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1. Introduction

The study of the motion of water waves, such as those on the surface of the ocean, is a

classical question, and one of the main problems in fluid dynamics. The origins of water-

wave theory can be traced back(1) at least to the work of Laplace, Lagrange, Cauchy

[11], Poisson, and then Russel, Green, and Airy, among others. Classical studies include

those by Stokes [62], Levi-Civita [53], and Struik [63] on progressing waves, the instability

analysis of Taylor [65], the works on solitary waves by Friedrichs and Hyers [31], and on

steady waves by Gerber [32].

The main questions one can ask about water waves are the typical ones for any

physical evolution problem: the local-in-time well-posedness of the Cauchy problem,

the regularity of solutions and the formation of singularities, the existence of special

solutions (such as solitary waves) and their stability, and the global existence and long-

time behavior of solutions. There is a vast body of literature dedicated to all of these

aspects. As it would be impossible to give exhaustive references, we will mostly mention

works that are connected to our results, and refer to various books and review papers

for others (see, e.g., [18], [26], [52], and [64]).

Our main interest here is the existence of global solutions for the initial value prob-

lem. In particular, we will consider the full irrotational water-wave problem for a 3-dim-

ensional fluid occupying a region of infinite depth and infinite extent below the graph of

a function. This is a model for the motion of waves on the surface of the deep ocean.

We will consider such dynamics under the influence of the gravitational force and surface

tension acting on particles at the interface. Our main result is the existence of global

classical solutions for this problem, for sufficiently small initial data.

1.1. Free boundary Euler equations and water waves

The evolution of an inviscid perfect fluid that occupies a domain Ωt⊂Rn, for n>2, at

time t∈R, is described by the free-boundary incompressible Euler equations. If v and

p denote respectively the velocity and the pressure of the fluid (with constant density

equal to 1) at time t and position x∈Ωt, these equations are

(∂t+v ·∇)v=−∇p−gen, ∇·v= 0, x∈Ωt, (1.1)

where g is the gravitational constant. The first equation in (1.1) is the conservation

of momentum equation, while the second one is the incompressibility condition. The

(1) We refer to the review paper of Craik [27], and references therein, for more details about these
early studies.
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free surface St :=∂Ωt moves with the normal component of the velocity according to the

following kinematic boundary condition:

∂t+v ·∇ is tangent to
⋃
t St⊂Rn+1

x,t . (1.2)

The pressure on the interface is given by

p(x, t) =σ�(x, t), x∈St, (1.3)

where � is the mean-curvature of St and σ>0 is the surface tension coefficient. At

liquid-air interfaces, the surface tension force results from the greater attraction of water

molecules to each other, rather than to the molecules in the air.

One can also consider the free-boundary Euler equations (1.1)–(1.3) in various types

of domains Ωt (bounded, periodic, unbounded), and study flows with different char-

acteristics (rotational/irrotational, with gravity and/or surface tension), or even more

complicated scenarios where the moving interface separates two fluids.

In the case of irrotational flows, curl v=0, one can reduce (1.1)–(1.3) to a system

on the boundary. Indeed, assume also that Ωt⊂Rn is the region below the graph of a

function h:Rn−1
x ×It!R, that is

Ωt = {(x, y)∈Rn−1×R : y6h(x, t)} and St = {(x, y) : y=h(x, t)}.

Let Φ denote the velocity potential, ∇x,yΦ(x, y, t)=v(x, y, t) for (x, y)∈Ωt. If

φ(x, t) := Φ(x, h(x, t), t)

is the restriction of Φ to the boundary St, the equations of motion reduce to the following

system for the unknowns h, φ:Rn−1
x ×It!R:

∂th=G(h)φ,

∂tφ=−gh+σ div

(
∇h

(1+|∇h|2)1/2

)
− 1

2
|∇φ|2+

(G(h)φ+∇h·∇φ)
2

2(1+|∇h|2)
.

(1.4)

Here

G(h) :=
√

1+|∇h|2N (h), (1.5)

and N (h) is the Dirichlet–Neumann map associated with the domain Ωt. Roughly speak-

ing, one can think of G(h) as a first-order, non-local, linear operator that depends non-

linearly on the domain. We refer to [64, Chapter 11] or the book of Lannes [52] for
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the derivation of (1.4). For sufficiently small smooth solutions, this system admits the

conserved energy

H(h, φ) : =
1

2

∫
Rn−1

G(h)φ·φdx+
g

2

∫
Rn−1

h2 dx+σ

∫
Rn−1

|∇h|2

1+
√

1+|∇h|2
dx

≈
∥∥|∇|1/2φ∥∥2

L2 +‖(g−σ∆)1/2h‖
2

L2 ,

(1.6)

which is the sum of the kinetic energy corresponding to the L2 norm of the velocity field

and the potential energy due to gravity and surface tension. It was first observed by

Zakharov [75] that (1.4) is the Hamiltonian flow associated with (1.6).

One generally refers to the system (1.4) as the gravity water-wave system when g>0

and σ=0, as the capillary water-wave system when g=0 and σ>0, and as the gravity-

capillary water-wave system when g>0 and σ>0.

1.2. The main theorem

Our results in this paper concern the gravity-capillary water-wave system (1.4), in the

case n=3. In this case, h and φ are real-valued functions defined on R2×I.

To state our main theorem, we introduce some notation. The rotation vector field

Ω :=x1∂x2
−x2∂x1

(1.7)

commutes with the linearized system. For N>0 let HN denote the standard Sobolev

spaces on R2. More generally, for N,N ′>0 and b∈
[
− 1

2 ,
1
2

]
, b6N , we define the norms

‖f‖
HN
′,N

Ω

:=
∑
j6N ′

‖Ωjf‖HN and ‖f‖ḢN,b :=
∥∥(|∇|N+|∇|b)f

∥∥
L2 . (1.8)

For simplicity of notation, we sometimes let HN ′

Ω :=HN ′,0
Ω . Our main theorem is the

following.

Theorem 1.1. (Global regularity) Let g, σ>0, let δ>0 be sufficiently small, and

N0, N1, N3, and N4 be sufficiently large(2) (for example δ= 1
2000 , N0 :=4170, N1 :=2070,

N3 :=30, and N4 :=70; cf. Definition 2.5). Assume that the data (h0, φ0) satisfies

‖U0‖HN0∩HN1,N3
Ω

+ sup
2m+|α|6N1+N4

∥∥(1+|x|)1−50δDαΩmU0

∥∥
L2 = ε0 6 ε̄0,

U0 := (g−σ∆)1/2h0+i|∇|1/2φ0,

(1.9)

(2) The values of N0 andN1, the total number of derivatives we assume under control, can certainly

be decreased by reworking parts of the argument. We prefer, however, to simplify the argument wherever
possible, instead of aiming for such improvements. For convenience, we arrange that

N1−N4 =
N0−N3

2
−N4 =

1

δ
.
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where ε̄0 is a sufficiently small constant and Dα=∂α
1

1 ∂α
2

2 , α=(α1, α2). Then, there is

a unique global solution (h, φ)∈C([0,∞):HN0+1×ḢN0+1/2,1/2) of the system (1.4), with

(h(0), φ(0))=(h0, φ0). In addition,

(1+t)−δ
2

‖U(t)‖
HN0∩HN1,N3

Ω
. ε0 and (1+t)5/6−3δ2

‖U(t)‖L∞ . ε0, (1.10)

for any t∈[0,∞), where U :=(g−σ∆)1/2h+i|∇|1/2φ.

Remark 1.2. (i) One can derive additional information about the global solution

(h, φ). Indeed, by rescaling, we may assume that g=1 and σ=1. Let

U(t) := (1−∆)1/2h+i|∇|1/2φ, V(t) := eitΛU(t), and Λ(ξ) :=
√
|ξ|+|ξ|3. (1.11)

Here, Λ is the linear dispersion relation and V is the profile of the solution U . The proof

of the theorem gives the strong uniform bound

sup
t∈[0,∞)

‖V(t)‖Z . ε0; (1.12)

see Definition 2.5. The pointwise decay bound in (1.10) follows from this and the linear

estimates in Lemma 7.5 below.

(ii) The global solution U scatters in the Z norm as t!∞, i.e. there is V∞∈Z such

that

lim
t!∞
‖eitΛU(t)−V∞‖Z = 0.

However, the asymptotic behavior is somewhat non-trivial since |Û(ξ, t)|&log t!∞ for

frequencies ξ on a circle in R2 (the set of space-time resonance outputs) and for some

data. This unusual behavior is due to the presence of a large set of space-time resonances.

(iii) The function

U := (g−σ∆)1/2h+i|∇|1/2φ

is called the “Hamiltonian variable”, due to its connection to the Hamiltonian (1.6). This

variable is important in order to keep track correctly of the relative Sobolev norms of

the functions h and φ during the proof.
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1.3. Background

We now discuss some background on the water-wave system and review some of the

history and previous work on this problem.

1.3.1. The equations and the local well-posedness theory

The free-boundary Euler equations (1.1)–(1.3) are a time-reversible system of evolution

equations which preserve the total (kinetic plus potential) energy. Under the Rayleigh–

Taylor sign condition [65]

−∇n(x,t)p(x, t)< 0, x∈St, (1.13)

where n is the outward-pointing unit normal to Ωt, the system has a (degenerate) hy-

perbolic structure. This structure is somewhat hard to capture because of the moving

domain and the quasilinear nature of the problem. Historically, this has made the task

of establishing local well-posedness (existence and uniqueness of smooth solutions for the

Cauchy problem) non-trivial.

Early results on the local well-posedness of the system include those by Nalimov

[55], Yosihara [74], Kano–Nishida [48], and Craig [22]; these results deal with small

perturbations of a flat interface for which (1.13) always holds. It was first observed by

Wu [71] that in the irrotational case the Rayleigh–Taylor sign condition holds without

smallness assumptions, and that local-in-time solutions can be constructed with initial

data of arbitrary size in Sobolev spaces [70], [71].

Following the breakthrough of Wu, in the recent years the question of local well-

posedness of the water waves and free-boundary Euler equations has been addressed by

several authors. Christodoulou–Lindblad [15] and Lindblad [54] considered the gravity

problem with vorticity, Beyer–Gunther [9] took into account the effects of surface tension,

and Lannes [51] treated the case of non-trivial bottom topography. Subsequent works by

Coutand–Shkoller [20] and Shatah–Zeng [59], [60] extended these results to more general

scenarios with vorticity and surface tension, including two-fluid systems [12], [60], where

surface tension is necessary for well-posedness. Some recent papers that include surface

tension and/or low regularity analysis are those by Ambrose–Masmoudi [8], Christianson–

Hur–Staffilani [13], Alazard–Burq–Zuily [1], [2], and de Poyferré–Nguyen [56].

