°F 7k

(compare with (4.14)). For 1€{0,1} and ®=®,,, as in (10.1), let
Tttt = [ (806 ) PLF () P T o) Pi o€ delr,

where YeC§°(—1,1) and ¢p(x):=(27Px). Then,

[Z91F; Hi, Ho]| S 2%/ min(1, 27F" 2mex ek )9=2k) N (P ) || Py, H | 2 || Py Ho | 12,

.
\Z)[F; Hy, Hy]| S 2°F ¥ N(PuF)| Pry Hi |12 || Py Ha | 12, (4.31)
where
N(P.F):= sup |etPuF||pee+2710"|PF||L2. (4.32)
|ol<2-P2sm

In particular, if 28~1, then

\ZO[F; Hy, Ho]| Smin(1, 2% % YN (P, F) || Py, Hi || 12 || Py, Hol| 12,

' . (4.33)
|Z, [Fs Hy, Hol| 277 N(PuF)||Pey Hal| 2 || P, Hell 2
Proof. The proof when [=1 is easy. We start from the formula
U @(Em) =C [ ds)ei " ds, (434)
R

Therefore,
Tt 1) =0 [ 600 [ e e ) B () P T ) P~ d iy
Using Lemma A.1 (i) and (4.30), it follows that

|23 [F; Hy, Ha)| S / [Wh(s)| 2°F =R (|72 A PP | oo || P, Ha | 2 || P, H | 2 ds.

The bound for [=1 in (4.33) follows.
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In the case [=0, the desired bound follows in the same way unless
k" 42k > max(2p, 3k")+D. (4.35)

On the other hand, if (4.35) holds, then we need to take advantage of the depletion
factor 9. The main point is the following:

2~k (2% 42547

if (4.35) holds and |®(&,n)| < 2P, then 2(&,7) S 52k

(4.36)

Indeed, if (4.35) holds then £>D and pggﬁ—%D, and we estimate

e s (

|£|—|77|)2< 2772\ (1€]) = A(In))| 2<2"5(|@(€,n)l+k(|€—n\))2
&=nl ) ~ 2k ~ 2%k

in the support of the function 9, which gives (4.36).

To continue the proof, we fix a function §€C§°(R?) supported in the ball of radius
2F"+1 with the property that D ve (et zy2 O(@—v)=1 for any z€R2. For any ve (28 7)2,
consider the operator @), defined by

Quf(©)=0(6-0)f(€).
In view of the localization in (§—n), we have

LF;Hy, Ho)= Y. I with Z0., . :=T0[F; Qu, H1,Qu, Hs].  (4.37)

p;v1,v27 Piv1,v2
+
[v1+v2| S2F

Moreover, using (4.36), we can insert a factor of p<p(27%(£—n)-v1) in the integral
defining Z! [F'; Qu, H1, Qu, H>] without changing the integral, where 2 ~ (2P 423K 7/2)R/2
Let

Moy (€,1) = 10 (&, M) Pl —2,k3+2 () Plh—2,8+2) (E=M)P<it +2(N—v1)o<p (27X (E=n) -v1).
We will show below that, for any v; €R? with |v1|%27€,
15~ (1m0, )| 1 (r2 ey S 2°K/292X 972k =2k, (4.38)

Assuming this, the desired bound follows as in the case [=1 treated earlier. To prove
(4.38), we recall that | F~1(ab)||pr SIF~Ha) || || F~1(®)|| 1. Then, we write

(€=m)-(&+n) =2(E—n)-v1+[E—n*+2(E—n)-(n—v1).

The bound (4.38) follows by analyzing the contributions of the three terms above. O
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Our next lemma concerns a linear L? estimate on certain localized Fourier integral

operators.

LEMMA 4.7. Assume that k>—100, m>D?,

—(1=0)m<p—3k<—0m, and 2" 7><|s| <22 (4.39)

Given x€C§°(R) supported in [—1,1], introduce the operator L, defined by

Ly (€)= 95 100(E) / 5P EM (2P D (¢ ) pr(mal€, ) f(n)dn,  (4.40)

R2

where, for some p,ve{+, -},

(I)(f’ 77) = A(E) _Au<f—77) _Au(n)7 a(£7 77) = A(ga n)Xba<£_n)g(€_n)a

(4.41)
||DQA||Lg<jy S\al Q\alm/S’ and

9]l s S1.

Then,
HLp,kf||L2 5 230677;(2(3/2)(p—k/2) +2p_k/2_m/3)”fHL2-

Remark 4.8. (i) Lemma 4.7, which is proved in §6 below, plays a central role in the

proof of Proposition 4.2. A key role in its proof is played by the “curvature” component

T(&,m) = (VE, @) (& m(Ve @)(E ), (V; @) (&), (4.42)

and in particular by its non-degeneracy close to the bad frequencies 7y and =1, and to
the resonant hypersurface ®(£,7)=0. The properties of T that we are going to use are
described in §11, and in particular in Lemmas 11.1-11.3.

(ii) We can insert S symbols and bounded factors that depend only on & or only
on 7 in the integral in (4.40), without changing the conclusion. We will often use this

lemma in the form

[ eI mns ate ) P ) PLF(-€) de

S 2500 (2D g gp= k23| Py Fy| 2 || PPl 2

(4.43)

provided that &, k; >—80, (4.39) and (4.41) hold, and ||u||s~ <1. This follows by writing

1(€,m) =// P(x,y)e” " e~ d¢ dn,
R2 xR2

with ||P||z1(r2xr2)S1, and then combining the oscillatory factors with the functions Fy
and FQ.
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5. Energy estimates II: Proof of Proposition 4.2

In this section we prove Proposition 4.2, thus completing the proof of Proposition 2.2.
Recall definitions (4.15)—(4.18). For GeG’ and Wy, WoeW’ let

A6 W W)= [ ante) [ e E=mGle—n.
X T (0, 5) V(€ 5) d dnds,

(5.1)

where 1€{0,1}, me[D? L], Y €{go,ba}, and the symbols ; are as in (4.14). The con-

clusion of Proposition 4.2 is equivalent to the uniform bound
AL (G W, W) S da200m, (5.2)

In proving this bound, we further decompose the functions W7 and Wy dyadically
and consider several cases. We remark that the most difficult case (which is treated in
Lemma 5.1) is when the “bad” frequencies of G interact with the high frequencies of the
functions Wy and Wh.

5.1. The main interactions
We prove the following lemma.

LEMMA 5.1. For 1€{0,1}, me[D? L], GEG’, and W1, Wo €W’ we have

S |ALLIG, Py W, P, Wa)| S e (5.3)
min(ky,k2)>—40

The rest of the subsection is concerned with the proof of this lemma. We need to
further decompose our operators based on the size of the modulation. Assuming that
WoeW,, WieW,, Geg,, and o, p, ve{+, —}, see (4.17)-(4.18), we define the associated
phase

P(&,m) = Loy (§,n) = Ao (§) = Ap(E—n)—Au(n). (5.4)

Notice that, in proving (5.3), we may assume that o=+ (otherwise take complex
conjugates) and that the sum is over |k —k2|<50 (due to localization in £ —n).
Some care is needed to properly sum the dyadic pieces in k1 and ky. For this, we

use frequency envelopes. More precisely, for k> —30, let

2

2
Z | Pk—40,k+40) Wi (s)]| 2 4-25m/6=0mo=k/2 Z | Pik—40,k+40Ew: (8) || L2,
i=1 i=1 (5.5)

Ok = | 0(8)* (27" () +lg7 ()]) ds,
R

ok(s):
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where Ey, , are the “semilinear” non-linearities defined in (4.22). In view of (4.21) and
(4.23),

2
> oimse2? ™ (5.6)
k>—30
Given k>—30, let p= {%kfgmj (the largest integer g%sz%m). We define

APIF, Hl,Hz]://szRz (&P ™ (@€, 1) xbal€—n)

R R R (5.7)
X F(§—=n)Hi(n)Hy (=€) d€ dn,
where p€[p,00) and
[p,oo){ @p? 1fp>?+1a
¥p = .
O<ps 1fp:p.

Assuming that |k —k|<30 and |k —k|<30, let

AL (G, Py Wi, P, W) 32/ G () ALL[G(s), Pi, Wi (s), P, Wa(s)] ds. (5.8)
R

This gives a decomposition Aéa)mzzp%) A{)’gm as a sum of operators localized in mod-
ulation. Notice that the sum is either over p€ [p, k+D] (if v=+ or if v=— and k<1D)
or over |p—%k‘ <D (if v=— and k>1D). For (5.3), it remains to prove that

|Al’p [valﬂ Wl’Pk2W2]| §€12_5m9%,m (5'9)

ba,m

for any k>—30, p=p, and k1, ko €Z satistying |k —k|<30 and |ko —k[<30.
Using Lemma 4.6 (see (4.33)), we have

AL [G(5), Py, Wa(s), Pi, Wa(s)]| S 122 Ko7 /540m| B Wy (s)|| 2 || Pr, Wa(s) | 2
for any p>p, due to the L bound in (4.26). The desired bound (5.9) follows if
2p" —k<—im+D.
Also, using Lemma 4.7, we have
AL (G, P, Wi, P, Wa) ()] S €127 ™| P, Wi (5)] 2 || P, Wa(5) | 2,

using (4.43), as 207F/2<2-"m/9 and HeiSAMG(s)HZmHgl/a,o§€125m (see (4.19)). Thus,

(5.9) follows if p=p. It remains to prove (5.9) when

p=p+1 and ke [-30,2p"+im|, |k1—k|<30, |ke—k|<30. (5.10)
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In the remaining range in (5.10) we integrate by parts in s. We define

Agiran ml= [[ ez, @En)

x F(€—n)Hy (n)Hy(—€) dé dn,

(5.11)

where @, (z):=2Pz "1, (z). This is similar to the definition in (5.7), but with ¢, replaced
by ¢,. Then, we let Wy, :=P, Wi and Wy, =P, Ws, and write

d ~
0= [ - AZIG(), W, (9. W (5)]) ds
R S
= [ i) ALEIGHS), W, (5): Wi (5)) s+ Ttk k) + T8 (kR + T2 b, o)
R

+42P /]R Gm (8)ALP[G(5), Wi, (8), Wiy (s)] ds, (5.12)

where

TP (k1 k) = / 4o (5) A2 (0,1, )G(5), Wi, (5), Wi (5)] s,

Tl (ke kg) - = / G (8) ALP[G(5), (s +ily ) Wi, (5), Wiy (s)] ds, (5.13)

Toly (ke kp) - = / G (8) ALP[G(5), Wi, (), (s +iA—o) Wiy (s)] ds.

The integral in the last line of (5.12) is the one we have to estimate. Notice that
277G (s), Wi, (5), Wiy (5)]] S 277272050 W, (8)]] 2 ([ Wka (9) 22,
as a consequence of Lemma 4.6 and (4.26). It remains to prove that, if (5.10) holds, then
27| Tl (s )+ Tl (ks ko) + Tl (R ko) [ S 20270 e (5.14)

This bound will be proved in several steps in Lemmas 5.2-5.4 below.

5.1.1. Quasilinear terms

We first consider the quasilinear terms appearing in (5.14), which are those where 9; +iA
hits the high-frequency inputs Wy, and Wy,. We start with the case when the frequencies

k1 and ks are not too large relative to p™.

LEMMA 5.2. Assume that (5.10) holds and, in addition, kg%]ﬁ—i—%m. Then,

2P (| Ty (e, boa) |+ Ty (s ko)) S €127 07 - (5.15)
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Proof. 1t suffices to bound the contributions of \jé(jfl(kl,kgﬂ in (5.15), since the

contributions of \Jé;’?z(kl, ko)| are similar. We estimate, for s€[2m~1 2m+1]

(95 +idy) Wi, (5)l| 2 S e127 2™/ 0F0m (281 423129750 g, (5), (5.16)
using (4.22)—(4.24). As before, we use Lemma 4.6 and the pointwise bound (4.26) to
estimate

AP [G(5), (B A-iM) Wi, (), Wiy (5)]

. (5.17)
Smin(1,2%F)e 275 OHM (9 i A, )W, ()| 2 | W, ()| 2

The bounds (5.16) and (5.17) suffice to prove (5.15) when p>0 or when —im+ 1k <p<0.

It remains to prove (5.15) when
p+1 <p<—%m+%k and kg%m. (5.18)
For this, we would like to apply Lemma 4.7. We claim that, for s€[2m~1 2m+1],
|ALP[G(s), (D5 +iM, ) Wi, (s), Wiy (5)]] (5.19)
S 27 ke 2810 (2B mR2) y gp k2 | (9 40Ny ) Wi, () 22 Wi () 2
Assuming this, and using also (5.16), it follows that
27p|jé;131(k17 ka)| < prgmglQ%7m2*5M/6+405m(2(3/2)(1046/2)+2p*k/2*m/3)

561Qiﬁmzm/6+406m(2p/273k/4+27k/27m/3)’

and the desired conclusion follows using also (5.18).

On the other hand, to prove the bound (5.19), we use (4.43). Clearly, with g=e**+G,
ZinEN/30 <g28m (see (4.25)). The factor 2% in the right-hand side of
(5.19) is due to the symbols pg and pg. This is clear for the symbols 1, which already

we have | g||

contain a factor of 27% (see (4.14)). For the symbols j, we notice that we can take

A(&,m) = 2%(57 n)p<a(®(E, U))@[k2—2,k2+2] (5)@[—10,10] (§=n).

This satisfies the bounds required in (4.41), since kg%m. This completes the proof. [
We now look at the remaining cases for the quasilinear terms and prove the following.
LEMMA 5.3. Assume that (5.10) holds and, in addition,

p=0 and ke [2p+im,2p+im]. (5.20)

Then,
2P| TP (K, ko) + Ty (k1 k)| Se127°™ 0F - (5.21)
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Proof. The main issue here is to deal with the case of large frequencies, relative to
the time variable, and avoid the loss of derivatives coming from the terms (9, +iA)W7 2.
For this, we use ideas related to the local existence theory, such as symmetrization.
Notice that in Lemma 5.3 we estimate the absolute value of the sum jéjfj 1+jbd 5, and
not each term separately.

First notice that we may assume o =v=+, since otherwise jé;fn(kl, k2)=0,n=1,2,
when k> %p+im. In particular, 2P <2%/2 We first deal with the semilinear part of the
non-linearity, which is &y, in equation (4.22). Using Lemma 4.6 and the definition (5.5),

A (G(5), Py Ew (), Wiy ()] S €127 F0 | Py, Ew, ()] 2 Wiy (5) ] 2
551275m/3+25m2k/2gk(8)2.

Therefore,
27”/ (O AL(G(5), Pry &, (), Wiy (5)]| ds S 12742
R

It remains to bound the contributions of Qw, and Qw,. Using again Lemma 4.6,

we can easily prove the estimate when k‘égm or when [=1. It remains to show that

2_1)/]R ( )“Ao’p[ ( )7Pk1QW1(S)7Wk2( )]+Agf[ ( )7Wk1(8)7P]€2QW2(8)]|d3

5 512—5mg2

k,m>

(5.22)

provided that
c=v=+, ke [prD,2p+%m], and k> gm. (5.23)

In this case, we consider the full expression and apply a symmetrization procedure
to recover the loss of derivatives. Since W1 €W, and WoeW’ | recall from (4.23) that

Q[/V1 = —iT2>2W1 —iTv.<W1 and QW2 = iTE>2W2 +iTv.<W2.

Therefore, using the definition (5.11),

AP Wal= ¥ [ m(en @@

06{2>2,V C}
 G(E=1) 0, (1) (=) Ty Wi(1) @iy (€)W (—€) dE i,

and

AreWa Puowl= X [ w(en@ @)

o€{Z>2,V-C}

—

X G(E=n) @iy (MW (0) @1y (€)iT, Wa(—E) dE dy.
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We use definition (2.22) and make suitable changes of variables to write
Agf [G7 Pr, Qw, Wk2] +Agf [Gv Wiy, Pr, QWz]
i o~ ~
= Y =] WG n-a)EM) (€ n ) de dn da,
e{S52,VC} (R2)°

where @ba::Xbaé and

(BM)(E1.0) =l -+ 0)5(@(6 )7 P (i o+ g€

ol (e (o E 2 Iy (Yo e e-a

For (5.22), it suffices to prove that, for any s€[2™~1,2m*] and o€ {52,V -(},

20| [[[ | W0 ) Wal69)Gra(e a1, ) (M) €. 1.8) de dyda
(R2)3 (5.24)
Sé.lgk(s)227m7§m.
Let
M(ga 1, 913 92) : :MO(ffela 7]+O‘791)§5p(©(£7915 T]+Oé*91))§0k2 (5701)
~ a || (5.25)
Xgokl (7’]+O{-91)0’<O¢77’]+2+92)X<2n+0[4>202|> .

Therefore,
(6M)(§1 m, OZ) :M(Sa m, a5 Oa 0)_M(§7’r]a [ 04»5—77—0‘)
= p<k-p(a)(a-Vo, M(§,n,;0,0)+(§—n—a) Vo, M (&, m,;0,0))
+(eM)(&n, a).

Using the formula for ug in (4.14) and recalling that 0661./\/(?\{32;12 (see Definition A.6),
it follows that, in the support of the integral,

[(eM)(&,m,@)| S (L+]al?) P(a)2722°2 and [[(1+]a])*P|| = S 2°™.

The contribution of (eM) in (5.24) can then be estimated by 27729m27F/2¢, o, (5)?, which
suffices due to the assumptions (5.23).

We are thus left with estimating the integrals

=[] Gin(E=1-0)c1-p(@)((6=1=0) S0, M€ 1,050.0)
X Wi () Wa(=¢) dadn dg,

= / / / G (6 —n—)pen_p () (-, M(£, 1,230, 0)) Wy () Wa(—€) dax dip de.
(R2)3



264 Y. DENG, A. D. IONESCU, B. PAUSADER AND F. PUSATERI

If || < 2%, we have
(6—n—a)-Vo, M(&,m,0;0,0) = pio (&, n4a)Pp(P(E, n+0) )iy (§) @ry (N+0)
X (E—n—a)- (Vo) (o, n+50).

We make the change of variable a=(—n to rewrite

t=c [[[ | GuuleBImiE DBOE D)E5) F (P Tr v Wi} (5)
x Py, Wa(—€) B de.

Then, we use Lemma 4.6, (4.26), and (A.22) (recall 0651/\/{?\,/32;12) to estimate

2P| I(5)] S 27722 Ke 27T P T Wi (5)]| 2 [P Wa(s)l 2o
Se2 MRk 2 g, (5)2.
This is better than the desired bound (5.24). One can estimate 27P|II(s)| in a similar
way, using the flexibility in Lemma 4.6 due to the fact that the symbol g is allowed to

contain additional S symbols. This completes the proof of the bound (5.24) and the

lemma. O

5.1.2. Semilinear terms

The only term in (5.12) that remains to be estimated is J'?(k1, k2). This is a semilinear
term, since the J; derivative hits the low-frequency component, for which we will show

the following lemma.

LEMMA 5.4. Assume that (5.10) holds. Then,
2P| TP (ks ko) S €127 0F - (5.26)

Proof. Assume first that p>fim. Using integration by parts we can see that, for
0€R,

|F~He MO0 a0201 () L2 S1+]el. (5.27)
Combining this and the bounds in the second line of (4.25), we get

sup [N [(8s+ih ) Po10,10)G (5)] | S (27P1)27 0/ 5Rm,

lo]<2—PHom
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Using this in combination with Lemma 4.6 we get
A (D +i0,)G(5), Wiy (8), Wi, (8)]] S (277 +1)2757/3 20 gy ()2, (5.28)

which leads to an acceptable contribution.
Assume now that

p+1<p<—im.

Even though there is no loss of derivatives here, the information that we have so far is not
sufficient to obtain the bound in this range. The main reason is that some components of
(0s+1A,,)G(s) undergo oscillations which are not linear. To deal with this term, we are

going to use the following decomposition of (0s+1iA, )G, which follows from Lemma 8.3:

Xba (§)F{(0s+iM )G ()} (&) = ga (&) +goo (€) +92(8) (5.29)

for any s€ (271, 2], where xj,, (2)=0<a(27(|2]=70)) +¢<a(27 (2] =m1)) and

llg2llrz < 5%2_37”/2-&-206771’

lgso| Lo S F27m 10,

L e S,
o <2 m m

(5.30)

Clearly, the contribution of g4 can be estimated as in (5.28), using Lemma 4.6. On
the other hand, we estimate the contributions of go and g., in the Fourier space, using
Schur’s lemma. For this, we need to use the volume bound in Proposition 10.4 (i). We

have
S | Zp(2 (6 m)xoa = m)goe (€ =) 13 2070 g || oo S 207 OPRm AR,

and also a similar bound for the £ integral (keeping 7 fixed). Therefore, using Schur’s

lemma, we have
AP [F g0 (5), Wiy (5), Wi, (5)]] S 201702 =(1+40m 2, ()2,

and the corresponding contribution is bounded as claimed in (5.26). The contribution
of g2 can be bounded in a similar way, using Schur’s lemma and the Cauchy—Schwarz

inequality. This completes the proof of the lemma. O

5.2. The other interactions

In this subsection we show how to bound all the remaining contributions to the energy
increment in (5.1). We remark that we do not use the main L? lemma in the estimates

in this subsection.
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5.2.1. Small frequencies
We consider now the small frequencies and prove the following.
LEMMA 5.5. For 1€{0,1}, me[D? L], GEG', and W1, Wo€W' we have

> | AL (G, Py W, P, W] | S (5.31)
min(ky,k2)<—40

Proof. Let k:=min{k;, ko}. We may assume that k<—40, max(k1, k2)€[-10,10],
and [=1. We can easily estimate
[ Aba,m[G, P, Wi, Pi, Wa]| S e 27 28| G(5) | 2 [1Pe, W () 2 (| P Wa ()l -
Se m— ’2777/

By (4.19) and (4.21), this suffices to estimate the sum corresponding to k<—m—3dm.
Therefore, it suffices to show that, if —(1+30)m<k<—40, then

‘A%}a,m[Ga Pk1W17Pk2W2]| §5§275m~ (532)

As in the proof of Lemma 5.1, let WoeW' W1 eW! Gegl,, o,v,ue{+,-}, and

—o) 72

define the associated phase ®=®,,, as in (5.4). The important observation is that
@ (€, m)| 2282 (5.:33)

in the support of the integral. We define A]laf and Aif’m as in (5.7) and (5.8), by

introducing the the cutoff function ¢,(®(§,n). In view of (5.33), we may assume that
‘p—%k‘ <1. Then, we integrate by parts as in (5.12) and similarly obtain

AP (G, Py, Wy, P, Wo)| <277

ba,m

/R 0 (5) AP (G (5), Wi, (), Wi, (5)] ds

27| (K, ko) |+27P | T (ke Ko)|
+27P| T (kKo s

(5.34)

see (5.11) and (5.13) for definitions.
We apply Lemma 4.6 (see (4.33)) to control the terms in the right-hand side of
(5.34). Using (4.21) and (4.26) (recall that 27P <27k/2+0m L om/2+30m) the first term is

dominated by
06?27p25m275m/6+6m §5?2im/4.

Similarly,

2P\ (hr, ko) 4277 T (k)| S 2P om/ G omgom 6420 < g m/10,
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For |J,i;p0(k1, k2)| we first estimate, using also (5.27) and (4.25),
2_p‘\7b1;f0(k1’ kQ)l 5 62{‘2m2—p(2—p2—5m/3+6m)2(5m §E§2—2p2—2m/3+25m.

We can also estimate directly in the Fourier space (placing the factor at low frequency

in L' and the other two factors in L?),
2P| (e ko) | S ef2mapokp=om/630m < dopgm/GH3om

These last two bounds show that 2_p\J;;f’0(k1, ko)| <e327/10, The desired conclusion
(5.32) follows using (5.34). O

5.2.2. The “good” frequencies

We now estimate the contribution of the terms in (5.1), corresponding to the cutoff xgo.
One should keep in mind that these terms are similar, but easier than the ones we have
already estimated. We often use the sharp decay in (4.28) to bound the contribution of
small modulations.
We may assume that WoeW!, W1 €W!, and GeG,. For (5.2) it suffices to prove
that
ST AL PG, P, W, Py, Wa]| S 52207, (5.35)

g0, m
k,ky ko €Z

Recalling the assumptions (4.14) on the symbols p;, we have the simple bound

ALy o [PLG, Py, Wi, Py, W) | < 2mgmin(koknke) 92k
x sup [|PuG(s)| 2 || Pe, Wi (s)| 2 || Pe, Wa(s)| 12

s€l,

Using now (4.19) and (4.21), it follows that the sum over k>2dm or k< —m—Jdm in (5.35)

is dominated as claimed. Using also the L> bounds (4.27) and Lemma A.1, we have

Ao, [PeG Py Wi, Py W] | S272%F sup | PeG(s)| e || P, W1 (5)] 2 | P, W (s) | 2

go,m
’ s€lm,

-+ —
S2M2 sup €287 Py W (s)| 2 || P, Wa(s) 22

s€Lm

if |k|>10. This suffices to control the part of the sum over k<—52ém. Moreover,

> | Ao [PRG, Py Wi, P, Wol| S ef270,

go,m
min(ky,k2)<—D—|k|



268 Y. DENG, A. D. IONESCU, B. PAUSADER AND F. PUSATERI

if ke[—520m,2dm|. This follows as in the proof of Lemma 5.5, once we notice that
@(g,n)zzmin@hk?)/? in the support of the integral, so we can integrate by parts in s.
After these reductions, for (5.35) it suffices to prove that, for any ke[—52d0m,2dm],

ST AL PG P W, P W) | S 220 ok, (5.36)
k1,ko€[—D—|k|,00)

To prove (5.36) we further decompose in modulation. Let k:=max(k, k;,ks) and
p:=|3k"—1106m|. We define, as in (5.7) and (5.8),

Agglp i Hali= [ e melt ™ @€ )l —n)
X F (=) Hy () Ha(~) d€ dy,

(5.37)

and

.Al P

go,m

[&Q&M@&m@:/%@Mﬁ&ﬂ%&ﬁﬂwmmﬂm@.(m&
R

For p>p+1 we integrate by parts in s. Asin (5.11) and (5.13), let

ALP(F,Hy, Hy): = / / (6.1 B (B (€. 7)) xgo (E—1)
R2 xR2 R N N
X F(§—n)H:(n)Ha(=£) d& dn,

(5.39)

where @, (z):=2Px " p,(x). Let Wy, =Py, W1, Wy, =Py, Wa, and

Tk k2) s = [ 4 () AGE[Pe(0s 40, )G (s), Wi, (s), Wi, (5)] ds,

Ty (k1 ko) := | () ALL[PuG(s), (0s+iAy ) Wi, (s), Wi (s)] ds,

Tyera(k1 ka) i = | () ALL[PuG(5), Wi, (5), (0 +ih—o) Wi, (5)] ds.

— 5

As in (5.12), we have
|ALD (PG, P, Wi, P, W3]
/ 0 (5) ALP (PG (s), Wi, (5), Wi, (5)] ds (5.40)
R

27| To o ey o)+ Ty (ks ko) + Ty (K o).

S22
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Using Lemma 4.6, (4.21), and (4.26), it is easy to see that

PO

k1,k2€[—D—|k|,00) p=p+1

/Rq;n(s)flgg[PkG(s), Wi, (8), Wi, (s)] ds 55?27‘57”. (5.41)

Using also (5.27) and (4.25), as in the first part of the proof of Lemma 5.4, we have

> 3 2T (ke k)| SF20 (5.42)

k1,ka€[—D—|k|,00) p=p+1

Using Lemma 4.6, (4.26), and (5.16), it follows that

> Y 2Tl (k)| | Tyily (ke o)) S ef27om. (5.43)

k1,k2€[—D—|k|,6m/5] p=>p+1

Finally, a symmetrization argument as in the proof of Lemma 5.3 shows that

> > 27T (b k) + TgPo (ks K)| S 3270, (5.44)
k1,k2€[6m/5—10,00) p=p+1

In view of (5.40)—-(5.44), to complete the proof of (5.36) it remains to bound the

contribution of small modulations. In the case of “bad” frequencies, this is done using

the main L? lemma. Here we need a different argument.

LEMMA 5.6. Assume that k€[—520m,26m] and p=|3k"—1100m|. Then,

1
2
3 AL L [PeG, P, Wi, Py, Wa]| < £3220°mo—0lk], (5.45)
mln(kl,k2)27D7|k|
Proof. We need to further decompose the function G. Recall that GeG’, and let,
for (k,5)eJ,

f(s)=€"2G(s), fin=Pr-ontoQrf, and gjr:=A<opyAcop fin. (5.46)

Compare with Lemma 7.5. The functions g, ; are supported away from the bad frequen-
cies o and 1 and ), g;.k(s)=e"* G (s) away from these frequencies. This induces a

decomposition

I, L —is
Agom[ PG, P, W, P, Wol = > A& mle " g; x, Pi, Wi, Py, Ws).

j>max(—k,0)

%

Notice that, for j<m—dm, we have the stronger estimate (4.28) on |e™***g; ||z

Therefore, using Lemma 4.6, if j<m—Jdm then

L, —is _ort _
| Ao mle ™" gj 1, Poy W1, Pi, Wa)| S e128272F7 27974 sup || Py, Wi ()| 2 || P, Wa(8) | 22

s€ELy,
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Therefore, (°)
> S A e gy P Wa, P Wa)| S 522520,
j<m—3&m min(k1,k2)>—D—|k|

Similarly, if j>m+60dm then we also have a stronger bound on [e~*"g; ;| 1~ in the

first line of (4.27), and the corresponding contributions are controlled in the same way.

It remains to show that, for any j€[m—dm, m+600m],

1, s _
> [ Agomle” R gjk, Pe, Wi, P, Wo]| S 327, (5.47)
min(ky,k2)>—D—|k|

For this, we use Schur’s test. As min(k, k1, ka) > —53dm, it follows from Proposition 10.4 (i)
and the bound ||g; || 1> Se1278% 2795095 that

R it e — 45087
/Rz |10(&, 1) 10 <p ()| G5.0 (€ =)@ liy 2,10 421 (1) dy S €127 F/2)/2H0m=5+503]

for any ¢ €R? fixed with |¢|€[2F2~4, 2k2H4]. The integral in ¢ (for 7 fixed) can be estimated
in the same way. Given the choice of p, the desired bound (5.47) follows using Schur’s

lemma. O

6. Energy estimates III: Proof of the main L? lemma

In this section we prove Lemma 4.7. We divide the proof into several cases. Let

X (2) = (2P (|2 =), 1€{0,1}.

We start the most difficult case when |€ —17| is close to yp and 2¥>>1. In this case, T can

vanish up to order 1 (so we can have 29«1 in the notation of Lemma 6.1 below).

LEMMA 6.1. The conclusion of Lemma 4.7 holds if k}%l)l and § is supported in
the set {&:]]€]—o| <2710}

Proof. We will often use the results in Lemma 11.1 below. We may assume that
oc=v=+ in the definition of ®, since otherwise the operator is trivial. We may also
assume that u=+, in view of formula (11.23).

In view of Lemma 11.1 (ii), we may assume that either

(€=m)-&" ~2" or —(E—n)-¢ ~2"

(°) This is the only place in the proof of the bound (5.2) where one needs the 226”m factor in the
right-hand side.
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in the support of the integral, due to the factor x(27P®(&,n)). Thus, we may define

a®(&,m) =a(&n)1((—n)-&), (6.1)

and decompose the operator Lp7k:L;’k+L;7k accordingly. The two operators can be
treated in similar ways, so we will concentrate on the operator L; L

To apply the main T7T™ argument, we first need to decompose the operators L, j.
For s:=2"P"" (a small parameter) and YeCg(—2,2) satisfying -, (- +v)=1, we
write

+ rJ
Lp,k_ Z ZLP,k,q’

q,r€Z 720
Lo @)= [ e,y (o))t 2 T (w.9) 1)
xer(y)a; (z,y) f(y) dy,
al (z,y) 1= A, y)x~ (@ —y) 1, (2 —y)-2) g5 (x—y),

97 1= A0, [0 g].

(6.2)

In other words, we insert the decompositions

9=>_g; and 1= o (T(x,y))( 27 (2, y)—r)
Jj=0 q,rEL
in formula (4.40) defining the operators L, ;. The parameters j and r play a somewhat
minor role in the proof (one can focus on the main case j=0) but the parameter ¢ is

~i/30SS1 and

important. Notice that ¢<—3D, in view of (11.8). The hypothesis ||g||ZmH
Q

Lemma 7.5 (i) show that

L K27l (6.3)
L2(rdr)

195112 S2770/27559) and - ||sup 13;(0)|
fest

Note that, for fixed x (resp. y), the support of integration is included in S;:(;T(x)

(resp. Spr - (y)); see (11.11)~(11.12). We can use this to estimate the Schur norm of the

kernel. It follows from (11.14) and the first bound in (6.3) that

sup | X277 (2, y))pq (Y (2, y))pr(y)af (z,y)| dy S llaf || < |Sp . (2)] (6.4)
< 20FP—k/29=3/3,

A similar estimate holds for the x integral (keeping y fixed). Moreover, using the bounds
(11.13)—(11.14) and the second bound in (6.3), we estimate the left-hand side of (6.4) by

C2-7+55079r=k/2 Tn view of Schur’s lemma, we have

1L, lz2spe S min(20FP=k/2970/8 97 ts50igp=h/2)
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These bounds suffice to control the contribution of the operators L;’J,-C - unless
q> D—&-max(% (p— %kz), —%m) and 0<j< min(%m7 —% (p— %k‘)) (6.5)

Therefore, in the rest of the proof, we may assume that (6.5) holds, so »#27>> op—k/2,
We use the TT* argument and Schur’s test. It suffices to show that

sup / | (2, €)] & +sup / K (@, )] da £ 29" (2300 H/2) 1 2= k/Dgm2m /%) (6.6)
r JR2 £ JR2
for p, k, q, v, and j fixed (satisfying (4.39) and (6.5)), where

K2, [ 002, g)x(2 7 B(E 9) 0.6 9)0 (0,)a (6 9)

O(z,&,y) :=P(x,y) — (&, y) =Ax) —A(§) —Alz—y) +A(E—y),

7y
Yo (@,6,9) 1= g (T (2, 9)) 0 (L(E, )0 (371279 (2, y) —r) (3 279L (€, y) —1)on (y) .
(6.7)

As K(x,8)=K (¢, x), it suffices to prove the bound on the first term in the left-hand
side of (6.6). The main idea of the proof is to show that K is essentially supported in

the set where w:=xz—¢ is small. Note first that, in view of (11.13), we may assume

|w=[z—¢| S #27 < 1. (6.8)

Step 1. We will show in Step 2 below that
if Jw| > L= 220"m(2p—k/29 =4y 9i—a=m 4 9=2m/3-0) then |K(2,£)] <274, (6.9)

Assuming this, we show now how to prove the bound on the first term in (6.6).
Notice that L<1, in view of (4.39) and (6.5). We decompose, for fixed z,

[eondes [ @ eoldor [ (K

|w|>L

Combining (6.8) and (6.9), we obtain a suitable bound for the second integral. We now

turn to the first integral, which we bound using Fubini and formula (6.7) by
Cll o [ 15 o )lx(2 78l ) (V)0

X </|ng (272D (z—w,y))| dw) a. (6.10)
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We observe that, for fixed x and y satisfying ||:1:fy|f'yo|<<1 and |z|~2F>1,
/ IX(27PP(z—w,y))| dw S 2P F/2L, (6.11)
jwI<L
Indeed, it follows from (11.9) that, if
z=(z—y—w)=(0cosb,osinf), [w|[<L, and [P(y+2y) <2,

then |Q—|m—y||§L and @ belongs to a union of two intervals of length <2P—%/2_ The
desired bound (6.11) follows.

Using also (6.4) and |[|a;||p~ <279/, it follows that the expression in (6.10) is
bounded by C22(P—F/2)2-2i/324],  The desired bound (6.6) follows, using also the re-
strictions (6.5).

Step 2. We now prove (6.9). We define orthonormal frames (eq, e2) and (V1, Va):

_ vzq)(xvy> 1

P
ex=ei, Vl:—M V2:V1l,

V()| (6.12)

w=x—&=wie;twaes.

el = ———"=,
F N0, y))

Note that w; and wy are functions of (z,y,&). We first make a useful observation: if
[O(x, &, y)|<S2P and |w|< 1, then

wi] S 2772 (2P +|w|?). (6.13)
This follows from a simple Taylor expansion, since
(2, y) =D&, y) —w-VaD(2,9)| S |wl*.

We now turn to the proof of (6.9). Assuming that = and ¢ are fixed with |x—¢§|>L

and using (6.13), we see that, on the support of integration, |wz|~|w| and

V2-V,0(z,&,y) = Va- Vy (= Az —y)+A(E—y))
=V2-V; @z, y)-(z—)+O0(|lwf?) (6.14)
=ws ¥ (2, y) +O0(|Jwn| +|w]).

Using (6.5), (6.9), (6.13) and (6.8) (this is where we need »x<1), we obtain that

V2-V,0(, &, y)| = 2 |wa| = 27w
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in the support of the integral. Using that

isO __ —i 15O «
(& —W%Vye and |.Dy(")|,§1|o.}|7

and letting ©(1):=V2-V, O, after integration by parts we have
K(x,¢)

, is 1 - - + T
=i [, 00 (Vg0 ) X2 R ) (060 )T ED))

We observe that

V3Ol (x(27P®(2,y))x (277D (£, y))) = —27PO 1) (x(27P®(z,y))X (277D (€, y))).

This identity is the main reason for choosing Va2 as in (6.12), and this justifies the defi-
nition of the function Y (intuitively, we can only integrate by parts in y along the level

sets of the function ®, due to the very large 277 factor). Moreover,
DS g (2,6, 9)| <279 and  |DSaf (v, y)| S 210V 42101M3) v e {2, ¢},

in the support of the integral defining K(z,£). We integrate by parts many times in y
as above. At every step we gain a factor of 2™27|w| and lose a factor of 27P29|w|+279+
274-2/3 The desired bound in (6.9) follows. This completes the proof. O

We consider now the (easier) case when | —n] is close to 1 and k is large.

LEMMA 6.2. The conclusion of Lemma 4.7 holds if k}%Dl and § is supported in
the set {&:]]€]—n|<27100}.

Proof. Using (11.8), we see that on the support of integration we have |Y(&,7)|~1.
The proof is similar to the proof of Lemma 6.1 in the case 29~1. The new difficulties
come from the less favorable decay in j close to 7; and from the fact that the conclusions

in Lemma 11.1 (iii) do not apply. We define a; as in (6.2) (with v, replacing 7o and

gi=Asa [0} -g]), and

Lif’éjf(x):=<p<—p(z—xo)/w eV 27P D (2,y)) ok (y)a) (z,y) f(y)dy  (6.15)

for any zo€R?. We have

< 2(1/27495)717]‘(17555) (616)

Gill oo <2097 and Hsu A/\'TQ‘
95l < eespl| 1 95 ( )| L2(rdr) ™
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for n>1, as a consequence of Lemma 7.5 (i). Notice that these bounds are slightly weaker

than the bounds in (6.3). However, we can still estimate (compare with (6.4))

sup |X(2_p<I>(x7y))apk(y)a;-“(x,yﬂdy§2p_k/22_(1_556)j. (6.17)
x R2

Indeed, we use only the second bound in (6.16), decompose the integral as a sum of
integrals over the dyadic sets ’|x—y|—’yl|z2_”, n>1, and use (11.9) and the Cauchy—
Schwarz in each dyadic set. As a consequence of (6.17), it remains to consider the sum
over j< %m.

We can then proceed as in the proof of Lemma 6.1. Using the TT™* argument for the
operators LZ?,;j and Schur’s lemma, it suffices to prove bounds similar to those in (6.6).
Let w=2—¢, and notice that |w|<27PT19. This replaces the diameter bound (6.8) and
is the main reason for adding the localization factors ¢<_p(z—x¢) in (6.15). The main

claim is that
if |w| > L= 220"m (op=H/2 4 9i=m | 9=2m/3) " then | K (z,£)] <274 (6.18)

The same argument as in Step 1 in the proof of Lemma 6.1 shows that this claim suffices.
Moreover, this claim can be proved using integration by parts, as in Step 2 in the proof
of Lemma 6.1. The conclusion of the lemma follows. O

Finally, we now consider the case of low frequencies.
LEMMA 6.3. The conclusion of Lemma 4.7 holds if ke [—1007 %Dl].

Proof. For small frequencies, the harder case is when | —n] is close to 71, since the
conclusions of Lemma 11.3 are weaker than the conclusions of Lemma 11.2, and the decay
in j is less favorable. So, we will concentrate on this case.

We first need to decompose our operator. For j>0 and [€Z we define

at (@, y) =A@, y)xy (x—y)e; (@—y)-z)g;(x—y),

[0,00)

(6.19)
gj1=Aza7[p; Pi_s 89l

where 7" (v):=14(v)p;(v). This is similar to (6.2), but with the additional dyadic de-

composition in terms of the angle |(z—y) -2+ |~2!. Then we decompose, as in (6.2),

Low=2 2,00 > Ly (6.20)

q,r€Z j20 I€Z 1e{+,—}

where, with =2"2"" and Y eC§e(—2,2) satisfying >, ., (- —v)=1 as before,

Lyly F@)i=esa0(o) || 5232700, 1)py(Xw.0) 61

X (1270 (z,y) =) (y)as  (x, y) f(y) dy.
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We consider two main cases, depending on the size of q.

7.9,k

ok are non-trivial

Case 1: ¢q<—D;. As a consequence of (11.25), the operators L
only if 2¥~1 and 2'~1. Using also (11.24), it follows that

|V,®|~1, |V,T-Vie|~1,

(6.22)
IV, @ ~1, |V,Y-V, ®~1,

(SR

in the support of the integrals defining the operators Lp i

Step 1. The proof proceeds as in Lemma 6.1. For simplicity, we assume that (=+.
Let

Spari(@):={z:|l2l=m[<27P [@(z, 2 —2)| < 27T, [T (2, 2-2)[ <2972,

(6.23)
Y (2, 2—2)—7r229 < 10527, and 2.2+ € [2'72 2172]].
Recall that, if z=(pcos, psinf) and z=(|x|cos e, |z|sin a), then
®(z,z—2) = A(|z]) — pA(0) —vA(V/]x|2 + 0% —20|z| cos(f— ) ). (6.24)

It follows from (6.22) and the change-of-variable argument in the proof of Lemma 11.1 (iii)
that
S,

p,q,7,

(@) $2PT9 and  diam(S) . (@) S 2P 45227, (6.25)

if |#|~1 and 2!~1. Moreover, using (6.24), for any z and p,

[{0:2=(0cosf, osinh) € S: . ()} 2P, (6.26)

p,q,T,l

Therefore, using (6.16) and these last two bounds, if |z|a1 then

(2P0 (,y))oq (T, y))on(y)asy (2, y)| dy S min(22 9205 2p2=3455%7) (6,27
]RQ

One can prove a similar bound for the z integral, keeping y fixed. In view of Schur’s

lemma, it remains to bound the contribution of the terms for which

q}Derax(%p,f%m) and Ogjgmin(%m,f%p). (6.28)

Step 2. Assuming (6.28), we use the TT* argument and Schur’s test. It suffices to
show that

sup / K (2, €)] de +sup / K (2,€)] dz S 207 (2% 4 220-2m/3)  (6.20)
T R2 13 R2
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for p, k, q, 7, 7, and [ fixed satisfying (6.28), where

K@ 9= s mo(@ez (@ [ O @ @)

X wq,r(l'v fa y)a;'r,l (ZL’, y)a;l(f, y) dy,

and, as in (6.7),

O(x,&,y): =0(z,y) =&, y) = AMz) = A () —Au(z—y) +Au(E—y),
Yar(@,€,) 1= g (T(2,9)) g (T(E, )0 (¢~ 127X (2, ) —)db (¢ 279Y (€, y) =) ().

Let w:=z—¢&. As in the proof of Lemma 6.1, the main claim is that
if |w| > L:=220"m(gp—a 4 0i=a=m 4 9=4=2m/3) " thon |K(z, )| <274m, (6.31)

The same argument as in Step 1 in the proof of Lemma 6.1, using (6.27), shows that
this claim suffices. Moreover, this claim can be proved using integration by parts, as in
Step 2 in the proof of Lemma 6.1. The desired bound (6.29) follows.

Case 2: q=—D;. There is one new issue in this case, namely when the angular
parameter 2! is very small and bounds like (6.26) fail. As in the proof of Lemma 6.2, we
also need to modify the main decomposition (6.20). Let

L2 (1) i = _p(z—a /eisq)(z’y) 277 (x,
)= pe(o—an) [ (@ () .

X q(T(z, y))er(y)aj (x,y) f(y) dy.

Here 29€R?, |z9|>27110 and the localization factor on x—z leads to a good upper
bound on |z—¢&| in the TT* argument below. It remains to prove that, if ¢>—D;, then

HLroJ,l

20| 2y 2 S 207 1270%99300m (9(3/Dp | gp=m/3) (6.33)

Step 1. We start with a Schur bound. For x€R? with |z|c[27120,2P1+10] Jet

Sl

p’qJ(x) L= {z: ||z|—'yl| <2 PH |P(z,z—2)| < ortl

(6.34)
Y (z,2—2)| € [2772,2772], and 2.2+ € [2/72, 2172}
The condition |Y(x,z—2z)|>2"P1~* shows that
|V.(®(x,x—2))| €[27*P,2P1] for z € S;7q7l(m).
Formula (6.24) shows that

~

{0:z=(pcosb,psinb) e S;,q,l(x)ﬂ <Pl (6.35)
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Moreover, we claim that, for any =z,

S,

p,q,

(@) S 27, (6.36)
Indeed, this follows from (6.35) if [>—D. On the other hand, if I<—D then

Do (®(z,x—2)) <27 P/?
(due to (6.24)), so

Dp(®(z,2—2)) = 27"

(due to the inequality |V, (®(z,z—2))|€[274P1,2P1]). Recalling also (6.16), it follows

from these last two bounds that

(2P0 (@, y))eq (X (@, y))on(y)aty (@, y)| dy S min(20920+, =751 9r-1)  (6.37)
R’.’

if |2|€[27129 2P1+19] In particular, the integral is also bounded by C'2P277/2+310]  The
integral in x, keeping y fixed, can be estimated in a similar way. The desired bound
(6.33) follows unless

i< min(%m, fp) —D and > max(%p, f%m) +D. (6.38)

Step 2. Assuming (6.38), we use the TT* argument and Schur’s test. It suffices to
show that

sup/ |K (2, €)| d¢ <2550 (2P 22 —2m/3) (6.39)
x R2
for p, k, q, xo, j, and [ fixed, where ©(z, £, y)=(z,y)—P(£,y) and

K(x,€) 1:SO<—D(37—960)90<—D(€—$0)/RZ e O@EN N (277D (x, y) )X (27D (, y)) (6.40)

X pq (T (2, ) g (T(Ev))er(y)a) (x,y)al (€, ) dy.

Let w=x—¢&. As before, the main claim is that
if [w] > L= 220" (2P 4297 4.272m/3)  then |K (z, &) <274, (6.41)

To see that this claim suffices, we use an argument similar to the one in Step 1 in
the proof of Lemma 6.1. Indeed, up to acceptable errors, the left-hand side of (6.39) is
bounded by

Clajilie s [ i) @8 )e (0 w0)

ja—ao|<2-D+2 (6.42)
x ( [ xeree—wy) dw) dy.
|w|<L
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Notice that, if | Y (x,y)|>2"P172, then |(V,.®)(x,y)|>2"4P1, and thus
|(Vu®)(z—w,y)| > 24Pt

if |w| <L <27 P. Therefore, the integral in w in the expression above is bounded by C2P L.
Using also (6.37), the expression in (6.42) is bounded by

C265j2pL2p27j/2+325j < 2§m23p+2406m22p+j/27m+26m22p72m/3'

The desired bound (6.39) follows using also that j<Zm; see (6.38).

The claim (6.41) follows by the same integration-by-part argument as in Step 2 in the
proof of Lemma 6.1, once we recall that |(V,®)(z,y)|>27*P" and |(V,®)(z,y)|>271P" in
the support of the integral, while |w|<2~P+%. This completes the proof of the lemma. [

7. Dispersive analysis I: Setup and the main proposition
7.1. The Duhamel formula and the main proposition
In this section we start the proof of Proposition 2.3. With U=(V)h+i|V|'/2¢, assume
that U is a solution of the equation

(Or+iN)U = No+N35+N>y (7.1)

on some time interval [0, 7], T>1, where A3 is a quadratic non-linearity in ¢ and U, N3
is a cubic non-linearity, and N>, is a higher-order non-linearity. Such an equation will
be verified below (see §C.2) starting from the main system (2.1) and using the expansion
of the Dirichlet—Neumann operator in §B.1. The non-linearity N5 is of the form
Ny = Z Now (U U),
prett o} (7.2)
(FENu L) = [ munlecm 6=t dn

where U, =U and U_=U. The cubic non-linearity is of the form

Nz = Z Nﬂﬂﬁ(uwuwuﬁ)v
H7V766{+1_} (73)

FNwalFa DO = [ () fe=n)atn—o)hio) dndo

The multipliers m,, and n,,3 satisfy suitable symbol-type estimates. We define the
profiles V, (t)=e" U, (t), c€{+, -}, as in (1.11). The Duhamel formula is

(O V)(E, 5) = e MONL(€, 5) e MONG (€, 5) + e MNON, (€, 5), (7.4)
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or, in integral form,

V(€ 1) = V(E,0) 4 Ta(€, 1)+ W6, 6) + / MO 4 (€, 5) ds, (7.5)

where, with the definitions in (2.13),

t
Wae= 3 [ [ et im B emn Vs duds. (70)

w,ve{+,—}

t -
W3 (67 t) = Z A AQXR2 615¢+uw1(§17710)n“yﬂ (E’ 7, O')

poBe( 4} (7.7)

X ﬁu(f—n, 3)9,,(77—0, 8)175(0, s)dndo ds.

The vector field €2 acts on the quadratic part of the non-linearity according to the

identity

0fa6s) = Y [ (Ot (6= ). ) dn.

wve{+,~}

A similar formula holds for Qg/\Afg (£, ). Therefore, for 1<a< Ny, letting
m), = (Qe+Q,) my,  and 0l 5= (Qe+ Q4+ Q) s,

nv

we have
QLOV)(E,5) = MOQENL(E, 5)+e NN (€, 5)+e ™ MOINL4(E,5),  (7.8)
where

€iSA(5)Qgﬁ2 (57 S) — Z Z / eiS@+HV (5,7})mfw (57 ’I’])
R2

pvel{t,~} aitazt+b=a R R (7.9)
X (V) (E=n,5)(Q%2V,) (1, 5) dy
and
eiSA(g)QgJ\’i‘g(f, s)= Z Z /2 ] eis(I’*“”ﬁ(&’"’o)nzyﬁ (& n,0)
v, BE(+,-} artaz+agtb=a " XE (7.10)

X (QV,) (€=, )(Q2V,) (n—0,5)(Q%V5) (0, 5) dn do.

To state our main proposition, we need to make suitable assumptions on the non-
linearities Ny, N3, and N>4. Recall the class of symbols S*° defined in (A.5).
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e Concerning the multipliers defining N>, we assume that (Q¢+€Q,)m(&,7)=0 and
||mk,k1,k2 ||S°° < 2k2min(k1,k2)/2’
||D7(7xmk,/€17k2 ||LOo §|a| 2(|a|+3/2) 1r1rlauc(\}’€1|,|l€2\)7 (711)

a k. ki,ke < (le|+3/2) max(|k|, k1], k2])
||D£m ||Loo |a| 2 5
for any k, k1, ko €Z and me{my,:p,ve{+,-}}, where

mk ke (&, n) =m(&,n)er(&) v, (E—n) ek, (1)-

e Concerning the multipliers defining N3, we assume that (Q¢+Q,+Q,)n(§,n,0)=0
and
||nl€,k}1 ,k:g ,k‘g HSOC < 2min(k,k1,k2,k3)/223 max(k,kl ,kz,kg,o)

||D$’Unk’k1’k2’k3;l (= 5‘04 glalmax(|kil;|k2|,|ksl,[U) 9 (7/2) m‘ﬂ“‘(“ﬁ|:V€2|7|/€3\)7 (7.12)

a, k,ki,ka,k: a|+7/2) max(|k|,|k1],|k2]|,|k
||D5n 1,k2 3||L°°§\a|2(‘ [+7/2) (1%l k] 2||3\)’

for any k, k1, ko, k3, l€Z and ne{n,,g:p,ve{+,-}}, where

nFkEoks (& o) =n(€,m,0) 0k (€)ers (E—0) Pk, (N—0) iy (0),

nfFrk Rt (e o) = (€, 1, 0)pk(€)r (E=1) Pk, (11— 0) ks (0)pu (1)
Our main result is the following.

PROPOSITION 7.1. Assume that U is a solution of the equation
(Or+iMNU = Na+N3+N>y, (7.13)

on some time interval [0,T], T>1, with initial data Uy. Define, as before, V(t)=e'**U(t)
and Vo=Uy. With § as in Definition 2.5, assume that

||Z/{0 N1=N3+||VOHZ<50 <1 (714)

HHNo NH,
and

(14+4) =" e (t)

o s +IV Oz <er <1,

. (7.15)
2
(L) INZa ()] vy - rva 0+ (1+D) 0 [ N4 (1|2 < e,

for all t€[0,T]. Moreover, assume that the non-linearities No and N3 satisfy (7.2)—(7.3)
and (7.11)—~(7.12). Then, for any t€[0,T],

IV(#)llz Seotel. (7.16)

We will show in §C.2 below how to use this proposition and a suitable expansion of
the Dirichlet—Neumann operator to complete the proof of Proposition 2.3.
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7.2. Some lemmas

In this subsection we collect several important lemmas which are used often in the proofs

in the next two sections. Let ®=®,,,,, be as in (2.13).

7.2.1. Integration by parts

In this subsection we state two lemmas that are used in the paper in integration-by-part
arguments. We start with an oscillatory integral estimate. See [42, Lemma 5.4] for the

proof of (i), and the proof of (ii) is similar.

LeEMMA 7.2. (i) Assume that 0<e<1/e<K, N>1 is an integer, and f,geC (R?).

Then,
/ B g dx
R2

provided that f is real-valued,

<n <Ke>-N( ) aa'angu), (7.17)

la|<N

Ve = Lauppg,  and  ||DEf-Leuppgllne Snet ™1, 2<|a| < N+1. (7.18)

(i) Similarly, if 0<o<1/o<K, then

/2 Bl gda
R

provided that f is real-valued,

<y (KmN( 3 gmnﬂmgnu), (7.19)

m<N

[Qf] = 1suppg, and ||me~lsuppg||Loo§NQ17m, 2<m<N+1. (7.20)

We will need another result about integration by parts using the vector field 2. This
lemma is more subtle. It is needed many times in the next two sections to localize and
then estimate bilinear expressions. The point is to be able to take advantage of the fact
that our profiles are “almost radial” (due to the bootstrap assumption involving many
copies of 2), and prove that for such functions one has better localization properties than

for general functions.

LEMMA 7.3. Assume that N>100, m=>0, p, k, ki, ko€Z,
27kt < 92m/5 - gmax(kkik:) < 7 < U2 L 2M/10 gnd  UZ423IR1/2 L optm/2, (7.21)

For some A>max(1,27%1), assume that

sup  ([|Q%|l 2+ Q% f||r2)+ sup AT D f|| 2 <1,
0<a<100 || <N (7.22)
sup sup (272l Dam(&,m)| < 1.
&m lal<N
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Fiz €€R? and let, for te[2m—1,2m+1],
L(f.9) ::/w P EN (€, 7)oy (2 P(E, 1)) or(E) s (E=)prs (n).f (E=n)g(n) dn.
If 22 <U2IF1/24100 4ng AL2™U 2, then
L,(f,9) Sy (27Fm) " NUPN 2724 A9V o1, (7.23)

In addition, assuming that (1+%5)u2—m, the same bound holds when I, is replaced by

Tp1.9)5= [ €D @l mymie, my (2,9(6m)
X&) Pr, (=) pry (1) fF(E—=m)g(n) dn.

A slightly simpler version of this integration by parts lemma was used recently in
[30]. The main interest of this lemma is that we have essentially no assumption on g and

very mild assumptions on f.
Proof of Lemma 7.3. We decompose first
J=Remiof +I—=Rgmyolf and  g=Rem109+ [ —R<m/10l9,

where the operators R¢;, are defined in polar coordinates by

(R<ph)(rcosf,rsinf) ::Z o<r(n)hn(r)e™® if  h(rcos6,rsind):= Z R ()™
nez neL
(7.24)

Since Q) corresponds to d/df in polar coordinates, using (7.22) we have,
I =R ol fllz + 11T =Rmrolglle 271
Therefore, using the Holder inequality,
1o ((T=R<m i), )+ o (Remyrof 1= Rmyrolg)| S 2710
It remains to prove a similar inequality for I,,:=1,(f1,¢1), where
J1 =0k, —20+2 R<myiof  and g1 =@r, -2 ky+2) R<m/109-
It follows from (7.22) and the definitions that

199g1]l2 Sa2°™/1 and QD fil 12 Sa 2410 A1), (7.25)
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for any a>0 and |o|<N. Integration by parts gives

I, = C%(’f)/

i Genieng, (m(ﬁ, 1)@k (E—1)Prs (1) o0 (2, (€)1 (5_77)91(77)) dn.

thq)(§7 7’)

Iterating N times, we obtain an integrand made of a linear combination of terms like

. 1Y
ezt¢(§,n)¢k(§)<w) 0t (m (&, mr (E=1)pr, (1))
Qe Qe

x Q2 f1(§—=mn)- Q2 g1 (n) -t 0p (2 ®(E,m))- SR

where ). a;=N. The desired bound follows from the pointwise bounds

Q2 {m (&, m) o, (E—n)pr, (M)} S 27m/2,

a+lg ) P (7.26)
a aoam
|Qn¢p(9n¢(f,ﬁ))|+‘m‘§(] 2 ;
which hold in the support of the integral, and the L? bounds
19591 (n)| L2 2974,
! (7.27)

1928 £1(E =)@ () 1rs —2.k0 42 (M) P<pr2 (2@ (&, )| 2 STH(2™/% 4 A27)".
The first bound in (7.26) is direct (see (7.21)). For the second bound we notice that

Quent)=—&n, QEn)=€&nt, anb(évn):M(&-nl)?
1€ =] (7.28)
1Q20(&,n)| SAIE=n)(|E—nl~2&-n*[*+|E—n|~U*).
Since X (€ —n|)~2!¥11/2 in the support of the integral, we have
fe—nl 2l marahmhl2

The second bound in (7.26) follows, once we recall the assumptions in (7.21).
We now turn to the proof of (7.27). The first bound follows from the construction
of g1. For the second bound, if 2¢ >2lk1l/2+min(k.k2) “then we have the simple bound

1925 £1.(6 =) (€) Pk —2 021 (M) | 3 S (A2PERD) o 10)a,

which suffices. On the other hand, if 2P < 2/Fil/2+min(k:k2) “then we may assume that
€=(s,0), with s~2*. The identities (7.28) show that ¢<p,+2(Q,®(£,7))#£0 only if

gt <2t bal,
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which gives
|,r]2| < 2p+302k1*\k1|/22*k'

Therefore |nz|<2%1, so we may assume that |n; —s|~2k1.

‘We now write

—Qp f1(E—n) = (mO2fi—n201 f1)(E—n) =

s (Qf1)(E=n)— “ 2 (01 f1)(E—n).

By iterating this identity, we see that Q‘}]fl (§—n) can be written as a sum of terms of

ctdie lb|—d
ren() (S2) wrene-n.

where |b|+c+d+e<a, |b,¢,d,e€Z,, |b|>d, and P(s,n) is a polynomial of degree at most

the form

a in s and at most a in (71,72). The second bound in (7.27) follows using the bounds on
f1 in (7.25) and the bounds proved earlier: |sn,|<2P2F1 = 1F11/2 and |, —s|~2"1.

The last claim follows using formula (7.30), as in Lemma 7.4 below. O

7.2.2. Localization in modulation
Our lemma in this subsection shows that localization with respect to the phase is often
a bounded operation.
LEMMA 7.4. Let s€[2™—1,2m%1 m>0, and —p<m—26°m. Let =, be as in
(2.13) and assume that 1=1/q+1/r and x is a Schwartz function. Then, if ||m|s=<1,
ocion® [ e mmie i mic-natmar

R2

Lz (7.29)

S osup e R p g e TN gl e 2710 e g 2
lo|<2-pt+52m

where the constant in the inequality only depends on the function x.

Proof. We may assume that m>10 and use the Fourier transform to write
X2 e ) = [ PR g) do. (7.30)
R
The left-hand side of (7.29) is dominated by

do.
LE

c / () Hwom RO 6, ) F (€ n)g () dy

Using (A.2), the contribution of the integral over |o|<2%°™ is dominated by the first
term in the right-hand side of (7.29). The contribution of the integral over |o|>25"™ is
arbitrarily small and is dominated by the second term in the right-hand side of (7.29). O
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7.2.3. Linear estimates

We first note the straightforward estimates
1P |22 S min(2 =20, 2739 || ]| 7, yn - for N >0. (7.31)

We now prove several linear estimates for functions in 73 ﬂHg . As in Lemma 7.3, it
is important to take advantage of the fact that our functions are “almost radial”. The
bounds we prove here are much stronger than the bounds one would normally expect for
general functions with the same localization properties, and this is important in the next

two sections.
LEMMA 7.5. Assume that N>10 and
£l +sup [[Q“ Py fllr> <1. (7.32)
keZ
a<N

Let §':=506+1/2N. For any (k,7)€J and ne{0, ..., j+1} let (recall the notation (2.9))
wi=P : d f; = 72190 (1¢| ) 7.33
fid=P_ok421Qjrf and  fien(€):=0 7 (27 (1€l =) Sk (E)- (7.33)

For any & €R?\{0} and »,0€[0,0) let R(Eo; 5, 0) denote the rectangle

(£—£0)-&o (£—¢&0)-&y

—————1<p and ’

€0l €0l

(i) Then, for any (k,j)€J, n€l0,j+1], and s, 0€(0,00) satisfying »+o<28~10,

R(§o; 7, 0) = {5 eR?: < x}. (7.34)

Fo(rf ‘ < 9(1/2-495)n—(1-8")j
Hesgsqm,k, o]l ) D ; (7.35)
/R 3 (1R 10, (€) dE S 562774072749 min(1, 2" 0274 1/2, (7.36)
. 2(3+(1/2N))no—(1/2=6")(G—n)  4f |k <10
ipallie {2 o ¥ R0, (7.37)
" 20"k —(1/2=87)(j+k) if |k| > 10,
and
X 918lig(6+1/2N)mg—(1/2=8)G=n) ;¢ k| < 10
1D% finllm Sio1{ Sroms . IR0 (7.38)
" 21Blig=8"kg—(1/2=6")(j+k) if |k| > 10.
(i) (Dispersive bounds) If m=>0 and |t|€[2™—1,2™F1], then
le™ " £ kmll oo SN fjnllpr S 227915009 —400m, (7.39)
e Aol e S 23R/207mAB005 k] > 10, 7.40
VLT ~
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Recall the operators A, , defined in (2.17). If j<(1—6%)m+1|k| and |k|+D<im, then
we have the more precise bounds

2—m+252m2—(j—n)(1/2—5/)2n(5+1/2N)7 lf n>1,

—itA
I Ao sl {5 iasy-a/2-95 gu—o.

Moreover, for 1>1,

9=m+28%mod’jom/2=j/2-1/2=max(G.D/2  if 2]y max(j,1) > m,
9-m+202mad'jo(l—i)/2, if 2l+max(j,1) <m.
(7.42)

lle™ ™ Ay vy fimolle < {

In particular, if j<(1—6%)m+3|k| and |k|+D<im, then
”efitAAgO ot Lo < 27m+252m2k2j(6+1/2N)’

; 2 7 .
Z ”e_ZtAAl,'\/ofj,kHLoo 5 2—m+26 m26 ]2(77’7,—3])/6. (743)

1>1
For all k€Z we have the bounds

”efitAAgO,’mPkf”Loo 5 (2k/2+22k)27m(2516m+2m(25+1/2N))7

4 ) (7.44)
e 8 Asy o Prf|| o S 270m/0F207m,
Proof. (i) The hypothesis gives
1Fieinll e S 207274900 =029007and QN £ knllze SIQY Pefllre S1. (7.45)
The bounds (7.35) follow using the general interpolation inequality
|sup O, ST 2RI+ LN QN R, (7.46)

for any he L?(R?) and L>1, which easily follows using the operators Ry, defined in
(7.24).
Inequality (7.36) follows from (7.35). Indeed, the left-hand side is dominated by
C(27%) sup / |fj’k’n(7"6>|172(§0;%79)(Te)?"dT
fest JR
S SUP [l f5n (r8) 2 ar) (522 7H)(2" min(g, 2477)) 2,

which gives the desired result.
We now consider (7.37). For any fixed §€S! we have

15O [Loe S 27720 F e (rO) | 22 (ary +277 210 f ) (10) | 2 ar)
5 2j/227k/2 ”fjJCm (Te) ”L2 (rdr),
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using the support property of @Q;if in the physical space. The desired bound follows
using (7.35) and the observation that fj7k7n:0 unless n=0 or k€[—10,10]. The bound
(7.38) also follows since differentiation in the Fourier space essentially corresponds to
multiplication by factors of 27, due to space localization.

(ii) The bound (7.39) follows directly from Hausdorff-Young and (7.45). To prove
(7.40), if |k|>10 then the standard dispersion estimate

/2 e~ IAED o (£)eT€ de| < 22 (14 [¢[2kHHI/2) 1 (7.47)
R
gives
Hefimf, el < A”Jf, el < L}’)Oéj (7.48)
7,k,n ~ 1—|—|t|2k/2 VLN O ~ 1—|—|t‘2k/2 . .

The bound (7.40) follows (in case m<10 and k>0, one can use (7.39)).

We now prove (7.41). The operator Ao, is important here, because the function
A has an inflection point at 7o; see (10.3). Using Lemma 7.2 (i) and the observation that
[(VA)(&)|=2FI/2 if |¢|~2F it is easy to see that

(€7 Ao, fiein) (@) S 2710 unless | 2 HFIZ,

Also, letting f; ;. :=Rm/s5fjkn (see (7.24)), we have || fjx.n—fj . nllz2 <2-mN/5 and
thus
HeiitAAéoryo(fj,k,n*f]{,k,n)”L"o ,S ”fj»kv”ifjak,n”Ll 5 272m2k‘ (749)

On the other hand, if |z|~2"*I¥I/2 then, using again Lemma 7.2 and (7.38),

(€™ A<00 f k.0 (@)

' o (7.50)
— C’/}R2 e“l’(@cp(%;1Vg‘1’)90(%9_1ng1)f},k,n(€)ga>_100(|g|f%) dg+0(2710m)y,

where

U:=—tA(§)+z-&,
s = 95 m (M /202 o7y (7.51)

sy = 252m2(m+k+|k|/2)/2_

We notice that the support of the integral in (7.50) is contained in a 3¢ x o rectangle
in the direction of the vector x, where

My pA]

< <
OR SmAlkl/2—k"  Z = omtlk2

and »<p.
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This is because the function X\’ does not vanish in the support of the integral, and so
N'(|€])~2!*/2=%  Therefore, we can estimate the contribution of the integral in (7.50)
using either (7.36) or (7.37). More precisely, if j<3(m+21|k|—k), then we use (7.37),
while if j>1(m+21|k|—k), then we use (7.36) (and estimate min(1,2"p27%)<2"027);
in both cases the desired estimate follows.

We now prove (7.42). We may assume that |k|<10 and m>D. As before, we may
assume that |z|~2™ and replace fj 0 by fj o Asin (7.50), we have

(e Al fim0) (@)

=C - ei‘I’(E)@(Z—m/Z—(s?ng\p)fAj’.’k’o(g)gp_l_loo(‘ﬂ_,YO) df—|—0(2_2m)7

(7.52)

where U is as in (7.51). The support of the integral above is contained in a s X g rectangle

in the direction of the vector z, where 0<27! and z§2’m/2+52m. Since

1] 0(€)] S 279/2+0

in this rectangle (see (7.37)), the bound in the first line of (7.42) follows if [>j. On the
other hand, if I<j then we use (7.36) to show that the absolute value of the integral in
(7.52) is dominated by 027305 3691/2 which gives again the bound in the first line of
(7.42).

It remains to prove the stronger bound in the second line of (7.42) in the case
21+ max(j,1)<m. We notice that \’(|¢])~27! in the support of the integral. Assume
that z=(x1,0), with 212", and notice that we can insert an additional cutoff function

of the form
ol (w1 —tN (161 sem ()], where 2, =207 (20m=D/2 .93 4 91),

in the integral in (7.52), at the expense of an acceptable error. This can be verified using
Lemma 7.2 (i). The support of the integral is then contained in a X g rectangle in the
direction of the vector x, where 0<,27™2! and x§2*m/2+52m. The desired estimate
then follows as before, using the L*™ bound (7.37) if 2j<m—I and the integral bound
(7.36) if 2j>m—1.

The bounds in (7.43) follow from (7.41) and (7.42) by summation over n and I,
respectively. Finally, the bounds in (7.44) follow by summation (use (7.39) if j > (1—46%)m
or m<4D, use (7.40) if j<(1—6%)m and |k|>10, and use (7.43) if j<(1—-6?)m and
|k <10). O

Remark 7.6. We notice that we also have the bound (with no loss of 2252’”)

€™ Ao o frmollpoe S 27 M2k~ (1/2=0"=0) (7.53)
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provided that j<(1—6%)m+1i|k| and |k|+D<im. Indeed, this follows from (7.41) if

j}l—lom. On the other hand, if j< %m, then we can decompose (compare with (7.50)),

(67" Acoo fik0) (@) = Z ¢ / e pl02) (51T W) £ 4 0(€) 05— 100(I€|—70) dE,

p>0 R

where s¢:=2(mFIkl/2=k)/2 The contribution of p=0 is estimated as before, using (7.37),
while for p>1 we can first integrate by parts at most three times, and then estimate the

integral in the same way.

8. Dispersive analysis II: The function 9,V

In this section we prove several lemmas describing the function 9;). These lemmas rely
on the Duhamel formula (7.8),

QLOV)(E, 5) = MOQLN, (€, 5) +eMOQINS (€, 5) +e*MOQENS4 (€,5),  (8.1)
where
e MOQING (€, 5)

= > X /RQ et S, (€ 0) (A V) (€=, $)(QV,) (0, 5) d

w,ve{+,-} a1taz=a

(8.2)

and

e MOEN;(E, )
= Z Z / eis<1>+,l,,,ﬁ (g’n’a)nuuﬁ (57 m, o’) (83)
R2 xR2

w,v,BE{+,~} a1taztaz=a
X(QV,) (6=, 8)(27V,) (n—0,5)(2* V) (0, 5) dn dor

Recall also the assumptions on the non-linearity N>4 and the profile V (see (7.15)),

VO o <1007, V@)l <er, o
||N>4(t) HHNO*NSOHSII S 5%(14’”72’
and the symbol-type bounds (7.11) on the multipliers m,,,. Given ®=®,,, as in (2.13),
let
H= E/u/ (57 77) = (an)o'p,u) (£7 77) = (VA/J«) (5—77) - (VAV)(U)’ E: RQ X R2—> RQ’
AL (1€=nl) (85)
0= Gu(fv 77) = (an>alw)(£7 77) = W(f'nﬂ, 0:R?xR*— R.