Thanks to all the contributions mentioned above, the local well-posedness theory is

presently well-understood in a variety of different scenarios. In short, one can say that

for sufficiently nice initial configurations, it is possible to find classical smooth solutions

on a small time interval, which depends on the smoothness of the initial data.
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1.3.2. Asymptotic models

We note that many simplified models have been derived and studied in special regimes,

with the goal of understanding the complex dynamics of the water-wave system. These

include the Korteweg–de Vries (KdV) equation, the Benjamin–Ono equation, and the

Boussinesq and the Kadomtsev-Petviashvili (KP) equations, as well as the non-linear

Schrödinger equation. We refer to [7], [19], [22]–[25], [57], [66] and to the book [52] and

references therein for more about approximate models.

1.3.3. Previous work on long-time existence

The problem of long time existence of solutions is more challenging, and fewer results

have been obtained so far. As in all quasilinear problems, the long-time regularity has

been studied in a perturbative (and dispersive) setting, that is in the regime of small and

localized perturbations of a flat interface. Large perturbations can lead to breakdown in

finite time, see for example the papers on “splash” singularities [10], [21].

The first long-time result for the water-wave system (1.4) is due to Wu [72], who

showed almost global existence for the gravity problem (g>0 and σ=0) in two dimensions

(1-dimensional interfaces). Subsequently, Germain–Masmoudi–Shatah [34] and Wu [73]

proved global existence of gravity waves in three dimensions (2-dimensional interfaces).

Global regularity in three dimensions was also proved for the capillary problem (g=0

and σ>0) by Germain–Masmoudi–Shatah [35]. See also the recent work of Wang [67],

[69] on the gravity problem in three dimensions over a finite flat bottom.

Global regularity for the gravity water-wave system in two dimensions (the harder

case) has been proved by two of the authors in [44] and, independently, by Alazard–Delort

[3], [4]. A different proof of Wu’s 2-dimensional almost global existence result was later

given by Hunter–Ifrim–Tataru [38], and then complemented to a proof of global regularity

in [39]. Finally, Wang [68] proved global regularity for a more general class of small data

of infinite energy, thus removing the momentum condition on the velocity field that

was present in all the previous 2-dimensional results. For the capillary problem in two

dimensions, global regularity was proved by two of the authors in [46] and, independently,

by Ifrim–Tataru [40] in the case of data satisfying an additional momentum condition.

We remark that all the global regularity results that have been proved so far require

three basic assumptions: small data (small perturbations of the rest solution), trivial

vorticity inside the fluid, and flat Euclidean geometry. Additional properties are also

important, such as the Hamiltonian structure of the equations, the rate of decay of the

linearized waves, and the resonance structure of the bilinear wave interactions.
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1.4. Main ideas

The classical mechanism to establish global regularity for quasilinear equations has two

main components:

(1) propagate control of high frequencies (high-order Sobolev norms);

(2) prove dispersion/decay of the solution over time.

The interplay of these two aspects has been present since the seminal work of Klain-

erman [49], [50] on non-linear wave equations and vector fields, Shatah [58] on Klein–

Gordon and normal forms, Christodoulou–Klainerman [14] on the stability of Minkowski

space, and Delort [28] on 1-dimensional Klein–Gordon equations. We remark that, even

in the weakly non-linear regime (small perturbations of trivial solutions), smooth and

localized initial data can lead to blow-up in finite time, see John [47] on quasilinear wave

equations and Sideris [61] on compressible Euler equations.

In the last few years, new methods have emerged in the study of global solutions

of quasilinear evolutions, inspired by the advances in semilinear theory. The basic idea

is to combine the classical energy and vector-field methods with refined analysis of the

Duhamel formula, using the Fourier transform. This is the essence of the “method

of space-time resonances” of Germain–Masmoudi–Shatah [33]–[35], see also Gustafson–

Nakanishi–Tsai [37], and of the refinements in [29], [30], [36], [41]– [46], using atomic

decompositions and more sophisticated norms.

The situation we consider in this paper is substantially more difficult, due to the

combination of the following factors:

• Strictly less than |t|−1 pointwise decay of solutions. In our case, the dispersion

relation is Λ(ξ)=
√
g|ξ|+σ|ξ|3, and the best possible pointwise decay, even for solutions

of the linearized equation corresponding to Schwartz data, is |t|−5/6 (see Figure 1 below).

• Large set of time resonances. In certain cases, one can overcome the slow pointwise

decay using the method of normal forms of Shatah [58]. The critical ingredient needed

is the absence of time resonances (or at least a suitable “null structure” of the quadratic

non-linearity matching the set of time resonances). Our system, however, has a full

(codimension-1) set of time resonances (see Figure 2 below) and no meaningful null

structures.

We remark that all the previous work on long-term solutions of water-wave models

was under the assumption that either g=0 or σ=0. This is not coincidental: in these

cases the combination of slow decay and full set of time resonances was not present . More

precisely, in all the previous global results in three dimensions in [34], [35], [67], [69], [73]

it was possible to prove 1/t pointwise decay of the non-linear solutions and combine this

with high-order energy estimates with slow growth.
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On the other hand, in all the 2-dimensional models analyzed in [3], [4], [38]–[40],

[44], [46], [68], [72] there were no significant time resonances for the quadratic terms.(3)

As a result, in all of these papers it was possible to prove a quartic energy inequality of

the form

|EN (t)−EN (0)|.
∫ t

0

EN (s)‖U(s)‖2WN/2+4,∞ ds,

for a suitable functional EN (t) satisfying EN (t)≈‖U(t)‖2HN . The point is to get two

factors of ‖U(s)‖WN/2+4,∞ in the right-hand side, in order to have suitable decay, and

simultaneously avoid loss of derivatives. A quartic energy inequality of this form cannot

hold in our case, due to the presence of large resonant sets.

To address these issues, in this paper we use a combination of improved energy

estimates and Fourier analysis. The main components of our analysis are the following:

• The energy estimates, which are used to control high Sobolev norms and weighted

norms (corresponding to the rotation vector field). They rely on several new ingredients,

most importantly on a strongly semilinear structure of the space-time integrals that con-

trol the increment of energy, and on a restricted non-degeneracy condition (see (1.24)) of

the time resonant hypersurfaces. The strongly semilinear structure is due to an algebraic

correlation (see (1.28)) between the size of the multipliers of the space-time integrals and

the size of the modulation, and is related to the Hamiltonian structure of the original

system.

• The dispersive estimates, which lead to decay and rely on a partial bootstrap

argument in a suitable Z norm. We analyze carefully the Duhamel formula, in particular

the quadratic interactions related to the slowly decaying frequencies and to the set of

space-time resonances. The choice of the Z norm in this argument is very important;

we use an atomic norm, based on a space-frequency decomposition of the profile of the

solution, which depends in a significant way on the location and the shape of the space-

time resonant set, thus on the quadratic part of the non-linearity.

We hope that such ideas can be used in other quasilinear problems in two and three

dimensions (such as other fluid and plasma models) that involve large resonant sets and

slowly decaying solutions. We illustrate some of these main ideas in a simplified model

below.

(3) More precisely, the only time resonances are at the zero frequency, but they are canceled by
a suitable null structure. Some additional ideas are needed in the case of capillary waves [46] where

certain singularities arise. Moreover, new ideas, which exploit the Hamiltonian structure of the system
as in [44], are needed to prove global (as opposed to almost global) regularity.
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1.5. A simplified model

To illustrate these ideas, consider the initial-value problem

(∂t+iΛ)U =∇V ·∇U+ 1
2∆V ·U, U(0) =U0,

Λ(ξ) :=
√
|ξ|+|ξ|3, V :=P[−10,10] ReU.

(1.14)

Compared to the full equation, this model has the same linear part and a quadratic

non-linearity leading to similar resonant sets. It is important that V is real-valued, such

that solutions of (1.14) satisfy the L2 conservation law

‖U(t)‖L2 = ‖U0‖L2 , t∈ [0,∞). (1.15)

The model (1.14) carries many of the difficulties of the real problem and has the

advantage that it is much more transparent algebraically. There are, however, signifi-

cant additional issues when dealing with the full problem; see §1.5.3 below for a short

discussion.

The specific dispersion relation Λ(ξ)=
√
|ξ|+|ξ|3 in (1.14) is important. It is radial

and has stationary points when |ξ|=γ0 :=(2/
√

3−1)1/2≈0.393 (see Figure 1 below). As

a result, linear solutions can only have |t|−5/6 pointwise decay, i.e.

‖eitΛφ‖L∞ ≈ |t|−5/6,

even for Schwartz functions φ whose Fourier transforms do not vanish on the sphere

{ξ :|ξ|=γ0}.

1.5.1. Energy estimates

We would like to control the increment of both high-order Sobolev norms and weighted

norms for solutions of (1.14). It is convenient to do all the estimates in the Fourier space,

using a quasilinear I-method, as in some of our earlier work. This has similarities with

the well-known I-method of Colliander–Keel–Staffilani–Takaoka–Tao [16], [17] used in

semilinear problems, and to the energy methods of [3], [4], [33], [38]. Our main estimate

is the following partial bootstrap bound:

if sup
t∈[0,T ]

((1+t)−δ
2

E(t)1/2+‖eitΛU(t)‖Z)6 ε1, then sup
t∈[0,T ]

(1+t)−δ
2

E(t)1/2 . ε0+ε
3/2
1 ,

(1.16)

where U is a solution on [0, T ] of (1.14),

E(t) = ‖U(t)‖2HN +‖U(t)‖2
HN
′

Ω
,
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Dispersion relation and degenerate frequencies

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

λ λ′ γ γ′

Figure 1. The curves represent the dispersion relation λ(r)=
√
r3+r and the group velocity λ′,

for g=1=σ. Notice that λ′′(r) vanishes at r=γ0≈0.393. The frequency γ1=
√

2 corresponds
to the sphere of space-time resonant outputs. Notice that while the slower decay at γ0 is due

to some degeneracy in the linear problem, γ1 is unremarkable from the point of view of the

linear dispersion.

and the initial data has small size
√
E(0)+‖U(0)‖Z6ε0. The Z norm is important

and will be discussed in detail in the next subsection. For simplicity, we focus on the

high-order Sobolev norms, and divide the argument into four steps.

Step 1. For N sufficiently large, let

W :=WN := 〈∇〉NU and EN (t) :=

∫
R2

|Ŵ (ξ, t)|2 dξ. (1.17)

A simple calculation, using the equation and the fact that V is real, shows that

d

dt
EN =

∫
R2×R2

m(ξ, η)Ŵ (η)Ŵ (−ξ)V̂ (ξ−η) dξ dη, (1.18)

where

m(ξ, η) =
(ξ−η)·(ξ+η)

2

(1+|η|2)N−(1+|ξ|2)N

(1+|η|2)N/2(1+|ξ|2)N/2
. (1.19)

Notice that |ξ−η|∈[2−11, 211] in the support of the integral, due to the Littlewood–Paley

operator in the definition of V . We notice that m satisfies

m(ξ, η) = d(ξ, η)m′(ξ, η), where d(ξ, η) :=
[(ξ−η)·(ξ+η)]2

1+|ξ+η|2
and m′≈ 1. (1.20)
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The depletion factor d is important in establishing energy estimates, due to its correlation

with the modulation function Φ (see (1.28) below). The presence of this factor is related

to the exact conservation law (1.15).