In this section we prove three lemmas describing the function 9;V.
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LEMMA 8.1. (i) Assume (8.1)~(8.4), m>0, s€[2m—1,2mH] keZ, and oe{+,-}.
Then,

_ 2
H(atva)(s)”HNU—NgmHgl 55%2 5m/6+66 m; (86)
sup e~ 8 P, D*Q(9,V,)(5)|| oo S £2275m/3+66°m (8.7)
a<N1/2+20
2a+|a|<N1+Ny

(ii) In addition, if aé%Nl +20 and 2a+|a|< N1+ Ny, then we may decompose

Apwov)-d Y Y AT ednme. )
artaz=a [(k1,j1),(k2,J2)]€Xm k
a1tas=a
wre{+,—}
where
| PLES(s) g2 S273m/2H50m, (8.9)

Moreover, with m ., (§,1):=m,,(§,n) and m_,, (&, n):=m_ (=, —n), we have

~

F{Apoaaa2 3(¢ s) = /Rz e EMmy (& n)ek () L 4 (E=n,8) [V 1, (n,5) dn, (8.10)
where
fjﬂl,kl :El_lp[kl—Q,kl-i-Q]lekl DalQalVﬂ and fjl;,kz :gl_lp[k2—27k2+2]QjékzDazQanl/'

Let Nf=N1—N4=1/6. The sets X, and the functions Azlk‘f”jlai;‘; have the following

properties:
(1) Xm =9, unless m>D?, ke[_%m’ m/N6]7 and

Xm,k - {[(k17j1)7 (kQ,jZ)] EITXT: klv ko € [7%mam/N(/J]a ma'X(jlaj2) < Qm} (811)

(2) If [(k1, j1), (K2, j2)| € Xm i and min(ky, ko) <—2m/N{, then

max(ji, j2) < (1—6%)m—|k|, max(|ki—k|, [k2—k|) <100, p=v, (8.12)
and
al,0;a2,0 —m Zm
AR, ()] e S 222 mresm, (8.13)

(3) If [(k17j1)7 (kz,jg)} GXm’}C, min(kl, k2)>—5m/N6, kémin(kzl, k‘g)—QOO, then

max(ji, j2) < (1—-6%)m—|k|, max(|ki|, |k2]) <10, p=-v, (8.14)
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and

| Age1ea02 (s)] o S 2R a0, (8.15)

(4) If [(k1, j1), (k2,j2)] € Xm k. and min(k, k1, ko) >—6m /N, then

either 71 < %m or k1| <10, (8.16)
either jo<35m  or |ko| <10, (8.17)

and
min(j1, j2) < (1—6%)m. (8.18)

Moreover,
ay,o1;a2,0 —m-44dm

Ao (s)ll e S 227 mHaom, (8.19)

and
if max(j1,ja2) = (1=6%)ym—|k|, then |[AQ}"0 (s)| L2 < g—dm/3+40m, (8.20)

(iii) As a consequence of (8.9), (8.13), (8.15), and (8.19), if
a<3N14+20 and 2a+|a] < Ni+Ny,
then we have the L? bound

| Pe DYQ% (8, V)| 12 S e2[2ko—m+50m 4 9=3m/2+50m] (8.21)

Proof. (i) We first consider the quadratic part of the non-linearity. Let I7#¥ denote
the bilinear operator defined by

FUP O [ e Omen et an (5:22)

Hmk:,kl,k:gHSoo < 2k:2min(k:1,kg)/27 ||ngk’k1’k2||Loo S\Od 2(\a|+3/2) max(\k1|,|k2\)7

where, for simplicity of notation, m=m,,,. For simplicity, we often write ®, =, and ©
instead of ®,,,,, .., and O, in the rest of this proof.

We define the operators P} for k€Z, by P :=P; for k>1 and Py :=Pgo. In view
of Lemma A.1 (ii), (8.4), and (7.44), for any k>0 we have

1B L7 Vs Vo) (8) o

SoWom Nk R T 2k M 2 PEV(s) 2 le N P V()
0<k1 <k (8'23)
ko>k—10

2
5 8%27k275m/6+65 m

)
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which is consistent with (8.6). Similarly,
||P]:IJMV[QQZVH,Qasvy](S)HL’z 52—k5%2—5m/6+662m, as+as <N1, (824)

by placing the factor with less than %Nl Q-derivatives in L™, and the other factor in L2.

Finally, using L>° estimates on both factors,

g29-5m/3+68%m if k<20,

£294kg—11m/64+526m i | > 90,
(8.25)

provided that az+as=a and as+as=a (see also (8.26) below). The conclusions in part

||e—isA(, PrI7M[DY2Q%2 Y, DQ®3Y,|(s)| e S {

(i) follow for the quadratic components.

The conclusions for the cubic components follow by the same argument, using the
assumption (7.12) instead of (7.11), and the formula (8.3). The contributions of the
higher-order non-linearity N>, are estimated using directly the bootstrap hypothesis
(8.4).

(ii) We assume that s is fixed and, for simplicity, drop it from the notation. In view of
(8.4) and using interpolation, the functions f"::sl_lDO‘ZQ‘ZZV# and f¥:=e;1D*Q®Y,
satisfy

m , v , < 5%m
17 ”HNémZmHgl +If HHN()mZmHgl S22 (8.26)
where (compare with the notation in Theorem 1.1)
Ni—Ngs 1 No— N3 1
N .= = — d N =—T"2_N,="=. 8.27
L 2 9 HE o 2 175 (8.27)

In particular, the dispersive bounds (7.39)—(7.44) hold with N=N{=1/24.
The contributions of the higher-order non-linearities N3 and N4 can all be esti-
mated as part of the error term P, E%%, so we focus on the quadratic non-linearity N>.

Notice that

a1,q1;a2,002 ouY ( £H v
kiki1,d15k2,52 =Bl ( Ji,k1? J27k2)'

Proof of property (1). In view of Lemma A.1 and (7.43), we have the general bound

ai,o;a2,00 min —5m Zm . — —9d) max(j1,J — N} max
ATz, | g 2b i) /2y =m/6+35% i, (=(1/20) man ), = NG (i b))
This bound suffices to prove the claims in (1). Indeed, if k>m/N] or if k<—3m+D?,
then the sum of all the terms can be bounded as in (8.9). Similarly, if k€[—3m+
D?,m/Nj] then the sums of the L? norms corresponding to max(ki,kz)>m/N{, or
max(j1, jo) >2m, or min(k1, k2) <—3m+D?, are all bounded by 273™/2 as desired. [
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Proof of property (2). Assume now that

2m

min(kl,kg)g—ﬁ and jo =max(j1,j2) = (1— 52) —|k|.
0

Then, using the L? x L™ estimate as before,

||PkIU‘Lw[ (. A<O -“ f]z k2]||L2 < 2k+min(k1,k2)/2275m/6+562m27j2(17506) S 273m/2'

Moreover, we notice that, if A>1,, f7, ;, is non-trivial, then |k2| <10 and k3 <—2m/N{,

therefore

IBIT [f2 L Astoy S5 gyl e S 25 /297 m 80P mg=5a(1/2-0) < 9=dm/2+35m
Ji,k1? ’ 2,R2 ~ ~

if j1<(1—62)m, using (7.41) if ky >—3m and (7.40) if k;<—3m. On the other hand, if
j1=(1—6%)m, then we use again the L? x L> estimate (placing fj“hlcl in L?) to conclude
that

BT 2 o A Tl S 25451/ 29 0+ 5085 gmms26m < g=im/2
The last three bounds show that

AR5 e S 2752830 if max(ji, jo) > (1—6%)m—|k|. (8.28)

Assume now that

2
k‘l:min(kl,kzg)g—% and  max(ji,j2) < (1—6%)m—|k|.
0

If k> k1 420, then [V, ®(&,1)| 22/¥1172 and so || A0 || 2 S273™ by Lemma 7.2 (i).

On the other hand, if k, ko <k, 430 then, using again the L? x L> argument as before,

| PeIom [f2 2 S 2k+hag-m+ssim, (8.29)

i o
Ji,k12J g2,k

The L? bound in (8.9) follows if k:—i—k;l\—%m. On the other hand, if k‘—&—k‘l/—fm and
max(|k1—k|, |ka—k|) >100 or p=-v,

then |V, ®(&, n)| 22k ~max(kik2) in the support of the integral, in view of (10.18). There-

fore, || Apten s e <273™ in view of Lemma 7.2 (i). The inequalities in (8.12) follow.

The bound (8.13) then follows from (8.29). O
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Proof of property (3). Assume first that

5m

min(kl, k'Q) 2 7?’
0

k <min(ky, kp)—200, max(j,j2) = (1—6%)m—|k|—|ka|. (8.30)

We may assume that j,>7j;. Using the L? x L estimate and Lemma 7.5 (ii) as before,

j k4k1/260—5m/6+552meo—jz(1—508 —3m/2
IPITff o AL Lol e S 2P /29 7om 0% mg (17000 g 9 =om/

if no<D. On the other hand, if ny€[D, js|, then

Pklal“’[ K A(]2) v ] = PkIa-’u'l/[A>1,,\/1 # A(j2) v ]

Ji,k1) “ina,yid ga ke Ji,k1? “ine, 1 j2,ke
If j; <(1—6%)m, then we estimate

j ko—m+56m+26mo—j2(1/2—5
PRI (A1, 1, s AT S5, | S 22700 20mg=3a(1/220)

< 2—3m/2+35m+852m'

Finally, if j >j; > (1—62)m, then we use Schur’s lemma in the Fourier space and estimate

||PkIUHV[A(j1) g Al2) v |2

n1,71Y j1,k1 2,y g2,k
oo ) . .
§2 2 max(nq nz)/2||A?(1J11,)’Y1 jy;,k1||L2 ||A£i7227)')’1 ]1/27@”[12
< 2k2262m2— max(n1,n2)/22—j1(1—505)2(1/2—495)711 2—j2(1—506)2(1/2—496)n2 (831)
< 2262m2min(n1,n2)/22—j1(1—506)2—496(n1+n2)2—j2(1—506)

< 2262m27(27262)(17505)m2(1/27986)m

for any ny €[1, j1 +1] and na€[1, j2+1]. Therefore, if (8.30) holds, then

a1,01;a2,Q — S
|Agperienas ||, S 2m3m/zHaom, (8.32)
Assume now that
5
min(ky, ko) > — ok <min(ky, k2)—200, max(jr,j2) < (1—62)m—|k|—|ka|. (8.33)
0

If, in addition, max(|k1|, |k2|) =11 or u=wv, then |V, ®(£,n)|>2*~*2 in the support of the
integral. Indeed, this is a consequence of (10.18) if k< —100 and it follows easily from

formula (10.22) if k>—100. Therefore, [|Ap;*1%5"2 || 12 $27%, using Lemma 7.2 (i). As
Aoe2:92 - can be absorbed into the error term Py E%*,

kik1,j15k2,52
unless all the inequalities in (8.14) hold.

a consequence, the functions
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Assume now that (8.14) holds and we are looking to prove (8.15). It suffices to prove
that
PRI [As 1 mo 12 s Astiyo Fh k)02 S 25277440, (8.34)

after using (7.41) and the L?x L> argument. We may assume that max(jl,jg)gém;
otherwise, (8.34) follows from the L? x L° estimate. Using (7.37) and the more precise
bound (7.42), we get

[Aprohllzz S 20°m=#/2  and le™ " Ap bl L < g~ t3stm min(27/2,2m/27F),
where R€{f}, k1> 9js. ko } and p>1. Therefore, using Lemma A.1,

||Pklau1/ [A ]HL2 5 2k2—m+562m2— max(p1 ,pg)/22min(p1,p2)/2.

P1,70 ju;,kl ’ AP2;’YO ijz,k?Q
The desired bound (8.34) follows, using also the simple estimate

1P I [Aps o £, e Apa o o a2 S k920 mo=(P14p2)/2,
This completes the proof of (8.15). O

Proof of property (4). The same argument as in the proof of (8.32), using just L? x
L™ estimates, shows that ||Af},%192:%2 ||, <9=3m/2+40m if either (8.16) or (8.18) do not

kik1,j15k2,52
hold. The bounds (8.20) follow in the same way. The same argument as in the proof of
(8.34), together with L2 x L® estimates using (7.43) and (7.39), gives (8.19). O
The proof of Lemma 8.1 is completed. O

In our second lemma we give a more precise description of the basic functions

AR, (s) in case min(k, ki, k2) > —6m/Ng.

LEMMA 8.2. Assume that [(k1,7j1), (k2,72)]€ Xm.x and k, ki, ke €[—6m/N}, m/N{j]
(as in Lemma 8.1 (ii) (4)), and recall the functions A7 %2 (s) defined in (8.10).

kiky1,j13k2,52
(i) We can decompose
3 3
ai,3az,02 a1,a1;a2,000;5(1] _Z 4]
Ak;kbjl;kz,jz - Ak;kl,jl;k2,j2 - G", (835)
i=1 im1

FALLIAANE = [ D maue maen i

- (8.36)
X [ E=m,8)f1 1, (0, 5) dn,

where X' are defined as

XU (& m) = (2" ®(£,m))p (25 V@ (€, 1)) 1[0 5m 6] (max (1, j2)),
P (&, n) = =1 (21D (€, 1)) (22, B (€, 7)),
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The functions Azlk(fljfi:;z[l] (s) are non-trivial only when max(|kl,|k1|, |kz2|) <10. More-
over
”G[l] (8)||L2 5 2—m+46m2—(1—506) Inax(jl,jg)7 (837)
G (s)]1z2 S 22 4om, (3.39)
IG(5) | o S 27om 2 H80m, (839)
(ii) We have
1F{A<D 200 Al s, Y (5) |2 S (27 23F)27mrtdom, (8.40)
As a consequence, if k>=—6m/N|+D, then we can decompose
A<D-10,270 0[5, = hatheo, (8.41)
with
ha(s)llL2 S2752F%™and |hoo(s)l|ze S (27F +2%%)27mH150m,
(iii) If j1,j2<im+0m, then we can write
GUI(E, 5) = N2 /D) gl (¢ 5) (227 (1€] =) +AI(E, 9), (8.42)
with
||D?g[1] (S) HLOO 504 2—m+46m2\a|(m/2+46m)7
10,91 (s) ] 1= S 272+, (8.43)
1R (s) [ S 274
Proof. (i) To prove the bounds (8.37)—(8.39), we decompose
5
Appevenes SNC AL A= Pl fh k), (8.44)
i=1
with
FULLa©= [ e mnenfe-natmdn  (849)
where m=mg} , and x; are defined as
x1(6m) = 92122770, n)),
X2(6,1) 1= 921 (217 2(E,m)) (27O (€, 1)),
x3(&,m) = 90(21067”‘13(5; 77))90(2206m@(f, 77))1(5m/6,oo)(max(j17j2))a
Xa(&m) = @(21%7 (€, 1)) p(227°O(€,0)) 1 (2° ™ E(E, 1)) Lo 5m 6] (max (i, 2)),
X5 (6:m) = (20 @&, 7)) (227 O (€, m) (27 E(E, M) Lj0,5m 6] (max(j1, j2))-

(8.46)
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Notice that A,=G2, As=GM, and A+ A3+ A,=GBl. We will show first that
| Ax]| L2+ | Asl L2 + | Ag ]| L2 S 27372040, (8.47)

It follows from Lemma 7.3 and (8.16)—(8.18) that || A1]|z2 <272™, as desired. Also,

| A4l 2 <274™, as a consequence of Lemma 7.2 (i). It remains to prove that
”ABHLZ 52—3'rn/2+46m_ (848)

Assume that jo>2m (the proof of (8.48) when ji;>3m is similar). We may assume that
|ka| <10 (see (8.17)), and then |k|,|k1|€[0,100] (due to the restrictions |®(&,n)| <27 100m
and |0O(&,1)]<27299™; see also (10.6)). We first show that

v —3m/2+46
1Pk T3 (f, ys Ao fh g2 S 2720/ 2400, (8.49)
Indeed, we notice that, as a consequence of the L? x L> argument,

PRI [f: s A0 [y oz S 275772,

where 17" is defined as in (8.22). Let I!l be defined by
FUS.g1HE) = /R € TEm(g, )220 €, m) f (€= m) g (n) dn. (8.50)

Using Lemma 7.3 and (8.18), it follows that

||Pk]||[ ﬁ,klvA<0,71 gl‘;,kz]”N §2_3m/2'

The same averaging argument as in the proof of Lemma 7.4 gives (8.49).
We show now that

IPRIs[f2 s Ast £ gl S273m/2H40m, (8.51)

Recall that |ko|<10 and |kl,|k1|€[0,100]. It follows that |V, ®(&,1)|>2"7 in the sup-
port of the integral (otherwise |n| would be close to %71, as a consequence of Proposi-
tion 10.2 (iii), which is not the case). The bound (8.51) (in fact, rapid decay) follows
using Lemma 7.2 (i), unless

g2 = (1—-6%)m. (8.52)

Finally, assume that (8.52) holds. Notice that Pjyl3[A>1 -, j"l,kl,A%m ]’;,kQ]EO.
This is due to the fact that |A(v1) £ A(v0) £A(71E70)|21; see Lemma 10.1 (iv). Moreover,

7 2
VBT (Ao f2 s Azt f )2 S 270/ H00ms0m,
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as a consequence of the L?x L> argument and the bound (7.43). Therefore, using

Lemma 7.3,
—3m/24+306m+652
”PkIH[AQOKYof;‘Ll,klvA?L’Ylfgl‘;,kg]”LQ 52 m/2+30m+ .

The same averaging argument as in the proof of Lemma 7.4 shows that

< 9—3m/2+36m+66m
~J

b

1Pel3[A<070 f, kys Az 10 I, 1]l 2

and the desired bound (8.51) follows in this case as well. This completes the proof of
(8.48).

We now prove the bounds (8.37). We notice that || and [¢—n]| are close to 371 in
the support of the integral, due to Proposition 10.2 (iii), so

@(6):/]1{2 e *EMm (&, n)er ()X (& n)
X‘F{A21771/2fﬁ)k1}(g_n)f{A21,V1/2f]"j2,k2}(n) dn.

Then, we notice that the factor ¢(239°™V, (¢, 7)) can be removed at the expense of
negligible errors (due to Lemma 7.2 (i)). The bound follows using the L%x L° argument
and Lemma 7.4.

The bound (8.38) follows using (8.19), (8.37), and (8.47).

(ii) The plan is to localize suitably in the Fourier space, both in the radial and the

angular directions, and use (7.36) or (7.37). More precisely, let

B (5= [ EDm(Em)anl€)eler e )y (€ )

" (8.53)
X fh ke (€=M FE, g, (1) dn,

where sz and s, are to be fixed.

Let j:=max(j1, j2). If

2 _
min(kl,k2)2— n %,

Vé and j <

=220m=m/2 (we do not localize in the angular variable in this case). Notice

then we set s,
that

FLAR 2 1 €)= Bocy e, ()| S 271,

in view of Lemma 7.2(i). If ||{|—279|>27%P, then we use Proposition 10.2 (ii) and

conclude that the integration in 7 is over a ball of radius <2/¥l,.. Therefore,

| By ey (€)| S 28022 (M5 )2 1 e (17, gl

(8.54)
S (27]6 _|_23k)27m+105m.
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If
2m

min(kl, kQ) 2 7@

and j€ {Tg,mwém],
then we set xT:225m+f’m and 25 =239"=m/2_ Notice that

AL HE) = By e, (§) S 2727
in view of Lemma 7.2 (i) and Lemma 7.3. If ||¢|—2yo|>27%P, then we use Proposi-
tion 10.2 (ii) (notice that the hypothesis (10.16) holds in our case) to conclude that the
integration in 7 in the integral defining B,,, .. (£) is over an O(s X g) rectangle in the
direction of the vector &, where s:=2/F120" 5 and g:=2/*5,. Then, we use (7.36) for

the function corresponding to the larger j and (7.37) to the other function to estimate
|B%97%7‘ (E)‘ /S 2k:%27{4»515]7@496225]?225771 S (27}(} +23k)27m+106m. (855)

If
2m

min(kl, kQ) 2 7@

and j>m—10dm,

then we have two subcases: if min(j, j2) <m—100m, then we still localize in the angular

direction (with sp=230m—m/2

as before) and do not localize in the radial direction. The
same argument as above, with <229 gives the same pointwise bound (8.55). On the
other hand, if min(ji,j2)>m—10dm, then the desired conclusion follows by Holder’s
inequality. The bound (8.40) follows if min(k1, ko) >—2m/N|.

On the other hand, if min(ky, ko) <—2m/N{, then 28 ~2F1 222 (due to (8.12)) and
the bound (8.40) can be proved in a similar way. The decomposition (8.41) is a conse-
quence of (8.40) and the L? bounds (8.9).

(iii) We now prove the decomposition (8.42). With sc:=2-7/2+m+5"m o define

o~

gM(&,5): = /R2 e EMm (e, n)ep( XM (&) fL 1, (€-n. 5)
X f2 1oy (0, 8) (5 E(E, ) dn,
ht (578):/R2 e EMNm (e mor( X€ML L, (E—.9)

< JY (0, 8) 921 (2 E(E ) d,

(8.56)

where ®(£,1) =0, (§,1) — A (§)+2A,(3€). In view of Proposition 10.2 (iii) and the
definition of !, the function Gl is non-trivial only when p=v=0, and it is supported
in the set {&:[|¢]—y1|<271%™}. The conclusion [|Alt)(s)|| L~ <274™ in (8.43) follows
from Lemma 7.2 (i) and the assumption jl,jggénﬂ—ém.
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To prove the bounds on gl*l, we notice that ®'(¢,1)=2A,(3¢) —As(E—n)—A,(n)
and |n—3¢| <se (due to (10.21)). Therefore,

(€. mI S [(Ve®)(E ]S>, and [(DEP)(E )] Sl

in the support of the integral. The bounds on HDg‘g[l}(s)HLm in (8.43) follow using L™

bounds on f} , (s) and f¥

 ky(8). The bounds on 059! (s)|| L= follow in the same way,

using also the decomposition (8.41) when the s-derivative hits either ;“1 k, (8) or f;’; ko (5)
(the contribution of the L? component is estimated using Hélder’s inequality). This

completes the proof. O

Our last lemma concerning 9;V is a refinement of Lemma 8.2 (ii). It is only used in
the proof of the decomposition (5.29)—(5.30) in Lemma 5.4.

LEMMA 8.3. For s€[2™—1,2""] and ke[-10,10] we can decompose

F{PLAD 24 (D0 V5 ) (5) }HE) = 9a(§) 4900 (§) +92(), (8.57)

provided that aé%NlJrQO and 2a+|a|< N1+ Ny, where

llga |2 < g2~ 3m/2+206m

—m—4ém

2
900l L S €12 ; (8.58)
sup ||]:—1{e—i(s+g)1\agd}||Loc 55%2—16m/9—45m.
lo|<27m/9+45m

Proof. Starting from Lemma 8.1 (ii), we notice that the error term E®® can be
placed in the L? component go (due to (8.9)). It remains to decompose the functions
Ay . We may assume that we are in case (4), ki, k2€[—2m/Ng,m/Ng]. We
define the functions B,,, ,.. as in (8.53). We notice that the argument in Lemma 8.2 (ii)
already gives the desired conclusion if j=max(j1, j2) > %m—|—205m (without having to use

the function g4).

It remains to decompose the functions A<p 2+, Ay} %05, (s) when
Jj=max(j1, j2) < m+206m. (8.59)

As in (8.53), let

~ ~

B (5= [ X EDm(Em)on @y 26 )i, (€ (n) dn. (360)

where s,.:=2399"="/2 (we do not need angular localization here). In view of Lemma 7.2 (i),

|F AR (§) = B, (§)| S27*™. It remains to prove that

|7 {e*"(”g)’\"(g)@)_p (2'°1¢|—270|) B, (6) } ||Loo < 9~ 16m/9-50m (8.61)
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for any k, ji, k1, jo, k2, and ¢ fixed, [o|<27m/9+49m,
In proving (8.61), we may assume that m>D?. The condition |Z(&, n)|<2s, shows
that the variable 7 is localized to a small ball. More precisely, using Lemma 10.2, we

have
In—p(§)| S5 for some p(§) € Py (€), (8.62)

provided that }|§|—2'yo|21. The sets P, (§) are defined in (10.15) and contain two or

three points. We parameterize these points by

— S
pe(f)—w(\ﬁl)lg',

where
(I1(7"):%7"» q2(r)=piy2(r), and g3(r)=r—pia2(r),
if p=v, and
q(r)=pi1(r) and go(r)=r—pi1(r),

if y=—v. Then, we rewrite

B, (&)= Z 0o (§) = is(Au(E=pe(@)+Aw (e (D) 1, (£), (8.63)
J4
where
Ho(€) - — is(®(€,m)—®(€,pe(€)) -1g
(0= [ e 6O m(en)ou(©)o e S ) 5o
X f L E=m Y L (o223 (1 —pg(€)) d.
Clearly,
[©(&,n) = @& pe()| S In—pe(€)F and  |Ve[®(&,7) —D(&, pe(&)]| S In—pe(E)]-
Therefore,
| DY H ()] S 27700 2lBIm/24850m) i [|g]—240] 2 1. (8.65)

We can now prove (8.61). Notice that the factor e**+(&) simplifies and that the
remaining phase &—A,(§—pe(€))+AL(pe(€)) is radial. Let I'y=TI",,, be defined such
that Ty (|€]) =Au(E—pe(€))+Au(pe(€)). Standard stationary phase estimates, using also
(8.65), show that (8.61) holds provided that

IT,(r)|~1 and | (r)|~1, ifre[2720,220] and |r—2vo| >273P/2. (8.66)
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To prove (8.66), assume first that p=v. If =1, then pg(f):%é, and the desired con-
clusion is clear. If £€{2,3}, then £T'¢(r)=A(r—pi12(r)) +A(P4+2(r)). In view of Propo-
sition 10.2 (i), 7—270=272P, p,1a(r)€(0,7%—272P], and N (r—p,i2(r))=N(ps12(r)).
Therefore,

T =X (r=pss2(r)) and D7 (r)| =[N (r=pii2(r)(1=p 1o(r))].

The desired conclusions in (8.66) follow, since |1—p/, ,5(r)|~1 in the domain of r (due to

the identity A" (r—p.+2(r)) (1= 5, 5()) =N (p- +2(r))P, 1o(r).
The proof of (8.66) in the case p=—v is similar. This completes the proof of the

lemma. ]

9. Dispersive analysis III: Proof of Proposition 7.1

9.1. Quadratic interactions

In this section we prove Proposition 7.1. We start with the quadratic component in the

Duhamel formula (7.5) and show how to control its Z norm.

PROPOSITION 9.1. With the hypothesis in Proposition 7.1, for any t€[0,T] we have

sup ID*Q Wy ()| 2, Sei- (9.1)
0<a<N1 /2420
2a+|a|<N1+Ny

The rest of this section is concerned with the proof of this proposition. First notice
that

t
QZWQ (57 t) = Z Z /O/Rz 67.3<I>+;4r1’(5’77)muy (g, n) (9 2)
wve{+,—-} aitaz=a R R .
X Q1 V) (€=, 8)(Q"*V,)(n, s) dn ds.

Given t€[0,T], we fix a suitable decomposition of the function 1}y, i.e. we fix functions
40y -, qr+1: R—[0,1], |L—log,(2+1)|<2, as in (4.8). For u,ve{+,-} and me[0, L+1]
we define the operator T#" by

F{TH £, 9]}(&) :=/qu(s) /RQ s Prm Emm (&) f(E—n,5)d(n, s)dnds.  (9.3)

In view of Definition 2.5, Proposition 9.1 follows from Proposition 9.2 below.
PROPOSITION 9.2. Assume that t€[0,T] is fized and define the operators TH" as

above. If a1+as=a, aj+as=a, u,ve{+,-}, me|0,L+1], and (k,j)€T, then

S QAT [Py, D™V, Py, D%V, ||| 5, S27 e, (9.4)
k1,k2€7Z
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Assume that aq, as, b, ay, as, p, and v are fixed and let, for simplicity of notation,
fr=ert DOy, V=6 D20V, &=, moi=m,,, T,:=T. (9.5)

The bootstrap assumption (7.15) gives, for any s€[0, ],
1F# ()l g L)

We recall also the symbol-type bounds, which hold for any k, k1, k2 €7Z, || 20,

< (145). (9.6)

HNONZyNH HNo Az nHYL ~
Hmk,kl,kz ||S°° 5 2k2min(k1,k2)/2’
”Da k k1, kQHLOO <‘ | 2(\a|+3/2) max(\k:1|,|k2\) (97)

HDa k,k1,k2 ||L o 2(\a|+3/2) max(|k1],| k2], |k\)

koK1 K
where mg ™™ (€, 1) =mo (&, 1)@r (§) 0k, (§ =)@k, (0)-
We first consider a few simple cases before moving to the main analysis in the next

subsections. Recall (see (7.44)) that, for any k€Z, me{0, ..., L+ 1}, and s€ I,,,:=supp ¢,

1P ()2 1| Pef” (s)l] 2 S 27 min (20 =500, 9= Nok),

| , (9.8)
||Pk€_lsAHfu(S)||LOO +||Pke_wAVfV(S)HL°° < 23527n min(2(2_506)k, 2—5771/6)'
LEMMA 9.3. Assume that f* and f* are as in (9.5) and let (k,j)€J. Then,
2
2 1@k T P £, Peo 15, S 277, (99)
max(k1,k2)>1.01(j+m)/Nj—D?
> QT [Py ', Py £/l 5, S 2707, (9.10)
min(k1,k2)<—(j+m)/2+D?
> QT P, £, Py 113, S27°, (9-11)
ki1,ko €7
if 2k < —j—m-+496j —om,
S QuTlPu P f s, S20T ifjz20m (912)
—j<k1, k<25 /N{
Proof. Using (9.8), the left-hand side of (9.9) is dominated by
+
¢ 2 2P R sup [Py f1(9)] 22 1P (5) 2
R s€l
max(k1,k2)>1.01(m+j5)/Nj—D? §2—5m,

which is acceptable. Similarly, if k; <ks and k; <D?, then

2| PuTon[Pa, £, Pao ]| 22 S 274 25H9/2 sup || Py, f7(5) || 11| Pra £ (5)]| 2

s€l,

< 2j+m2(5/27505)k1 27(N671) max(k2,0)
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and the bound (9.10) follows by summation over min(k1, k2)<—21(j+m)+2D>.

To prove (9.11), we may assume that

j 1.01(y
< —jmtA98j—6m and —IET <k k< ROLUEM) (9.13)
2 N{
Then
1Qik T [Py [, Pry ]| 3
S 2j(17506)|‘PkTm[Pk1f#’ szfy]||L2
S /(1000 gmattmin(u k) 298 sup || Py, £ (s) | 12 || Pea £ (5) 2
s€lm
< o-8(+m)/3. ©
Summing in k; and kg as in (9.13), we obtain an acceptable contribution.
Finally, to prove (9.12), we may assume that
j=21m j—i—k)i—&-D and —j5<k; k‘géﬁ
b 10 b b N(/)?
and define
fgl‘i,kl = P[k1*27k1+2]Qj1k1 fﬂ and fjl’;,kg = P[k2*2,k2+2]Qj2k2fy' (914)

If min{jy, jo} > +55j —D then, using also (7.36),
1Tl £ 4o f2 gl S 22 tminthka)/2 sup 15 ke ()L 15, 1, ()] 22
s€lm,
<2m2k+3k1/227(175')]'17(1/275)]'22462711

and therefore

> > Qs Tonlffy 1y FokalllB, S 270

—j<k1,k2 <25 /N§ min{j1,j2}995/100—D
On the other hand, if j; <%j—D, then we rewrite
"
ijTm[fjl,kla gl‘;,kz](x)

~C@) [ante) [ ([ T O mate, i, (e-nae) - ©015)

X f¥ 1, (1, 8)dnds.

In the support of integration, we have the lower bound |V [s® (&, n)+x-&]|~|z|~27. In-
tegration by parts in £ using Lemma 7.2 yields

‘ijTm[fjﬂl,kﬂf]z,kg](m”52710]'7 (916)

which gives an acceptable contribution. This finishes the proof. O
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9.2. The main decomposition

We may assume that

' 1.01(j4 —j—m~+496j—6 D?
khkze[_ﬁm (J+m)]’ p> ZJmmAA98j —om

<21m, m>—. (9.17
> N 5 . ] m, m> (9.17)

Recall the definition (2.9). We fix I_:=|—(1—30)m|, and decompose

Tm[fa g} = Z Tm,l[fvg]v
1_<l
Tl Foal(©):= [ ans) [ el @ mimate.n)

x f(§—=n,s)g(n, s) dnds.

(9.18)

Assuming (9.17), we notice that T, ;[Pg, f*, Pk, f¥]=0 if [>10m/Nj. When I>1_, we
may integrate by parts in time to rewrite T, ;[Pg, f*, Pk, f*]:

T i [Pry [ Prooy [¥] = Am i[Pry [, Proy 7148 1[Piy Os [, Prey f*]
+iBun [ Pry f*, Pry 05[]

Al a(©:= [ an(s) [ 2 G @ (e m)mo(é.n)
X f(E=n,8)g(n, s) dnds,

BudlFal©):= [ au(s) [ =P ED21G@(E m)mo(é.n)

x f(&—n,8)g(n, s) dnds,

(9.19)

where @;(x):=2'27 (). For s fixed, let Z; denote the bilinear operator defined by

o —

lf,9)(8) = /R DTG (@ (g m))mo (&, m) f (€= m)g(n) dn. (9-20)

It is easy to see that Proposition 9.2 follows from Lemma 9.3 and Lemmas 9.4-9.8

below.

LEMMA 9.4. Assume that (9.17) holds and, in addition,
j =m+2D+ 3 max(|k|, |k1|, [k2|). (9.21)
Then, for 1_<I<10m/N{,

20303 Q. T 1 [Py f, Py 7] 12 S 2720,
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Notice that the assumptions (9.17) and j<m+2D+ 1 max(|k|, |k1], [k2|) show that

4 3.2 D?
koki ko€ |———2D, 22 and m>—. (9.22)
N 8

LEMMA 9.5. Assume that (9.22) holds and, in addition,

k|, k1], |k 3.5
j <m2p4mex( "2‘ k2D min(e k) < — N;”. (9.23)
Then, for 1_-<I1<10m/Ny,
2007500311 Q1 Ty a[Pr, £, Py f¥]| L2 S 27207
LEMMA 9.6. Assume that (9.22) holds and, in addition,
k|, k1], |k 3.5
j<mopy DXk Rl Rel) min(k, ki, ky) > — ot (9.24)
2 N
Then, for 1_<1<10m/Ny,
Qi Tt [Pry f*, Pr f )| B, +1Q ke Am i [Pey [, Py f¥) |3, S 2720
LEMMA 9.7. Assume that (9.22) holds and, in addition,
k|, k1], |k 3.5
j<mop BXURL Rl [Rol) e j k) =20 g 1> (9.25)
2 N 14
Then,
. 2
2079993 Q1 Bt [P [, Pry O f* M2 S2720.
LEMMA 9.8. Assume that (9.22) holds and, in addition,
k|, k1], |k .
i <ma 2 XKL Fal, [Fal) min(k, by ks) > — o0 and <1< (9.26)
2 N 14
Then,

1Q Tt [Pay 7, Pay f*]l| 3, S 272

We prove these lemmas in the following five subsections. Lemma 9.4 takes advantage
of the approximate finite speed of propagation. Lemma 9.5 uses the null structure at low
frequencies. Lemma 9.6 controls interactions that lead to the creation of a space-time
resonance. Lemmas 9.7 and 9.8 correspond to interactions that are particularly difficult
to control in dimension 2, and contain the main novelty of our analysis (see also [30]).
They rely on all the estimates in Lemmas 8.1 and 8.2, and on the “slow propagation of
iterated resonances” properties in Lemma 10.6.

We will use repeatedly the symbol bounds (9.7) and the main assumption (9.6).
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9.3. Approximate finite speed of propagation

In this subsection we prove Lemma 9.4. We define the functions fJ“1 g, and f . as

before (see (9.14)), and further decompose

Jji+1 J2+1

T w v v

Jikr Z fjl-,klml and fj27k2 - Z J2,k2,m2° (9'27)
n1=0 no=0

as in (7.33). If min{ji, jo} <j—0&m, then the same argument as in the proof of (9.12)
leads to rapid decay, as in (9.16). To bound the sum over min{jy, jo } >j—dm, we consider

several cases.

Case 1. Assume first that

min(k, k1, k2) < —3m. (9.28)

Then we notice that
IZAPTonal s o e S22 B s (155 1, (e 15 s (22)
< 9m926°moko—(1/2-5)(ji+j2)

Therefore, the sum over j; and jo, with min(jq,j2)>j—0m, is controlled as claimed,
provided ké—%m. On the other hand, if k1 =min(k;, kg)g—%m, then we estimate

1P T a5, ey > £ 5l 22
k+k n o
2200 sup (1774 (21, (5) ) (9.29)
< 2m2262m2k+k1/22k12—(1—506)]’12—(1/2—6)j22—4max(k2,0).
The sum over j; and jo, with min(j1, j2)=j—dm, is controlled as claimed in this case as
well.

Case 2. Assume now that

min(k, ki, k2) > —1m and 1<

5 min(k, ki, k2,0)— tm. (9.30)

1
2 5

We use Lemma 10.5: we may assume that min(k, k1, ko) +max(k, k1, k2)>—100 and es-

timate

||PkTm,l[ jlll,khnla jI;,kaQ}”Lz

< 2m2k+min(k1 ,kz)/225 max(kq,k2,0) 2l/2—n1 /2—n2/2

FU
‘Slolp | Jz:kz.mz (T@, 8)| ’ L2(r dr)) ’

X su su pit rf, s H
elP(H Gplfjl,kl,m( »8)] e rdn)
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Using (7.35) and (9.6), and summing over n; and ny, we have

2(17506)j||PkT e i ]1_/ Il <27max(k1,k2,0)2m2252m2(17505)j21/227(175’)(j1+j2)
Myl g,k J g2, ke ~ :

The sum over j; and jo, with min(jq, jo)>Jj—0m, is controlled as claimed.