Step 2. We would like to estimate now the increment of EN (t). We use (1.18) and

consider only the main case, when |ξ|, |η|≈2k�1 and |ξ−η| is close to the slowly decaying

frequency γ0. So, we need to bound space-time integrals of the form

I :=

∫ t

0

∫
R2×R2

m(ξ, η)P̂kW (η, s)P̂kW (−ξ, s)Û(ξ−η, s)χγ0(ξ−η) dξ dη ds,

where χγ0
is a smooth cutoff function supported in the set

{
ξ :
∣∣|ξ|−γ0

∣∣�1
}

, and we

replaced V by U (replacing V by 
U leads to a similar calculation). Notice that it is not

possible to estimate |I| by moving the absolute value inside the time integral, due to the

slow decay of U in L∞. So we need to integrate by parts in time; for this, define the

profiles

u(t) := eitΛU(t) and w(t) := eitΛW (t). (1.21)

Then, decompose the integral in dyadic pieces over the size of the modulation and over

the size of the time variable. In terms of the profiles u and w, we need to consider the

space-time integrals

Ik,m,p : =

∫
R
qm(s)

∫
R2×R2

eisΦ(ξ,η)m(ξ, η)P̂kw(η, s)P̂k	w(−ξ, s)

×û(ξ−η, s)χγ0(ξ−η)ϕp(Φ(ξ, η)) dξ dη ds,
(1.22)

where Φ(ξ, η):=Λ(ξ)−Λ(η)−Λ(ξ−η) is the associated modulation, qm is smooth and

supported in the set {s:s≈2m}, and ϕp is supported in the set {x:|x|≈2p}.

Step 3. To estimate the integrals Ik,m,p, we consider several cases depending on the

relative size of k, m, and p. Assume that k and m are large, i.e. 2k�1 and 2m�1, which

is the harder case. To deal with the case of small modulation, when one cannot integrate

by parts in time, we need an L2 bound on the Fourier integral operator

Tk,m,p(f)(ξ) :=

∫
R2

eisΦ(ξ,η)ϕk(ξ)ϕ6p(Φ(ξ, η))χγ0(ξ−η)f(η) dη,

where s≈2m is fixed. The critical bound we prove in Lemma 4.7 (“the main L2 lemma”)

is

‖Tk,m,p(f)‖L2 .ε 2εm(2(3/2)(p−k/2)+2p−k/2−m/3)‖f‖L2 , ε> 0, (1.23)

provided p− 1
2k∈[−0.99m,−0.01m]. The main gain here is the factor 3

2 in 2(3/2)(p−k/2)

in the right-hand side (Schur’s test would only give a factor 1).
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The proof of (1.23) uses a TT ∗ argument, which is a standard tool to prove L2

bounds for Fourier integral operators. This argument depends on a key non-degeneracy

property of the function Φ, more precisely on what we call the restricted non-degeneracy

condition:

Υ(ξ, η) =∇2
ξ,ηΦ(ξ, η)[∇⊥ξ Φ(ξ, η),∇⊥η Φ(ξ, η)] 6= 0, if Φ(ξ, η) = 0. (1.24)

This condition, which appears to be new, can be verified explicitly in our case, when∣∣|ξ−η|−γ0

∣∣�1. The function Υ does in fact vanish at two points on the resonant set

{η :Φ(ξ, η)=0} (where
∣∣|ξ−η|−γ0

∣∣≈2−k), but our argument can tolerate vanishing up to

order 1.

The non-degeneracy condition (1.24) can be interpreted geometrically: the non-

degeneracy of the mixed Hessian of Φ is a standard condition that leads to optimal L2

bounds on Fourier integral operators. In our case, however, we have the additional cutoff

function ϕ6p(Φ(ξ, η)), so we can only integrate by parts in the directions tangent to

the level sets of Φ. This explains the additional restriction to these directions in the

definition of Υ in (1.24).

Given the bound (1.23), we can control the contribution of small modulations, i.e.

p− 1
2k6−

2
3m−εm. (1.25)

Step 4. In the high-modulation case, we integrate by parts in time in formula (1.22).

The main contribution is when the time derivative hits the high-frequency terms, so we

focus on estimating the resulting integral

I ′k,m,p : =

∫
R
qm(s)

∫
R2×R2

eisΦ(ξ,η)m(ξ, η)
d

ds
(P̂kw(η, s)P̂k	w(−ξ, s))

×û(ξ−η, s)χγ0(ξ−η)
ϕp(Φ(ξ, η))

Φ(ξ, η)
dξ dη ds.

(1.26)

Notice that ∂tw satisfies the equation

∂tw= 〈∇〉NeitΛ
(
∇V ·∇U+ 1

2∆V ·U
)
. (1.27)

The right-hand side of (1.27) is quadratic. We thus see that replacing w by ∂tw essentially

gains a unit of decay (which is |t|−5/6+), but loses a derivative. This causes a problem in

some range of parameters, for example when 2p≈2k/2−2m/3 and 1�2k�2m; cf. (1.25).

We then consider two cases: if the modulation is sufficiently small, then we can use

the depletion factor d in the multiplier m (see (1.20)), and the following key algebraic

correlation:

if |Φ(ξ, η)|. 1, then |m(ξ, η)|. 2−k. (1.28)
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Figure 2. The left picture illustrates the resonant set {η :0=Φ(ξ, η)=Λ(ξ)−Λ(η)−Λ(ξ−η)}
for a fixed large frequency ξ (in the picture ξ=(100, 0)). The picture on the right illustrates

the intersection of a neighborhood of this resonant set with the set where |ξ−η| is close to γ0.

Note in particular that, near the resonant set, ξ−η is almost perpendicular to ξ (see (1.20)
and (1.28)). Finally, the colors show the level sets of log |Φ|.

See Figure 2. As a result, we gain one derivative in the integral I ′k,m,p, which compensates

for the loss of one derivative in (1.27), and the integral can be estimated again using

(1.23).

On the other hand, if the modulation is not small, 2p>1, then the denominator

Φ(ξ, η) becomes a favorable factor, and one can use formula (1.27) and reiterate the

symmetrization procedure implicit in the energy estimates. This symmetrization avoids

the loss of one derivative and gives suitable estimates on |I ′k,m,p| in this case. The proof

of (1.16) follows.

1.5.2. Dispersive analysis

It remains to prove a partial bootstrap estimate for the Z norm, i.e.

if sup
t∈[0,T ]

((1+t)−δ
2

E(t)1/2+‖eitΛU(t)‖Z)6 ε1, then sup
t∈[0,T ]

‖eitΛU(t)‖Z . ε0+ε2
1. (1.29)

This complements the energy bootstrap estimate (1.16), and closes the full bootstrap

argument.

The first main issue is to define an effective Z norm. We use the Duhamel formula,

written in terms of the profile u (recall equation (1.14)):

û(ξ, t) = û(ξ, 0)− 1

2

∫ t

0

∫
R2

eisΛ(ξ)(|ξ|2−|η|2)V̂ (ξ−η, s)e−isΛ(η)û(η, s) dη ds. (1.30)



gravity-capillary water-wave system in 3d 227

For simplicity, consider one of the terms, namely that corresponding to the component

U of V (the contribution of 
U is similar). So, we are looking to understand bilinear

expressions of the form

ĥ(ξ, t) :=

∫ t

0

∫
R2

eisΦ(ξ,η)n(ξ, η)û(ξ−η, s)û(η, s) dη ds,

n(ξ, η) := (|ξ|2−|η|2)ϕ[−10,10](ξ−η), Φ(ξ, η) = Λ(ξ)−Λ(η)−Λ(ξ−η).

(1.31)

The idea is to estimate the function ĥ by integrating by parts either in s or in η. This

is the method of space-time resonances of Germain–Masmoudi–Shatah [34]. The main

contribution is expected to come from the set of space-time resonances (the stationary

points of the integral), that is

SR := {(ξ, η) : Φ(ξ, η) = 0 and (∇ηΦ)(ξ, η) = 0}. (1.32)

To illustrate how this analysis works in our problem, we consider the contribution

of the integral over s≈2m�1 in (1.31), and assume that the frequencies are ≈1.

Case 1. Start with the contribution of small modulations,

ĥm,l(ξ) :=

∫
R
qm(s)

∫
R2

ϕ6l(Φ(ξ, η))eisΦ(ξ,η)n(ξ, η)û(ξ−η, s)û(η, s) dη ds, (1.33)

where l=−m+δm (δ is a small constant) and qm(s) restricts the time integral to s≈2m.

Assume that u( · , s) is a Schwartz function supported at frequency ≈1, independent of s

(this is the situation at the first iteration). Integration by parts in η (using formula (7.30)

to avoid taking η derivatives of the factor ϕ6l(Φ(ξ, η))) shows that the main contribution

comes from a small neighborhood of the stationary points where |∇ηΦ(ξ, η)|62−m/2+δm,

up to negligible errors. Thus, the main contribution comes from space-time resonant

points as in (1.32).

In our case, the space-time resonant set is{
(ξ, η)∈R2×R2 : |ξ|= γ1 =

√
2 and η= 1

2ξ
}
. (1.34)

Moreover, the space-time resonant points are non-degenerate (according to the termi-

nology introduced in [42]), in the sense that the Hessian of the matrix ∇2
ηηΦ(ξ, η) is

non-singular at these points. A simple calculation shows that

ĥm,l(ξ)≈ c(ξ)ϕ6−m(|ξ|−γ1),

up to smaller contributions, where we have also ignored factors of 2δm, and c is smooth.
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We are now ready to describe more precisely the Z space. This space should include

all Schwartz functions. It also has to include functions like û(ξ)=ϕ6−m(|ξ|−γ1), due to

the calculation above, for any m large. It should measure localization in both space and

frequency, and be strong enough, at least, to recover the t−5/6+ pointwise decay.

We use the framework introduced by two of the authors in [41], which was later

refined by some of the authors in [30], [36], [42]. The idea is to decompose the profile as

a superposition of atoms, using localization in both space and frequency:

f =
∑
j,k

Qjkf, where Qjkf =ϕj(x)·Pkf(x).

The Z norm is then defined by measuring suitably every atom. We first define

‖f‖Z1
= sup

j,k
2j ·
∥∥∥∣∣|ξ|−γ1

∣∣1/2Q̂jkf(ξ)
∥∥∥
L2
ξ

, (1.35)

up to small corrections (see Definition 2.5 for the precise formula, including the small but

important δ-corrections), and then we define the Z norm by applying a suitable number

of vector fields D and Ω.

These considerations and (1.30) can also be used to justify the approximate formula

(∂tû)(ξ, t)≈ 1

t

∑
j

gj(ξ)e
itΦ(ξ,ηj(ξ))+lower order terms, (1.36)

as t!∞, where ηj(ξ) denote the stationary points where ∇ηΦ(ξ, ηj(ξ))=0. This approx-

imate formula, which holds at least as long as the stationary points are non-degenerate,

is consistent with the asymptotic behavior of the solution described in Remark 1.2 (ii).

Indeed, at space-time resonances, Φ(ξ, ηj(ξ))=0, which leads to logarithmic growth for

û(ξ, t), while, away from these space-time resonances, the oscillation of eitΦ(ξ,ηj(ξ)) leads

to convergence.

Case 2. Consider now the case of higher modulations, say l>−m+δm. We start

from a formula similar to (1.33) and integrate by parts in s. The main case is when d/ds

hits one of the profiles u. Using again the equation (see (1.30)), we have to estimate

cubic expressions of the form

ĥ′m,l(ξ) : =

∫
R
qm(s)

∫
R2×R2

ϕl(Φ(ξ, η))

Φ(ξ, η)
eisΦ(ξ,η)n(ξ, η)û(ξ−η, s)

×eisΦ
′(η,σ)n(η, σ)ˆ̄u(η−σ, s)û(σ, s) dη dσ ds,

(1.37)

where Φ′(η, σ)=Λ(η)+Λ(η−σ)−Λ(σ). Assume again that the three functions u are

Schwartz functions supported at frequency ≈1. We combine Φ and Φ′ into a combined

phase:

Φ̃(ξ, η, σ) := Φ(ξ, η)+Φ′(η, σ) = Λ(ξ)−Λ(ξ−η)+Λ(η−σ)−Λ(σ).
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We need to estimate h′m,l according to the Z1 norm. Integration by parts in ξ (approxi-

mate finite speed of propagation) shows that the main contribution in Qjkh
′
m,l is when

2j.2m.

We have two main cases: if l is not too small, say l>− 1
14m, then we use first

multilinear Hölder-type estimates, placing two of the factors eisΛu in L∞ and one in L2,

together with analysis of the stationary points of Φ̃ in η and σ. This suffices in most

cases, except when all the variables are close to γ0. In this case we need a key algebraic

property: when |ξ−η|, |η−σ|, and |σ| are all close to γ0, we have that

if ∇η,σΦ̃(ξ, η, σ) = 0 and Φ̃(ξ, η, σ) = 0, then ∇ξΦ̃(ξ, η, σ) = 0. (1.38)

On the other hand, if l is very small, say l6− 1
14m, then the denominator Φ(ξ, η) in

(1.37) is dangerous. However, we can restrict to small neighborhoods of the stationary

points of Φ̃ in η and σ, and thus to space-time resonances. This is the most difficult case

in the dispersive analysis. We need to rely on one more algebraic property, of the form

if ∇η,σΦ̃(ξ, η, σ) = 0 and |Φ(ξ, η)|+|Φ′(η, σ)|� 1, then ∇ξΦ̃(ξ, η, σ) = 0. (1.39)

See Lemma 10.6 for the precise quantitative claims for both (1.38) and (1.39).

The point of both (1.38) and (1.39) is that in the resonant region for the cubic integral

we have∇ξΦ̃(ξ, η, σ)=0. We call them slow propagation of iterated resonances properties;

as a consequence, the resulting function is essentially supported when |x|�2m, using the

approximate finite speed of propagation. This gain is reflected in the factor 2j in (1.35).

We remark that the analogous property for quadratic resonances, namely

if ∇ηΦ(ξ, η) = 0 and Φ(ξ, η) = 0, then∇ξΦ(ξ, η) = 0,

fails. In fact, in our case |∇ξΦ(ξ, η)|≈1 on the space-time resonant set.

In proving (1.29), there are, of course, many cases to consider. The full proof covers

§8 and §9. The type of arguments presented above are typical in the proof: we decompose

our profiles in space and frequency, localize to small sets in the frequency space, keeping

track in particular of the special frequencies of size γ0, γ1, 1
2γ1, and 2γ0, use integration

by parts in ξ to control the location of the output, and use multilinear Hölder-type

estimates to bound L2 norms. We remark that the dispersive analysis in the Z norm is

much more involved in this paper than in the earlier papers mentioned above.

1.5.3. The special quadratic structure of the full water-wave system

The model (1.14) is useful in understanding the full problem. There are, however, addi-

tional difficulties to keep in mind.
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In this paper we use Eulerian coordinates. The local well-posedness theory, which is

non-trivial because of the quasilinear nature of the equations and the hidden hyperbolic

structure, then relies on the so-called “good unknown” of Alinhac [1], [4], [5], [6].

In our problem, however, this is not enough. Alinhac’s good unknown ω is suitable

for the local theory, in the sense that it prevents loss of derivatives in energy estimates.

However, for the global theory, we need to adjust the main complex variable U which

diagonalizes the system, using a quadratic correction of the form Tm′ω (see (3.4)). In

this way, we can identify certain special quadratic structure, somewhat similar to the

structure in the non-linearity of (1.14). This structure, which appears to be new, is

ultimately responsible for the favorable multipliers of the space-time integrals (similar to

(1.20)), and leads to global energy bounds.

Identifying this structure is, unfortunately, technically involved. Our main result is

in Proposition 3.1, but its proof depends on paradifferential calculus using the Weyl quan-

tization (see Appendix A) and on a suitable paralinearization of the Dirichlet–Neumann

operator. We include all the details of this paralinearization in Appendix B, mostly

because its exact form has to be properly adapted to our norms and suitable for global

analysis. For this, we need some auxiliary spaces: (1) the Om,p hierarchy, which mea-

sures functions, keeping track of both multiplicity (the index m) and smoothness (the

index p), and (2) theMl,m
r hierarchy, which measures the symbols of the paradifferential

operators, keeping track also of the order l.

1.5.4. Additional remarks

We list below some other issues one needs to keep in mind in the proof of the main

theorem.

(1) Another significant difficulty of the full water-wave system, which is not present

in (1.14), is that the “linear” part of the equation is given by a more complicated paradif-

ferential operator TΣ, not by the simple operator Λ. The operator TΣ includes non-linear

cubic terms that lose 3
2 derivatives, and an additional smoothing effect is needed.

(2) The very low frequencies |ξ|�1 play an important role in all the global results

for water-wave systems. These frequencies are not captured in the model (1.14). In our

case, there is a suitable null structure: the multipliers of the quadratic terms are bounded

by |ξ|min(|η|, |ξ−η|)1/2 (see (7.11)), which is an important ingredient in the dispersive

part of the argument.

(3) It is important to propagate energy control of both high Sobolev norms and

weighted norms using many copies of the rotation vector field. Because of this control,

we can pretend that all the profiles in the dispersive part of the argument are almost
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radial and located at frequencies .1. The linear estimates (in Lemma 7.5) and many of

the bilinear estimates are much stronger, because of this almost radiality property of the

profiles.

(4) At many stages, it is important that the four spheres, namely the sphere of slow

decay {ξ :|ξ|=γ0}, the sphere of space-time resonant outputs {ξ :|ξ|=γ1}, the sphere of

space-time resonant inputs
{
ξ :|ξ|= 1

2γ1

}
, and the sphere {ξ :|ξ|=2γ0}, are all separated

from each other. Such separation property played an important role also in other papers,

such as [30], [33], [36].

1.6. Organization

The rest of the paper is organized as follows: in §2 we state the main propositions and

summarize the main definitions and notation of the paper.

In §§3–6 we prove Proposition 2.2, which is the main improved energy estimate.

The key components of the proof are Proposition 3.1 (derivation of the main quasilinear

scalar equation, identifying the special quadratic structure), Proposition 4.1 (the first

energy estimate, including the strongly semilinear structure), Proposition 4.2 (reduction

to a space-time integral bound), Lemma 4.7 (the main L2 bound on a localized Fourier

integral operator), and Lemma 5.1 (the main interactions in Proposition 4.2). The proof

of Proposition 2.2 also uses the material presented in the appendices, in particular the

paralinearization of the Dirichlet–Neumann operator in Proposition B.1.

In §§7–9 we prove Proposition 2.3, which is the main improved dispersive estimate.

The key components of the proof are the reduction to Proposition 7.1, the precise analysis

of the time derivative of the profile in Lemmas 8.1 and 8.2, and the analysis of the

Duhamel formula, divided in several cases, in Lemmas 9.4–9.8.

In §10 and §11 we collect estimates on the dispersion relation and the phase functions.

The main results are Proposition 10.2 (structure of the resonance sets), Proposition 10.4

(bounds on sublevel sets), Lemma 10.6 (slow propagation of iterated resonances), and

Lemmas 11.1–11.3 (restricted non-degeneracy property of the resonant hypersurfaces).
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2. The main propositions

Recall the water-wave system with gravity and surface tension:
∂th=G(h)φ,

∂tφ=−gh+σ div

(
∇h

(1+|∇h|2)1/2

)
− 1

2
|∇φ|2+

(G(h)φ+∇h·∇φ)
2

2(1+|∇h|2)
,

(2.1)

where G(h)φ denotes the Dirichlet–Neumann operator associated with the water domain.

Theorem 1.1 is a consequence of Propositions 2.1–2.3 below.

Proposition 2.1. (Local existence and continuity)

(i) Let N>10. There is ε̄>0 such that, if

‖h0‖HN+1 +‖φ0‖ḢN+1/2,1/2 6 ε̄, (2.2)

then there is a unique solution (h, φ)∈C([0, 1]:HN+1×ḢN+1/2,1/2) of the system (2.1)

with g=1 and σ=1, with initial data (h0, φ0).

(ii) Let T0>1, N=N1+N3, and (h, φ)∈C([0, T0]:HN+1×ḢN+1/2,1/2) be a solution

of the system (2.1) with g=1 and σ=1. With the Z norm as in Definition 2.5 below and

the profile V defined as in (1.11), assume that, for some t0∈[0, T0],

V(t0)∈HN0∩HN1,N3

Ω ∩Z and ‖V(t0)‖HN 6 2ε̄. (2.3)

Then, there is τ=τ(‖V(t0)‖HN0∩HN1,N3∩Z) such that the mapping

t 7−! ‖V(t)‖
HN0∩HN1,N3

Ω ∩Z

is continuous on [0, T0]∩[t0, t0+τ ], and

sup
t∈[0,T0]∩[t0,t0+τ ]

‖V(t)‖
HN0∩HN1,N3

Ω ∩Z 6 2‖V(t0)‖
HN0∩HN1,N3

Ω ∩Z . (2.4)

Proposition 2.1 is a local existence result for the water-wave system. We will not

provide the details of its proof in the paper, but only briefly discuss it. Part (i) is a

standard well-posedness statement in a sufficiently regular Sobolev space; see for example

[1] and [70].