Case 3. Finally, assume that

min(k, k1, k2) > —1m and 1>

2 min(k,k:l,kg,O)—

im. (9.31)

1
2
We use formula (9.19). The contribution of A,,; can be estimated as in (9.29), with 2™
replaced by 27!, and we focus on the contribution of B i[Pry f*, Pi, 0s f¥]. We decompose

0s 1" (s), according to (8.8). The contribution of Py, E%2°*2 can be estimated easily:

| PBundlf s Pea 2] 2

Samamiah A sup (] i ()11 [P 02 (s)|2)
s€lm,

(9.32)
< 2m2262m2m/57min(k,k1,kQ,O)/22k)+k2/22k1 27(1751§)j1 273m/2+55m

< 2—(1—5>15)g‘12—m/47
and the sum over j; >j—dm of
250 BBy i [ f1 s Py G2 12

is suitably bounded.
We consider now the terms A2 742 (s) in (8.8), [(k3, ja), (K4, j1)] € Xk, With
ag+as=az and ag+ag<az. In view of (8.12), (8.14), and (8.20),

JAg s (5)]]g2 S 2 im/d+iom

if
max(js, ja) > (1—6%)m—|ka| or |ko|+iD <min(|ks], |k4l).
The contributions of these terms can be estimated as in (9.32). On the other hand, to

control the contribution of QB i[f}: , , Ags ot

] when
max(jg,j4)<(1—52)m—|k2| and ‘k2|+%D>‘k3|,

we simply rewrite this in the form
~(k oL ilz-E4+sP’ Neo—1~
F@ [an) [ P [, e i@, 6 en)
R R2 R2 X R2

X0k (&) Pk, (E—mmy (§,E—mmypy (E—n,0)  (9.33)

~ ~

% (E=n—0,8)f] 4(0r5) dE da) dn ds,
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where ®'(£,71,0):=A(6)—A,(n)—Ag(E—n—0c)—A, (o). Notice that
Ve (2-€+5A(€) = sMu (1) —sAp(§—n—0) —sA, (o)) # |2| = 2. (9-34)

We can integrate by parts in € using Lemma 7.2 (i) to conclude that these are negligible

contributions, pointwise bounded by C'27°™. This completes the proof of the lemma.

9.4. The case of small frequencies
In this subsection we prove Lemma 9.5. The main point is that, if

3.5m

E:: min(k, kl, kQ) g 776,

then |®(&, )| >25/2 for any (£,7) €Dy k, ky, as a consequence of (10.6) and (9.22). There-

fore, the operators T}, ; are non-trivial only if

1>1k-D. (9.35)

(SIS

Step 1. We consider first the operators A,, ;. Since Z}—%m—ﬂ?, it suffices to prove
that
100K/ BT (1 (), 2, 4y (3)][] 22 S 2707, (9.36)

for any s€1,, and j1, ja, where Z; are the operators defined in (9.20), and fj“1 K, and f7

are as in (9.14). We may assume k; <ko and consider two cases.

Case 1. If k=k; then we estimate first the left-hand side of (9.36) by

€SN (kg2 gup e () 10wy (9) 2 +275)

i1,k
s tA2m J1,R1

S/2(17506)(mfﬁ/2)2k2662m(2ﬁ27m+506j127419'*'+278m)

)

using Lemma 7.4 and (7.40). This suffices to prove (9.36) if j; <-5m. On the other hand,
if j1>-5m, then we estimate the left-hand side of (9.36) by

C2(1—506)(m—&/2)2k+&/22—l( iggm || jﬁi,kl (S)HLz He_itA” ]27k2(s)||Lm+2_8m)
< 2(17506)(mfﬁ/2)2k2662m(27(17505)j1275m/6272k++278m)

)

using Lemma 7.4 and (7.44). This suffices to prove the desired bound (9.36).

Case 2. If k=Fk, then (9.36) follows using the L?x L estimate, as in Case 1, unless

max(|k1],|k2[) <20 and max(ji,j2) < gm. (9.37)
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On the other hand, if (9.37) holds, then it suffices to prove that, for |o|<2™ P,

2(17505)(m7k/2)27k/2||PkIO[ jﬂl,h (), fjl;,k‘z ()2 < 27362711’

(9.38)

—

Lo[f.g)(€) = /2 e HOYEN m (¢,m) f(E—n)g(n) dn.
R
Indeed, (9.36) would follow from (9.38) and the inequality {>3k—D>—2m—2D (see
(9.22)—(9.35)), using the superposition argument in Lemma 7.4. On the other hand, the
proof of (9.38) is similar to the proof of (8.15) in Lemma 8.1.

Step 2. We consider now the operators B, ;. In some cases, we prove the stronger
bound

2(1—505)(m—b/2)2m||PkIl [fjulkl (5), Pey0s ()]l 12 < 2—352m7 (9.39)
for any sel,, and j;. We consider three cases.
Case 1. If k=k,, then we use the bounds

Hpkzasfu(s)”LZ 52_m+55m(2k2 _~_2—m/2)’

. , (9.40)
He—zsAl,sz 8sfu<8) ||L°° 5 2—5m/3+66 m.

b

see (8.21) and (8.7). We also record the bound, which can be easily verified using
integration by parts and Plancherel for any ¢o€R and k'€Z,

le™ @A Py [ e e SIF~He A O ()} 11 S 14257224 o]. (9.41)
If
ki1=—jm and ji <(1—6%)m, (9.42)

then we use (7.43), (9.40), and Lemma 7.4 to estimate the left-hand side of (9.39) by
k41 /29(1-508) (m—k/2) gm
(271 sup (e CTON ()]l [|Prdof” (5)] 2 +275")

Ji,k1
lo|<2m/2
< 96kT gk1/29—405m

This suffices to prove (9.39) when (9.42) holds (recall the choice of §, Ny, and Nj in
Definition 2.5). On the other hand, if

ki>—im and j; > (1-6%)m, (9.43)
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then we use (9.41), (7.39), (9.40), and Lemma 7.4 to estimate the left-hand side of (9.39)
by
02k+k1/22(1_506)(7H_E/2)2m
(2 s e TN o (5) e 27

o] <2 1+48%m
< 910k 9—2m/3+106mo—21
S .

This suffices to prove (9.39), provided that (9.43) holds.

Finally, if kq <—im, then we use the bound

-l - —_ 2
sup n ||e ’L(é+g)A“fj}i7k1(s)||Loo 52(3/2 258)k1 9—m+506mod m
lo|<2m—

which follows from (7.39)—(7.40).Then, we estimate the left-hand side of (9.39) by

022k++k1/22(1—505)(m—5/2)2m2—12(3/2—255)k1 9=—m+516mo—m+56m < 26k+ 9108moky

The desired bound (9.39) follows, provided that k; \—im.

Case 2. If k=Fk, then (9.39) follows using L? x L™ estimates, as in Case 1, unless
max(|k1|, [k2]) < 20. (9.44)

Assuming (9.44), we notice that
sup ||e_i(S+Q)A#A<O,’Yofﬁ7kl(s)||L°° < gmmH3om i j (1—6%)m,
|Q|<2"L7D

sup ||e_l(S+Q)AMA21
lol<2m—P

(9.45)

70 jﬁ,kl (8)l[Le 527, if %m <ih < (1_52)7717

as a consequence of (7.43). Therefore, using the L?x L> estimate and (9.40), as before,
2(1=500)(m=k/Dgm || BT, [Aco o f1 1 (5), PraOs 7 (5)] [l 12 S 2730, (9.46)
if j1<(1—62)m, and
20700k | BT Azt o g (5), Peas ()22 S2750°, (9.47)

if im<j1<(1-6%)m.
On the other hand, if j; >(1—42)m, then we can use the L> bound

||e*i31\u szasfu<s) ”Loo 5 275m/3+652m
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in (9.40), together with the general bound (9.41). As in (9.27), we decompose

J1
B p
Ji,k1 T Z fj17k17n17

n1:0

and record the bound || J“l kyomy (8l 2 <2~ 1+508519n1/2-495n198%m | [ ot

X ;=2 =500)(m=k/2)gm) p, T, £ (5), Pe,ds £ (5)]|| L2

Ji.k1,ma
Using Lemma 7.4, it follows that
X S 2(17505)(m7k/2)2m

% (2k27l‘|fﬁ,k1,n1(5)||m sup ||€7i(S+Q)A”Pk28sf"(S)HL°°*2787”)

lo|<2-1+28%m

< 27k/2272m/32n1/27496n1 245m'
Using only L? bounds (see (9.40)) and Cauchy—Schwarz inequality, we also have

X S 2(1—506)(m—k/2)2m22k2—lH iz (S)HL2 ”szasfu(s)HLz g 2k2n1/2—496n1 266m.

Ji,k1,m1

Finally, using (7.36), we have

—508)(m—k/2 ko—1| 1 —496n1 675
X 20000k D gmaka =t £ ()|t (1P, ds 7 ()] 2 S 27490270,
We can combine the last three estimates (using the last one for nq > im and the first two
for ny<im) to conclude that, if j;>(1—6%)m, then

2(1=509)(m=k/Dgm|| Py T,[f1* | (s), Py £ (5)]l| 2 S 273 (9.48)

In view of (9.46)—(9.48), it remains to prove that, for j; <3m,
2
21 =00 =k /29 | BT [ A o f2 4, (5), Py s £V (8)]l] 22 S27% ™. (9.49)

To prove (9.49), we decompose Py,0sf"(s) as in (8.8). The terms that are bounded

in L? by 274m/3+49m Joad to acceptable contributions, using the L?x L argument
Q3;04,004

ks,j3,k4,54
max(j3, j4) <(1—0%)m and k3, ky€[—2m/N{,300]. For these terms, it suffices to prove

that

with Lemma 7.4 and (7.44). Tt remains to consider the terms Ajy?: (s) when

PRI [ Az 50 f2 5, (5), AR2izitnss. (s)]]| 2 S 274 (9.50)
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Notice that A2 #7044 (s) is given by an expression similar to (8.10). Therefore,

FLPT[Az150 17, 1, (), AR50 (S)1HE)
= / I € ms)pcmton (=l =70)2 7 B @ € m)en(€) (951)
X - ~
X Pk, (n)mw(&n)mum(mo)ffs,k;, (n—o, s)f;7k4(07 s) do dn,

where
®(&,m,0) =A(E)—Au(E—n)—As(n—0)—A,(0).

The main observation is that either
Vo ®(&,m,0)| = |VAL(E—n)—VAz(n—0)| 21, (9.52)
or

Vo ®(&,1,0)| = |[VAs(1—0) = VA ()| 2 1, (9.53)

in the support of the integral. Indeed, ‘|17|—70‘<2_95 in view of the cutoffs on the
variables ¢ and £—1. If |V, ®(&,7,0)| <2 P, then max(|ks|, |k4|) <300 and, using Propo-
sition 10.2 (i) (in particular (10.17)), it follows that [p—o| is close to either 1vo, or
pi-1(70) =117, or pi-1(70) —70<0.979. In these cases, the lower bound (9.52) follows.
The desired bound (9.50) then follows using Lemma 7.2 (i).

Case 3. If k=ko, then we do not prove the stronger estimate (9.39). In this case,

the desired bound follows from Lemma 9.9 below.

LEMMA 9.9. Assume that (9.22) holds and, in addition,
G <m+2D+3 max(|k|, |ki], |k2|), ke <—2D, and 27! <219 27k2/2AP (9 5q)
Then, for any j1,
2075003 Q By i [f1 ), Pry0sf*] 2 S2750. (9.55)
Proof. We record the bounds

1P, s 7 (5) g2 S 27 F00m (2k2 4. 27m/2),

sup He—i(s-i—g)/\,, Pk2asfu (3)||L°° S 2—5m/3+1052m(2k2/2+106m+1); (9.56)
ol <21 +202m

see (8.7), (8.21), and (9.41). We will prove that, for any s€Z,,,

2070 Q Tl 1y (8): PaaOs 7 (8)]ll 2 S =¥, (9:57)
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Step 1. We notice the identity

QinTilf}, k. (8): P05 f* ()] (2)
=3 (@) / 927G @ (€ ) (€ mo €, )
X J2 (€1, 5) PO, (1, ) d€ dn.

Therefore, ||QxTi[f}, 1, (5), Py 0s " (5)]]| L2 <274 using integration by parts in & and

Lemma 7.2 (i), unless
2] g maX(le -‘1-57)17 2m+max(|k|,\k1\)/2+D) (9.58)

On the other hand, assuming (9.58), L?x L bounds using Lemma 7.4, the bounds
(9.56), and Lemma 7.5 show that (9.57) holds in the following cases:

either (k1 <—=10 and j; <m—dm),

k1 <—10 and j; =m—dm),

2m),

3
10 and j; > %m)

(
or | (9.59)
or (k1>10 and j; < .
(

ky

WV

or

See the similar estimates in the proof of Lemma 9.5, in particular those in Cases 1 and 2 of
Step 2. In each case, we estimate e*i(sﬂ’)/\“]”j“h,€1 () in L>® and e~ sTAv P9, f7(s) in
L? when j; is small, and we estimate e*i(”Q)AM]"j’Lh,Cl (5) in L? and e~ "5+ P9, ¥ (s)
in L> when j; is large. We estimate the contribution of the symbol mg by 2(k+k1+k2)/2
in all cases.

It remains to prove the desired bound (9.57) when k, k; €[—20,20]. We can still
prove this, when fj’;kl(s) is replaced by ASO,Vofﬁ,kl(s)v or when j1>%m75m, or when

kggf%m+5m, using L? x L™ estimates as before.

Step 2. To deal with the remaining cases, we use the decomposition (8.8). The
contribution of the error component Py, E%>“2 can also be estimated in the same way

when jlgémfém. After these reductions, we may assume that

k ki €[-20,20], ji<im—dm, j<m+2D, ky€[—im+m,—2D],

(9.60)
9l S 2105m_~_27k2/2.
It remains to prove that, for any [(ks,j3), (K4, 54)] € Xin ks
—5008)jom 7 ,Q3} 5%2m
2P0 Q kT [ At o f1 4y ARepiancs )2 S27° (9.61)
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The L? x L* argument still works to prove (9.61) if

[Afepeiaiet, ()] g2 S 27 Tm/0T200m, (9.62)

We notice that this bound holds if max(j;;,j;;)}%m—ém. Indeed, since ko <—2D, we

have

]Dkz‘[’/ﬁV [A>17’71 f]i,k:; (s), A}L’Yof;hkél (s)]

and the bound (9.62) follows by L?x L> arguments as in the proof of Lemma 8.1.

0,

Thus, we may assume that js, j4 < %m—ém. We examine the explicit formula (9.51).
We claim that

PR As 1 0 J2 4, (8), AL (1) 271, i [ks] > 100,

?“ kasks,jsika,ga

Indeed, in this case the n derivative of the phase P is >2lk3l/2 in the support of the
integral (recall that |k1]|<20). Integration by parts in 1, using Lemma 7.2 (i), shows that
the resulting integral is negligible, as desired.

In view of Lemma 8.1 (ii) (3), it remains to prove (9.61) when, in addition to (9.60),
ks, kq € [—100,100], js3,ja <im—6m, and SB=-—7. (9.63)

We examine again formula (9.51) and notice that the (1, ) derivative of the phase ®
298 279 Therefore, we may replace fJi s

by A>,5mfji,kg7 and f . by As_5.f] 1, at the expense of negligible errors. Fi-

is 21 unless ||n—o|—7o|< and ||o|—~o|<
nally, we may assume that {>—D if uy=—, and that j<m-+ke+D if u=+ (otherwise,
the approximate-finite-speed-of-propagation argument used in the proof of (9.12) and
Lemma 9.4, which relies on integration by parts in £, gives rapid decay). Therefore, in

proving (9.61), we may assume that

9—19(1-506)j < 2m—506m(1+27€2/2+105m). (9.64)

Let s¢,:=20"m2k2/2=m/2 We now observe that, if |In—c|—=0|+]|lo]—0| <27 and
|Eﬁ7(n7o)|:‘(vaq)1/5“/)(777U)|<2}fﬂ then

llo|—v0| =251 and [[n—o|—n0| =210 (9.65)

Indeed, we may assume that o=(o1,0), n=(1n1,12), |o1—70| <279, |n|€[2k2—2, 2k=+2],
Recalling that f=—~ and using formula (10.22), the condition |Zg~(n, 0)| <2, gives

|772|

lo—n|

o1—Mm

lo—n|

N(oy)— N(lo—n])| <25, and N(lo—n]) < 2s,.
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Since kqy € [f%er(Sm, —2D] and 36, =20"m+k2/2=m/2 it follows that |no| <3¢,2P <2k2~P,
|| €[2F273 2%2F3) "and [N (01) — N (01 —m1)| <45¢.. On the other hand, if |y —o|<2F2710
and |n;|€[2%273,2k243] then [N (01)—N(01—n1)|22%2 (as M (79)=0 and X" (yp)~1),
which gives a contradiction. The claims in (9.65) follow.

We now examine formula (9.51) and recall (9.63) and (9.65). Using Lemma 7.2 (i)
and integration by parts in o, we notice that we may insert the factor ¢ (5, '3, (n,0)),
at the expense of a negligible error. It remains to prove that

20200 H] |2 S 2747, (9.66)

where, with

g1:= A)l,% fjul,kl (5)7 g3 = A[—20,20—k2],»yo f]iks (3)7 and g4:= A[—20,20—k2],»yo f‘;‘i7k4 (3)7
we have

)5 pu(6) [ | e MO M0 (€ 0)27 Dy €2 1) s (6. 1)) i,
Ga(n):= ok, (1) /R =R == o (0, 0)p (56 (0, 0))g3 (01— 0)9a(0) dor

We use now the more precise bound (7.42) to see that
o™ gg | o+l gl oo S 27T MY H2/2,
This bound is the main reason for proving (9.65). After removing the factor
0(56 ' Epy(n,0))
at the expense of a small error, and using also (A.2) and (9.41), it follows that
le™ s+ DM G| oo S (14]0]272/%)2

for any p€R. We now use the L? x L> argument, together with Lemma 7.4, to estimate

| H|lz2 < 2k2/22—l(1+2—l2k2/2)2—2m+1262m < 2—2m+1262m2k2/22—l(1+2106m+k2/2).

The desired bound (9.66) follows using also (9.64). O

9.5. The case of strongly resonant interactions I

In this subsection we prove Lemma 9.6. This is where we need the localization operators
Aﬁ{’w to control the output. It is an instantaneous estimate, in the sense that the time
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evolution will play no role. Hence, it suffices to show the following: let y€C>(R?) be

supported in [—1,1] and assume that j, I, s, and m satisfy

om 10m

—m+—<I< — and 2"t <s< MM (9.67)
2 N{
Assume that
!/ / <
||f||HNéﬁHglﬂZ1+||g||HN6ﬁHglﬂZ1 \13 (968)

and define, with x;(z)=x(2"'x),
TR = [ | ="M@ (€ m)ma(é ) F€=matn) dn
Assume also that k, k1, ko, 7, and m satisfy (9.22) and (9.24). Then,
— —582m
27227 |Q kI [Py, f, Proglllm, S27°0 ™. (9.69)
To prove (969)3 we define fj17k‘17 9ja,kas fjl,kl,nu and 9jo,ka,mzas for (klvjl)a (k27j2)€
J, n1€0,j1+1], and no €0, jo+1], as in (7.33). We will analyze several cases depending
on the relative sizes of the main parameters m, [, k, j, k1, j1, k2, and jo. In many cases,
we will prove the stronger bound
20/ 297190 =500 TTf, oy Gjarka]  p2 S 2700, (9.70)
However, in the main case (9.72), we can only prove the weaker bound

2
26m/227l Hijj[ijh s gj27k2} HBj rS 2766 . (971)

These bounds clearly suffice to prove (9.69).

Case 1. We first prove the bound (9.71) under the assumption
max(ji,j2) < 55m  and 20 <min(k, k1, ka,0)—D. (9.72)
We may assume j; <jo. With

g = 2—m/2+§2m and = 262m(2—m/2+3max(|k|,|k1\,\k2|)/4+2j2—m)7

we decompose
FI[fji k15 Gja kel = R1+R2+NR,
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where

Rl(é):/Rz ey (B(€,m))mo (€, e (56 E(E,m))(o2 1 O(E,m))
X i1k (€=1) 35 k2 (0) d,
Ro(€)s= [ ¥ (B(6 n))mo(€. mp(oes 2 m) o3 (7 O(6.m)
X firter (§=1) Gz ()
NR(E:= [ e (@l m)mo(€.n)es (5 ' Z(E )
X i1 k2 (€= 1) k2 (1) -
With 11 1=« (1_s /4ym and =05 (1_s/4)m, We Tewrite
NR(E) = C2 (VR () +ARa(6)),
NR):= [ [ DN mol mipsa e E 6 m)

X fin e (E=1)Gja 2 () dy d.

Since Y is rapidly decreasing, we have ||¢ox NRa| L~ <274, which gives an acceptable
contribution. On the other hand, in the support of the integral defining N'R1, we have
that |s+A|~2™, and integration by parts in 7 (using Lemma 7.2 (1)) gives

ok N Ry S 274

The contribution of R=R;1+Rs is only present if we have a space-time resonance.
In particular, in view of Proposition 10.2 (iii) (notice that the assumption (10.20) is
satisfied, due to (9.72)), we may assume that

—10<k, k1, k2 <10, (o, p,v) = (+,+,+), and ||¢|—7|+n—3&[ <27 (9.73)

Notice that, if R(£)#£0, then

[1E]=71| S |® (& 38)| SI1RE )| +| D& n) —® (&, 38)| S 2P+ (9.74)

Integration by parts using Lemma 7.3 shows that ||oxRz||pe <27°™/2, which gives an

acceptable contribution. To bound the contribution of R, we will show that

22271 sup | (1427 €l =) Ra (6 £ 27 (9.75)
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which is stronger than the bound we need in (9.71). Indeed, for j fixed, we estimate

sup 2(1_506)j2_n/2+495n||A'£Lj,2y1ij]:_1R1||L2

0sn<g
(1-508)j5—n/2+496n || [=5.0] (5100 ¢ _
502171};2 72 =™ (21 le] '71‘)7%1(5)”@ (9.76)
< Z 9(1-508)j9—n/2—(1/2-495) min(n,j) Hw(:noo’o] (2100‘ €] =1 DR1(§) HLW
3
n=0

and notice that (9.71) would follow from (9.75) and the assumption j<m+3D.
Recall from Lemma 7.5 and (9.73) (note that we may assume that fj, x, =fj, k1.0
and gj, k, =Gj, ks,0) that

2/27003 || 5. k[l e +201 7000 peot I fju s (O L2 ary S,
S

1/2—8")j 1-6")j (9'77)
20/2=0052 | gk (| oo +2037932 sup 195002 PO | L2 (rary S 1
e 1

We first ignore the factor x;(®(¢,7)). In view of Proposition 10.2 (ii), the 7 integration
in the definition of Ry (&) takes place essentially over a sy X s¢, box in the neighborhood
of ¢. Using (9.74) and (9.77), and estimating | fi1.k | 2o S1, we have, if ja=im,

’(1+2m“£|771})7€1(€)} < 2m(2l+xg)27j2+5’j2%6z;/2 < (Ql+%3)27j2(1/275/)2252m.
On the other hand, if j><3m, we estimate || f;, x, |1 + | fjs.5. | 2 S1 and conclude that
(1427 flel = Ra(€)| S 27 gz, S 2122,

The desired bound (9.75) follows if 52271 <272/4,

Assume now x322l2j2/4 (in particular jo > %m). In this case, the restriction

[®(&,m) <2

is stronger, and we have to use it. We decompose, with p_:=|log, (2257 1)+D],

Ri(&)= > RE(),

pElp-,0]
RAE)s= [ P (@(em)ma(g el 1Sl m)
X @(%516(57 ﬁ))fjl,kl (f—ﬂ)ﬁjz,kz (77) dn.

As in (9.74), notice that, if RY(£)#0, then [|¢|—y1|<2%2%2. The term R}~ (£) can be
bounded as before. Moreover, using formula (10.46), it is easy to see that, if £=(s,0) is
fixed, then the set of points 7 that satisfy the three restrictions

|(I)(£a77)|§2l’ |Vn¢(§777)|%2p%7w and |£77J_|§%0
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is essentially contained in a union of two s x2'27P3 1 boxes. Using (9.77), and esti-

mating Hfjl,kl || <1, we have
(127 €~ [ RE(©)| S 22 sy (g ) 12
< 23p/22—m+452m21/22j2/2+6'j2.
This suffices to prove (9.75), since 2P <1, 271/2<2™/2 and 272 <29™/10; see (9.72).
Case 2. We now assume that
21 > min(k, ky, ka,0)—D. (9.78)

In this case, we prove the stronger bound (9.70). We can still use the standard L2 x L>
argument, with Lemmas 7.4 and 7.5, to bound the contributions away from -~y. For

(9.70), it remains to prove that
21U =R PUT[ A 5 fis s A1 G ] 22 S 2707 (9.79)

The bound (9.79) follows if max(ji, j2) > +m, using the same L? x L> argument. On
the other hand, if ji, jo<im, then we use (7.37) and the more precise bound (7.42) to
see that

Apohlle S22 and  |le R Ay | e <2720 ™ min(2p/2 2 2P,
where h€{fj, k1sGja.ks }, =1, and t~2™. Therefore, using Lemma 7.4,
2 .
”PkI[Aplﬁo fjhkl ) A;Dz,’Yogjz’kz] ||L2 5 gk~ max(py,p2)/29=m+207momin(p1.p2) /2,
The desired bound (9.79) follows, using also the simple estimate

HPkI[Apl,"/ofjl,/ﬁ ) AP27’Yogj2J€2] HL2 5 2k2_(p1+p2)/2'

Case 3. Assume now that
max(j1,J2) = %m, i< min(jl,jg)Jr%m, and 2l <min(k, k1, k2,0)—D.
Using Lemma 10.5 and (7.35), we estimate

||PkI[fj17k1:'ﬂl ’ gjz,kz,nz} HL2

< 2k/22306m2l/2—n1/2—n2/2H sup |fj1,k1,n1 (M)W
9es

5D 152z (r0) |
fest

Szk/225/22—j1+5'j1 2—j2+5'j22305m, (9.80)

L2(rdr) L2(rdr)
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and the desired bound (9.70) follows.

Case 4. Finally, assume that

ja=4m, j=ji+3m, and 2l <min(k, ki, k2, 0)—D. (9.81)

In particular, j; < gm. We decompose, with sg=2"27/5,

I fiy ks Go ko) = 1) (5 k1> Do ke | LU 1 ey Do )

—

Ilf, g](€)=/]Rz e PEM (D&, 1)) o2 Qg ®(€,m)) F(E=m)g () d, (9.82)

-

IJ_[fag](g):/Rz =M (@(E ) (1= (525 Q@ (E,0)) f(E=m)3(n) dn.

Integration by parts using Lemma 7.3 shows that || F Pl [fi, k1 Gia ksl || Loe S27°™/2. In
addition, using Schur’s test and Proposition 10.4 (i), (iii),

1/2 7 N
PRIy [Fis hrs G nmalll 22 S 2290256 2 iy s oo 1195 ,mo | 22

< 29557712[777’7./527(17505)]’2 2712/2

which gives an acceptable contribution if ne<D.

It remains to estimate the contribution of Ij[fj, ks 9js,ke,n.] for na>=D. Since [n]
is close to v, and |®(&,n)| is sufficiently small (see (9.81)), it follows from (10.6) that
min(k, k1, k2) >—40; moreover, the vectors £ and n are almost aligned and |®(&,n)| is
small, so we may also assume that max(k, k1, k2) <100. Moreover, |V,®(&£,7)|21 in the
support of integration of I}[fj, ky s 9js,ka.n], in view of Proposition 10.2 (iii). Integration
by parts in 7 using Lemma 7.2 (i) then gives an acceptable contribution, unless jo>
(1—6%)m. We may also reset z9:252m’m/2, up to small errors, using Lemma 7.3.

To summarize, we may assume that

Jo=(1=6%)m, j=ji+im, k ki, ks €[—100,100], (9.83)
9.83
no =D, and }f9:252m’m/2.

We decompose, with p_:= L%ZJ,

IH [fjl,kl ’ gjz,kzynz] = Iﬁ [fjhkl ) gj27k2,n2]ﬂ
p—<p<D

€)= [ (@)oo OE el (ed(e.m)

x f(€=n)g(n) dn.
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It suffices to prove that, for any p,
2720709 QIR 5y s Gia o mall 22 S 270 (9.84)

As a consequence of Proposition 10.4 (iii), under our assumptions in (9.83) and

recalling that |V, ®(£,7)| 21 in the support of the integral,

p [ (Bt O e a1l Lo, () a0 52772
and, for any p>p_,
Sl;p/w (@& )| (525  O(E,m)0p(Ve (& 1) <2 (|1l =711) 1Dy, 1y (€5 70) dE
<98t mol=p g,
Using Schur’s test, we can then estimate, for p>p_,

— — 52 3
1P [ fa s Gasa ol 2 S 277722027 /20405 | o oo (1G5 o ma | 22

< 9—p/29lg—m+55m_
The desired bound (9.83) follows if j<m+p+4dm. On the other hand, if
j=m+p+4aom,
then we use the approximate-finite-speed-of-propagation argument to show that

||ijl\1|)[fj1,k17gjmkz,nz]”Lz 52—3m. (985)

Indeed we write, as in Lemma 7.4,

Xi(®(€,7)) = 2! / (2L 0)eie®Em gp,
R

and notice that |Ve(z-+(s+0)®(€,m))|~27 in the support of the integral, provided that
|z|~27 and |o|<2™. Then, we recall that j>j;+1m (see (9.83)) and use Lemma 7.2 (i)
to prove (9.85). This completes the proof of Lemma 9.6.

9.6. The case of weakly resonant interactions

In this subsection we prove Lemma 9.7. We decompose Py,d,f" as in (8.8) and notice
that the contribution of the error term can be estimated using the L% x L> argument as
before.
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To estimate the contributions of the terms Ay27¢*4*. | we need more careful anal-

ysis of trilinear operators. With ®(&,n,0)=A(&)—A,(§—n)—Ag(n—0)—A, (o) and pEZ,

we define the trilinear operators J; , by

Tl €)= [ e femn)2 G @€ 1))y (BlEm. )

(9.86)
X Py (n)mul/(& n)muﬁ’y(nv U)Q(ﬁ—g)h(a) do d77~

Let «Z,szzqu \7l,q and ‘%:ZqGZ ‘7Z;Q' Let

cl,p[f,g,h];:Aqm(s)m,p[f,g,h](s)ds, C<p=) Cgo C=) Cq  (9.87)

q<p qEZ

Notice that
M as,o3;a4,Q _ Iz B vy
Bon 1[5, ks Ak ks o s gad = CLI Gy s L ko i (9-88)

To prove the lemma, it suffices to show that

20N QuuCUl L 1 Fi s T2 2737, (9.89)
provided that
. 2 k|, k1], |k
bk kg e | <22 B2 op o U Tl )
N, N} 2
2 m (9.90)
m
12777 >7a kakvk <77 k7. 7k7. Xn. .
™ 3 2, K3, kg N [(k3,73) (ks ja)] € X ks

The bound (9.41) and the same argument as in the proof of Lemma 7.4 show that

||Pk\7l,<P[f7 g, h](S)HL2
< 2(7€+k1+k2)/22(k2+k3+7€4)/22—l

(9.91)
i - 2m max
xnin(|floolgla [hloos [ Floo lgloo [hlz, (142720 mesms(t 02)| s gl [h]oo)
+27197 fl2 |gl2 [hl2,
provided that sel,,, 2*1’-|-2*l<2m*262m7
F=Pri—s k81 fs 9= Plig-s,kst+819: 7= Plri—s ka+s)l;
and’ for Fe{f?g7 h}a
Fly=  sup e Flpa. (992)

‘t|€[2m_4,2m+4]
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In particular, the bounds (9.91) and (7.43) show that

200N Qs s Ly 7 e 2707,

provided that max(jy, js, j4) = 2 21m Therefore, it remains to prove (9.89) when
max (1, j3, ja) < 31 (9.93)

Step 1. We first consider the contributions of Cl,p[fﬁ,kla ji,ks’ ]'1,“] for p>—51m

In this case, we integrate by parts in s and rewrite
% B g
Cl’p[fjlvkl’ j3,7€3’fj47/€4]

= <[R q;n(s)‘%’p[fjﬂhkl’ fjiyk?»’ ZLJM](S) d5+c~l7p[agfjli7k1 ’ fjiyka’ f;hkél]
+Ciplfl 4, 0s ) +Cuplflt s o as Os 7 1]
Lol g1k 98 3 kg0 J4 ka Lol g1,k ga ks Vst ja ksl )0

where the operators jlyp and C~17p are defined in the same way as the operators J; , and
Cip, but with ¢,(®(&,7,0)) replaced by 3,(®(€,1,0)), with @,(x)=2Pz"'p,(x) (sce
formula (9.86)). The operator jlyp also satisfies the L? bound (9.91). Recall the L?
bounds (8.21) on ds Py f,. Using (9.91) (with ds Py f, always placed in L2, notice that
2*21<2m/7), it follows that

— i _as2
> 20 B e e e S 278
p=>—11m/21

Step 2. For (9.89) it remains to prove that

2(17506”HijClvg_llm/Ql[fjli,k1’f.jﬂ&k?,’ Ja, k4]||L2 2" 397 . (994)

Since max(jy, js, j1) < 2 21m see (9.93), we have the pointwise approximate identity

Iz B Y
PiCi<c—1imyailf} koo iy kg f7u ki)
- " B Y
= PiuCr<—11m/21[A5D1 0 f, 3y AsDi =100 ey AsDi—20070 1, 1, (9.95)
" B ¥ ’
+PrCl<—11my21[A<Di 70 [, oy s A<D1410,70.f 3 g A<D 420,790 7, 1]

+0(27*™),

where D; is the large constant used in §10. This is a consequence of Lemma 7.2 (i) and
the observation that |V, ,®(&,7,0)|>1 in the other cases. Letting

— I — B
gl _A>'D17'Y()fj1,]€17 93 _A>D1—107’)’0fj37k3’ g4_A>D1 20 ’YOfJ4,k?4

— I _ B _
M=Acp ro [ hs 3= ADi11000 f)y 1y P4 = A<D 4207017, 1,
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it remains to prove that
_ ; _qs2
20750001 Q ik Ch < —11m 211915 93, 9al 12 S 27 ™ (9.96)

and

2075093 ||Q14Cp <11z [, B, a2 S 2730, (9.97)

Proof of (9.96). We use Lemma 10.6 (i). If I<—4m/N}, then |V, ,®(&,n,0)|>1 in
the support of the integral (due to (10.66)) and the contribution is negligible (due to
Lemma 7.2 (i) and (9.93)). On the other hand, if

4 2
1> 7—77? and j< —m+maX(j17j37j4), (9.98)
Nj 3

then we apply (9.91). The left-hand side of (9.96) is dominated by
C2(1—505)j2m(1+2—21)2—5m/3+862m2— max(j1,73,74)(1—500) < 2—1057
as we notice that max(k, k1, ks, k3, k4) <20. This suffices to prove (9.96) in this case.