Part (ii) is a continuity statement for the Sobolev norm HN0 , as well as for the

HN1,N3

Ω and Z norms.(4) Continuity for the HN0 norm is standard. A formal proof

of continuity for the HN1,N3

Ω and Z norms and of (2.4) requires some adjustments of

(4) Notice that we may assume uniform-in-time smallness of the high Sobolev norm HN with
N=N1+N3, due to the uniform control on the Z norm; see Proposition 2.2 and Definition 2.5.
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the arguments given in the paper, due to the quasilinear and non-local nature of the

equations.

More precisely, we can define ε-truncations of the rotation vector field Ω, that is

Ωε :=(1+ε2|x|2)−1/2Ω, and the associated spaces HN1,N3

Ωε
, with the obvious adaptation

of the norm in (1.8). Then, we notice that

ΩεTab=TΩεab+TaΩεb+R

where R is a suitable remainder bounded uniformly in ε. Because of this, we can adapt

the arguments in Proposition 4.1 and in Appendices A and B to prove energy estimates

in the ε-truncated spaces HN1,N3

Ωε
. For the Z norm, one can proceed similarly using an

ε-truncated version Zε (see the proof of [42, Proposition 2.4] for a similar argument) and

the formal expansion of the Dirichlet–Neumann operator in §C.2. The conclusion follows

from the uniform estimates by letting ε!0.

The following two propositions summarize our main bootstrap argument.

Proposition 2.2. (Improved energy control) Assume that T>1 and let

(h, φ)∈C([0, T ] :HN0+1×ḢN0+1/2,1/2)

be a solution of the system (2.1) with g=1 and σ=1, with initial data (h0, φ0). Assume

that, with U and V defined as in (1.11),

‖U(0)‖
HN0∩HN1,N3

Ω
+‖V(0)‖Z 6 ε0� 1, (2.5)

and, for any t∈[0, T ],

(1+t)−δ
2

‖U(t)‖
HN0∩HN1,N3

Ω
+‖V(t)‖Z 6 ε1� 1, (2.6)

where the Z norm is as in Definition 2.5. Then, for any t∈[0, T ],

(1+t)−δ
2

‖U(t)‖
HN0∩HN1,N3

Ω
. ε0+ε

3/2
1 . (2.7)

Proposition 2.3. (Improved dispersive control) With the same assumptions as in

Proposition 2.2 above, in particular (2.5) and (2.6), we have, for any t∈[0, T ],

‖V(t)‖Z . ε0+ε2
1. (2.8)

It is easy to see that Theorem 1.1 follows from Propositions 2.1–2.3 by a standard

continuity argument and (7.44) (for the L∞ bound on U in (1.10)). The rest of the paper

is concerned with the proofs of Propositions 2.2 and 2.3.
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2.1. Definitions and notation

We summarize in this subsection some of the main definitions we use in the paper.

2.1.1. General notation

We start by defining several multipliers that allow us to localize in the Fourier space.

We fix an even smooth function ϕ:R![0, 1] supported in
[
− 8

5 ,
8
5

]
and equal to 1 in[

− 5
4 ,

5
4

]
. For simplicity of notation, we also let ϕ:R2

![0, 1] denote the corresponding

radial function on R2. Let

ϕk(x) : =ϕ

(
|x|
2k

)
−ϕ
(
|x|

2k−1

)
for any k∈Z, ϕI :=

∑
m∈I∩Z

ϕm for any I ⊆R,

ϕ6B : =ϕ(−∞,B], ϕ>B :=ϕ[B,∞), ϕ<B :=ϕ(−∞,B), and ϕ>B :=ϕ(B,∞).

For any a<b∈Z and j∈[a, b]∩Z, let

ϕ
[a,b]
j :=


ϕj , if a< j < b,

ϕ6a, if j= a,

ϕ>b, if j= b.

(2.9)

For any x∈R, let x+=max(x, 0) and x− :=min(x, 0). Let

J := {(k, j)∈Z×Z+ : k+j> 0}.

For any (k, j)∈J , let

ϕ̃
(k)
j (x) :=


ϕ6−k(x), if k+j= 0 and k6 0,

ϕ60(x), if j= 0 and k> 0,

ϕj(x), if k+j> 1 and j> 1,

and notice that, for any k∈Z fixed,
∑
j>−min(k,0) ϕ̃

(k)
j =1.

Let Pk, k∈Z, denote the Littlewood–Paley projection operators defined by the

Fourier multipliers ξ 7!ϕk(ξ). Let P6B (resp. P>B) denote the operators defined by

the Fourier multipliers ξ 7!ϕ6B(ξ) (resp. ξ 7!ϕ>B(ξ)). For (k, j)∈J let Qjk denote the

operator

(Qjkf)(x) := ϕ̃
(k)
j (x)·Pkf(x). (2.10)

In view of the uncertainty principle, the operators Qjk are relevant only when 2j2k&1,

which explains the definitions above.
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We will use two sufficiently large constants D�D1�1 (D1 is only used in §10 and

§11 to prove properties of the phase functions). For k, k1, k2∈Z, let

Dk,k1,k2 : = {(ξ, η)∈ (R2)2 : |ξ| ∈ [2k−4, 2k+4], |η| ∈ [2k2−4, 2k2+4],

and |ξ−η| ∈ [2k1−4, 2k1+4]}.
(2.11)

Let λ(r)=
√
|r|+|r|3 and Λ(ξ)=λ(|ξ|)=

√
|ξ|+|ξ|3, Λ:R2

![0,∞). Let

U+ :=U , U− := 	U , V(t) =V+(t) := eitΛU(t), and V−(t) := e−itΛU−(t). (2.12)

Let Λ+=Λ and Λ− :=−Λ. For σ, µ, ν∈{+,−}, we define the associated phase functions

Φσµν(ξ, η) : = Λσ(ξ)−Λµ(ξ−η)−Λν(η),

Φ̃σµνβ(ξ, η, σ) : = Λσ(ξ)−Λµ(ξ−η)−Λν(η−σ)−Λβ(σ).
(2.13)

2.1.2. The spaces Om,p

We will need several spaces of functions, in order to properly measure linear, quadratic,

cubic, quartic, and higher-order terms. In addition, we also need to track the Sobolev

smoothness and angular derivatives. Assume that N2=40>N3+10 and that N0 (the

maximum number of Sobolev derivatives), N1 (the maximum number of angular deriva-

tives), and N3 (additional Sobolev regularity) are as before.

Definition 2.4. Assume T>1 and let p∈[−N3, 10]. For m>1, we define Om,p as the

space of functions f∈C([0, T ]:L2) satisfying

‖f‖Om,p : = sup
t∈[0,T ]

(1+t)(m−1)(5/6−20δ2)−δ2

(‖f(t)‖HN0+p+‖f(t)‖
H
N1,N3+p
Ω

+(1+t)
5/6−2δ2

‖f(t)‖
W̃
N1/2,N2+p
Ω

]<∞,
(2.14)

where, with Pk denoting standard Littlewood–Paley projection operators,

‖g‖
W̃N :=

∑
k∈Z

2Nk
+

‖Pkg‖L∞ and ‖g‖
W̃N′,N

Ω

:=
∑
j6N ′

‖Ωjg‖
W̃N .

The spaces W̃N are used in this paper as substitutes of the standard L∞ based Sobolev

spaces, which have the advantage of being closed under the action of singular integrals.

Note that the parameter p in Om,p corresponds to a gain at high frequencies and

does not affect the low frequencies. We observe that (see Lemma A.2)

Om,p⊆On,p if 16n6m and Om,pOn,p⊆Om+n,p if 16m,n. (2.15)
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Moreover, by our assumptions (2.6) and Lemma 7.5, the main variables satisfy

‖(1−∆)1/2h‖O1,0
+
∥∥|∇|1/2φ∥∥

O1,0
. ε1. (2.16)

The spaces Om,p are used mostly in the energy estimates in §3 and in the (elliptic)

analysis of the Dirichlet–Neumann operator in Appendix B. However, they are not precise

enough for the dispersive analysis of our evolution equation. For this, we need the more

precise Z-norm defined below, which is better adapted to our equation.

2.1.3. The Z norm

Let γ0 :=
√

1
3 (2
√

3−3) denote the radius of the sphere of slow decay, and γ1 :=
√

2 denote

the radius of the space-time resonant sphere. For n∈Z, I⊆R, and γ∈(0,∞) we define

Ân,γf(ξ) :=ϕ−n
(
2100

∣∣|ξ|−γ∣∣)f̂(ξ),

AI,γ :=
∑
n∈I

An,γ , A6B,γ :=A(−∞,B],γ , and A>B,γ :=A[B,∞),γ .
(2.17)

Given an integer j>0, we define the operators A
(j)
n,γ , n∈{0, ..., j+1} and γ>2−50, by

A
(j)
j+1,γ :=

∑
n′>j+1

An′,γ , A
(j)
0,γ :=

∑
n′60

An′,γ , and A(j)
n,γ :=An,γ if 16n6 j. (2.18)

These operators localize to thin annuli of width 2−n around the circle of radius γ. Most

of the times, for us γ=γ0 or γ=γ1. We are now ready to define the main Z norm.

Definition 2.5. Let δ, N0, N1, and N4 be as in Theorem 1.1. We define

Z1 :=
{
f ∈L2(R2) : ‖f‖Z1

:= sup
(k,j)∈J

‖Qjkf‖Bj <∞
}
, (2.19)

where

‖g‖Bj := 2(1−50δ)j sup
06n6j+1

2−(1/2−49δ)n‖A(j)
n,γ1

g‖L2 . (2.20)

Then we define, with Dα :=∂α
1

1 ∂α
2

2 , α=(α1, α2),

Z :=

{
f ∈L2(R2) : ‖f‖Z := sup

2m+|α|6N1+N4

m6N1/2+20

‖DαΩmf‖Z1
<∞

}
. (2.21)

We remark that the Z norm is used to estimate the linear profile of the solution,

which is V(t):=eitΛU(t), not the solution itself.
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2.1.4. Paradifferential calculus

We need some elements of paradifferential calculus in order to be able to describe the

Dirichlet–Neumann operator G(h)φ in (2.1). Our paralinearization relies on the Weyl

quantization. More precisely, given a symbol a=a(x, ζ) and a function f∈L2, we define

the paradifferential operator Taf according to

F(Taf)(ξ) =
1

4π2

∫
R2

χ

(
|ξ−η|
|ξ+η|

)
ã

(
ξ−η, ξ+η

2

)
f̂(η) dη, (2.22)

where ã denotes the Fourier transform of a in the first coordinate and χ=ϕ6−20. In

Appendix A we prove several important lemmas related to the paradifferential calculus.

3. The “improved good variable” and strongly semilinear structures

3.1. Reduction to a scalar equation

In this section we assume that (h, φ):R2×[0, T ]!R×R is a solution of (2.1) satisfying

the hypotheses of Proposition 2.2; in particular (see (2.16)),

‖〈∇〉h‖O1,0 +
∥∥|∇|1/2φ∥∥

O1,0
. ε1. (3.1)

Our goal in this section is to write the system (2.1) as a scalar equation for a suitably

constructed complex-valued function (the “improved good variable”). The main result

is the following.

Proposition 3.1. Assume (3.1) holds and let λDN be the symbol of the Dirichlet–

Neumann operator defined in (B.5), let Λ:=
√
g|∇|+σ|∇|3, and let

`(x, ζ) :=Lij(x)ζiζj−Λ2h, Lij :=
σ√

1+|∇h|2

(
δij−

∂ih∂jh

1+|∇h|2

)
(3.2)

be the mean curvature operator coming from the surface tension. Define the symbol

Σ :=
√
λDN (g+`) (3.3)

and the complex-valued unknown

U :=T√g+`h+iTΣT1/
√
g+`ω+iTm′ω, m′ :=

i

2

div V√
g+`

∈ ε1M−1,1
N3−2, (3.4)

where B, and V and (the “good variable”) ω=φ−TBh are defined in (B.3). Then,

U =
√
g+σ|∇|2h+i|∇|1/2ω+ε2

1O2,0 (3.5)
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and U satisfies the equation

(∂t+iTΣ+iTV ·ζ)U =NU+QS+CU , (3.6)

where

• the quadratic term NU has the special structure

NU :=Tγ(c1U+c2
U) (3.7)

for some constants c1, c2∈C, where

γ(x, ζ) :=
ζiζj
|ζ|2
|∇|−1/2∂i∂j(ImU)(x); (3.8)

• the quadratic terms QS have a gain of one derivative, i.e. they are of the form

QS =A++(U,U)+A+−(U,
U)+A−−(
U,
U)∈ ε2
1O2,1, (3.9)

with symbols aε1ε2 satisfying, for all k, k1, k2∈Z, and (ε1ε2)∈{(++), (+−), (−−)},

‖ak,k1,k2
ε1ε2 ‖

S∞Ω
. 2−max(k1,k2,0)(1+23 min(k1,k2)); (3.10)

• CU is a cubic term, CU∈ε3
1O3,0.

Let us comment on the structure of the main equation (3.6). In the left-hand side,

we have the “quasilinear” part (∂t+iTΣ+iTV ·ζ)U . In the right-hand side we have three

types of terms:

(1) a quadratic term NU with special structure;

(2) a strongly semilinear quadratic term QS , given by symbols of order −1;

(3) a semilinear cubic term CU∈ε3
1O3,0, whose contribution is easy to estimate.

The key point is the special structure of the quadratic terms, which allows us to

obtain favorable energy estimates in Proposition 4.1. This special structure is due to the

definition of the variable U , in particular to the choice of the symbol m′ in (3.4). We

observe that

γ̃(η, ζ) =−ζiζj
|ζ|2

ηiηj
|η|1/2

ÎmU(η),

and we remark that the angle ζ ·η in this expression gives us the strongly semilinear

structure that we will use later (see also the factor d in (4.6)). For comparison, the use

of the standard “good unknown” of Alinhac leads to generic quadratic terms that do not

lose derivatives. This would suffice to prove local regularity of the system, but would not

be suitable for global analysis.
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This proposition is the starting point of our energy analysis. Its proof is technically

involved, as it requires the material in Appendices A and B. One can start by understand-

ing the definition A.6 of the decorated spaces of symbols Ml,m
r , the simple properties

(A.43)–(A.54), and the statement of Proposition B.1 (the proof is not needed). The

spaces of symbolsMl,m
r are analogous to the spaces of functions Om,p; for symbols, how-

ever, the order l is important (for example a symbol of order 2 counts as two derivatives),

but its exact differentiability (measured by the parameter r) is less important.

In Proposition 3.1 we keep the parameters g and σ due to their physical significance.

Remark 3.2. (i) The symbols defined in this proposition can be estimated in terms

of the decorated norms introduced in Definition A.6. More precisely, using hypothesis

(3.1), the basic bounds (A.43) and (A.45), and definition (B.5), it is easy to verify that

(g+`) =
(g+σ|ζ|2)√

1+|∇h|2

(
1− σ(ζ ·∇h)2

(g+σ|ζ|2)
− Λ2h

(g+σ|ζ|2)
+ε4

1M
0,4
N3−2+ε2

1M
−2,2
N3−2

)
,

λDN = |ζ|
(

1+
|ζ|2|∇h|2−(ζ ·∇h)2

2|ζ|2
+
|ζ|2∆h−ζjζk∂j∂kh

2|ζ|3
ϕ>0(ζ)

+ε4
1M

0,4
N3−2+ε3

1M
−1,3
N3−2

)
,

(3.11)

uniformly for every t∈[0, T ]. Thus, with Λ=
√
g|∇|+σ|∇|3, we derive the following

expansion for Σ:

Σ = Λ+Σ1+Σ>2, (3.12)

with

Σ1 :=
1

4

Λ(ζ)

|ζ|

(
∆h− ζiζj

|ζ|2
∂ijh

)
ϕ>0(ζ)− 1

2

|ζ|
Λ(ζ)

Λ2h∈ ε1M1/2,1
N3−2

and

Σ>2 ∈ ε2
1M

3/2,2
N3−2.

The formulas are slightly simpler if we disregard quadratic terms, i.e.

λpDN = |ζ|p
(

1+
pλ

(0)
1 (x, ζ)

|ζ|
+ε2

1M
0,2
N3−2

)
,

(g+`)p = (g+σ|ζ|2)p
(

1− pΛ2h

g+σ|ζ|2
+ε2

1M
0,2
N3−2

)
,

Σ = Λ

(
1+

Σ1(x, ζ)

Λ
+ε2

1M
0,2
N3−2

)
,

(3.13)

for p∈[−2, 2], where

λ
(0)
1 (x, ζ) =

|ζ|2∆h−ζjζk∂j∂kh
2|ζ|2

ϕ>0(ζ),
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as in Remark B.2.

In addition, the identity ∂th=G(h)φ=|∇|ω+ε2
1O2,−1/2 shows that

∂t
√
g+`= (g+σ|ζ|2)−1/2

(
∆(g−σ∆)ω

2

)
+ε2

1M
1,2
N3−4 ∈ ε1M−1,1

N3−4+ε2
1M

1,2
N3−4,

∂t
√
λDN =

1

2
√
|ζ|
∂tλ

(0)
1 +ε2

1M
1/2,2
N3−4 ∈ ε1M−1/2,1

N3−4 +ε2
1M

1/2,2
N3−4,

∂tΣ = ∂tΣ1+ε2
1M

3/2,2
N3−4 ∈ ε1M1/2,1

N3−4+ε2
1M

3/2,2
N3−4.

(3.14)

(ii) It follows from Proposition B.1 that V ∈ε1O1,−1/2. Therefore, m′∈ε1M−1,1
N3−2

and the identity (3.5) follows using also Lemma A.7. Moreover, using Proposition B.1

again,

V =V1+V2, V1 := |∇|−1/2∇ ImU, V2 ∈ ε2
1O2,−1/2,

m′=m′1+ε2
1M

−1,2
N3−2, m′1(x, ζ) :=− i

2

|∇|3/2 ImU(x)√
g+σ|ζ|2

(3.15)

3.2. Symmetrization and special quadratic structure

In this subsection we prove Proposition 3.1. We first write (2.1) as a system for h

and ω, and then symmetrize it. We start by combining Proposition B.1 on the Dirichlet–

Neumann operator with a paralinearization of the equation for ∂tφ, to obtain the follow-

ing lemma.

Lemma 3.3. (Paralinearization of the system) With the notation of Propositions B.1

and 3.1, we can rewrite the system (2.1) as{
∂th=TλDNω−div(TV h)+G2+ε3

1O3,1,

∂tω=−gh−T`h−TV∇ω+Ω2+ε3
1O3,1,

(3.16)

where ` is given in (3.2) and

Ω2 := 1
2H(|∇|ω, |∇|ω)− 1

2H(∇ω,∇ω)∈ ε2
1O2,2. (3.17)

Proof. First, we see directly from (2.1) and Proposition B.1 that, for any t∈[0, T ],

G(h)φ,B, V, ∂th∈ ε1O1,−1/2, ∂tφ∈ ε1O1,−1,

B= |∇|ω+ε2
1O2,−1/2, V =∇ω+ε2

1O2,−1/2.
(3.18)

The first equation in (3.16) comes directly from Propostion B.1. To obtain the second

equation, we use Lemma A.4 (ii) with Fl(x)=xl/
√

1+|x|2 to see that

Fl(∇h) =T∂kFl(∇h)∂kh+ε3
1O3,3,
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and hence

σ div

(
∇h√

1+|∇h|2

)
=−TLjkζjζkh+ε3

1O3,1.

Next, we paralinearize the other non-linear terms in the second equation in (2.1). Recall

the definition of V and B in (B.3). We first write

−1

2
|∇φ|2+

(G(h)φ+∇h·∇φ)
2

2(1+|∇h|2)
=−|V +B∇h|2

2
+

(1+|∇h|2)B2

2
=
B2−2BV ·∇h−|V |2

2
.

Using (2.1), we calculate ∂th=G(h)φ=B−V ·∇h, and

∂tω= ∂tφ−T∂tBh−TB∂th

=−gh−TLjkζjζkh+ 1
2 (B2−2BV ·∇h−|V |2)−T∂tBh−TBB+TB(V ·∇h)+ε3

1O3,1.

Then, since V =∇φ−B∇h, we have

TV∇ω=TV∇φ−TV (∇TBh) =TV V +TV (B∇h)−TV (∇TBh),

and we can write

∂tω=−gh−TLjkζjζk+∂tBh−TV∇ω+I+II,

I : = 1
2B

2−TBB− 1
2 |V |

2+TV V = 1
2H(B,B)− 1

2H(V, V ) = Ω2+ε3
1O3,1,

II : =−BV ·∇h+TB(V ·∇h)+TV (B∇h)−TV (∇TBh)+ε3
1O3,1.

Using (3.18), (B.3), (2.1), and Corollary C.1 (ii), we easily see that

Ljkζjζk+∂tB=Ljkζjζk+|∇|∂tφ+ε2
1O2,−2 = `+ε2

1O2,−2.

Moreover, we can verify that II is an acceptable cubic remainder term:

II =−TV ·∇hB+H(B, V ·∇h)+TV (B∇h)−TV TB∇h−TV T∇Bh+ε3
1O3,1

=−TV ·∇hB+TV T∇hB+TVH(B,∇h)−TV T∇Bh+ε3
1O3,1 = ε3

1O3,1,

and the desired conclusion follows.

Since our purpose will be to identify quadratic terms as in (3.9)–(3.10), we need a

more precise notion of strongly semilinear quadratic errors.

Definition 3.4. Given t∈[0, T ], we define ε2
1O∗2,1 to be the set of finite linear combi-

nations of terms of the form S[T1, T2], where T1, T2∈{U(t),
U(t)}, and S satisfies

F(S[f, g])(ξ) : =
1

4π2

∫
R2

s(ξ, η)f̂(ξ−η)ĝ(η) dη,

‖sk,k1,k2‖S∞Ω . 2−max(k1,k2,0)(1+23 min(k1,k2)).