Finally, if

4 2
Dand 5> 2 bmax(iy, s, ja), (9.99)

1>——
N 3

then max(jl,jg,jz;)g%m—i— 106m and j> %m. We define the localized trilinear operators
f{\jl,gp,%[fhga h]}(fa S)
::/]Rz i, e“@(fv""’)f(éfn)Tl@(<I>+W(§777))<P<p(‘i>(5,7770)) (9.100)
X

X (56 Vo (€, 1, 0)) Pk, (MM (€, )My (0, 0)§(n—0) (o) do dn,

which are similar to the trilinear operators defined in (9.86), with the additional cutoff
factor in Vn’aé(f,n, o) and p:—%m. Set }f:=2_m/2+62m, and notice that

| F{T1 <—11m21[91, 93+ 94) — Ti.<—11m 21,591, 93, 9] Hl e S 27,

as a consequence of Lemma 7.2 (i). Also, |Ve®(&,7,0)|<22P/3~2722m/63 in the support
of the integral defining J; < _11m/21,:[91, 93, 4], due to Lemma 10.6 (i). Thus, using the

approximate-finite-speed-of-propagation argument (integration by parts in &),

1QikTh<—11m /21,591, 93, gal || Lo S 270

The desired bound (9.96) follows in this case as well (in fact, one has rapid decay if (9.99)
holds). 0



GRAVITY-CAPILLARY WATER-WAVE SYSTEM IN 3D 327

Proof of (9.97). The desired estimate follows from (9.91) and the dispersive bounds
(7.41)~(7.42) if max(jy, js, ja) =%m or if j<Zm or if =>—106m. Assume that

max(ji, js, j1) < gm, j=32m, and 1<—100m. (9.101)

As before, we may replace Jj <_11m/21[P1, "3, ha] by Ji.<—11my21,5[1, h3, ha], at the
expense of a small error, where s=2""/2+200m  \foreover, |Ve®(£,7,0)|<s in the
support of the integral defining Jj,<_11m/21,5[1, k3, ha], due to Lemma 10.6 (ii). The
approximate-finite-speed-of-propagation argument (integration by parts in &) then gives

rapid decay in the case when (9.101) holds. This completes the proof. O

9.7. The case of strongly resonant interactions II
In this subsection we prove Lemma 9.8. Let k:=max(k, k1, k2, 0). It suffices to prove the
lemma in the case

- - E - ™m m
k,ki, ko €[—k—20,k], j< 3D+—, k<L ——, and |_<I<——. 9.102
) 1726[ ) ]a.] m—+ +2 6N6 an < 14 ( )
Indeed, we may assume that k, kq, ks >—k—20, since otherwise the operator is trivial
(due to (10.6)). Moreover, if max(ky,ks)>=7m/6N,—10, then the L?x L> argument
(with Lemma 7.4) easily gives the desired conclusion due to the assumption (9.6).
We define (compare with the definition of the operators T, ; in (9.18))

-

! 1, 91()
:/]qu(S) /n@ e PEM o (50,10(E,1)) 1 (R(E,m))mo(E,m) F(E—n. 8)§(n, s) dn ds,

7. 2
where sg:=2""/2+6k+6"m Tt TL l:TmJ—TJ,‘L b

and define Aﬂ% , and Br“n, ; similarly, by
inserting the factor ¢(5, '©(£,7)) in the integrals in (9.19). We notice that

T7|7‘l,l[Pk1fH7 szfy] :iAlr‘n,l[Pklf#7Pk2fy}+i3'|r‘n,l[Pk188fM’ Pk2fy]
+iBl | [Pu, f*, Pry0s ).

It remains to prove that, for any j; and jo,

20N QT - Fhwallliz S27°7 (9.103)
L v —35%2m
1Q AL, 12 s o i)l S 27500, (9-104)

and

L v —352m
1QkBL LI s 0sPey 15, S 2755, (9.105)
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Proof of (9.103). We may assume that min(jy, j2) =m—2k—§?m, otherwise the con-

clusion follows from Lemma 7.3. We decompose

Jit+1 ji+1

H — . v — .

Jik1 T § f]l-,klﬂn and ij,k2 = E f]27k2,n27
n1=0 no=0

and estimate, using Lemma 10.5 and (7.35),
||PkT7Jrz_,l[fj17k17n1 ) sz,kz,nA HL2

s 2Ramal/2mm 2l sup | f, by, ()|
fest

‘ sup ‘fjmkmnz (TG)‘ ‘

L2(rdr) llgest L2(rdr)

2komol/2666%mo—j14+51851 0—jz+5155
< 92kgmol/29657mo—j 19772451072

Therefore, using also (9.102), the left-hand side of (9.103) is dominated by

2(1—505)j2652m222‘,2m2l/22—j1+515j1 2—j2+516j2 < 28E2l/22546m.

This suffices to prove the desired bound, since
2[/2 < 27m/28 and 28E2546m < 2646771 < 2m/30' 0
Proof of (9.104). In view of Lemma 9.6, it suffices to prove that
— 1 v —352
20790071 Qu A [ s Foka) 22 2750
This is similar to the proof of (9.103) above, using Lemma 10.5 and (7.35). O

Proof of (9.105). This is the more difficult estimate, where we need to use the more
precise information in Lemma 8.2. We may assume j; <3m, since in the case j; >3m we
can simply estimate ||f} ; ||Ls <271H51951 (see (7.36)) and the desired estimate easily
follows. We decompose 0s Py, f” as in (8.8), and then we decompose

3
as,as3;a4,0 _ asz,o3;a4,04;(4]
kz;k;j;k:h - Z Akg;kg,jg;k4,j4
i=1
as in (8.35). Note that, as ko >—3m/2N{ (see (9.102)), it follows from Lemma 8.1 (ii) (2)
that min(ke, k3, k1) >—2m/N{, so Lemma 8.2 applies. It remains to prove that

J— 2m
QB Y 1 Pey S22 || g, S 270 (9-106)
and, fOl" any [(kSvJS)v (k47j4)]€Xm,k27 ’iE{l, 273}a
asz,a3;a4,004;[1 — 462
1Qut By ol ks At s, S 2747, (9.107)

These bounds follow from Lemmas 9.10-9.12 below. Recall the definition
BLlfal©)= [ an(s) [ e 0 m) (9.108)
x 1@ (&, n)mo(&,m) f(E=n,9)g(n,s)dnds. O
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LEMMA 9.10. Assume that (9.102) holds and 09 =2"m/2H6k+6"m - Tpep,
1Qut By ol s Ml S274°, (9.109)
provided that, for any s€l,,
h(8) = Py kproyh(s),  with ||A(s)|| 2 S 27 3m/2+350m =22k (9.110)

Proof. The lemma is slightly stronger (with a weaker assumption on h) than we
need to prove (9.106), since we intend to apply it in some cases in the proof of (9.107)
as well. We would like to use Schur’s lemma and Proposition 10.4 (iii). For this, we need

to further decompose the operator Blln ;- For p,q€Z we define the operators B;),q by

—

BlFoal©):= [ an(s) [ ol 0Em)2 51 006 m)

X 0p(Ve®(€,1))0q (Vy®(&,1))mo(&,m) (€=, 5)4(n, 5) dn ds.

(9.111)

Let Hyq:=PpB, [} ;,,}]. Using the bounds ||fj“hkl||Leo§225j12552m2515E§275m (see

(7.37)), Proposition 10.4 (iii), and (9.110), we estimate

_ - 2 ~
1 Hp,qll L2 < 2227 (210%2'sep2 7P~ /2270212272 sup [|f: . (8)l] s [1P(s)l e

s€lm (9.112)
<2—4E2—p_/22—q_/22—m+436m

where z_=min(z,0). In particular,

> PTNRB, [fE L bl S 270 (9.113)
p=>—4ém
q=>—46m

‘We now show that

> 2700 B [ e S 270 (9.114)
p<—4dm
qEZ

For this, we now notice that, if p<—4dm, then PkB;,q[fj,i,klvh] is non-trivial only when
In| is close to y1, and |¢| and [£—n| are close to 371 (as a consequence of Proposi-
tion 10.2 (iii)). In particular, 28 <1, 29~1, and | ;’i’kl(f—n,s)|§22‘52m2_j1/2+515j1 in the
support of the integral. Therefore, using also (10.44), we have the stronger estimate
(compare with (9.112))

[Hpgllr> S 272 3¢9 min(27P/2, 2P/2742)25"m sup || £ (s)|[ oo [[B(s)]| 2
s€lm (9.115)
< 27]’1/2“”515‘]'1 min(pr/2, 2p/27l/2)27m+366m.
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The desired bound (9.114) follows if j; >j—dm or ifj§%3mf55m, since

min(27P/2, 2P/271/2) L 97U/ < gm/4,

On the other hand, if
j1<j—6m and j=3m—50m,

then the sum over p>(j—m)—100m in (9.114) can also be estimated using (9.115). The

remaining sum over p<(j—m)—100m is negligible using the approximate-finite-speed-of-

propagation argument (integration by parts in £). This completes the proof of (9.114).
Finally, we show that

D QB glfL s hlls, S270 (9.116)
pEL
g<—4ém

As before, we now notice that, if ¢g<—4dm, then PB,, [ jul,kl , h] is non-trivial only when
€| is close to 71, and |n| and |£—n| are close to 17, (as a consequence of Proposi-
tion 10.2 (iii)). In particular 2¥ <1, 2?1, and we have the stronger estimate (compare
with (9.115))

24/2

|Hpqlle S 9—i1/2+5181 min(Q’Q/Q, 2q/27l/2)2—m+365m <

—m+36dm
S grgia? . (9.117)

Moreover, since |®(&,1)|<2! and |V, ®(€, 1) <29, the function ﬁp,q is supported in the
set {§:H§|—71’§2l+22q} (see (10.21)). The main observation is that the B; norm for
functions supported in such a set carries an additional small factor. More precisely, after
localization to a 27-ball in the physical space, the function F{Q;x5} I e M) s
supported in the set {5: | |€]—1 | <2 +22q+2_j+2‘5m}, up to a negligible error. Therefore,

using (9.117),

1QsBy g [f1 1 Pro Bi?llpy S 2772000 (2 4220 427 I H20m 22990 H
2q/271005q

<2j75()5j27m+365m(2l/2+2q+27j/2+5m)
~ 20 4-21/2

< 2q/82—45m.

So, (9.116) follows. The bound (9.109) follows from (9.113), (9.114), and (9.116). O

LEMMA 9.11. Assume that (9.102) holds and sg=2""/2T6k+6"m Thep,

1QxBY, J[f . Appziasill| ) < 240", (9.118)

1,k17 * Tkaiks,j33ka,5a J o~
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Proof. Notice that AZ;:;]?;:‘E] is supported in the set ||n\ -7 | <27 P. Using also

the conditions ®(&,7)<2! and O(¢, 7)<, we have
lnl=m|<27P, (€], le—nl€27,2%], min(|[¢|-n], [[€=nl-n]) =27 (9.119)

in the support of the integral defining }'{PkBlln,l[ ro G (€)Y, where

Ji,k1?

G[l] _ Aag,ag;a4,a4;[1]

k2;ks,j33ka,ja "
Case 1. Assume first that
max(jz, ja) = 5m. (9.120)

In this case,
HG[I] HL2 < 2—3m/2+306m

(see (8.37)), and the conclusion follows from Lemma 9.10.

Case 2. Assume now that
max(js, ja) < gm and  ji > gm. (9.121)

The bound (9.118) again follows by the same argument as in the proof of (9.109) above.
In this case, [|GI(s)||pe <27™F4™ (due to (8.42) and (8.43)) and

2 . .
I F{A<oq f1 1, H(8) || L2 S 220 2 915000

(see (7.37)). We make the change of variables n—¢&—n, define ®'(&,7)=®(£,£—n), and
define the operators B) , as in (9.111), by inserting cutoff factors ¢, ((Ve®')(&,7)) and
©a((V,®)(€,7)). In this case, we notice that we may assume both p>—D and ¢>—D.
Indeed, we have |®'(¢,7)|<27P and ||—n|—71|<27P, so

[(Ve®)(&mIZ 1 and  [(V@)(§,m)[ 21

in the support of the integral (in view of Proposition 10.2 (iii)). Then we estimate, using
(10.42),

1PLBy [ Ao Fy iy G| 2 S 27945000 g 200m,

The bound (9.118) follows by summation over p and q.
Case 3. Assume now that

max(j1, j3, ja) <3m and j<im+106m. (9.122)
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We use the bounds H(/;m(s)||,;oo§2_m+45m (see (8.42)—(8.43)) and || /k,kl(s)”L“g?ém-

Moreover, |V, ®(&,7n)| 21 in the support of the integral. Therefore, using the first bound
in (10.42),

m— 2m A~ o1
IF{PBY, [FE s G Lo S 27 p2'2° Sup IG() oo £, 1, ($)l]
<27m/2+85m.

The desired bound (9.118) follows when j<1m+106m.

Case 4. Finally, assume that
max(ji,js,ja) <3m and j > im—+106m. (9.123)

We examine formula (9.108), decompose G!!l as in (8.42) and notice that the contribution
of the error term is easy to estimate. To estimate the main term, we define the modified

phase

p(&,m) =Py (& m)+ A (n) =20, (51) = A(E)— AL (E—n)—2A, (37). (9.124)

For r€Z we define the functions G, =G, m 1,55, by

G.(6):= [ ans) [ 6ol 06 )2 E(B(E 1)) mol )

~

X r(Vyp (&) FL 1, (E=n, 5)gM (0, 8)@(2%™ (|| —1)) dn ds.

(9.125)

Notice that the functions G, are negligible for, say, r<—10m. It suffices to prove that
2975093 Q Gyl L2 S275°™  for any r € Z. (9.126)

We first notice that ||[PyG, |2 S27 if r>max(6?m—1—m,60m—1m), in view of
Lemma 7.2 (i). In particular, we may assume that »<—D. In this case, the functions G,

are non-trivial only when —u=v=+ and £ is close to %n. Therefore,

p(&,m) =AE)+A(n—&)—2A(5m),
and we have, in the support of the integral defining @(5),

Vb (& m)| = [€—3m| = [Vep(€E,m)| = [Ve® (€, 1) =27,

(&, m)| ~ |6~ | ~ 2%,

19 =1~ |AG) 28 (3m) | S (€0 |+ [p(E. )| S2'+2°7,
|l€]—2m | S 2t 42

(9.127)
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The finite-speed-of-propagation argument (integration by parts in £) shows that
1Q)xGr |l S 274
if j>30%m+max(m+r, —r). To summarize, it remains to prove that

(2mHT 4275 PG, |2 270, if r <max(82m—1—m,60m—1im).  (9.128)

For ¢ fixed, the variable 7 satisfies three restrictions:
& S, R(E <2, and  [n-2€] $2".
Therefore, using also (8.42) and (8.43), we have the pointwise bound

%l 2 - : T 9—m : T oL
G- ()1 <277 ™2™ min(2", 27"/ min(2",2") sup [I£]; 1, ()llze 9™ (5)l| 2

s€lm (9.129)
<289 min(27,27™/2) min (277, 1).

The desired bound (9.128) follows, using also the support assumption ||| —3y1]<2!+2"

in (9.127), if r<—im or if re [—3m, —3m].
It remains to prove (9.128) when —%méré—l—m—l—de. The main observation in
this case is that |p(&,n)|~2%" is large enough to be able to integrate by parts in s. It

follows that

G5 [ [ 27 lotos Ol m)2 B (&) (Tl m)o 2 =)
< |0 (FJ: 1, (€1, 8)91 (0. 8)n () | dy d.

For ¢ fixed, the integral is supported in an O (¢ x 2') rectangle centered at n=2¢. In this

support, we have the bounds see Lemma 8.2 (ii) and (iii),

R 2 ) )
17 )l S2° g (s) e S 277, 0glt(5) e S22,

Osfh py =hathoe,  Ilha(s)llz S27MFH90 lho(s) | = S 277100

The integrals that do not contain the function hs can all be estimated pointwise, as in
(9.129) by C272r2-lg=m+200m (9l ,0)) <o=2rg=3m/2+216m The integral that contains the
function hy can be estimated pointwise, using Holder’s inequality, by

C2—2r2—l2—3m/2+105m(2lx9>1/2 < 2—2r2—l/22—7m/4+116m < 2—2r2—5m/4+116m_

Therefore, using also the support assumption ’|£| — %'yl | <27 in (9.127), and recalling that

r>—%m and lé—%m, we have

2m+r||PkngL2 5 27r/227m/4+116m.

This suffices to prove (9.128), which completes the proof of the lemma. O
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LEMMA 9.12. With the same notation as in Lemma 9.11, and assuming (9.102), we
have

I a3,az5a0,043[2]
1Qik By, i [£5: ey Aeaihs jasn g

k2;iks,j3;ka,ja }H j ~

< gma0tm, (9.130)

Proof. The main observation here is that, since

|CI)+HV(€777)| SQZ and |(PV5’Y(777U)| ZQ—IOém,

we have |®(€,7,0)|>2719" and thus we can integrate by parts in s once more. Before

this, however, we notice that we may assume that

2m m

ks, ky € [Né’ NJ and min(j3, j4) <m—4om. (9.131)

Indeed, we first use Lemma 8.1 (ii) (2), (3). Moreover, if

min(js, js) 2m—4ém or max(ks, k) > —,

ElE

then we would have
a3,03504,043(2)] —3m/2+86
||Ak§;k;7j34;k4%j4 ||L2 S2 "/ "
(by the same argument as in the proof of (8.31) or an L% x L® estimate), and the desired

bound would follow from Lemma 9.10.

Step 1. For r€Z we define (compare with (9.86)) the trilinear operators jl[i] by

FLTP1f, 9, W}(E,5)

::/R2 i, eisé(é,n,o)f(ﬁ*??)sﬁ(%‘g_l@(& 7))2~ gol(fbﬂw(g n))e ( (& n,0)) (9.132)
XX[Q](nyU)(pkz(n)muy(§7n)my5,\/(7’], a)g(n— )E( ) do dn.

Let
CEit.gh)= [ an(TELF, .1 ds (9.133)
R
and notice that
by ,ba,bs,[2 2
B” [ #1 k1 Aklz;kz»jga;[kr]hjzk] = Z [ ][fﬁ,kl’f£7k3’ f]4,/€4]
r>—116m

We integrate by parts in s to rewrite
(2] 8
CZ7T[fﬁ7k1’fj3,k3’f;17k4}
- 2] B -[2]
=2 (/ ( )‘7l ['fh,kl’f337k3’ Jl;’mKS) dS+C [3 Jul kyi? j37k3’ fj"il)kz;]

2
+C [Jl kq> af;;ks’ Ja, k4] C[][ ju;k17f3k3’ S j4k‘4])
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where the operators jl[i] and Cl[i] are defined in the same way as the operators Jl[i] and

Cl[j, but with gpp( (&,m,0)) replaced by (ﬁp(é(f,n,o)), where ﬁp(x):?x’lapp(x) (see
formula (9.132)). It suffices to prove that, for any s€l,, and r>—11dm,

29999 Quu T 2 f. 9, Bl 22 S 271207, (9.134)
where one of the following hold:

Ji, k1’f Ja,k3? ]4 k4](5)a
27"8 f Ji,k1? j3 k3o j’y4 k4](8)a
f]l k12 2™ afsk;;’ ]4k4]( )

Ji,k1? ]3 k3’ 2™, Ja, k4](8)

f,g9,h
f,9,h

»

[f, 9B =11,
[f:9:0] =
[f:9:0] =
[f,9: B =11,

Step 2. Asin the proof of Lemma 7.4, the function [ﬁr(fi)(f, 7,0)) can be incorporated
with the phase e**®(&7:9) using formula (7.30) and the fact that 277 <219, Then, we

integrate in the variable ¢ and denote by H;, Hs, and Hj the resulting functions:

HlI:I[z][fjﬂs’ka(s)af]’l,kll(s)]?
Hy:=IP[0,7  (s), ] 1. (8)],
H3 _I [fja ks( )’85']0]17]“4(8)]’

F{I® (g, h]}(n): = /R ] NP )\ () 5)op, ()M (0, 0)§(n—0)h(0) do.
We claim that, for |\ <2m~100)
[ Hyll 2 +2™ | Ha L2 +27 || Hal| L2 S 27Pm/04100m, (9.135)

Notice that the bound on H; is already proved (in a stronger form) in the proof of
(8.38) and (8.39). The bounds on Hs and Hj follow in the same way from the L2 x L>
argument: indeed, we have ||0s fd ks () L2+ 105 £ 5, (8)]] 22 <2~mHTEm (que to (8.21)).
Then, we notice that we can remove the factor ¢(22°904(n, o)) from the multiplier
x?(n, ), at the expenses of a small error (due to Lemma 7.3 and (9.131)). The desired
bounds in (9.135) follow using the L% x L> argument with Lemma 7.4.

Step 3. We now prove (9.134) for [f, g, h]:[fﬁ,k17f£,k3’ k) (8). Tt suffices to show
that

2tk gm0 S [k (), Hlll e S 1 (9-136)

Ji,k1
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for any sel,,, where

FSU. MO = len(@)] [ | 1Fte=n)olg 06 m)2 (6 m)

X Py —2,k+21 (M) (0)| dn.

(9.137)

This follows using Schur’s lemma, the bound (9.135), and Proposition 10.4 (iii). Indeed,
we have |V, ®(&,1)|+|Ve®(€,7)| 227%™ in the support of the integral (due to the location

of space-time resonances), therefore the left-hand side of (9.136) is dominated by

C24E2m—306n12—l(210E%023l/4246m)|| ;ﬁhkl (S) ||LC>O Hﬁl HL2 < 230E2—l/42—m/3-

This suffices to prove (9.136), since 27¢<2™. Moreover, (9.134) follows in the same way
for [f, g, hJ=[f2 120 S5 s £7 1 (5) o8 [, g, BI=1FE 1 fi s 270sf7. 1, )(5), as the
L? bounds on 2™ Hy and 2™ Hsy are the same as for Hj.

It remains to prove (9.134) for [f, g, h]=[2"d, ﬂkl’fﬁ,,ks’ k(). Tt suffices to
prove that

gtkgm=s0om | Glamp, 1t | (s), Hilllz2 S1 for any s€ I,,. (9.138)

Let f=2m0,f! , (s) and fay,:=Asp_11,2+,f. We decompose, using (8.41),

Ji,k1
f:f2W0+f2+foov

with

farollze S270m, |l fallze S27™/2459m and || fallpee < 23K F155M.

)

The contribution of f,, can be estimated as before, using Schur’s lemma, (9.135), and
Proposition 10.4 (iii). To estimate the other contributions, we also use the bound (see
(8.40))

HﬁLooHLOO < 23l§2—m+146m

where
Hy=Hi o+ Hioo = Axpt1,2v0 H1 + A<D 2y, Hi

As before, we use Schur’s test and Proposition 10.4 (iii), together with the fact that
space-time resonances are possible only when ||, |n|, and | —n| are all close to either v,

or %'yl. We estimate
||S[f27H1,oo]HL2 S2—1(2121}J{9231/4245m)HJ@2||L2 ”ﬁl,oollLoo §2201_f2—l/42—2m+406m7
1S 1 f2r0s Hroolllze S 2712156922 42%™) | Fany |2 | i ool e S 270271/ 3m /2 400m,
1S o, Hy ]| 2 524(210%%02@457")1/2Hf2||L2 ||ﬁ1,270||L2 52151527l/22719m/12+205m’
S faryo: Hi,2+0] =0.

These bounds suffice to prove (9.138), which completes the proof of the lemma. O
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9.8. Higher-order terms

In this subsection we consider the higher-order components in the Duhamel formula (7.5)

and show how to control their Z norms.

PROPOSITION 9.13. With the hypothesis in Proposition 7.1, for any t€[0,T] we have

Set

Z

t
WaOllz+] [ Nt as (9.139)
0

The rest of this section is concerned with the proof of Proposition 9.13. The bound
on N4 follows directly from the hypothesis [|e**Nsy(s)||z <e2(14s)"27"; see (7.15).
To prove the bound on W3 we start from the formula

t = ~
QeWs(€,t) = Z //2 ) eZS‘I’wVa(&mU)nWﬁ(g, 1,0)(QMY,) (€, 5)
po,Be{+,—} 7O TR - -~
a1taztas=a x (Q92V,)(n—0,s)(Q2*Vg)(0, s) dndo ds.

(9.140)

We define the functions ¢, as in (4.8) and the trilinear operators C,,=C* vB by

m,b

FICulf. o €)= [ an) [ ¥ erne.n.0)

x f(€=n,8)§(n—0,5)h(0,s) dndo ds,

(9.141)

where (i)::<i>+m,ﬁ and ng:=n,,g. It remains to prove that, for any (k,j)€J and any
mel0, L+1],

S 2 0)QCon [P, DUIQMY,, P, DY QY P, DU V|12 S 270
k1 ,ko,k3s€Z
(9.142)

for any p,v, B€{+, -}, provided that a1 +as+a3=a and a3 +as+as=ca. Let
fr=eTtDMOMY, fYi=e7tD™20%Y,  and fPi=cT'D*Q% V5. (9.143)
The bootstrap assumption (7.15) gives, for any s€0,t] and ye{u, v, 5},

, < &
RO <(1+s)". (9.144)

/7 ()

Simple estimates, as in the proof of Lemma 9.3, show that the parts of the sum
in (9.142) over max(ky, ks, k3) =2(j+m)/Nj—D? or over min(ky, k2, k3)<—3(j+m) are

bounded as claimed. For (9.142) it remains to prove that

o . y —o82m—627
27 505]||ij0m[Pk1f#aPk2f 7Pk3fﬁ]||L252 2 o (9145)
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for any fixed me[0, L+1], (k,j)€T, and ki, ko, k3 €Z satisfying

N
bu kg, by € |~ 20 20 Em)

= PP, 9.146
2 N} (6.146)

Let k:=max(k, k1, kg, k3,0), k:=min(k, k1, ko, k3), and [k]:=max(|k|, k1|, | k2|, |k3])-
The S*° bound in (7.12) and Lemma A.1 (ii) show that

”Cm[PkaﬂaszfV7Pk3f6]||L2

< 28/29%k9m sup (|78 Py, 4| Lo [|e 5N Py £ | o (€752 Py £2 | oo

s€l,,

(9.147)

if p1, p2,p3€{2,00} and 1/p1+1/p2+1/p3:%. The desired bound (9.145) follows unless
j=2m+3[k]+D?, (9.148)

using the pointwise bounds in (7.44). Also, by estimating || Py H| 2 <2%||PyH |1, and
using a bound similar to (9.147), the desired bound (9.145) follows unless

k>—2(j+im+om). (9.149)

Next, we notice that, if j>m+1D+[k] and (9.149) holds, then the desired bound
(9.145) follows. Indeed, we use the approximate-finite-speed-of-propagation argument
as in the proof of (9.12). First, we define ff , . f7 ;. and fﬁks as in (9.14). Then, we
notice that the contribution in the case min(ji, j2,j3) = %j is suitably controlled, due to
(9.147). On the other and, if

min(j1, j2, js) < 57,
then we may assume that jlgf—o j (using changes of variables), and it follows that the
contribution is negligible, using integration by parts in & as before. To summarize, in
proving (9.145) we may assume that
2m (k] (k] 6m

4D <mAD+ 5, max(j, [k]) <2m+2D, and k< —;.  (9.150)
32 2 N}

We define now the functions fJ“ oo f1 k., and f-B k. as in (9.14). The contribution
1,R1 J2,rR2 J3,R3

in the case max(ji, j2,j3)>3m can be bounded using (9.147). On the other hand, if

max(jl,jg,jg)égm, then we can argue as in the proof of Lemma 9.7 when 2/~1. More

precisely, we define

— g — v B
91 = Ao [k 927 Ao 1000 [Tk, A0 Aspy 0040 f g, (9151
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As in the proof of Lemma 9.7 (see (9.95)—(9.97)), and after inserting cutoff functions of
the form p«;(n) and ¢s;(n), I=m—3Jdm, to bound the other terms, for (9.145) it suffices
to prove that

Y7 QjkCnlg1, 92, 9512 S27° (9.152)

In proving (9.152), we may assume that max(ji, j2,Jj3)<3m and m<L (otherwise
we could use directly (9.147)) and that k£>—100 (otherwise the contribution is negligible,
by integrating by parts in 7 and o). Therefore, using (9.150), we may assume that

[k] <100, m<L, 2m+D’><j<m+2D, and ji,ja,j3 € [0, im]. (9.153)

As in the proof of Lemma 9.7, we decompose the operator C,, in dyadic pieces
depending on the size of the modulation. More precisely, let

-

jp[fv g7 h} (év 5) = /Rz R? eiSé(gynJ)(pP(é(fa 777 U))"O (57 777 U)
X f(§—77» 3)@(’7—07 S)ﬁ(gv S) do dn
Let J<p=>_,<, Jq and

Cmﬁp[fvg7h] ZZ/RQm(S)Jz,p[f,g,h](s) ds.

For p}—%m we integrate by parts in s. As in Step 1 in the proof of Lemma 9.7, using
also the L? bound (8.21), it easily follows that

2j7505j Z ||Pka,p[gla.92393]HL2 5276"1'
p=—2m/3

To complete the proof of (9.152), it suffices to show that

2j_505j2m Squ ||iju7§7m/2[glvg27g3](8)||L2 52—57”. (9154)
s€lm

Let »=2""/3 and define the operators J<—my2,<0 and J<_ /2 by inserting the factors
(7Y, ,®(€,1,0)) and @ (37'V, o ®(€,7,0)), [=1, in the definition of the operators
Jp above. The point is to observe that |V§§>(£,n,0)|§2’m/3+D in the support of the
integral defining the operator J¢_,/2.>0, due to Lemma 10.6 (i). Since j>§m+D2 (see
(9.153)), the contribution of this operator is negligible, using integration by parts in .
To estimate the operators Je_,, /2, we may insert a factor ¢(22m/3F1=9mp) at the

expense of a negligible error (due to Lemma 7.2 (i)). To summarize, we define

o —

jé_m/27l[f7 g, h] (gv S)
::A R eiSé(g’n’U)(pl(%71Vn,a&)(€777aO—))(p§—m/2(&)(€777a0—))
2y R2

x (223 =My (€,m, o) F(E—n, 8)§(n—0, 8)h(0, 8) do dn,
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and it remains to show that, for [>1 and s€l,,,

2979099 | Qik T j2al91, 920 93)(5) |l 22 S 2720 (9.155)

Using L estimates in the Fourier space, (9.155) follows when l}%m—ém, since
2/ <52™ (see (9.153)). On the other hand, if I<{m—&m, then the operator is non-trivial
only if
(i)(g, U 0) = A(&) —A(f—ﬁ) _AV(n_U)+AV(O)’ ve {+7 _}’

due to the smallness of |n|, |V,®(&,7,0)|, and |®(€,7,0)| (recall the support restrictions
in (9.151)). In this case, |[Ve®(£,n,0)|<27™/2 in the support of the integral, and the
contribution is again negligible using integration by parts in £&. This completes the proof

of Proposition 9.13.

10. Analysis of phase functions

In this section we collect and prove some important facts about the phase functions ®.

10.1. Basic properties
Recall that

‘I’(ffﬂ?) = (I)a;w(& 77) :Aa(g)_AM(f_n>_Au(77)7 o, 1, VE {+’ _}’,

(10.1)
Ase(§) = Ase([€]) = A ([€]) = 2/ [€1+[€]°
We have
14322 3zt +62%—1 3(1+52% -5z —20)
Nz)=—re, N(2)=———rs d MN'(x)= . (10.2
=) 2Vr+a3’ (@) Haratypr (=) 8(z+x3)5/2 (10.2)
Therefore,
2v/3-3

N(z)=0 ifx =7, N(2)<0ifxel0,7], and ~y:= ~0.393. (10.3)

3
It follows that

A(v0) = 0.674,  N(7)~1.086, X" (y)~4.452, and X'"'(yy)=~—28.701. (10.4)

Let v1:=1/2~1.414 denote the radius of the space-time resonant sphere, and notice
that

7 23
A1) =V3vV2x2.060, N(y1)= ~1.699, and M\'(y;)=——=~0.658.
24/3/2 4/54V2

(10.5)
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The following simple observation will be used many times: if Uy >1, £, n€R?,
max(|¢], [nl,[€=nl) Uz, and  min(|¢], ], |¢=nl) =a<27°U3",
then
[@(&,m)| = Aa)— sup (A(a+b)=A(b)) > Aa) —amax{\'(a), N'(U2+1)} > 3A(a).
e (10.6)

LEMMA 10.1. (i) The function X is strictly decreasing on the interval (0,7] and

strictly increasing on the interval [y, 00), and

Tim (A’(@-T) =0 and lim (X(@-Q\lﬁ) o0, (10.7)

The function X' is concave up on the interval (0,1] and concave down on the interval
[1,00). For every y>MN(v) the equation N (r)=y has two solutions r1(y)€(0,v0) and
r2(y) € (70, 00).

(i) If a#be(0,00), then
5 (3ab+1)(3a*b*+6ab—1)

B 1—9ab ’

In particular, if a#be(0,00) and X (a)=X(b), then abe (§,73].

(iil) Let b: [y0,00)—(0,70] be the implicit function defined by X (a)=X (b(a)). Then,

b is a smooth decreasing function and(®)

N(a)=MN(b) if and only if (a—0b)

(10.8)

b
b (a)e [— ,—m)}, a+b(a) is increasing on [yy,00),
. a . (10.9)
a—"
bla)~—, =V()~—, V 1~ .
@~ W), Vi’
In particular,
A2
a+b(a)—2y0 ~ w (10.10)
Moreover,
—(N'(b(a))+X"(a)) ma"?(a—)*. (10.11)
(iv) If a,b€(0,00), then
4+8ab—32ab?
Ma+b)=Na)+A(b) if and only if (a—b)zz%. (10.12)
ab—
In particular, if a,be(0,00) and A(a+b)=A(a)+A(b), then abe [3,3]. Moreover,
if ab> %, then Ma+b)—\(a)—\(b) >0,
2 (a+0)=A(a)=A(b) (10.13)

if ab< 3, then A(a+b)—A(a)—A(b) <0.

(6) In a neighborhood of 7o, N (x) behaves like A+B(xz—v9)?—C(z—"0)3, where A, B, C>0. The
asymptotics described in (10.9)—(10.11) are consistent with this behaviour.
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Proof. The conclusions (i) and (ii) follow from (10.2)—(10.4) by elementary argu-

ments. For part (iii) we notice that, with Y=ab,

_9gy3_ 2_
_ 9y~ -21Y 3Y+1+4Y_32/81 —Y2+14Y—4—9

9y —1 T 9y -1 9 81’

(a+b(a)* =F(Y):
as a consequence of (10.8). Taking the derivative with respect to a, it follows that
2(a+b(a))(14b'(a)) = (ab’(a)+b(a))F'(Y). (10.14)
Since F’(Y)<—15 for all Y € (§,42], it follows that b'(a)€[—1, —b(a)/a] for all a€ [yo, 00).
The claims in the first line of (10.9) follow.
The claim —b'(a)~1/a? follows from the identity A" (a)—\"(b(a))d’(a)=0. The last
claim in (10.9) is clear if a—~=1; on the other hand, if a—vyy=p<1, then (10.14) gives

1+ (a)

(@) Th(a)a ~1 and ~y—b(a)=op.

In particular, 1—b(a)/a=p, and the last conclusion in (10.9) follows.

The claim in (10.10) follows by integrating the approximate identity

between vy and a. To prove (10.11), we recall that A\’ (a)— X" (b(a))b’(a)=0. Therefore,

14V (a)
V)

=V (b(a))+ 2" (a)) = =X"(b(a)) (141 (a)) = X"(a)

and the desired conclusion follows using also (10.9).

To prove (iv), note that (10.12) and the claim ab€ [4, 1] follow from (10.2)-(10.4) by
elementary arguments. To prove (10.13), let G(z):=A(a+z)—A(a)—A(z). For a€(0, c0)
fixed, we notice that G(z)>0 if z is sufficiently large, and G(z)<0 if >0 is sufficiently

small. The desired conclusion follows from the continuity of G. O

10.2. Resonant sets
We now prove an important proposition describing the geometry of resonant sets.

PROPOSITION 10.2. (Structure of resonance sets) The following claims hold:
(i) There are functions pyr1=p__1:(0,00)—(0,00), P+i2=p__2:[270,00)—(0,70],
Pi—1=p—+1:(0,00) = (70, 00) such that, if o,u,ve{+,-} and £#£0, then

(Vy®o)(€m) =0 if and only if 7€ Py (€), (10.15)
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where (the puo parts are absent when p#v)

£
4

<
€]

(ii) (Space resonances) With Dy, k, as in (2.11), assume that

- pun(leD @—mﬂwbé}

Put€)i= { o (6) . a6 €

(61) EDppyky  and (V@) (€,m)| g <27 Prabmmax(hnha) (10.16)

for some constant Dy sufficiently large. So, |\k1|f|k2\|§20 and, for some p€ P, (&),(7)
the following conditions are satisfied:

o if |k|<100, then max(|ki],|k2])<200 and

or <u—y,

o if k<—100, then

either (u=—v and |n—p| Sez),

(n—p)-&* (n—p)-€
€] H

<eg, and ‘ ‘5
€

£ > (10.17)
22+ lel=2v0] )

either (u=—v, ki, ke € [~10,10], and |n—p| <e22!¥1),

(10.18)
or (,u:V, k1, ko € [k—10,k+10], and ’n—%§| §2_3‘k‘/252);
o if £>100, then
In—p| Sea28/2. (10.19)
(iii) (Space-time resonances) Assume that (§,1m) €Dy i, k,»
(Pa y 57,'7 <€1 < 2—D12min(k,k1,k270)/2’
Do) o)

‘(vnédl“’)(gv 77)\ < 5D < 2_D1 21€—Inax(kl 11432)2—2kJr )
Then, with v1:=v/2,

(o v)=(+++),  n=pia©)=[n—3¢&Se2, [lEl-m|[Serteld.  (10.21)

Proof. (i) We have

N (e §—n Y n
(V@) (§sm) = pN (€ 77|)7|£_m A(|’7|)|n|~ (10.22)

(") The set P, (£) contains two points if (u,v)€{(+,—),(—,+)} and at most three points if
(/‘1‘7 I/)G{(—F, +)7 (_) _)}
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Assume that é=ae for some a€(0,00) and e€S'. In view of (10.22), (V, P, .. )(&,7)=0
if and only if

n=pe, BER\{0,a}, and pX(la—p|)sgn(a—p)=vN(|8])sgn(B).  (10.23)

We observe that it suffices to define the functions p, 1, ps+2, and p,_1 satisfying (10.15),
since clearly p__1=p;.1, p-—2=pi+2, and p_11=p; 1.
If (p,v)=(4,+) then, as a consequence of (10.23), S€(0,a) and N (a—pF)=N(B).

Therefore, according to Lemma 10.1 (i)—(iii), there are two possible solutions:

B :p++1(a) = %O{,

(10.24)
B=pi.2(a), uniquely determined by X' (5) =N (a—23) and S € (0, o).

The uniqueness of the point p,2(a) is due to the fact that the function z+—x+b(x) is
increasing in [yg,00); see (10.9). On the other hand, if (u,v)=(4, —) then, as a conse-
quence of (10.23), either <0, or f>a and N (Ja—p|)=N(|5]). Therefore, according to

Lemma 10.1, there is only one solution 8>~q:

B=p,_1(a), uniquely determined by ) (8) =\ (8—a) and 8 € [max(c, o), a+0]-
(10.25)
The conclusions in part (i) follow.
(ii) Assume that (10.16) holds and that (u,v)e{(+,+), (+,—)}. Let é=ae, |e|=1,
a€2F4 28] n=pFe+v, v-e=0, and (824 |v|?)1/2€[2F>—4 2F214]. The condition

(V@) (€, m)] <22

gives, using (10.22), |k1|—|k2H<2O,
(@=8) _vonB N(I€=n) _ N(nl)
X (|€=nl) —vN(In)) | <e2, and |—p —v v <e2. (10.26)
[€=nl 7] €= 7]
Since a>2F and |€ —n| "IN (|¢—n])>2/F11/2=F1 | the first inequality in (10.26) shows that
-3 ’ B ket lr | /2—k
pX ([€=nl) o —vX (Inl) 7| 2 2™/
‘ =l ul

Since 1/|8|>27%=%, using also the second inequality in (10.26), it follows that
‘1}| < 522*k*‘k1|/2+k1+k2 (1027)

and

’_ N([€=nl) _V)\'(|77|) ‘ > okFlkil/2—ki—k2
|€=n Il
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In particular, |v|<27202min(k1k2)
|In|— 18| Sez2 =2k~ klt2kath = and | |¢—p|—|a— Bl Sez27 2k IiThit2k - (10.28)
Using the first inequality in (10.26), it follows that
[N (Jo—Bl) sgn(a—B) —v X (|8]) sgu(B)| < ep+Ced2— 2k kl/zramax(hike) = (10.29)

Proof of (10.17). Assume first that |k|<100. Then, max(|k1],|k2]) <200, since oth-
erwise (10.29) cannot hold (so there are no points (£,7) satisfying (10.16)). The conclu-
sion |(n—p)-§L/|§\|§sg in (10.17) follows from (10.27).

Case 1. If (4, v)=(+, —) then (10.29) gives
‘)\'(|a—6|)—)\’(|,6’|)‘ <2 and sgn(a—p3)+sgn(B)=0.

Therefore, either 8>« and | (8—a)—N(8)|<2e2, in which case f—a<7y, 5>, and
|B—pi-1(a)|Seq, or B<0 and |N (a—B)— N (—05)|<2e2, in which case a— 5>y, —5<70,

and |a—B—p;_1(a)|Sea. The desired conclusion follows in the stronger form |n—p|Seo.

Case 2. If (p,v)=(+,+), then (10.29) gives
[N (la=B)=XN(p)| <262 and  sgn(a—pB)=sgn(B).

Therefore,
Be(0,a) and |N(a—pB)=N(B)|< 2. (10.30)
Assume « fixed and let G(3):=X(8)— XN (a—p). The function G vanishes when f=1a

or BE{pii2(a),a—piia(a)} (if a=270).
Assume that a=2y9+0>2v9, 0€10,2''°]. Then, using Lemma 10.1 (iii),

Pir2(a) <0 < %04 <a—piia(a), %CV_’YO = %Qa Yo—pir2(a) = /o, (10.31)

where the last conclusion follows from (10.10) with a=a—p;i2(a) and b(a)=piio(a).
Moreover, |G'(8)|=|N"(B)+ N (a—pB)|~e if Be{Fa,piia(a),a—pii2(a)}, using (10.11)
and (10.31). Also, |G"(8)|=|N"(B)—N"(a—B)|<y/0 if | B—3a| < /0, therefore

|G’ (B)|~ o, ifBEl, (10.32)
where
. (0% 0
L= {w:mm( =S| e —prea()], |x—a+p++2<a>|) < Cf}

for some large constant Cj.
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If o< Cész then the pomts sa, prya(a@), and a—p,o(a) are at distance <C§s§/3.
In this case, it suffices to prove that |G(8)|>3e if ‘/3—704| 220352/3 Assume, by con-

tradiction, that this is not true, so there is <y —Cg 62 % such that
N (B) =N (a=p)| < 3es.

So, there is x close to 3, say |ac—ﬁ|§s§/37 such that X(z)=M)(a—p). In particular,
7.2/3

using (10.10) with a=a—p and b(a)=z, we have a—fF+x—2v,>C{ey’". Therefore,
04—27020863/3, in contradiction with the assumption a—2'yo:g<C§5§/3.

Assume now 9205153/3. In view of (10.32), it suffices to prove that, if 3¢1,, then
|G(B)|>3e2. Assume, by contradiction, that this is not true, so there is S€ (0, %a] \ o
such that [N (8)— ) (a—pB)|<3ez. Since f<ia—,/0/Co, we may in fact assume that
B<y0—+/0/2Co, provided that the constant Dy in (10.16) is sufficiently large. So, there is
x close to 3, say |z — 3| Se2Co/ /0, such that X' (z) =N (a—f). Using (10.9), it follows that
there is a point y close to , say |y—z|<e2C2 /0, such that X (y)=\(a—y). Therefore,
y=ps+2(). In particular, |3—p,.2(a)|<e2C3/0, in contradiction with the assumption
B¢ln, so |B—pii2(a)|=/0/Co (recall that Q>C§a§/3).

The case a=2vy— <27 is easier, since there is only one point to consider, namely
sa. Asin (10.32), |G'(B)|~0 if |3—3a|<,/8/Co. The proof then proceeds as before, by

considering the two cases o< Cide2/? and p>Cle/®. O

Proof of (10.18). Assume now that k<—100, so |k; —k2|<20, and consider two

cases.

Case 1. Assume first that (u,v)=(4, —). In view of (10.22), we have

N (1) = X (fw]) —

Inl |w]

If max(|n|, |w|)<y0—271% or min(|n|, |w|)=~o+271°, then it follows from (10.33) that
[N (In) =N (Jw])|<e2, and thus ||n|—|w|| Sep27F1l/2+k1 - Therefore,

‘ <e2, where w=n-¢. (10.33)

‘W_W‘ <212 and

’<€22 |k‘1|/2 k‘l
nl - wl

‘nl ]

As a consequence, |n—w|<Sea27F11/2+51 - On the other hand, |n—w|=|¢|>2%, in contra-
diction with the assumption g, <2~ P12F=F1,

Since |n—w|<27% it remains to consider the case

0l In—¢| € =27 70+277. (10.34)
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In particular, ki, ky€[—10,10] as claimed. Moreover, |v|<eo2!¥! as desired, in view
of (10.27). The condition (10.29) gives

|X(|a—,6’|)—)\'(|5|)‘ <ep+Ce227% and  sgn(a—pB)+sgn(B)=0.
Without loss of generality, we may assume that
B>a and |N(B—a)=N(B)|<ex+Cel27%, (10.35)

Notice that p;_1(a)€ (70, a+70). We have two cases: if e2>27P122% then we need
to prove that |8—~0|<2*P1e52/F. This follows from (10.33): otherwise, if |3—vo|=d>
24P1,2Ik1 > 23P19k  then |[n]—="0|~d and ||w|—~o|~d, using also (10.27). As a conse-
quence of (10.33), we have ||n|—|w||Se2d™?, so

A and LN Sead ™
Il Jwl Il fwl]™
Thus, |n—w|<eg+ead™t<eg+2F4P1 in contradiction with |n—w|=[¢|>2F.

On the other hand, if e5<27P122% then (10.35) gives |\ (3—a)—)N(B)|<2e2 and

BE€(Y0,v0+a). Let H(B):=X(8)—N(8—a), and notice that

\H'(B)| 2 |B—70|+|8—a—70| = 2*

if 8 is in this set. The desired conclusion follows, since H (p, -1 («))=0.

~ €2

Case 2. If (u,v)=(+,+), then (10.29) gives
|)\/(a_6>_)\/(6)| < EQ+C€%2_2]€_U€1‘/2+2max(k1’k2), B c (O7 a).

This easily shows that ki, kp€[k—10,k+10] and |a—28]<273%1/2¢,. The desired con-
clusion follows using also (10.27). O

Proof of (10.19). Assume now that £>100 and consider two cases.

Case 1. If (p,v)=(+, —), then (10.29) gives

N (JaB)~ N(|8])] < o+ C3a2b—Thnl/242max(ki2)  and  sgn(a— ) +sgn(B) = 0.

We may assume §>«, | max(ki, ko) —k|<20, and |N(8—a)— XN (8)|<2e2. In particular,

B (o, at70). Let H(B):=N(B)—N(B—a) as before, and notice that |H'(3)|>2%%/2 in
this set. The desired conclusion follows, since H (p;_1(«))=0, using also (10.27).

Case 2. It (u,v)=(+,+), then (10.29) gives
N (a—B) =N (B)| < eg+Cela 2k~ Ikul/242max(kiks) - 3 (0, q). (10.36)

If both 8 and a—f are in [yp,00), then (10.36) gives |3—3a|<e22%/2, which suffices
(using also (10.27)). Otherwise, assuming for example that 5€(0,~p), (10.36) implies that
B<L277420, Let, as before, G(3): =N (8)— N (a—/f), and notice that |G'(5)|>2%/2 if B¢
(0,27%+20]. The desired conclusion follows, since G(p,2(a))=0, using also (10.27). [
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(i) If k<—100, then ®,,,(&,7)>2%2 in view of (10.6) and (10.18), which is not
allowed by the condition on ¢;.
If £>100 and (u,v)=(+,—), then p, 1(a)—a<27FH10L2k-10Lq and

@(&,m)| = |EAM@) = A(p+-1()) +A(p+-1(a) —a)[ - Ces2",
for some constant C sufficiently large. Moreover, in view of Lemma 10.1 (i),
alpi1(a)—a) <y <0.2,

In particular, using also Lemma 10.1 (iv), |®(&,7)|>27%/2, which is impossible in view
of the assumption on €;. A similar argument works also in the case £>100 and (u,v)=
(4, +) to show that there are no points (£, n) satisfying (10.20).

Finally, assume that |k|<100, so |ki|, |k2|€]0,200]. If (u,v)=(+,—), then there
are still no solutions (£,n) of (10.20), using the same argument as before: in view of
Lemma 10.1 (i),

a(pi-1(a)—a) <95 <0.2,
so |[®(&,n)| 21, as a consequence of Lemma 10.1 (iv).

On the other hand, if (u,v)=(+4,+), then we may also assume that o=+. If g is
close to pyia(a@) or to a—p,ia2(a), then ®(&,n) 21, for the same reason as before. We are
left with the case |ﬁ— %a| <ey and a>1. Therefore, ‘77—% ’gag. We now notice that the
equation )\(x)—Q)\(%x)zo has the unique solution z=+/2=:7;, and the desired bound

on ||¢|—~1| follows, since

[1€1=1] S |Pour (& 38) | S 1Popuw (€0 +|Popun (& 5€) = Lo (€, m)| Se1+65.

This completes the proof of the proposition. O

10.3. Bounds on sublevel sets

In this subsection we analyze the sublevel sets of the phase functions ®, and the interac-
tion of these sublevel sets with several other structures. We start with a general bound

on the size of sublevel sets of functions; see [30, Lemma 8.5] for the proof.

LEMMA 10.3. Let L,R,MeR, with M >max(1,L,L/R), and let Y: BR—R, with
Br:={zeR":|z|<R}, be a function satisfying ||VY ||ci(p) <M for some [>1. Then,
for any >0,

Hx €Bg:|Y(z)|<e and Y |09V (z)| > LH SR MLV (10.37)
lal<!

Moreover, if n=1=1, K is a union of at most A intervals, and |Y'(z)|>L on K, then

H{zeK:|Y(z)|<e}| SAL e (10.38)
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We now prove several important bounds on the sets of time resonances. Assume
that ®=®,,,,, for some choice of o, i, v€{+, —}, and let D; be the large constant fixed
in Proposition 10.2.

PROPOSITION 10.4. (Volume bounds of sublevel sets) Assume that k, k1, ko €Z, de-
fine Dy gy ky as in (2.11), let k:=max(k, k1, k2), and assume that
min(k, kl, k2)+max(k, kl, k’g) 2 —100. (1039)
(i) Let
By ke = 1{(§:1) € Doy ko [ R(€, ) <€}

Then,

_ 1 .
sup/2 154 ke (§51) dn,§2_k/2510g(2+6)24m1n(k1+7k§r)’
< (10.40)

—k 1 min (k]
sup / LB e () €S2 ’“/Qslog(ug)z‘* LD,
n JR

(ii) Assume that roe[27P1,2P1], e 2mintkhkik2.0)/2=D1 " gnd ' <1, and let

Ellc,kl,kg;s,s’ = {(5777) epk,khlﬂ‘z : |(I)(£777)| <e and ||£—77|—7“0| ggl}'

Then, we can write Ej . ... o =FE{UE), with

1 —
s [ g €on)dyssup [ gy de e 1o )2 (10.41)
¢ JR2 n JR2 €
(iii) Assume that e <2mn(kF1k2.0)/2=Dr " 501 and p, q<0, and let

Ellc/,kl,kg;a,x = {(fa 77) € Dk7k17k2 : |(I)(£a 77)| <e and |(Q17(I))(€7 77)| < %}

Then,

min 1 — k
Sup/z 1Ellc/,k1.k2:5,,( (§7n)¢EQ(VW¢(£’n))dn§28 (|k1|7k2|)€(10g 5>%2 q22k,
<R (10.42)

min 1 — k
sup [ Lrg, €M (Teb(€m) de S 2mn D (1og L) rmr
n

As a consequence, we can write Ey =FE{UEY, with

Jkase,

1 —
swp [ App(€mdntsup [ Legln) d£§6<log>x2”’“- (10.43)
¢ JRr2 n JR2 €
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Moreover, if <2 8max(kkik2)=D1 tpep

wp [ e, (€ noen(VB(E ) dn S 2202,
¢ R (10.44)

Sup /]Rz Log, o (Emegp(Ve®(€,m)) dE < 52725,
. ,

Proof. The condition (10.39) is natural, due to (10.6), otherwise
| (&, )| Z 2 kE2in Dy,

Compare also with the condition &< 2mn(k-k1:k2,0)/2=D1 ip (ij) and (iii).
(i) By symmetry, it suffices to prove the inequality in the first line of (10.40). We
may assume that ks <k, so, using (10.39),

ki, max(k, ko) € [k—10,k] and k, ko> —k—100. (10.45)
Assume that £=(s,0) and n=(r cos,rsin ), so
—®(&, 1) = —0 M)+ VAT)+pA((s2 472 =257 cos 0)1/2) =: Z(r, 6). (10.46)

We may assume that e omin(k.k2)9k/2=D1  Notice that

d
—7 —
de (r7 0)’

srsinf
(s24+r2—2srcos)1/2|

N ((s2 412 =251 cos 0)'/?)

(10.47)

Assume that |s—r|>2F"100 s [2k—4 2k+4] and re[2¥2~4 2k2%4]. Then, for r and
s fixed,

g
[{6€0,27]:Z(r,0)| <e}| S S . (10.48)
be%;l} \/Qk/22mm(k’k2)(€+Z(r, b))

Indeed, this follows from (10.47), since in this case |9 Z (r, 0)|~2min(k-k2)2k/2|sin 0| for all
6€l0,27]. Next, we observe that

[{re 2k~ 25 s —p| > 25100 and | Z(r, br)| < x2min(k’k2)2k/2}‘ <s2M2 0 (10.49)

provided that k>200 and b€{0,1}. Indeed, in proving (10.49), we may assume that
<27 P1. Then, we notice that the set in the left-hand side of (10.49) is non-trivial only
if either

+Z(r,br) = A(s)—A(s£r)£A(r) and se[2F710,9FF10) g [p7R10 9=k+10)
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or
+Z(r,bm)=A(r)—=A(r£s)£A(s) and re [2’5_10, 2E+10], S€ [2_’5_10, 2_7”10].

In all cases, the desired conclusion (10.49) easily follows, since |9.Z(r,br)| is suitably

bounded away from zero. Using also (10.48) it follows that
[{:lnl € 2%, 259, lg] =] > 2510, and |@(¢,m)| <e}| Se27*22%, (10.50)

provided that |¢|€[2F=4,2F+4] k>200, and (10.45) holds.

The case k<200 is easier. In this case we have 2F,2%1 2F2~1, due to (10.45). In
view of Proposition 10.2 (iii), if |Z(r, br)|<3<27?P1 and [0, Z(r, br)|<272P1, then s is
close to 1, r is close to 21, and b=0. As a consequence, |92Z(r,br)|>1. It follows from
Lemma 10.3 that

[{re 2727 2k2H4] |5 > 287100 and | Z(r, brr)| < 52}| S %Y/,

provided that k<200 and »>0. Using (10.48) again, it follows that
z 1
[ €274, 25541, ]Il >22%, and foe, ] <<} seton(2+1). (105)

provided that |¢|€[2F~%, 2F+4] and k<200.
Finally, we estimate the contribution of the set where ||¢|—|n||<2*71%. In this case,
we may assume that &, ky, ko >k—20. We replace (10.48) by

{021, 2r—27P1]: | Z(r, 0)| <c}| S c , (10.52)

- \/23’;/2(5+Z(r, 7))

which follows from (10.47) (since |9pZ(r,0)|~23%/2|sin @] for all fc[2-Pr 2xr—2-D1]).
The proof proceeds as before, by analyzing the vanishing of the function r—Z(r, ) (it
is in fact slightly easier, since | Z(r, w)|>23%/2 if k>200). It follows that

— 1 —
[l 2,2, [l pl] <272, and foe, )l <) e tog (242 ) ) 242

The desired bound in the first line of (10.40) follows using also (10.50)—(10.51).
(ii) We may assume that min(k, k3)>—2D; and that s’éQ‘Df. Define

{(5777) € El/f,khkzga,e’ . |an)(£7n)| 2 2—20D1}7
{(&:n) € B gy pyseer : [VeR(E, 1) 2 27201y,

E{ :
(10.53)

B,
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It is easy to see that

B k.. = FEjUE),

kose,e’

using Proposition 10.2 (ii). By symmetry, it suffices to prove (10.41) for the first term in
the left-hand side. Let £=(s,0), n=(rcosf,rsinf), and

Eieq:=1{n:(&n) € Bf and [sin6| < (¢)'/?2272k2},

(10.54)
Ef co:={n:(&n) € Bl and [sind| > (¢')!/?272F}.

It follows from Lemma 10.3 that \E{)€)1|§5~(5/)1/2. Indeed, as |V, ®(£,n)|>272P1 and
|sin 0] < (e/)'/2272k2 it follows from formula (10.46) that |9, (®(&,7n))|=2"'P1 in By
The desired conclusion follows by applying Lemma 10.3 for every suitable angle 6.

To estimate |E] ¢ |, we use formula (10.46). It follows from the definitions that
EfenCinire 2274287 A(r) € Ko, [sind] > (1)/227%%, and |2(€, )| <<},

where K ,, is an interval of length Se’ and kp >—2D;. Therefore, using formula (10.46)
as before, | ¢ o[ S2%2¢(e’)!/2, as desired.

(iii) For (10.42) it suffices to prove the inequality in the first line. We may also
assume that (10.39) holds, and that <29~ 2max(k.k1k2)=P1  Agsume, as before, that

£=(s,0) and n=(rcosf,rsind). Since

N(|€=n
(@) )= U= e,
€ =nl
the condition |(Q2,®)(&,n)| < gives
|sin 0] < se2k1—h—hka=lk1l/2 (10.55)

in the support of the integral. Formula (10.46) shows that

/ J—
o iona(n| = > s sin ] 2

in the support of the integral. Therefore, |0, ®(&,7)|>29"* in the support of the integral.
We now assume that 6 is fixed satisfying (10.55). If ||kz|—|k1||>100, then

\&AI)(E, 77)| Z 2|k1‘/2+2|k2‘/2 for all (ga 77) € ,Dk:,kn,k‘ga

and the desired bound follows from (10.37), with [=1 and n=1. If | |kz|— |k1||<100, then
we still use (10.37) to conclude that the integral is dominated by

Oe2724951k11/2 ok1—k—k1]/2 < o ,0—2q94[k1|
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This suffices to prove (10.42) if 24 >2-6max(k.kik2)=D1  Rinally, if
“k2|_‘k1|| < 100’ 24 <2—6max(k7k1,k2)—D17 and x<2q—2maX(k7k1,k2)—D17

then we would like to apply (10.38). For this, it suffices to verify that, for any 6 fixed
satisfying (10.55), the number of intervals (in the variable r) where |0, ®(&,n)|<2974
is uniformly bounded. In view of Proposition 10.2 (iii), these intervals are present only
when k, k1, ko €[—10,10], |[s—71 r—%71’<<1, and

(€, 1) =£(A() ~Ar) - A((s* +17— 257 cos0) /%),

In this case, however, |92®(£,1)|>1. As a consequence, for any s and 6 there is at most
one interval in r where |9,®(£,7)| <297, and the desired bound follows from (10.38).
The decomposition (10.43) follows from (10.42) and Proposition 10.2 (iii), by setting
9P — 94 —9—2D19—2max(k,k1,k2)_
To prove the first inequality in (10.44), we may assume ¢<—5max(k, k1, ke)—D;
(due to (10.55)). By Proposition 10.2 (iii), we may assume k, k1, ko €[—10, 10], |s—71| <1,
|r—iv|<1, and

B(£,m) = +(A(s) = A(r) = A((8+7° =287 cos 6)/?)).
As before, [02®(&,7n)|>1 in this case. As a consequence, for any s and 6 fixed, the

measure of the set of numbers r for which |0,.®(&,n)| <27 is bounded by C2%, and the
desired bound follows. O

We will also need a variant of Schur’s lemma for suitably localized kernels.

LEMMA 10.5. Assume that n,pgf%D, k,ki,ko€Z, lg%min(k,kl,kQ,O)f
and 01, 02€{v0,n1}. Then, with Dy i, k, as in (2.11), and assuming that

1
5D,

Hsup |f(rw)]

weSt L2(r dr)

we have
L2

| [ 190 € mr(@(Emion 6=l Fte—nato) d

| [ 190 €@ (e mien 6=l e)elnl—e2) Fe=npato) dn

<2572 g 12, (10.56)

L2 (10.57)
<min(2/2,20/2)205m/2 gl

and

| [ 100 (eman@emfe-matn dn| <220 ilalis. (1055)

2
LE
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Proof. By (10.6), we may assume that min(k, ky, ko) +%>—100, where
]76 = max(k:, /{‘17 kg)

We start with (10.56). We may assume that min(k, k1, k2) >—200. By Schur’s test,

it suffices to show that
sup/2 1D, o,y (&M@U(®(E M) on (1§ —n]—01)| f(€—n)| dn S 202,
$ R (10.59)

Sup/]Rz 1Dy 4, 0y (61 R(E,m)on (1§ —n]—01)| f(§—n)| d€ S22,

n

We focus on the first inequality. Fix £€R? and introduce polar coordinates, n=&—rw,
r€(0,00), weS. The left-hand side is dominated by

ok1+4

c / / Loy (60 E—ro) o (B(€,E— 1)) (r—00)| f(rw) | dr doo,
weSst J2

kq—4

for a constant C' sufficiently large. Therefore, it suffices to show that
sup/ 1D 4 ks (&, E—1w)pi(P(E, E—rw)) dw S 21/221F11/2, (10.60)
¢ Jwest

which is easily verified as in Proposition 10.4, using the identity (10.46). Indeed, for &
and r fixed, and letting w={(cos @, sin §), the absolute value of the d/df derivative of the
function 8P (&, & —r(cos d,sin b)) is bounded from below by

c|sin G|2F TR —k29lk21/2 > |gip) g2 k1l/2

The bound (10.60) follows using also (10.38). The second inequality in (10.59) follows
similarly.

We now prove (10.57). We may assume that k, k1, ko €[—80, 80], and it suffices to
show that

sgp /R 1D, 0,y (6l (®(E, 1) n (I€=n]—01)p (I — 02)| F(§—n)| dnp < 2™/2 min(2', 2P),

sup [ o0, (€ UBE M) 21 —0r)epIn]—02)| Fl€—) de S 25772

We proceed as for (10.59), but replace (10.60) by

Elllp Sup/ 1wz(@(é,f—rw))wn(r—m)%(\&—mI—Qz)dwﬁmin{2l72”},
=l r wES

supsup [ (@, m))on(r = or)eplln] - g2} ool 1) dw 2
n T weS

(10.61)
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The bounds (10.61) easily follow, using also formula (10.46) to prove the 2! bounds, once
we notice that |sin#]>1 in the support of the integrals. For this, we only need to verify
that the points £ and 7 cannot be almost aligned; more precisely, we need to verify that,
if £ and n are aligned, then |®(¢,£—n)|+|[€—n|—o2|+|n|—01|Z1. For this, it suffices

to notice that
|EA(EDEX 1) £A(02)| 21, if [¢] 21 and +|¢|£ 01402 =0.

Recalling that g1, 02€{v0, 71}, it suffices to verify A(279) —2A(70) #£0, A(271) —2A(y1) #0,
A(v0+71) = A(v0) = A(71) #0, and A(—y0+71)+A(70) —A(71) #0. These claims follow from
Lemma 10.1 (iv), since the numbers 72, v%, Y01, and 7o(y1—70) are not in the interval

[5:3]-

We now turn to (10.58). By Schur’s lemma, it suffices to show that

Sup/ @i, 4, o, (&I F(E—n) dn S 2234 (1411)),
§ e A (10.62)
sup [ (@)1, (€€ )] dE ST,

n

We show the first inequality. Introducing polar coordinates, as before, we estimate
[ @1, (€6l flrw)lrdr
R

< [sup 17|

[ an@le oo, o 66w

L2(7‘ d’l") LQ(T dT‘)

S <2 (@6, € =) 1ny 4, 4, (6= llL2 [P<ir2(P(E, E—rw)Iny 4, 4, (6 E—TW) Lo 12
S 27234 (1)),

using Proposition 10.4 (i) and the bound (10.60). The second inequality in (10.62) follows

similarly. O

10.4. Iterated resonances

In this subsection we prove a lemma concerning some properties of the cubic phases

B(E,1,0) = Py (6,1, 0) = A€) = Au(§ =)~ Ap(1—0) = Ay (0). (10.63)
These properties are used only in the proofs of Lemmas 9.7 and 9.8.

LEMMA 10.6. (i) Assume that &,n,0€R? satisfy

max (||—nl—0|, |[n—a|=70], [lo]—v0) <27P*/2, (10.64)
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and
Vo ® (&, 0)| <500 <2771, (10.65)
Then, for ve{+, -},
A(E)—Ap(E=n)—Au(n) Z Inl. (10.66)
Moreover,
if |Ve®(E,m,0)| > 2 > 2P a1, then |®(E,n,0)| 2 7%, (10.67)

(i) Assume that &,m,0€R? satisfy |€—n)|, [n—0o], |o|€[271°,210] and

|4y (&I =1AE) = Ap(§—m) = Au ()| <2727,

o (10.68)
D5+ (n,0)| = A (7) = Ag(n—0)—A, (o) <2727
If
Vo ®(&,m,0)| < e <2747 (10.69)
then
p=—, v=BF=y=+, |n=20|+6—0|<x, and |[Ve®(&,n,0) < (10.70)

Proof. (i) If (10.64) and (10.65) hold, then the vectors £ —n, n—o, and o are almost
aligned. Thus, either |n|<27P/2+10 or ||n| —2v0| <27P1/2+10. We will assume that we
are in the second case, ||n|—27vo|<27P*/2+10 (the other case is similar, in fact slightly
easier because the inequality (10.66) is a direct consequence of (10.6)). Therefore, either
|1€]—3v0|<27P1/2¥20and the desired conclusions are trivial, or ||| —~o|<27P1/2+20,
In the latter case, (10.66) follows since |A(v0)EA(70)E£A(27)|=1; it remains to prove
(10.67) in the case u=—, B=y=+,

®(&,1,0) = AE)+A(E—n)—A(n—0)—A(0),

(10.71)
(Il =270] <27P1/2420 | [¢] —r| < 27P1/2420,

In view of (10.65), the angle between any two of the vectors £ —n, n—o, and o is either
O(51) or m+0O(3). Given o=ze for some e€S!, we write n=ye+n', E=ve+&', with
e-n'=e-&'=0, and || +|€'|Ss1. Notice that |®(€,n,0)—®(ze, ye, ze)| S, Therefore,

we may assume that

|z —0|+|y—270|+]2—70| <27 P1/2F30,

N (y—2z)—N(2)] <2301,
IN(y—z) =N (y—2)| <2301,
N (z) =N (y—=)| > 32,

(10.72)
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and it remains to prove that

1D (e, ye, ze)| = |Ma) + A y—2) =Ny —2)—A(2)| > 2. (10.73)

Let 2’ #z denote the unique solution to the equation X' (z')=\(z), and let d:=|z—~o|.
Then |2’ —vp|~d, in view of (10.10). Moreover, d>./3; otherwise |y—z—~9|<y/701 and
ly—2x—~0| S/, S0 |2 —70| <+/71, in contradiction with the assumption

IN(z)=N(y—x)| > %;{2.

Moreover,

there are 01,09 € {2, 2’} such that |y—z—o1|+|y—x—02| < % (10.74)

In fact, we may assume d > 2_D1/4z;/2, since otherwise |x—~o|+|y—z—70| Sd, and hence
[N (z) =N (y—x)|<d?, which contradicts (10.65).

Now, we must have o1=z; in fact, if 01 =2/, then x=2+2"—09+0(5¢,/d), and thus
[N () =X (02)] S 51,
which again contradicts (10.72). Similarly, oo=2’. Therefore,
yzQZ—i—O(ﬂ)7 91:=2z—z’—i—0(ﬂ>7 y—x:z'—i—O(ﬂ). (10.75)
d d d
We expand the function A at ~g in its Taylor series:
A(v) =A(y0)+e1(v—0)+es(v—70)*+O0(v—20)*,
where ¢1, c37#0. Using (10.75), we have

O(ze, ye, ze) = cs((x—0)>+ (y—2—)> — (2—70)*— (y—2—0)*) +0(d")
=c3((22—2"—70)* + (2 —70)* —2(2—0)*) +O(d* +1d).

In view of (10.10), z+z'—2y=0(d?). Therefore, ®(ze,ye,ze)=24(z—0)>+O(d*+
s1d), which shows that |®(ze, ye, ze)|>d3. The desired conclusion (10.73) follows.
(ii) The conditions |®,5(n,0)|<272P1 and |(Vy®,,)(n, 0)|< 3¢ show that n corre-

sponds to a space-time resonance output. It follows from Lemma 10.2 (iii) that

n—yel+|o—gye| S, ly—m| 27", and v=F=1, (10.76)

for some ecS!. Let b~0.207 denote the unique non-negative number b;«é%yl with the
property that \'(b)=\’(371). The condition |V, ®(¢,7, )| < shows that £~ is close to
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one of the vectors (%’yl)e, *(%’)/1)6, be, and —be. However, A(b)~0.465, \(~1+b)=2.462,
A(y1 —b)~1.722, and A(71)=22.060. Therefore, the condition |®. ., (£,7)|<272P1 prevents
&—n from being close to one of the vectors be or —be. Similarly, £ —7 cannot be close to
the vector (%’71)6, since )\(%fyl)%l.OSO, /\(%71)z3.416. It follows that

[E=m+(3m)el S27°P, |[¢|—3m|$27%, p=—, and v=+.
The condition |V,,<i>(§, n,0)| <3¢ then gives
|(n=8)—(n—0)| S,

and remaining bounds in (10.70) follow using also (10.76). O

11. The functions Y

The analysis in the proofs of the crucial L? lemmas in §6 depends on understanding the
properties of the functions T:R? xR%2 =R,

T(& 1) = (Ve @) (& m(Ve @) (& n), (V@) (& m)). (11.1)
We calculate
(V@) (€ 1) =~ AL ()L X, (1€ —nl) S—L,
0 €l .
/ £ £—n '
=) SV (le—pp ST
(Ve®)(&,m) UU§D|£‘ L (1€ UD|§__nV
and
(V2,) (€001, 051 = (J6 ) S
5“|§n nl® = (&—m)(& —my) (13
)\/ _ ij 1S —\Si T Tl YA )
+AL(E=n0) FE
Using these formulas and the identity (v-w)?+ (v-w)?=|v|?|w|?, we calculate
)\// )\/ )\/
rtep= SR Klb
(11.4)
Auz) [ A (1€ , A,
D (el - 220D ) (el - 20 5,
where z:=£—n. We also define the normalized function
T(& )= (&) (11.5)

[(Ve@) (&, mI(Vy®@)(&: )l

We first consider the case of large frequencies.
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LEMMA 11.1. Assume that co=v=+, k=D, and p—%kg—Dl.
(i) Assume that

@) <28, €], |n| €[2¥72%,25F%),  and 27 <Je—n < 2% (11.6)

Let z:=&—n. Then, with p* =max(p,0),

. l . .
|§ n | %2—k and |£ Z| + |n Z| §2p+—k/2' (117)
€Ll &=l [nl =]

Moreover, we can write
—p Y (&, m) =N(|z]) A&, n)+B(&, 2)B(n, 2),
A€, )2 2%, ID¥Al|lp= Sa2¥, |[Blli=S2°,  [|D*B|p= Sa 242

~

(11.8)

—207 220} 1

. There exist functions 91:9|§| u

(ii) Assume that z=(pcos @, psinb), |g|€[2
and 92:0|2n|7u such that
if 2872 < €] <25 and |@(€,6~2)| <27, then mins |0—arg(§)F0" ()| S277H/2,
if 2872 | <2842 and |®(n+z,1)| < 2P, then ming |0 —arg(n)F02(o)| <20 F/2.
(11.9)

Moreover,
|91(Q)—%7T|+|02(Q)—%7T|,S27k/2 and \3901\—|—|8992|§2*k/2. (11.10)

(iii) Assume that [€], |n|€[272,2F+2]. For 0<»x<2~Pt and integers r and q such
that ¢q<—D1 and |%r\€[%,4], define
Spian(€):={z: [zl =€ 277,277, |®(¢,£—2)| <27,
jarg(2) —arg(§) 70" (o) <27 7/2, (11.11)
and |Y (€, €—2)— 29| < 10229},
and
Spar(m) i ={z:lz|=0€[27%,27), [@(n+2,m)|<2",
larg(2) —arg(n) F6' (0)| < 2771/2, (11.12)
and | Y (n+2z,m)— 27| <1027},
Then, for any te{+,-},
[Spie.r () F[Sp 0 ()] S 204742,
diam(S,,y . (€))+diam(Syg (1))

p,q,7 p,q,7

(11.13)

<2
<oPRI2 4 500,
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Moreover, if 2P~%/2< 529, then there exist intervals I} and I . such that

p,q,T p,q,T
SpF (€) C{(0cos 0, osind):p€e I} . [0—arg(§)F0' (o) S2P7M2Y, |1}, | S 527,
SEF.(n) C{(ocosb, psind): o€ I2 ., |0—arg(n) F0%(0)| S2P7F/2},  |I2,,| < 520
(11.14)

Proof. (i) Notice that, if |{|=s, |n|=r, and z={—n=(pcos b, psin ), then

26m=r2+s2—p% 22:6=0*+s7—r? 2zm=s52—ri-p%

(11.15)
(2n-£1)2 = dr2s2— (124 52— o?)2.