(3.19)

These correspond precisely to the acceptable quadratic error terms according to (3.10).
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We remark that, if S is defined by a symbol as in (3.19) and p∈[−5, 5], then

S[Om,p,On,p]⊆Om+n,p+1. (3.20)

This follows by an argument similar to that used in Lemma A.2. As a consequence, given

the assumptions (3.1), and with U being defined as in (3.4), we have that O∗2,1⊆O2,1.

Proof of Proposition 3.1. Step 1. To diagonalize the principal part of the system

(3.16), we define the symmetrizing variables (H,Ψ) by

H :=T√g+`h and Ψ :=TΣT1/
√
g+`ω+Tm′ω, (3.21)

where m′ is as in (3.4). Using (3.13) and Lemma A.7, we see that

H= Re(U)+ε2
1O2,0,

√
g+σ|∇|2h= Re(U)+ε2

1O2,0,

Ψ= Im(U)+ε2
1O2,0, |∇|1/2ω= Im(U)+ε2

1O2,0.
(3.22)

As a consequence, if T1, T2∈{U,
U,H,Ψ, (g−σ∆)1/2h, |∇|1/2ω}, and S is as in (3.19),

then

S[T1, T2]∈ ε2
1O∗2,1+ε3

1O3,0. (3.23)

We will show that{
∂tH−TΣΨ+iTV ·ζH =−TγH− 1

2T
√
g+` div V h−Tm′Σω+ε2

1O∗2,1+ε3
1O3,0,

∂tΨ+TΣH+iTV ·ζΨ =− 1
2TγΨ−Tm′(g+`)h+ 1

2T
√
λDN div V ω+ε2

1O∗2,1+ε3
1O3,0.

(3.24)

Step 2. We examine now the first equation in (3.24). The first equation in (3.16)

and the identity div TV h= 1
2Tdiv V h+iTV ·ζh show that

∂tH−TΣΨ+iTV ·ζH+TγH+ 1
2T
√
g+` div V h+Tm′Σω

= (T√g+`TλDN−TΣTΣT1/
√
g+`)ω−(TΣTm′−Tm′Σ)ω

+i(TV ·ζH−T√g+`TV ·ζh−iTγT√g+`h)

+T∂t
√
g+`h− 1

2 (T√g+`Tdiv V −T√g+` div V )h+T√g+`G2+ε3
1T
√
g+`O3,1.

(3.25)

We will treat each line separately. For the first line, we notice that the contribution of

low frequencies P6−9ω is acceptable. For the high frequencies we use Proposition A.5 to

write

(T√g+`TλDN−TΣTΣT1/
√
g+`)P>−8ω

=
(
TλDN

√
g+`+

1
2 iT{

√
g+`,λDN}−(TΣ2/

√
g+`+

1
2 iT{Σ2,1/

√
g+`})

)
P>−8ω (3.26)

+

(
E(
√
g+`, λDN )−E(Σ,Σ)T1/

√
g+`−E

(
Σ2,

1√
g+`

))
P>−8ω. (3.27)
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Since

λDN
√
g+`=

Σ2

√
g+`

, {
√
g+`, λDN}=

{
Σ2,

1√
g+`

}
,

we observe that the expression in (3.26) vanishes. Using (3.13) and Lemma A.8, we see

that, up to acceptable cubic terms, we can rewrite the second line of (3.25) as(
E(
√
g+σ|ζ|2, λ(0)

1 )+E

(
− Λ2h

2
√
g+σ|ζ|2

, |ζ|
)
−(E(Λ,Σ1)+E(Σ1,Λ))(g−σ∆)−1/2

−E
(

Λ2,
Λ2h

2(g+σ|ζ|2)3/2

)
−2E

(
ΛΣ1,

1√
g+σ|ζ|2

)
− i

2
T{Λ,m′1}−E(Λ,m′1)

)
P>−8ω

+ε3
1O3,0.

Using (A.39), these terms are easily seen to be acceptable ε2
1O∗2,1 quadratic terms.

To control the terms in the second line of the right-hand side of (3.25), we observe

that

TV ·ζT√g+`h−T√g+`TV ·ζh−iTγT√g+`
= i(T{V ·ζ,

√
g+`}−Tγ√g+`)h+E(V ·ζ,

√
g+`)h

−E(
√
g+`, V ·ζ)h+ 1

2T{γ,
√
g+`}h−iE(γ,

√
g+`)h.

(3.28)

Using (3.13) and (3.15), we notice that

{V ·ζ,
√
g+`}=

ζj∂kVj(x)·σζk√
g+σ|ζ|2

+ε2
1M

1,2
N3−2 =

σζjζk ·∂j∂k|∇|−1/2 Im(U)(x)√
g+σ|ζ|2

+ε2
1M

1,2
N3−2.

Using definition (3.8), it follows that T{V ·ζ,
√
g+`}−γ

√
g+`h∈ε2

1O∗2,1+ε3
1O3,0 as desired.

The terms in the second line of (3.28) are also acceptable contributions, as one can see

easily by extracting the quadratic parts and using (A.39).

Finally, for the third line, using (3.14), (3.15), and Lemmas A.7 and A.8, we observe

that

T∂t
√
g+`h=T

(1/2)∆(g−σ∆)ω/
√
g+σ|ζ|2h+ε3

1O3,0,(
T√g+`Tdiv V −Tdiv V ·

√
g+`

)
h= (iT{

√
g+σ|ζ|2,div V1}

+E(
√
g+σ|ζ|2,div V1))h+ε3

1O3,0,

T√g+`G2+ε3
1T
√
g+`O3,1 =T√

g+σ|ζ|2G2+ε3
1O3,0.

Using (A.39), the bounds for G2 in (B.6)–(B.7), and collecting all the estimates above,

we obtain the identity in the first line in (3.24).
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Step 3. To prove the second identity in (3.24), we first use (3.21) and (3.16) to

compute

∂tΨ+TΣH+iTV ·ζΨ+ 1
2TγΨ+Tm′(g+`)h− 1

2T
√
λDN div V ω

= (TΣT√g+`−TΣT1/
√
g+`Tg+`)h+(Tm′(g+`)−Tm′Tg+`)h

+i
(
TV ·ζΨ− 1

2 iTγΨ−(TΣT1/
√
g+`+Tm′)TV ·ζω

)
+ 1

2 (TΣT1/
√
g+`Tdiv V −T√λDN div V )ω+ 1

2Tm′Tdiv V ω

+[∂t, TΣT1/
√
g+`+Tm′ ]ω+(TΣT1/

√
g+`+Tm′)(Ω2+ε3

1O3,1).

(3.29)

Again, we verify that all lines after the equality sign give acceptable remainders.

For the terms in the first line, using Proposition A.5, (3.13), and Lemma A.8,

(TΣT√g+`−TΣT1/
√
g+`Tg+`)h

=−TΣE

(
1√
g+`

, g+`

)
h

= Λ

(
E

(
Λ2h

2(g+σ|ζ|2)3/2
, g+σ|ζ|2

)
−E

(
1√

g+σ|ζ|2
,Λ2h

))
h+ε3

1O3,0.

Using also (A.39), this gives acceptable contributions. In addition,

(Tm′Tg+`−Tm′(g+`))h= 1
2 iT{m′,g+`}h+E(m′, g+`)h

= iσTζ·∇xm′h+E(m′, σ|ζ|2)h+ε3
1O3,0.

This gives acceptable contributions, in view of (3.21) and (A.39).

For the terms in the second line of the right-hand side of (3.29), we observe that

TV ·ζΨ− 1
2 iTγΨ−(TΣT1/

√
g+`+Tm′)TV ·ζω

= (TV ·ζTΣT1/
√
g+`−TΣT1/

√
g+`TV ·ζ)ω− 1

2 iTγTΣT1/
√
g+`ω+ε3

1O3,0

= (TV1·ζT|ζ|1/2−T|ζ|1/2TV1·ζ)ω− 1
2 iTγT|ζ|1/2ω+ε3

1O3,0.

Using the definitions (3.15) and (3.8), we notice that, for p∈[0, 2],

{V1 ·ζ, |ζ|p}= γ ·p|ζ|p on R2×R2. (3.30)

Thus, the terms in the second line of the right-hand side of (3.29) are acceptable

ε2
1O∗2,1+ε3

1O3,0

contributions.
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It is easy to see, using Lemma A.8 and the definitions, that the terms in the third

line of the right-hand side of (3.29) are acceptable. Finally, for the last line in (3.29), we

observe that

[∂t, TΣT1/
√
g+`+Tm′ ]ω=T∂tΣT1/

√
g+`ω+TΣT∂t(1/

√
g+`)ω+T∂tm′ω

=T∂tΣ1
T(g+σ|ζ|2)−1/2ω−ΛT∆(g−σ∆)ω/2(g+σ|ζ|2)3/2ω

+ 1
2 iT∂t(div V )(g+σ|ζ|2)−1/2ω+ε3

1O3,0,

where we used (3.13) and (3.14). Since

∂th= |∇|ω+ε2
1O2,−1/2 and ∂tV =−∇(g+σ|∇|2)h+ε2

1O2,−2

(see Lemma 3.3 and Proposition B.1), it follows that the terms in the formula above are

acceptable. Finally, using the relations in Lemma 3.3, we have

(TΣT1/
√
g+`+Tm′)(Ω2) = ε3

1O3,0+ε2
1O∗2,1 and (TΣT1/

√
g+`+Tm′)(ε

3
1O3,1) = ε3

1O3,0.

Therefore, all the terms in the right-hand side of (3.29) are acceptable, which completes

the proof of (3.24).

Step 4. Starting from the system (3.24), we now want to write a scalar equation for

the complex unknown U=H+iΨ defined in (3.4). Using (3.24), we readily see that

∂tU+iTΣU+iTV ·ζU =QU+NU+ε2
1O∗2,1+ε3

1O3,0,

QU : =
(
− 1

2T
√
g+` div V −iTm′(g+`)

)
h+
(
−Tm′Σ+ 1

2 iT
√
λDN div V

)
ω= 0,

NU : =−TγH− 1
2 iTγΨ =− 1

4Tγ(3U+
U)+ε3
1O3,0,

where QU vanishes in view of our choice of m′, and NU has the special structure as

claimed.