Under the assumptions (11.6), we see that [A(r)—A(s)|<2P", therefore |r—s|<27%/2207
The bounds (11.7) follow using also (11.15). The decomposition (11.8) follows from
(11.4), with

"(|z]) N z-y)? (|2 "(lw
IR COLITIICES SR (PR (LT

x|yl eyl |2[3/2 |w]

The bounds in the second line of (11.8) follow from this definition and (11.7).

(ii) We will show the estimates for fixed &, since the estimates for fixed 7 are similar.

We may assume that £=(s,0), so

B(E,E—2) = A(5)=Au(0) — A (/52 +02 —2s0c0s ). (11.16)

Let

F(0) = —A(8)+ A (0) + A (/52 +02—2s0c0s0).

We notice that —f(0)>2%/2, f(7)>2%/2 and f'(0)~2*/?sin @ for [0, 71]. Therefore, f is
increasing on the interval [0, 7] and vanishes at a unique point 6" (0)=6 ,(o). Moreover, it
is easy to see that [cos(6'(0))|<27%/2, and therefore |6'(0)— 47| <27%/2. The remaining
conclusions in (11.9)—(11.10) easily follow.

(iii) We will only prove the estimates for the sets S} ,.(€), since the others are
similar. With z=(pcosf, gsinf) and £=(s,0), we define

F(0,0):=®(¢,6—2) and G(o,0):=7 (¢, E—2).

The condition |Y(&,6—2)|<27P1 shows that |T(&,6—2)[<2¥P1 thus |o—o| <2~ P1/2
(see (11.8)). Moreover, |§— 7| <27P1/2 in view of (11.9) and (11.10). Using (11.16),

|06 F (0,0)|~2%/% and  |9,F(o,0)| S2"2~P1/2
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in the set {(0,0):lo—70|<27P/% and |0—3n|<27P*/2}. In addition, using (11.8), we

have

A(gaffz)

_TTASYS S —D1/2 an _ 7,D1/2.
WENE 7 TO@) and 10,G(e.0)| =007

—10,G(0,0) =" (0)

Therefore, the mapping (o, 6)+— (27%/2F(p,0),G(0,0)) is a regular change of variables for
(0,0) satisfying |o—70|<2-P1/? and |0f%7r|§2fpl/2. The conclusions follow. O

It follows from (11.4) and (11.15) that, if |{|=s, |n|=r, and |€—n|=p, then

3 s r
—47(&,n) Af(g) N0 N =G(s,1,0), (11.17)
where
G(s,r0): = Q/\,N(Q) (4r232—(r2+52—92)2)
e Y \ (11.18)
+ (295 )\/Eii 9252+r2> (291“)\,25; +92+r252>.

We now assume that |£—n] is close to 7y, and consider the case of bounded frequen-

cies.

LEMMA 11.2. If [€]=s, In|=r, [E—nl=0, |o—0|<275P", and 272°0<r, s<22P,
then
[2(& ) +[T(En)] 2 1. (11.19)

Proof. Case 1: (o, u,v)=(+,+, +). Notice first that the function

F(r) = Ar)+X(v0) = A (r+0)

is concave down for r€0,70] (in view of (10.3)) and satisfies f(0)=0 and f(0)>0.1.
Therefore, f(r)>1 if r€[2729 4], so

@& )21, if r<q0 or s < 2. (11.20)

Assume, by contradiction, that (11.19) fails. In view of (11.17), |®(£,n)|< 1 and

N (o) 2.2 2 N (o) 2, 2,2
2 - 2 — — 1 . 11.21
‘( Qr)\/(r)—i-(g +r°—57) 053 (s) (0° 45" =) )| < 1+s+r ( )
It is easy to see that, if |®(&,n)|=|A(s)—A(0)—A(r)|<1, r=100, and |g—7o| <2781,

then
A(0)—0.1

N (s)

Ao)—0.1

and s>r+ N

r<s—
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Therefore, using (10.2)—(10.4), if r>100, then

2053 £ > S 0010 (2) 2 V5

2r
—? 48 > s (A(0) 0.1 0N ()~ & 2V

>
—~
|
s}
\
>
~—

In particular, (11.21) cannot hold if r>100.

For y€]0, 00), the equation A(z)=y admits a unique solution z€[0, c0):

ol
peo L YWy (27y2+‘/27; 27y4+4) y (11.22)

Assuming |o—70|<278P1, 297<s<110, and |A(s)—A(r)—A(0)|<1, we now show
that G(s,r,0)21, where G is as in (11.18). Indeed, we solve the equation A(r(s))=
A(s)—A(70) according to (11.22), and define the function Go(s):=G(s,7(s),70). A simple
Mathematica program shows that Go(s) 21 if 2o <s<110. This completes the proof of
(11.19) when (o, p, v)=(+,+, +).

Case 2: the other triplets. Notice that, if (o, u,v)=(+, —, +), then

Py (Em)=—Pi(n,€) and Yo . (§n)=-Tiii(n,§). (11.23)

The desired bound in this case follows from the case (o, y, v)=(+, +, +) analyzed earlier.

On the other hand, if (o, u,v)=(+,—,—), then ®(&,n)=A(s)+A(r)+A(0)21, so
(11.19) is clearly verified. Finally, if (o, g, ):(—&-,—1—7—), then ®(&,n)=A(s)+A(r)—A(o)
and we estimate, assuming 2_200<r<%07

A(S)FA() — A(0) > M)+ Ao —r) —~A(e) = / W@ N(ato—r))de 2 1.

A similar estimate holds if 27200 <s< %Q, orif s, r> %g. Therefore, ®(£, 1) 21 in this case.

The cases corresponding to c=— are similar, by replacing ® by —® and T by —7.
This completes the proof of the lemma. O

Finally, we consider the case when |£—1| is close to 7.
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LEMMA 11.3. If |€|=s, [n|=r, [E—n|=0, |o—71|<27 P, and 272°Lr, s, then

B+ (\élﬂnl)f >1, o
1B, )|+ El(fr,'?;)'I I(VgT)(?;)J-F(ZE)S)(g,nM -
and
(&, )|+ 'Efil’;)" e ‘77(>'€<|Zén<|1>)>ﬁ<f,n>| -

Proof. Case 1: (o, p,v)=(+,+,+). Notice first that the function
f(r)=Alr)+A(0) = Alr+m)

is concave down for r€[0,0.3] (in view of (10.3)) and satisfies f(0)=0 and f(0.3)>0.02.
Therefore, f(r)>1 if r€[2729°,0.3], so

|®(&,m)| 21, if r<0.3or s<y40.3. (11.26)

On the other hand, if |®(¢,7)|<1, 71000, and |o—71|<27P1, then

A 2 A 2
s<r+(g)7+0 and r>s— (0)+0

N (r) N(s)

Therefore, using also (10.5), if 7>1000 then

297‘3\\:2§;+g2+r2_52/ )\/2(7;)(@ ()= Mg)—0.2) = V.
Qsi\\:gg—éﬂ_ 2—|—r2> /2(5)( )‘/(Q)—/\(Q)—O.Q)—g2>\/§’

Using the formula (11.17) and assuming |o—~1|<27P1, it follows that
if |®(&,m)|<«1 and r>1000 then —Y(&n) 2. (11.27)

Therefore both (11.24) and (11.25) follow if r>1000.
It remains to consider the case 1 +0.3<s<1010. We show first that

if 3<s<1010 and |A\(s)=A(r)=A(0)| < 1, then =Y (&,n) 2 1. (11.28)
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Indeed, we solve the equation A(r(s))=A(s)—A(y1) according to (11.22), and define the
function G1(s):=G(s,7(s),71), see (11.17)—(11.18). A simple Mathematica program
shows that G1(s)21 if 3<s<1010. The bound (11.28) follows, so both (11.24) and
(11.25) follow if 3<s<1010.

On the other hand, the function G1(s) does vanish for some s€[y;+0.3,3] (more
precisely at sa21.94). In this range we can only prove the weaker estimates in the lemma.
Notice that

~ - 1
T(fan):T(|€|,|77|a|f—77D and T(S,T‘, Q) ::_ZG(Svrv Q)
Then, using also (11.2), we have

(Va0)(Em)- (Vi @)(Em) = (ro) "  (n-£5)((0:T) (5,7, )N (0) = (0, T ) (s, 7 )N (),
(VeX)(& ) (Ve @) (& m) = (s0)H(Em ) (0 T) (s, 7, 0)N (0)+(9,T) (5,7, 0) X' (5)).

It is easy to see, using formulas (11.15) and (11.17), that

@&, m)|+[T(E )| +[En| 21 (11.30)

if s€[y1+0.3,3]. Moreover, let

G () := (0, 0)(s,7(5), 1) X (1) = (0,1 (s, 7(5), )N (r(5)),

Gra(s) 1= (0:1)(s,7(s), 1) N (1) + (0, T) (s,7(s), 71) N (s),
where, as before, r(s) is the unique solution of the equation A(r(s))=A(s)—A(71), ac-

cording to (11.22). A simple Mathematica program shows that G;(s)+G11(s)=>1 and
G1(s)+Gr2(s)21 if s€[y1+0.3,3]. Using also (11.29) and (11.30), it follows that

(11.31)

if s€[y1+0.3,3], |®(&,n)|<1, and |o—70|<27P'. The bounds in (11.24) follow from
(11.26)—(11.28) and (11.31). Those in (11.25) follow from (11.26)—(11.28) and (11.30).

Case 2: the other triplets. The desired bounds in case (o, p,v)=(+,—,+) fol-
low from the corresponding bounds in case (o, u,v)=(+,+,+) and (11.23). Moreover,
if (o, u,v)=(+,—,—), then ®(&,n)=A(s)+A(r)+A(0)=1, so (11.24)—-(11.25) are clearly
verified.
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Finally, if (o, u, v)=(+, +, —), then ®(&,7)=A(s)+A(r)—A(0). We may assume that

5,7€[2729 ~¢]. In this case, we prove the stronger bound

(&, m)|+]L(&m]Z 1. (11.32)

Indeed, for this, it suffices to notice that the function x+— A(z)+A(y1 —2)—A(71) is non-
negative for z€[0,~;] and vanishes only when x€ {0, %’yl, 71}. Moreover,

T((3m)e;=(3m)e) #0

if le]=1 (using (11.4)), and the lower bound (11.32) follows.
The cases corresponding to o =— are similar, by replacing ® by —® and T by —7.
This completes the proof of the lemma. O

Appendix A. Paradifferential calculus

The paradifferential calculus allows us to understand the high-frequency structure of our
system. In this section we record the definitions, and state and prove several useful

lemmas.

A.1. Operator bounds

In this subsection we define our main objects, and prove several basic non-linear bounds.

A.1.1. Fourier multipliers

We will mostly work with bilinear and trilinear multipliers. Many of the simpler estimates
follow from the following basic result (see [44, Lemma 5.2] for the proof).

LEMMA A.1. (i) Assume =2, f1,..., fi, fix1 €L*(R?), and let m: (R?)!—C be a con-

tinuous compactly supported function. Then,

/ m(&r, s &) F1(&1) o &) firr (61— .= &) déy ... d
(R2)! (A1)

SHFE ) ([ fallzen - N frgallpeesa s

for any exponents pi, ... pi41€[1, 00] satisfying 1/p1+...+1/py1=1.
(ii) Assume =2 and let Ly, be the multilinear operator defined by

‘F{Lm[fla,fl]}(f):/ 1m(§a7727777l)f1(£7772)fl—l(nl—lfnl)fl(nl)drﬂ dnl

(R2)!=
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Then, for any exponents p,q1, ... €[1, 00] satisfying 1/q1+...+1/q=1/p, we have

Lo lfrs s fillle SHFTH ) L fillzan o fillpa (A.2)
Given a multiplier m: (R?)2—C, we define the bilinear operator M by the formula

FOLI£.9)€) =175 [, m(&mF€-ma(m dn. (43)

vy R2

With Q=205 —x201, we notice the formula
QM([f, g] = M[Qf, g]+M][f, Qg)+ M|, g], (A.4)

where M is the bilinear operator defined by the multiplier m(&,n)=(Qe+Q)m(&,n).

For simplicity of notation, we define the following classes of bilinear multipliers:

S ={m: (R*)™ — C continuous: ||m||ge := || F " m| 11 < oo},

A5
S§ = {m: (R?)? — C continuous: [|m/ s ::ls<u]\II) [(Qe+Q)'m|| s < oo}. (4.5)

We will often need to analyze bilinear operators more carefully, by localizing in the

frequency space. We therefore define, for any symbol m,

mPRE2 (€ ) = o1 () r (1) ory (M)m(€, m). (A.6)

For any t€[0,T], p>—Ns, and m=>1let (t)=1+t and let O, ,=O,, ,(t) denote the
Banach spaces of functions f€L? defined by the norms

_ _ 2y_52 _ o952
1£llo,,, = () =D OIO=20 =0 £ s | Fl] v va o (80720 | F v 2w )

(A7)

This is similar to the definition of the spaces O,, , in Definition 2.4, except for the supre-

mum over t€[0,T]. We first show that these spaces are compatible with S& multipliers.

LEMMA A.2. Let M be a bilinear operator with symbol m satisfying
[mPFok2 | ge <1 for any k, ky, ko € Z.
Then, if p€[—Ns3,10], t€[0,T], and m,n>1,

&) 2 IMf, Mo, S I fllo,, lgllo, - (A.8)
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Proof. By definition, we may assume that m=n=1and || f|lo,. ,=|9gllo0, ,=1. Thus,

we may assume that

. 2 . 2
Bl prvoss+ sup [|Q07D] gvare < (B and  sup [ QA a1 < (B Y, (A9)
J<MN J<N1/2

where he{f(t),g(t)}. With F:=M][f(t), g(t)], it suffices to prove that

1P llarsos + sup 199 F L grgen S (167755,

J<N1
A s (A.10)
sup ||QijF||W/N2+p5<t> =5/ .
J<N1/2

For k, k1, ko €Z let
Fip =P, M[f(t),9(t)] and Fjp, ko :=PeM[Py, f(t), Pi,g(t)].

For k€Z let
XL ={(k1, ko) €EZXTZ: k) <k—8 and |ky—k| <4},
AP ={(k1, ko) €EZXT: ko <k—8 and |ky —k| <4},
A2 ={(k1, ko) € ZxZ:min(ky, ko) > k—7 and |k; — k2| < 20},

and let Xk::XklUX,?UXg. Let

ap = | Pehllgvoso,  bei= sup || Pehllpgie, cpi=  sup |7 Pihllgag i,
0y, 0<j<N1/2
Qg = Z ak+m2—|m\/100, Bk — Z bk+m2_|m|/1007 = Z Ck+m2_|m‘/100.
mEZ meZ meZ
(A11)

We can now prove (A.10). Assuming k€Z fixed, we estimate, using Lemma A.1 (ii),

||Fk7k1,k2 ||HN0+P /S Ak, (274 maX(kQ’O)Ckz)’ if (kla kQ) € sz’

(A.12)
1B e oo | oo S g (274500 ) i (Ry, ko) € A VA,
Since ), o< (t)39°=5/6 it follows that
S Wl SO (@ Sa ) a)
(k1,k2)€X 1>k
Therefore, since ), ., d%§<t>2527 it follows that
1/2 ,

( > ||Fk%mo+p) S50 (A.14)

25> (141)—10
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—10

To bound the contribution of small frequencies, 2¥ < (t)~!°, we also use the bound

1Pk s ol 22 S 251 P ol 21 S 2%y any, (A.15)
when (k1, k2) € X2, in addition to the bounds (A.12). Therefore,

S Bk llgvers S 05004283 a2, (A.16)
(k}l,k‘g)GXk Y/

if 28 < ()71, Tt follows that

1/2 .
( ) ||Fk||i,N0+p) < (o5l (A17)

26<(t) =10

and the desired bound || F|| pao+r < (14£)%5°5/6 in (A.10) follows.
The proof of the second bound in (A.10) is similar. We start by estimating, as in
(A.12),

1€ Fre iy o || rvaso

52(N3+p)k+(bkl2—(N3+p)k1+ck22—(1\’2+p)k§ +bk22—(N3+p)kz+Ckl2—(Nz+p)k1+)

for any j€[0, N7]. We remark that this is weaker than (A.12), since the Q-derivatives
can distribute on either Py, f(t) or Py, (t), and we are forced to estimate the factor with
more than %N 1 Q-derivatives in L?. To bound the contributions of small frequencies, we
also estimate

1 F ey oo | prvasr S

~

2min(/€,k1 =k2)bk1 bk27

as in (A.15). Recall that No—N3>5. We combine these two bounds to estimate
ST Fiy sl s S (6% (5”2 5z2‘”) (122 (Na Nk g
(k1,k2) EXy 1>k
When 2% < (1+¢)719 this does not suffice; we have instead the bound

Qij ko k Nyt S(E 362_5/66k+2k b2+ (t 2622_(N2_N3)k+(~2k.
R,k 1 H ~ 1
(k1,k2)EX leZ

The desired estimate || F || yag+p < (£)65°=5/6 in (A.10) follows.

For the last bound in (A.10), we estimate as before, for any j€ [0, 3 V1],

, + _ + _ +

HQ]Fk,khszﬁ/Nzﬂ? 52(N2+p)k Ck12 (N>¥p)ki Ck22 (Natp)kz )
19 P ey el a0 S 2% B, Oy

where the last estimate holds only for £<0. The desired bound follows as before. O



GRAVITY-CAPILLARY WATER-WAVE SYSTEM IN 3D 369

A.1.2. Paradifferential operators

We first recall the definition of paradifferential operators (see (2.22)): given a symbol
a=a(zr,():R?xR?—=C, we define the operator T, by

1 [€—nl) - SAY
F{T, =— — —n, — dn, A.18
@0 © =g [ ({50 )a(en S5 iman (A18)
where a denotes the partial Fourier transform of a in the first coordinate, and x=_a9.
We define the Poisson bracket between two symbols a and b by
{a,b}:=V,a-Veb—Vea-V,b. (A.19)

We will use several norms to estimate symbols of degree zero. For g€{2,00} and
reZ, let

IIGIIMW:=s12pH\alr(-,€)HLg7 where |af(z,¢):= Y [¢[?100Fa(x,¢)|. (A.20)
lol+]Bl<r

At later stages, we will use more complicated norms, which also keep track of multiplicity
and degree. For now, we record a few simple properties, which directly follow from the

definitions:

lablla,., +[[1CHa b g, Slallat g, 10lat,,q, - {00, a} ={a1, ¢},
r—2,q

(A.21)
[Pealla,,, S 27*F | Prallm,,.,,  a€{2,00}, k€Z, s€;.
We start with some simple properties.
LEMMA A.3. (i) Let a be a symbol and 1<q<0o. Then,
[ PeTofllLa S llallag, oo (1 Pp—2,5+2) f [l 2o (A.22)
and
[PeTafl 2 Sllallmez 1P—2,p0+2f [l 2o (A.23)

(ii) If a€Msg o is real valued, then T, is a bounded self-adjoint operator on L2.
(iii) We have

T.f=Tuf, whered (y,¢):=a(y,—() (A.24)

and

UTof) =Ta(Qf)+Tar f, where a”(y,¢) = (Qya)(y, Q) +(2a)(y, ¢)- (A.25)
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Proof. (i) Inspecting the Fourier transform, we directly see that

P T f = PoToPr—2 k+2)f-

By rescaling, we may assume that k=0 and write

(PoToh,g)=C ” g(x)h(y)I(z,y) dz dy

and

I(z,y) :/RG a<z, Hn)eiﬁ'(mZ)ei”'(zy)x(lg;?:)wo(&) dn dé dz

0\ io-(=—y) it (@) 16
(z,§—|—2>e e X 540 wo(&) d€ db dz.

I
Ca
S

‘We observe that

o2 a(z,£+6/2 0
oot = [ EEEE () oot

X (1=0g)2(1—A¢)? (e e @)Y dedh dz.
By integration by parts in £ and 6, it follows that

|als(z, £+6/2)

(e —yl2)? [I(2 )| < / et aa©ecnO)dedrdz, (A20)

re (14|z—y[?
where |a|s is defined as in (A.20).
The bounds (A.22) and (A.23) now easily follow. Indeed, it follows from (A.26) that
(Ul —y)? 11 (2, )| < lall v, -

Therefore, [(PoTah,g)|S|lallms. o [|Pllza |gll - This gives (A.22), and (A.23) follows
similarly.

Part (ii) and (A.24) follow directly from definitions. To prove (A.25), we start from
the formula

FOLAO =1 [ @t (x(58 )a(e-n S50 ) ) an

oo (§) =

Formula (A.25) follows. O

and notice that
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The paradifferential calculus is useful to linearize products and compositions. More

precisely, we have the following.
LEMMA A4, (i) If f,g€L?, then

where H is smoothing in the sense that

1PH(f,9)e S D min([|Pe fllza [|Pergllooe, 1Py fll o | Prr gl o)

K k" >k—40
|k’ —k'"| <40

As a consequence, if f€Op, _5 and g€y, _s5, then

2
& NH S DN Omsns SIfl0nm s lglon —s- (A.27)
(i) Let F(z)=z+h(z), where h is analytic for |z|<3 and satisfies |h(z)|S|z|>. If
|ull L~ <155 and N>10, then

F(u) :TF,(u)u—i-E(U)a
, :
O2NEW 0y, Suld, ., if llullo, _, <1.

Proof. (i) This follows easily by defining H(f,g)=fg—Trg—T,f and observing that

(A.28)

Py H(Py f, Perg) =0 unless k', k" > k—40, with |k’ —k"| < 40.

The bound (A.27) follows as in the proof of Lemma A.2 (the remaining bilinear interac-
tions correspond essentially to the set X,f’)
(ii) Since F' is analytic, it suffices to show this for F(x)=z", n>3. This follows,

however, as in part (i), using the Littlewood—Paley decomposition for wu. O

We show now that compositions of paradifferential operators can be approximated
well by paradifferential operators with suitable symbols. More precisely, we have the

following.
PROPOSITION A.5. Let 1<g<00. Given symbols a and b, we may decompose
ToTy, =Tup+ 5T (apy + E(a,b), (A.29)
where {a,b} denotes the Poisson bracket as defined in (A.19). The error E obeys the
following bounds: assuming k>—100,
1PeE(a,0)f s S 27 |all pyg o [0l Mse e [1Pi—5, 1451 Fllza for g€ {2,00},  (A.30)
and
1P E(a,b) fllzz S 27 [lallaies 10l ai oo 1Pk 5545 2o

1PeE(a,b)fllz2 S 272 lall v o 10l o | Pr—s s Il

Moreover, E(a,b)=0 if both a and b are independent of x.

(A.31)
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Proof. We may assume that a=Pgy_190a and b=Pgj,_190, since the other contribu-

tions can also be estimated using Lemma A.3 (i) and (A.21). In this case, we write
167 F{Pe(ToTy—Tap) £ }(£)

= k(&) /R4 Fm)o<r—100(§—0)0<k—100(0—1)

(o(e-0 (-2 <o e-0.552)i(0- 27 )

Moreover, using the definition,

1674]-‘{Pk< )T{ab}f}(é) (€ / M e<k-100(§=0)p<r—100(60 =)

x (02(%@) (g 0, 5+”)b<0—n, 5;”)
a(g 0, 5;”) 0 v (e—n, 5;")) dn do.
Therefore,
167t PLE(a,b)f =U' f+U%f+U3f,
| ) | (A.32)
FDE) =€) [ F@oer1o0(E=0)pi-1on(0—mm(€.1.0) dn s,

where

s ) (o )
(A.33)

afe-0. 537! f(%b)(e_n,f;”),

m?(€,n,6): &(g 0, §+9) (9 ) ( 5“”7)'6(9 n)r}i—@)
_‘9;77(%@)(5 9§+n)6<9_ 77+9) (A.34)

and

mB(g,n,e):ze%”( )(5 9“”)(6(9—77,”;9)—5(9—77,5;”)). (A.35)

It remains to prove the bounds (A.30) and (A.31) for the operators U7, j€{1,2,3}.
The operators U7 are similar, so we will only provide the details for the operator U'. We

rewrite

ml(fﬂ?,@):/O (f 0, f+77) (9—5)319—€)k(84ja<k6) <9 n,g%—i- f)(l—s)ds.
(A.36)
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Therefore,
U'f(a)= g F)E (z,y) dy, (A.37)
where
K a,y):=C | e ™0 (&)p<r100(6—0)p<i—100(0—m)m* (&, n, ) dndo dE.

R6
We use formula (A.36) and make changes of variables to rewrite

1
Kl(x,y):C/ ds (1—5)/ e—ly-(§+#+l/)ezm-§ezz<,uelw<u%0k(f)@gk_loo(u)gpgk_loo(y)
0 R10
X(azj@zka)(z £+ +5 >(8<73<k )(w e+l +2+ >dudud§dzdw

We integrate by parts in &, p, and v, using the operators (272*—A¢)?2, (272 —A,)?, and
(272F—A,)2. Tt follows that
272]@ 272’6 272](7

K! < Fyp(z,w)dz dw,
KIS [, G PP s PR g e ) e

(A.38)

where, with c,o(X7 Y, Z):=p0(X)p<—100(Y)o<—100(Z),
Fa b(

_26k/ dS/
R6

With |a|16 and |b|16 defined as in (A.QO)7 it follows that

1
Fuseol 527 [ s [ lalo(s. 64547 Jiha (w5 + 5+ %)
6

d¢ dpdv
X 04,4127 )< 1027 )< 10(27MY) Qéi

The desired bounds (A.30) and (A.31) for U! follow using also (A.37) and (A.38). [

2 2k 2(272k_AH)2(272k _AV)Q{QO(Qkf, 27klu7 271{,"/)

We also make the following observation: if a=a(({) is a Fourier multiplier, b is a

symbol, and f is a function, then

@010 =1 [ () (w0-a(552) -5 va(51))

b &—n, w)f(n) dn,

2
5005©= 1 [ x(52) (atm-a(52) - 25 va(£12))
6(5 y, 0 ”)f( ) dn.

X

(A.39)




374 Y. DENG, A. D. IONESCU, B. PAUSADER AND F. PUSATERI

A.2. Decorated norms and estimates

In the previous subsection we proved bounds on paraproduct operators. In our study of
the problem, we need to keep track of several parameters, such as order, decay, and vector
fields. It is convenient to use two compatible hierarchies of bounds, one for functions and

one for symbols of operators.

A.2.1. Decorated norms

Recall the spaces O,, j, defined in (A.7). We define now the norms we will use to measure

symbols.

Definition A.6. For 1€[—10,10], reZ,, me{1,2,3,4}, t€[0,T], and ¢€{2,00}, we
define classes of symbols MLm= ML™ (1) CC(R?*xR?:C) by the norms
lall pt 1= sup  sup  sup (1O A2 9200 ., (A.40)
T SN2 Jol+|BI<r CER? o
E e ons2)_ 052 _ i
||a||MzT,’gL c=sup sup  sup (£)(MmTH/6-2007)=26% l|||C‘|mag63m Qi,(“”ﬁg (A41)

JSN1 |a|+|BI<r CeR?

Here,
Qx,(a = QIQ+Q<CL = (xlamg *m26£1 +C18(2 7C28C1 )a;

see (A.25). We also define
lall ygem = llall gt +llall pgrgs - m =1 (A.42)

Note that this hierarchy is naturally related to the hierarchy in terms of Oy, ,. In
this definition the parameters m (the “multiplicity” of a, related to the decay rate) and
I (the “order”) will play an important role. Observe that for a function f=f(z), and
mell, 4],

m <
sty S 1o (A.43)
Note also that we have the simple linear rule

||Pka||M£7; 5275k||PkaHer’ﬂ,q’ kGZ, s>0, q€{2,oo}, (A44)
and the basic multiplication rules

2
<t>26 (HabHMzrlJrlz,mlerz —I—HC{(J,, b}HMLTl:;zz,mlerQ) 5 ||a||Mle.m1 ||b||MlT2,m2. (A45)
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A.2.2. Bounds on operators

375

We may now pass the bounds proved in §A.1 to decorated norms. We consider the action

of paradifferential operators on the classes Oy ,. We will often use the following simple

facts. Paradifferential operators preserve frequency localizations:
PoTof =PiToPr—akra)f = PiTa(z,0)pcnia()f-
The rotation vector field € acts nicely on such operators (see (A.25)):
UTof)=Ta, caf+Ta(S2f).
The following relations between basic and decorated norms for symbols hold:

. 2 2 .
19, ca@. Oper(Oll 2% ol (767207167, o< i< 4y,

19 ca(@, Qpar(Oll,,  S2H lall ygp (£~ DO/67200926 0 < Ny
, 2 r
A simple application of the above remarks and Lemma A.3 (i) gives the bound
—m Cons2)_1a52
1T fllre < ()~ 0720073 o | o | f o

We now prove two useful lemmas.

LEMMA A.7. If q,q—1€[—N5,10] and m,my>1, then
<t>1262TaOm7q C Omtmyq—t for ae le(gnl’
In particular, using also (A.43),

1262
<t> Tom,l,floomﬂl C Om+m1,q-

(A.46)

(A.47)

(A.48)

(A.49)

(A.50)

(A.51)

Proof. The estimate (A.50) follows using the definitions and the linear estimates
(A.22) and (A.23) in Lemma A.3. We may assume that m=m;=1. Using (A.22) and

(A.48), we estimate

Dkt L
2NN T f o S Nl g 2O P i £

_ 2 +
S all pg1 2N Py_o s £

for any f€O; . By orthogonality, we deduce the desired bound on the H™° norm.
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To bound the weighted norm, we use (A.22), (A.23), and (A.48) to estimate
9(N3+q—0)k* | P T f || -

_ N\t j—n n
< Y 2O Toy o I PiTgsn 2 )

~

n<y/2
*
< Z 2WNat =D (110" al| agy o [ Pir—2,ir ¥ " f]

n<j/2 j—n n
112 all ps o 1 Pr—2,k 421" fll o)

+ _ 2 i—
< D0 20O ]y () P 2

n<j/2 2
(0 (| P2 2" f1 )

for every j€[0, N1]. The desired weighted L? bound follows since

1/2
2(N3-i-q)kJr Qj—n 2 /
> 2 [ Pik—2,k+2) flle

keZ
2 + 1/2 2
_ , n |2
o (L PO s @S5 ) S0P I o,
keZ
Finally, for the L>° bound, we use (A.22) to estimate

kT i 2 + 2
oot OF | I BT, f e S Y 2(Netabk HQJlgall NPz 2
J1.J2<N1 /2 '

_ 2 + .
SO al g Do 2O Py_g g Q)]
J2<N1/2

for any j€ [0, %N 1]. The desired bound follows by summation over k.

LEMMA A.8. Let E be defined as in Proposition A.5. Assume that m,my,mo>1,

q—11,q—12,q—1l1—12€[—N3, 10|, and consider ctE/\/Ill’m1 and bEMlZ’"”. Then,

2
<t>125 P>7100 E(a, b)Om,q C Om+m1+m27‘1*11*l2+2’
2
<t>126 P;—lOO(TaTb +TT, —2Tab)(’)m,q - Om+m1+m2,q7l1*l2+2~

In addition,

2
< >125 [TCH Tb]Omﬂ - Om+m1+m27q—ll—l2+17

(A.52)

(A.53)

< >125 (T Ty—T, )Omyqgom+m1+mz,q—ll—l2+l-

Moreover, if ac€ Myy™ and be M™ are functions, then

(B2 (T, Ty~ Tup) Om—5 € Oty e 5- (A.54)



GRAVITY-CAPILLARY WATER-WAVE SYSTEM IN 3D 377

Proof. We record the formulas
Qg c(ab) = (Qp ca)b+a(Qy b)) and Q, ({a,b}) ={Qs ca,b}+{a,Q, (b} (A.55)
Therefore, letting U(a, b): =T, T, —Tup, we have

[Taa Tb] = U(aa b) 7U(b7 a)v E(av b) = U(a7 b) — 4T, a,b}s
2 e (A.56)
TuTy+TyTo— 2Ty — Ea, b)+E(b, a),

and
Q(U(a, b)f) = U(Qz,Cav b)f+U(av Qx,Cb)f+U(aﬂ b)Qf,

UTany f)=Ti0, capy f T a0, o3 f +T(apy 2, (A.57)
Q(E(a,b)f) = E(Qqz ca,b) f+E(a, Qs cb) f+E(a,b)Qf.

The bound (A.54) follows as in the proof of Lemma A.2, once we notice that

Pe[(ToTy—Ton) f1= > Pe((Tp,,aTp.,o TP, apyb) f)-
max(kq,k2)>k—40

The bounds (A.52) follow from (A.30)—(A.31) and (A.48), in the same way the bound
(A.50) in Lemma A.7 follows from (A.22)—(A.23). Moreover, using (A.45),

<t>1262 [{a, b} (=, C)@>f200(g)||Ml118+12*1vml+7"2 S ||aHM1210»'"1 ||bHMl2%vm2-

Therefore, using (A.50) and frequency localization,

<t>1262p>7100T{a,b} Om,q € Omtmy+ma,qg—1y—la+1- (A.58)
Therefore, using (A.56) and (A.52),

()12 Po _100U/(a,0)Oum.g C Oty tmasg—ts—La-t1-

For (A.53), it remains to prove that
()12 P<oU(a,5)Ormg € Oty tomag—ty 141 (A.59)
However, using (A.50) and (A.45), we have
<t>1262TaTbOm,q - Om+m1+mz,q—l1—lz and <t>1252TabOm,q C Om+m1 +ma,q—l1—l2>

and (A.59) follows. This completes the proof of (A.53). O
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Appendix B. The Dirichlet—Neumann operator

Let (h,¢) be as in Proposition 2.2 and let Q:={(z,2)€R3:2<h(z)}. Let ® denote
the (unique in a suitable space, see Lemma B.4) harmonic function in Q satisfying
®(x, h(z))=¢(x). We define the Dirichlet-Neumann(®) map as

G(h)d=/T+|Vh2(v- V), (B.1)

where v denotes the outward-pointing unit normal to the domain 2. The main result of

this section is the following paralinearization of the Dirichlet—Neumann map.

PROPOSITION B.1. Assume that t€[0,T] is fized and let (h, ) satisfy

(T hlloy o + V128, | Sen. (B.2)
Define

N 14|Vh|? ’

V:=V,¢—BV;h, and w:=¢—Tpgh. (B.3)
Then, we can paralinearize the Dirichlet—Neumann operator as

G(h)p =T, yw—div(Tyh)+Ga+e505 3/ (B.4)
(recall definition (A.T)), where

Apn = AD4AO)
AW (2,¢) =/ (A+|VAPR)[C2—(¢-Vh)?,

) .
0 v (VR SN
AT (@ Q) ( 2D\ THVAE T va f T2t )#=0():

(B.5)

The quadratic terms are given by
~ 1 A ~
Go=Ga(h, |V['w) €€10s570,  Ga(€) = /R L 92(&mA(E=n)|n**B(n) dn,  (B.6)

where ga s a symbol satisfying (see the definition of the class S& in (A.5))

i . 1+2min(k1,k2) 7/2
k,k1,k2 komin(ky,k2)/2
R e e (B.7)

(®) To be precise, this is \/1+|Vh|[? times the standard Dirichlet—-Neumann operator, but we will
slightly abuse notation and call G(h)¢ the Dirichlet—~Neumann operator.
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Remark B.2. Using (B.5), Definition A.6, and (A.43)—(A.45) we see that, for any
tel0, 77,

AV =(¢|(1+eImMY ) and AOD e MY, (B.8)
For later use, we further decompose A(9) into its linear and higher-order parts:
AO = A2 A0 = %Ah—%ig C’nga’“h p50(Q), A edM¥P . (BY)
According to the formulas in (B.5) and (B.9), we have
Aov =l A €My, and Apy—AD AP et MG, (B.10)

The proof of Proposition B.1 relies on several results and is given at the end of the

section.

B.1. Linearization

We start with a result that identifies the linear and quadratic part of the Dirichlet—
Neumann operator.

We first use a change of variable to flatten the surface. We thus define
u(z,y):=®(x,h(z)+y), (z,y) €R*x(~o00,0],
b(z, z) =u(z, z—h(x)).

(B.11)

In particular, u|y=o=¢ and 9yu|y=o=2DB, and the Dirichlet-Neumann operator is given
by
G(h)p = (1+|Vh|*)dyuly=0— Vih-Viuly—o. (B.12)

A simple computation yields
0=2,.®=(14|Voh[*)0ou+Ayu—20,Vyu-Voh— 0y ul g h. (B.13)

Since we will also need to study the linearized operator, it is convenient to also allow for

error terms and consider the equation
(14| Vb)) 2 u+ Agu—20, Vyu- Vo h—yul gh = Oyeq+|V|ep. (B.14)
With R:=|V|~1V (the Riesz transform), this can be rewritten in the form
(05 =V u=0,Q0+|V|Qs,
Qo :=Vu-Vh—|Vh]20u+e,, Qp:=R(OyuVh)+ey.

(B.15)

To study the solution u, we will need an additional class of Banach spaces, to
measure functions that depend on y€(—o00,0] and z€R?. These spaces are only used in

this section.
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Definition B.3. For t€[0,T], p>—10, and m=>1let L,, ,=L,, ,(t) denote the Banach
space of functions g€ C/((—o0,0]: H'/?1/2) defined by the norm
o2y = 119161l 00, 108l 200, HIIV 0] gy, - (BIS)
The point of these spaces is to estimate solutions of equations of the form
(9, ~IV)u=AN,

in terms of the initial data u(0)=1. It is easy to see that, if |V|/24€O,, ,,, then

"M le,, , SNV, . (B.17)
To see this estimate for the szgl/ 2,Natp component, we use the bound
HCHng; S ||C||4;L§
for any ¢: Z x (—o0,0]—C. Moreover, if QGL?JOmyP, then
0 2
e [ e gneea] S0P iQlge,,  (Bas)
—00 L?O,n)p v '
and o
91 et <07 lelse,,  (B19)

L20..,

Indeed, these bounds follow directly from the definitions for the L2-based components of
the space Oy, ,, which are HNo+? and HY"**?_ For the remaining component, one can

Wg 1/2N2HP ) orm of the function localized at every single dyadic

control uniformly the
frequency, without the factor <t>52/ 2 in the right-hand side. The full bounds follow,
once we notice that only the frequencies satisfying 28 €[(t) =8, (t)8] are relevant in the
/V[vfév 1/2Na+p component of the space O jp; the other frequencies are already accounted
by the stronger Sobolev norms.

Our first result is the following.
LeEMMA B.4. (i) Assume that t€[0,T] is fized, [[(V)h|o, ,Se1, as in (B.2), and
1952
V2], <A<so and [eallizor, +lsslizo,, < As(®)~3° (B20)
or some pe[— . Then, there is a unique solution w€Ly , of the equation
f p€[—10,0]. Then, there i iq luti Ly, of the equati

0
utn =™ w3 [ Q- @ute)) ds)
- (B.21)

0
+% /_Oo e 151V (sgn(y—5)Qa(s) — Qu(s)) ds,
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where Q, and Qp are as in (B.15). Moreover, u is a solution of the equation
(a§_|v|2)u:8yQa+|v|Qb
in (B.15) (and therefore a solution of (B.14) in R?x (—o0,0]), and
lulles, = 190l 3, +10yulz00, +IIVI 20l o, SA (B2
(ii) Assume that we make the stronger assumptions (compare with (B.20))
. . 2
H|V|1/2¢HOLP <A<0 and ”aée”Lg(Dz,p_j"'Haéd LeOs p1/2— <A€1<t>_126 (B23)
for e€{e,, ep} and j€{0,1,2}. Then,
||8§(8yuf\V\u)|| +|}8§(8yuf|V|u)||

< AEl. (B24)

L202p—; LyrOsp1/2-5 ™

Proof. (i) We use a fixed-point argument in a ball of radius ~A in £;, for the

functional
0
(u):=e"lV] (w—; / eS'V(Qa<s>—Qb<s>>ds)
L0 o (B.25)
—1-5/_0o e_‘y_s‘|v|(sign(y—s)Qa(s)—Qb(s)) ds.

<1, then

~

2
1Qallzz0,, @bl 20, , S A1 (t) ™.
Therefore, using (B.17)~(B.19), ||®(u)—e¥VIy|z, , SAei. Similarly, one can show that
[@(u) =2 (v)|z, , Serllu—v]c, ,, and the desired conclusion follows.

Notice that, using Lemma A.2 and (B.20), if [julz, ,

(ii) The ident?ty (B.21) shows that
5yu(y)—|V\u(y)=Qa(y)+/_y V]e VI (Qu(s) — Qa(s)) ds. (B.26)

Given (B.22), definition (B.15), and the stronger assumptions in (B.23), we have
1Qllz2 0., +1Ql L5 0s /2 S Aer ()12 (B.27)
for Q€{Q., Qp}. Using estimates similar to (B.18) and (B.19), it follows that
[|0yu— |V|UHL§(92,,, +|oyu— |V|UHL;<>O2J),1/2 < Aey. (B.28)
To prove (B.24) for je{1,2}, we observe that, as a consequence of (B.14),
Dou—|VPu=(1+|Veh*) " (= VPulVeh|*+20, Vou- Voh+0yud s h+0yeq+|V]ey).

(B.29)
Using (B.22) and (B.28), together with Lemma A.2, it follows that
2 2 2 2
Hﬁyu—|V| “HLgoz,p,1 +||5'yu—\V| UHL,;OOQ,p,g/z S Aer

The desired bound (B.24) for j=1 follows using also (B.28). The bound for j=2 then
follows by differentiating (B.29) with respect to y. This completes the proof of the

lemma. ]
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B.2. Paralinearization

The previous analysis allows us to isolate the linear (and the higher-order) components
of the Dirichlet—Neumann operator. However, this is insufficient for our purpose, because
we also need to avoid losses of derivatives in the equation. To deal with this, we follow
the approach of Alazard-Metivier [5], Alazard-Burq—Zuily [1], [2] and Alazard-Delort
[3] using paradifferential calculus. Our choice is to work with the (somewhat unusual)
Weyl quantization, instead of the standard one used by the cited authors. We refer to
Appendix A for a review of the paradifferential calculus using the Weyl quantization.

For simplicity of notation, we set a=|Vh|? and let
wi=u—Tp,h. (B.30)

Notice that w is naturally extended to the fluid domain; compare with the definition
(B.3). We will also assume (B.2) and use Lemma B.4. Using (A.51) in Lemma A.7 and
(B.24), we see that

||w_u||L502,1ﬁL,‘;°(92,1 SE% (BSl)
Using Lemma A.4 to paralinearize products, we may rewrite the equation (B.13) as
T1+a8§w+Aw—2TV;LV8yw—TA;L8yw =Q+C, (B.32)
where
—Q=—-2H(Vh,VO,u)—H(Ah,dyu),
—C=0y(Th+aTo2u+Tau—2T90Tv0,u—TanTo,u)h+2(To2 Ton —Twn T2, )Vh (B.33)
—I—TaguH(Vh, Vh)+H(a, aju)

Notice that the error terms are quadratic and cubic strongly semilinear. More precisely,

using Lemmas A.4 and A.8, and equation (B.13), we see that
Qe [L20ouNLFOzy] and Ceel(t) 0 (L2053 4NLE0; 4], (B.34)
We now look for a factorization of the main elliptic equation into
Ty 400+ A—2T, VO, —Tand,
=(T /750y —A+B)(T 1750, — A—B)+&
=T 05 — (AT e + Tyisa A) +[Tysa, B9y +A* = B> +[A, B]+€,

where the error term is acceptable (in a suitable sense to be made precise later), and
[A4,9,]=0 and [B, 9,]=0. Identifying the terms, this leads to the system

A*—B?+[A,B]=A+E.



GRAVITY-CAPILLARY WATER-WAVE SYSTEM IN 3D 383

We may now look for paraproduct solutions in the form
A=iT,, a=aP+a?, B=T,, b=b"+p,

where both a and b are real and are a sum of two symbols of order 1 and 0, respectively.
Therefore, A corresponds to the skew-symmetric part of the system, while B corresponds
to the symmetric part. Using Proposition A.5, and formally identifying the symbols, we
obtain the system

2iay/Tra+i{vITa,b}=2i¢- Vit M2,
0®+ b2 +{a, b} =[P +I MY .

We can solve this by letting

-Vh 1
aM:= Cﬁ—o/ a® = > %H_a{\/l—ka,b(l)}s%o(@,

1
b = JI¢P= (a2, 0= m(—?a(l)a(o) —{a™ M Yo50(0)).

This gives us the following formulas:

1
1+|Vh[?)|(]?—(¢-Vh)?
o= [CHTOREZ GO _ s, B0
V14| VA[2, b0
a© = _1 5 1|+||Vh|2 }<P>o(C):s0>0(C)€fM?\}f_p (B.37)
o _  VIFIVRE [ VR ) B _GGkO0kh | 5 03
b - 2b(1) 1+|Vh|27b @20(()—¢>0(C) 2|C|2 +€1MN3—1 ‘
(B.38)
We now verify that
T a0y —iTa+Ty) (T sy —iTa—T,
(T /r7a0y 0 (T a0y b) (B.39)

=T11a0; — 2T, siva+T{yrrasmy)i0y—Taz = Toe = Tia) 40 }puo () TE
where
&= (T raT ira—Ti+a)0; —(ToT ipa+ T rrala—2T, /iva)idy
—[T s Ty 0y — (T rra, T | =T yrra sy ) Oy + (Tu2 = T7)
+(Toe =T3) +i[Ta, T+ Tra) p0 150 ()
We also verify that
20v/T+a+{VI+a,bM} =2¢-Vh+{VIit+a,bM}oc 1(¢),
a®+0°+{a!?, b p20(¢) = [¢[*+(a'@)?+ (V).
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LEMMA B.5. With the definitions above, we have

(T a0y —iTa+To)(T sira0y —iTa— T )w = Qo +C, (B.40)
where
Cecd(ry—11" [Ly°O31/2NL2031], Qo €eF[LyOs3/2NL20, ],
- . ) (B.41)
Qo(&y):ﬁ/ qo(§; mMh(E=n)i(n,y) dn,
/I8 R2
and
L |§—77|>(|f—|Tl)2(|§+|77|)<2€'77—2€|77| (§+77> <§+77>)
|f—77> ( Ul )) 2 2
+(1- - - .
(1 (T52) - (eer) )= 2l
(B.42)
Notice that (see (A.6) for the definition)
k,k1,ka 2 1[9—(2k2—2k1
llo [l see < 2k2g2k1 9~ (2ka =2k )1[—40,00)(k2*k1)+1(—oo,4](k2)}7 (B.43)

(Qg-‘rﬂn)qo =0.
Proof. Using (B.32) and (B.39), we have

(T\/may—iTa +Tb)(Tmay—7;Ta—Tb)w
= Q—FC—F(SLU—T(a(o))er(b(o))zw—T{m’b(1)}¢<71(C)iayw.

The terms C, T{40y2.4 (502w, and T{m’bu)}(pgil(c)iayw are in
E3(144) "1 (L2051 pN L2035 1].
Moreover, using Lemmsa B.4 and A.8, and (B.35)—(B.38), we can verify that
gw*(T2|<|b§°) *T\<|Tbg°> 7Tb§°)T\C\)w*(i[TC'V’“T\C\]+T{<‘Vh,|Cl}w>0(C))w

is an acceptable cubic error, where

(jCk0;0kh

bgo) = _W%(OW.

Indeed, most of the terms in £ are already acceptable cubic errors; the last three terms
become acceptable cubic errors after removing the quadratic components corresponding
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to the symbols ¢-Vh in a), |<| in b and bgo) in b, As a consequence, we have that
Ew—Qhed ()1 (L2 Oy 1 pNL2 O3 1], where

Tyley) = x(M)q&(&m)ﬁ(f—n)@(my)dm

" Je el
)2 o
)2
+(|f| |77|)2(|f|+|77|)90<1<5_;77>'

The desired conclusions follow, using also the formula Q=2H(Vh, Vo,u)+H(Ah, dyu) in

(B.33), and the approximations d,u~|V|u and w~u, up to suitable quadratic errors. [

In order to continue, we want to invert the first operator in (B.40), which is elliptic

in the domain under consideration.

LEMMA B.6. Let U::(T\/may—iTa—Tb)wesl[L§°(917_1/20L§(9170], so

(T /550y —iTa+T0)U = Qo +C. (B.44)
Define
TGO = 1z [ mol€ne—matdn. mo(en)=BED. (Bas)
47 R2 |£‘+|/’7|
Then, recalling notation (A.7), and letting Up:=Uly=o and uo:=uly—o=¢, we have
P>_10(U0—M0 [h, UO]) S 6%<t>75203,3/2. (B46)
Proof. Set
~ 0o 2 . b*'l,a 0,1
U.:T(1+a)1/4U€€1[Ly 017_1/2ﬂLy0170], o= Tra = |<|(1+€1MN3_1). (B.47)

Using (B.44) and Lemma A.8, and letting f:=(1+a)'/*—1€£304 0, we calculate
Tt 40y +15)0 = Qo-4Cy
and
C1:=CH (T2 Tp2)d U+ (T 1 Ty T 1 —T(s41)20)U €3 (1) 1 [L°05 1 )pNL2 03 1]

Let g=(1+f)"'—1€}0s, and apply the operator Ty, to the identity above. Using
Lemma A.8, it follows that

0y +T,)U = Qo+Ca,  Ca € (t) M [L°O;5 1 /5NL2Os 1. (B.48)
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Notice that, using Lemma B.4, (B.43), (B.45), and Lemma A.2,
My[h,u] € €3[Ly° s 5/5NLEO2 5] and  Molh, Oyu] €€1[L;°On 5/5NL2020].  (B.49)
We define V:=U — My[h, u]. Since
V =Ty 4 oy1/sU—Molh,u] = Ty 4 oyr/s(U—Molh,u])+C" and €' €ed(t) 10 L0, 50,
for (B.46) it suffices to prove that
P-_5V(y) € 5?(75}‘52 O3,.3/2 for any y € (—o0,0]. (B.50)
Using also (B.24), we verify that

(Oy+T5)V = (0 +T5)U—(0y +|V|)Mo[h, u] = T(5 ||y Mo I, u]
=Co+Molh, |V|u—0yu] =T(5—|c|yMo[h, u] (B.51)
=Cyecd(t)y L0051 )5NL2 05 1]
Letting o':=0—|¢| and Vi:=PF,V, k€Z, we calculate
(0y+Ti¢|) Vi = PeCa— Py T, V.
We can rewrite this equation in integral form,

Vi(y) = /_y eCVIVI(PLCs(5)— P T,V (s)) ds. (B.52)

To prove the desired bound for the high Sobolev norm, let, for k€Z,

X :=sup 200 F 2RV ()| o
y<0

Since 0"/|<|€51M(])\};71, it follows from Lemma A.7 that, for any y<0,

y
2(N0+3/2)k/ eIV PT, V (s)| L2 ds

— 00

Yy -
< oWokd/ Dk $ / TPV (s) 2 ds S Y X
Ik —k| <4 7% Wk

It follows from (B.52) that, for any k€Z

Y _
XpSer Y Xk,+sg;52<No+3/2>’f/ =02 PCy(s)|| 12 ds
|k — k| <4 ys e

0 1/2
sa ¥ xer2®k ([ ncias)

Ik —k|<4
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We take /2 summation in k, and absorb the first term in the right-hand side(?) into the
left-hand side, to conclude that

() s (o [ incioaa)

keZ keZ —oo (B.53)
c <t> 1152<> (5/6—208 )+52

A

where the last inequality in this estimate is a consequence of C3€€%<t>_1162 L;Og’l. The
desired bound || Ps o0V (y)|| grag+s/e SeB(t) =107 (1) ~2(5/6-208)+5% i1y (B 50) follows.
The proof of the bound for the weighted norms is similar. For k€Z let

Yy :=sup 20V 2R N IV ()] 2
y<0 J<N:

As before, we have the bounds

y .
2(N3+3/2)k/ ||e(5*y)|v‘QijTg/V(s)||Lz ds<ep Z [Yk/+<t>652Xk/}
- |k’ —k|<4

for any y€(—o00,0] and j<Ni, and therefore, using (B.52),

1/2
Yk<€1 Z Yk/+€1 Z X+ Z 2(N3+1 (/ ||ijk63( )H%z d8> .

k! —k|<4 k! —k|<4 <N
As before, we take the /2 sum in k, and use (B.53) and the hypothesis
_ 2
Cseei(t)y " L2031,
The desired bound
1P —20V (9l vs g a2 S ) 4 (1) 72G/07200040

n (B.50) follows.
Finally, for the L bound, we let, for k€Z,

Zk::supQ(N2+3/2)k Z ||Qlec(y)||L°°~
y<0 J<N1/2

(°) To make this step rigorous, one can modify the definition of X to

X}, := sup 2(No+3/2) min(k, K) Ve ()l 12,
y<0

in order to make sure that 3_, (X7,)2<oo, and then prove uniform estimates in K and finally let K — oo.
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As before, using (B.52), it follows that

0 ) 1/2
ZnSer Y Zwt Y 2<N2+1>k</ |QJPkC;3(s)||%mds> .

|k —k|<4 J<NL/2

After taking [? summation in k, it follows that

1/2 0 ' 1/2
(Z2) = & (S [ jencol o)

keZ J<N1/2 “k€EZ -
< 5? <t>71152 <t>75/2+4562,

where the last inequality is a consequence of CgEEi{’(t)_ll‘sz Li(’)&l. The desired bound

on [[Ps_20V (y)l51/2.855+8/2 in (B.50) follows, once we recall that only the sum over
Q

WhL/2,N2+3/2
Q

2K ()8 is relevant when estimating the norm; the remaining frequencies

are already accounted for by the stronger Sobolev norms. O
We are now ready to obtain the paralinearization of the Dirichlet—-Neumann operator.
Proof of Proposition B.1. Recall that G(h)¢=(1+|Vh|*)dyuly—o—Vh-Vu|,—o; see

(B.12), and B=0yu|y=¢. All the calculations below are done on the interface, at y=0.

We observe that, using Corollary C.1,

Pes((1+|VA[*)0yu—Vh-Vu)
= Pgﬁ(ayu—VhVU)+Ei’0373/2 (B54)
= P(|V|w—div(Tv b))+ P<s (div(Tyv h) +|V|Tv wh+ Na[h, w]) +£7 03 3/2.
Thus, low frequencies give acceptable contributions. To estimate high frequencies, we
compute
(14+|Vh|*)0yu—Vh-Vu
=T11a0yu—TypVu—Tv,Vh+Ty, wa+H (o, Oyu)—H(Vh, Vu)
:THoﬁyw—thVw—Tv“Vh—l—TVhTatuh—i—(Tayua—2TVhT3tuh)
+T1+aT85uh—TVthayuh—i-H(Oé, 8yu) —H(Vh, Vu)
Using Lemma B.6 with U=(T, 1750, —iTo—Tj)w, (B.49) and Lemmas A.7 and A.8, we
find that
T yaOyw =T g (iT,w+Tyw+Molh, u] +CN 4+ (T1 40 —T\Q/H—a)ﬁyw
= M(Tb—&—iTa)w—&—Mo[h,u]—&—C",
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where C” satisties P5_¢C"” €05 3/5. Therefore, with V=Vu—8,uVh,
(1+|VA*)dyu—Vh-Vu="T 5Ty +iT,)w+Molh, u]+C" (B55)
—TonVw—div(Ty h)+Cy+Co—H(Vh, Va), '

with cubic terms C; and Cy given explicitly by
C1 = (To,ur—2Tv1To,u Vh)+H(a, Oyu),
Co=(Taivv +T1+aTo2u = T9nTv0,u)h+(T9nTo,u—To,uvn) Vh.

Notice that divV+(14a)d2u—VhVI,u=0, as a consequence of (B.13). Using also
Lemma A.8, it follows that Cq, Cg€5§’0373/2.
Moreover, using formulas (B.36) and (B.38), Lemmas A.5 and A.8, we see that

T\/mew = Tbmw+%iT{\/myb}w+E(\/ 1+OZ*1, b)o.)
:T)\(l)w+Tb(o)\/mw+%iT{\/m7b(1)}w+8?0373/2,
where A1) is the principal symbol in (B.5). Similarly, using (B.35)and (B.37),
iTmTaw—Tthw
= iC.Vhw—thvw-i-iTa(o)\/mw—%T{\/mva}w—‘riE(\/ 1—|—a—1,a)w
= 3 Tanw+iT 0 i7aw— 5T ira.am @ +e10s 3/2.
Summing these last two identities and using (B.35)—-(B.38), we see that
Tmew—f—z’T\/mTaw—TVth = T)\(l)w+me+€§(/)3,3/2, (B56)
where

1 1
m: :b(o)\/l—i—a—i{\/l—&—a, a(l)}—l—iAh

C(+a)¥2f A (VA 1 ¢-Vh 1
PO {\/m It }¢>o(C)—2{m7m}+2Ah (B.57)
1 -Vh Ah

We conclude from (B.55) and (B.56) that
Ps7((1+|Vh|*)0yu—VhVu)
= Por(Thpyw—div(Tyh)+ Mo[h, u] = H(Vh, V) +£305 35).
Moreover, the symbol of the bilinear operator My[h, u]—H(Vh, Vu) is
q0(&,7m) < <|€—n> ( [l >)
H1=x{ 70 ) —x §=n)-m,
-+ eral) 1)) €

where ¢o is defined in (B.42). The symbol bounds (B.7) follow. Combining this with
(B.54), we finish the proof. O
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Appendix C. Taylor expansion of the Dirichlet—Neumann operator
C.1. A simple expansion

We start with a simple expansion the Dirichlet-Neumann operator, using only the O,

hierarchy, which suffices in many cases.

CororLLARY C.1. (i) Assume that ||<V>h||<91‘0—|—H|V|1/21/1||Ol0551 and eq=¢,=0,

and define u as in Lemma B.4. Then, we have an expansion
dyu=|V]utVh-Vut+Nafh,ul +E®, €@ 20, gnreo, . SEH T, (C1)
where
FUNalh 016 = 15 [ mal&lb(e—mtaydn, malén)i=€n—lellal. (C2)

In particular,

IGRy= VI =Nalh ¥l Sedt) 7" (C3)
Moreover,
||n129,k1,k2“S§o SQmin{k,k1}2k2’ (Q§+Qn)n250. (C4)

(ii) As in Proposition 2.2, assume that (h,$)€C([0,T]: HNot1 x FNo+1/2.1/2) 45 ¢
solution of the system (2.1) with g=1 and o=1, t€[0,T] is fired, and (B.2) holds. Then,

|G W) - IVion]lo, , S (©5)
Proof. (i) Let u(t):=e¥IViy, le):=Vu(1)~Vh, and Q,(Jl):zR((?yu(l)Vh). It follows

from (B.18)—(B.19) and Lemma B.4 (more precisely, from (B.22), (B.24), and (B.27))
that

1/2 1 1
912D g, NI =) o, oo
+[0y (u=uM)|Lz0, o+ 10y (u=uV)|L20,, SeT-
Therefore, using Lemma A.2, for de{a, b},
a1t D < Bt —1262 .7
1Qi—Qq L2051, T1Qi—Qy 1205, SeET() (C.7)

Therefore, using (B.18)—(B.19) and (B.26),

Y
ayu—\V\u—Vh-vu—/ Ve =9IV HQ (5) Q) (s)) ds

—00

L%OgyoﬂLfﬁOg‘,l/g

1142
Sef)



GRAVITY-CAPILLARY WATER-WAVE SYSTEM IN 3D 391

Since
FQ - QP &N =155 [ (€=~ EC Dl )ie-me i) an,
we have

f{/_y |v|e_'s_y'v(Qf,l)(S)—Qél)(S))ds}(f)

:L N _g-(f—n) 1€l — eIl _ e
47T2/Rz(n (E=mn) € Inl)|§|+|n|h(€ n)e’!Mb(n) dn = F{Na[h, u'VHE).

Moreover, using the assumption [|{V)h|/o, ,Se1 and the bounds (C.6), we have
—1162
||N2[h?U’_u(l)]||L503,00L;°(93,_1/2 §5§<t> 1 )

as a consequence of Lemma A.2. The desired identity (C.1) follows. The bound (C.3)
follows using also identity (B.12).

(ii) We define u=u(z,y,t) as in (B.11), let v=0;u, differentiate (B.13) with respect
to t, and find that v satisfies (B.14) with

(2 :VTqu&hf28tuIhVT3th and (4} :R(ﬁtuTath)

In view of (C.3),
10chllo, —, ). +l0idllo) 1 Ser

Therefore, the triplet (J:¢, eq, ep) satisfies (B.23) with p:—%. Therefore, using (B.24),

[0y0=IV]o]| Sel,

oo
L3 02,2~

and the desired bound (C.5) follows using also (B.12). O

C.2. Proof of Proposition 2.3

We now show that Proposition 2.3 follows from Proposition 7.1. The starting point
is the system (2.1). We need to verify that it can be rewritten in the form stated in

Proposition 7.1. For this, we need to expand the Dirichlet—Neumann operator
G(h)¢p=|V|p+Nalh, p|+ N3[h, h, #]+quartic remainder,

and then prove the required claims. To justify this rigorously and estimate the remainder,
the main issue is to prove space localization. We prefer not to work with the Z norm
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itself, which is too complicated, but define instead certain auxiliary spaces which are

used only in this section.

Step 1. We assume that the bootstrap assumption (2.6) holds. Notice first that

. 2
sup 7 292 MR QuD U 12 S 1 (141) O, (C:8)
2a+|a|<N1+Ny (ke
a<N1 /2420
- 2
sup S 292702 DUQU(H) | e Ser(140) T/ ()
2a+|a|<N1+Ny (kj)eT
a< N1 /2420

for 6€ [0, 1], where the operators Q;j, are defined as in (2.10). Indeed, let
f=e"QDU(),
and assume that t€[2™ —1,2™%1], m>0. We have

2
/1] I fllz Ser2”™, (C.10)

HNOAH!

as a consequence of (2.6), where, as in (8.27),

Ny—N; 1 Ny— Ny 1
N{i=———F=— d Nji=———"-Ny=—.
! 2 25 00 2 T
To prove (C.8), we need to show that
2 20]'2—9\1@\/2Hije—itAf”L2 56129m+652m. (Cll)

(k.j)eg
The sum over j<m+6§*m+ 3 |k| or over j<|k|+D is easy to control. On the other hand, if
j>max(m+62m+ 3|k, |k|+D), then we decompose f=2" jryeg T asin (7.33). We
may assume that |k’ —k|<10; the contribution of j’ <j— 42 is negligible, using integration

by parts, while for j’>j—§2j—10 we have
||ije_itAfj’,k’ HL2 5 51262m min(2_2jl/5, 2—N(’]k+).

The desired bound (C.11) follows, which completes the proof of (C.8). The proof of
(C.9) is similar, using also the decay bound (7.44). As a consequence, it follows that
> 29272 Quug(b)llss Ser2t O,
(k,j)eTg
> 292 M Quug(r) | Ser2 /OO,
(k,j)edg

for g€ {DQ*(V)h, D*Q|V|"/2¢:2a+ || < N1+ Ny, a<i N1 +20} and €0, 1].

(C.12)

Step 2. We now need to define certain norms that allow us to extend our estimates
to the region {y<0}; compare with the analysis in §B.1.
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LEmMA C.2. For ¢=0, 0€[0,1], and p,r€[l, 0], define the norms

ot
1 fllyr, (mey:= 2972971 Qi f | v
0,q

(k,j)ed

okt
IflLyve, ®2x (=000 : = Z 2071k 1Qjkfll Ly rz-
(k,J)eg

(i) Then, for any p€[2,00] and 0€[0, 1],
1Y llgevg, + V12 |y S 1F D, (C.13)
and

H / D e VI () £(5) ds

Loy

o v (C.14)

[ e s s S,

- L%Y;q o

(11) If p17p27p7r17r2ar6{2700}7 1/p:1/p1+1/p27 1/7‘:1/T1+1/T27 then
||f9HL;Y:1+32_52Yq_52 S Hf”L;lYepl{q HQHL?Y;”;Q’ (C.15)
provided that 01,05€[0,1], 01+02€[6%,1], and q=5%. Moreover,

Foligra o S lpve, Nollzms (C.16)

Proof. The linear bounds in part (i) follow by parabolic estimates, once we notice
that the kernel of the operator e¥/VI P, is essentially localized in a ball of radius <27%
and is bounded by C22k(1+42%|y[)=4.

The bilinear estimates in part (ii) follow by unfolding the definitions. The im-
plicit factors 279°92-9°%" in the left-hand side allow one to prove the estimate for (k, j)
fixed. Then, one can decompose f=>" f;, x, and g=>_ gj, k, as in (7.33) and estimate
||ij(fj1,klgjg,kz)HL;Lg using simple product estimates. The case j=—k>min(ji, j2)
requires some additional attention; in this case, one can use first Sobolev imbedding and
the hypothesis 6; +65<1. O

Step 3. Recall now formula (B.21):

u=e"Vlp+L(u),

0
L{u):=~Ler / eV (Qu(s) ~ Qu(s)) ds

0
é/_oo e W1l (sgn(y—5)Qa(s) ~ Qu(s)) ds,
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where Q,[u]=Vu-Vh—|Vh[?0,u and Qp[u]=R(d,uVh). Let, as in Corollary C.1,
u =evVlp and uwt) =¥Vl L(w™), n>1. (C.17)

We can now prove a precise asymptotic expansion on the Dirichlet—-Neumann oper-

ator.

LEMMA C.3. We have
G(h)¢=|V|p+Nalh, ¢]+N3[h, ¢]+|V|*/2Ny[h, ¢], (C.18)

where Ny is as in (C.2),

FINAh N = gz [ mal€om g —miln—0)i(o) dn dor
(47‘(’ ) (Rz)z (C 19)
IO ey e e |
ﬂ3(§70,0)~—|£|+|0|((|§| D) (nl—le|)—(E—n)-(n—0)),
and, for B¢ [5 7] and VG{DQQ“ %N1+20 and 2a+|a|<N1+N472},
||VN4[ ]” 4230m 5m/2+2486%m (0.20)

39 362,1-352 N

Proof. Recall that h is constant in y. In view of (C.12) we have, for t€[2m —1,2m+1],

[IV[/5(V)>/5V h(t) S 206t m g e o, 1], (C.21)

HL°°Y2

and

|| |v|1/6< >5/6Vh < E1249m75m/6+652m7 = [07 %L (022)

Oll v S
for Ve{D*Q%:a<iN;+20 and 2a+|a|<N;+Ns—2}. Moreover, using also (B.22),
2
IV IVa@®| 2 s 1@ V) B)llz rz S €227 (C.23)
for operators V' as before. Therefore, using (C.16),
£290m—5m/6+125°m
VIQullzya ,  , Sed2omom
for Qe{Q., @y} and b€ [52, %] Therefore,
m—om 2
IVVL@I gy, IOV E@gye |, -, S22 (C.2q)

using (C.13)—(C.14). Thus, using the definition,

[IV[V][u—u

m—om 2
Dl , 10V uDlligyz |, -, Sefarmom/or28m(C.a5)
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Since u—u®=L(u—uV), we can repeat this argument to prove that, for 0€ 62, §]
and Ve{D*Q%:a<iN;+20 and 2a+|a|<N;+Ny—2},

(2) 3920m—5m/3+185%m
HL2Y29 P +||8yV[u ul ]HL2Y228 a2 252§5 2svmmem

[IV|V]u—u

(C.26)

To prove the decomposition (C.18), we start from the identities (B.26) and (B.12),

which gives G(h)¢p=0,u—Q,. Letting Q,(ln):Qa [u(™] and an):Qb[u(”)], ne{l,2}, it
follows that

G(R)o=|V|o+ / 91e1Y1(QP ()~ QP (s)) ds+Nas,
o (C.27)

0
MmZ[IWKWW@r@%@4%4ﬁWw%

In view of (C.26), (C.22), and the algebra rule (C.16), we have

||V( Q( ))HL2 <54230m 5m/2+248%m

39 362,1-362 ~

for Q€{Qa, Qp}. Therefore, using (C.14), |V|~/2N, ; satisfies the desired bound (C.20).
It remains to calculate the integral in the first line of (C.27). Letting a=|Vh|?, we

have

F{uM (€, y) =e"¥1(9),

f{QS)}(é‘,y):—ﬁ (&) e h(E—n)d dn—f/ Inle"G(E—n)d(n) dn,
PN =r5 [ S S mler e -min do
(C.28)

Therefore,

FLL)}(Ey)
L el gy (S Inl€=m)-EN s
57 J. (et e ) e
L vl ey ((E=m)n, Inl(€=n)-€
i Joo! (S e

82 )ﬁ(é—n)ag(n) dn+E1(£,y),

where

3520m—5m/3+186%m
+0yVEll 2y . e SETZTTT

INWVE gy
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After algebraic simplifications, this gives

FULONEw) =35 [ (=) nlh(e=n)tm do+Br 6.0).

472
Since u? —uM =L (uM), we calculate
FOP-Q}E )

_ 16% /(]RZ)z lo|(—n)-n(e!M —e!7N)h(¢ —n)h(n—0)d(o) dn do+Ea(€, y)

(C.29)

and

FLRP -}, y)

- o /H |0|(£_|§77|)f(|n|€y'"' ~[o]e!™)i(g —n)(n—)d(o) dndo + Es (€. y),

(C.30)

where

. < A4 30m—>5m/2+245%m
||VE2||L%Y3297352,17352 +||VE3||L§Y3297362,17352 N512 ’

We now examine the formula in the first line of (C.27). The contributions of Es
and Fs can be estimated as part of the quartic error term, using also (C.14). The main
contributions can be divided into quadratic terms (coming from Q,(ll) and le) in (C.28)),
and cubic terms coming from (C.29)—(C.30) and the cubic term in Q. The conclusion

of the lemma follows. O
Step 4. Finally, we can prove the desired expansion of the water-wave system.
LEMMA C.4. Assume that (h,¢) satisfy (2.1) and (2.6). Then,

(Op+iMNU = No+ N3+ N>y, (C.31)

where U=(V)h+i|V|'/2¢ and Na, N3, N>y are as in §7.1.

Proof. We rewrite (2.1) in the form

- o2 pd Vh O\ 1o (G(h)¢+Vh-V¢)2>
8tu—(V>G(h)¢+z|V|12< h+dv((1+|Vh|2)l/2> 51Vl D )
32)

We now use formula (C.18) to extract the linear, the quadratic, and the cubic terms in

the right-hand side of this formula. More precisely, we set
Ny = (V)|V|p+i| V|2 (—h+Ah) = —iAU,
Ne:= (V) No[h, 6] +i[V["/? (=3I V6[* +5(IV]9)?), (C.33)
N := (V) Ns[h, h, ¢]+i|V|"/? (=L div(Vh|Vh|?)+|V|¢: (Na[h, |+ Vh-V)).
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Then, we substitute

and |V|1/2¢:Z%.

U+
h= (V) 1—2

The symbols that define the quadratic component A5 are linear combinations of the

symbols

_ En—I&l Il ez E=m) € =nln|
ra(C) =V e o e = e

It is easy to see that these symbols verify the properties (7.11). A slightly non-trivial

argument is needed for ny ;1 in the case ky=min(k, k1, k2) < k.
The cubic terms in N5 in (C.33) are defined by finite linear combinations of the

symbols

L[E=n?)(1+|n—0?) [¢]+]o]
(€ (€=n)((n=0)-0)
VHE=nP) A +n—o?)(1+[o?)

g—n
ng.s(€,m, @) = €[1/2]€ —n[ /2|02 12 =1

V1tn—a?2

It is easy to verify the properties (7.12) for these explicit symbols.

ol1/2
n3,1(£7n70):\/( s sl ((l=InD(Inl=lel)=(E=n)-(n—0)),

n3,2(§,7770) = |§|1/2

The higher-order remainder in the right-hand side of (C.32) can be written in the

form

Noy= |V|/2N}, sup | D*Q%Ny|ly-2 Sefodm/zHom (C.34)
a<N1 /2420 1mo1=8
2a+|a|<N1+Ny—4
using (C.20), (C.12), and the algebra property (C.15). Moreover, using only the O

hierarchy as in the proof of Corollary C.1, we have [|[N>4llo, _, Sef, ie.
INSall oo+ IN>all v g -a Sef2—>m/2Hom, (C.35)

These two bounds suffice to prove the desired claims on ANy in (7.15). Indeed, the L2
bound follows directly from (C.35). For the Z norm bound, it suffices to prove that, for

any (k,j)eJ,

sup 21(1=509) 10 ) A DN 4[| 2 Sef2m o™, (C.36)
a<N1 /2420
2a+|a|<N1+Ny
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This follows easily from (C.35) and (C.34), unless
j= %m—l—iNok*—FD and j> %m—%k—FD.
On the other hand, if these inequalities hold, then let
f=D*Q°N>4, a<3N;+20, 2a+|a|<Ni+Ny,

and decompose

f= > fiw

(k'.31)eT
as in (7.33). The bound (C.34) shows that

> om0 D) £ |0 Setmim O, (C.37)
(k"3 eT

The desired bound (C.35) follows by the usual approximate-finite-speed-of-propagation
argument: we may assume that |k’ —k|<4, and consider the cases j'<j—4dj (which gives
negligible contributions) and j'>j—45 (in which case (C.37) suffices). This completes
the proof. O
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