3.3. High-order derivatives

To derive higher-order Sobolev and weighted estimates for U , and hence for h and

|∇|1/2ω, we need to apply (a suitable notion of) derivatives to the equation (3.6). We

will then consider quantities of the form

Wn := (TΣ)nU, n∈
[
0, 2

2N0

]
,

Ym,p := Ωp(TΣ)mU, p∈ [0, N1] and m∈
[
0, 2

3N3

]
,

(3.31)

for U as in (3.4) and Σ as in (3.3). We have the following consequence of Proposition 3.1.
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Proposition 3.5. With the notation above and γ as in (3.8), we have

∂tWn+iTΣWn+iTV ·ζWn =Tγ(cnWn+dn�Wn)+BWn
+CWn

(3.32)

and

∂tYm,p+iTΣYm,p+iTV ·ζYm,p =Tγ(cmYm,p+dm
Ym,p)+BYm,p+CYm,p (3.33)

for some complex numbers cn and dn. The cubic terms CWn
and CYm,p satisfy the bounds

‖CWn
‖L2 +‖CYm,p‖L2 . ε3

1(1+t)
−3/2

. (3.34)

The quadratic strongly semilinear terms BWn
have the form

BWn =
∑

ι1,ι2∈{+,−}

Fnι1ι2 [Uι1 , Uι2 ], (3.35)

where U+ :=U , U−=
U , and the symbols f=fnι1ι2 of the bilinear operators Fnι1ι2 satisfy

‖fk,k1,k2‖S∞ . 2(3n/2−1) max(k1,k2,0)(1+23 min(k1,k2)). (3.36)

The quadratic strongly semilinear terms BYm,p have the form

BYm,p =
∑

ι1,ι2∈{+,−}

(
Gm,pι1ι2 [Uι1 ,Ω

pUι2 ]+
∑

p1+p26p
max(p1,p2)6p−1

Hm,p,p1,p2
ι1ι2 [Ωp1Uι1 ,Ω

p2Uι2 ]

)
,

(3.37)

where the symbols g=gm,pι1ι2 and h=hm,p,p1,p2
ι1ι2 of the operators Gm,pι1ι2 and Hm,p,p1,p2

ι1ι2 satisfy

‖gk,k1,k2‖S∞ . 2(3m/2−1) max(k1,k2,0)(1+23 min(k1,k2)),

‖hk,k1,k2‖S∞ . 2(3m/2+1) max(k1,k2,0)(1+2min(k1,k2)).
(3.38)

We remark that we have slightly worse information on the quadratic terms BYm,p ,

than on the quadratic terms BWn . This is due mainly to the commutator of the operators

Ωp and TV ·ζ , which leads to the additional terms in (3.37). These terms can still be

regarded as strongly semilinear, because they do not contain the maximum number

of Ω derivatives (they do contain, however, two extra Sobolev derivatives, but this is

acceptable due to our choice of N0 and N1).
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Proof. In this proof we need to expand the definition of our main spaces Om,p to

exponents p<−N3. More precisely, we define, for any t∈[0, T ],

‖f‖O′m,p :=

{
‖f‖Om,p , if p>−N3,

〈t〉(m−1)(5/6−20δ2)−δ2

(‖f‖HN0+p+〈t〉5/6−2δ2‖f‖
W̃N2+p), if p<−N3;

(3.39)

compare with (A.7). As in Lemmas A.7 and A.8, we have the basic imbeddings

TaO′m,p⊆O′m+m1,p−l1 and (TaTb−Tab)O′m,p⊆O′m+m1+m2,p−l1−l2+1, (3.40)

if a∈Ml1,m1

20 and b∈Ml2,m2

20 . In particular, recalling that (see (3.12))

Σ−Λ∈ ε1M3/2,1
N3−2 and Σ−Λ−Σ1 ∈ ε2

1M
3/2,2
N3−2, (3.41)

it follows from (3.40) that, for any n∈
[
0, 2

3N0

]
,

TnΣU ∈ ε1O′1,−3n/2 and TnΣU−ΛnU =

n−1∑
l=0

Λn−1−l(TΣ−Λ)T lΣU ∈ ε2
1O′2,−3n/2. (3.42)

Step 1. For n∈
[
0, 2

3N0

]
, we first prove that the function Wn=(TΣ)nU satisfies

(∂t+iTΣ+iTV ·ζ)Wn =Tγ(cnWn+dn�Wn)+NS,n+ε3
1O′3,−3n/2,

NS,n =
∑

ι1,ι2∈{+,−}

Bnι1ι2 [Uι1 , Uι2 ]∈ ε2
1O′2,−3n/2+1,

‖(bnι1ι2)k,k1,k2‖S∞Ω . (1+23 min(k1,k2))(1+2max(k1,k2))3n/2−1.

(3.43)

Indeed, the case n=0 follows from Proposition 3.1. Assuming that this is true for some

n< 2
3N0 and applying TΣ, we find that

(∂t+iTΣ+iTV ·ζ)Wn+1 =Tγ(cnWn+1+dn�Wn+1)+i[TV ·ζ , TΣ]Wn+[∂t, TΣ]Wn

+[TΣ, Tγ ](cnWn+dn�Wn)+TΣNS,n+ε3
1TΣO′3,−3n/2.

Using (3.40)–(3.42) and (3.14), it follows that

[∂t, TΣ]Wn =T∂tΣ1ΛnU+ε3
1O′3,−3(n+1)/2, TΣNS,n = ΛNS,n+ε3

1O′3,−3(n+1)/2,

and, using also (3.30),

[TΣ, Tγ ](cnWn+dn�Wn) = [TΛ, Tγ ](cnΛnU+dnΛn
U)+ε3
1O′3,−3(n+1)/2,

[TV ·ζ , TΣ]Wn = [TV1·ζ , TΛ]Wn+ε3
1O′3,−3(n+1)/2

= 3
2 iTγWn+1+N ′(ImU,ΛnU)+ε3

1O′3,−3(n+1)/2,
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where N ′(ImU,ΛnU) is an acceptable strongly semilinear quadratic term as in (3.43).

Since ∂th=|∇|ω+ε2
1O2,−1/2, and recalling formulas (3.12) and (3.22), it is easy to see

that all the remaining quadratic terms are of the strongly semilinear type described in

(3.43). This completes the induction step.

Step 2. We can now prove the proposition. The claims for Wn follow directly from

(3.43). It remains to prove the claims for the functions Ym,p. Assume that m∈[0, 2
3N3] is

fixed. We start from the identity (3.43) with n=m, and apply the rotation vector field Ω.

Clearly,

(∂t+iTΣ+iTV ·ζ)Ym,p =Tγ(cmYm,p+dm
Ym,p)+ΩpNS,m+ε3
1ΩpO3,−3m/2

−i[Ωp, TΣ]Wm−i[Ωp, TV ·ζ ]Wm+[Ωp, Tγ ](cmWm+dm�Wm).

The terms in the first line of the right-hand side are clearly acceptable. It remains to

show that the commutators in the second line can also be written as strongly semilinear

quadratic terms and cubic terms. Indeed, for σ∈{Σ, V ·ζ, γ} and W∈{Wm,�Wm},

[Ωp, Tσ]W =

p−1∑
p′=0

cp,p′TΩp−p
′

x,ζ σ
Ωp
′
W, (3.44)

as a consequence of (A.25). In view of (3.42), we have

‖ΩN1Wm‖L2 +‖〈∇〉N0−N3Wm‖L2 . ε1〈t〉δ
2

,

‖ΩN1(Wm−ΛmU)‖L2 +‖〈∇〉N0−N3(Wm−Λm)U‖L2 . ε2
1〈t〉21δ2−5/6

(3.45)

and, for q∈
[
0, 1

2N1

]
,

‖ΩqWm‖W̃ 3 . ε1〈t〉3δ
2−5/6,

‖Ωq(Wm−ΛmU)‖
W̃ 3 . ε2

1〈t〉23δ2−5/3.
(3.46)

By interpolation, and using the fact that N0−N3> 3
2N1, it follows from (3.45) that

‖Ωq〈∇〉3/2Wm‖L2 . ε1〈t〉δ
2

,

‖Ωq〈∇〉3/2(Wm−ΛmU)‖L2 . ε2
1〈t〉21δ2−5/6

(3.47)

for q∈[0, N1−1]. Moreover, for σ∈{Σ, V ·ζ, γ} and q∈[1, N1], we have

‖〈ζ〉−3/2Ωqx,ζσ‖M20,2 . ε1〈t〉2δ
2

,

‖〈ζ〉−3/2Ωqx,ζ(σ−σ1)‖M20,2
. ε2

1〈t〉22δ2−5/6,
(3.48)
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while, for q∈
[
1, 1

2N1

]
, we also have

‖〈ζ〉−3/2Ωqx,ζσ‖M20,∞ . ε1〈t〉4δ
2−5/6,

‖〈ζ〉−3/2Ωqx,ζ(σ−σ1)‖M20,∞ . ε2
1〈t〉24δ2−5/3.

(3.49)

See (A.20) for the definition of the normsM20,q. In these estimates σ1 denotes the linear

part of σ, i.e. σ1∈{Σ1, V1 ·ζ, γ}. Therefore, using Lemma A.7 and (3.46)–(3.49),

T
Ωp−p

′
x,ζ σ

Ωp
′
W =T

Ωp−p
′

x,ζ σ
Ωp
′
ΛmU±+ε3

1〈t〉−8/5L2 =T
Ωp−p

′
x,ζ σ1

Ωp
′
ΛmU±+ε3

1〈t〉−8/5L2

for p′∈[0, p−1] and W∈{Wm,�Wm}. Notice that TΩ
p1
x,ζσ1

Ωp2ΛmU± can be written as

Hm,p,p1,p2
ι1ι2 [Ωp1Uι1 ,Ω

p2Uι2 ],

with symbols as in (3.38), up to acceptable cubic terms (the loss of one high derivative

comes from the case σ1=V1 ·ζ). The conclusion of the proposition follows.

4. Energy estimates I: Setup and the main L2 lemma

In this section we set up the proof of Proposition 2.2 and collect some of the main

ingredients needed in the proof. From now on, we set g=1 and σ=1. With Wn and Ym,p

as in (3.31), we define our main energy functional

Etot :=
1

2

∑
06n62N0/3

‖Wn‖2L2 +
1

2

∑
06m62N3/3

06p6N1

‖Ym,p‖2L2 . (4.1)

We start with the following proposition.

Proposition 4.1. Assume that (3.1) holds. Then,

‖U(t)‖2
HN0∩HN1,N3

Ω

. Etot(t)+ε3
1 and Etot(t). ‖U(t)‖2

HN0∩HN1,N3
Ω

+ε3
1, (4.2)

where U(t)=〈∇〉h(t)+i|∇|1/2φ(t) as in Proposition 2.2. Moreover,

d

dt
Etot =B0+B1+BE , with |BE(t)|. ε3

1(1+t)−4/3. (4.3)

The (bulk) terms B0 and B1 are finite sums of the form

Bl(t) :=
∑
G∈G

W,W ′∈Wl

∫∫
R2×R2

µl(ξ, η)Ĝ(ξ−η)Ŵ (η)Ŵ ′(−ξ) dξ dη, (4.4)
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where U and Σ are defined as in Proposition 3.1, U+ :=U , U− :=
U , and

G : =
{

Ωa〈∇〉bU± : a6 1
2N1 and b6N3+2

}
,

W0 : =
{

ΩaTmΣ U± : either
(
a= 0 and m6 2

3N0

)
or
(
a6N1 and m6 2

3N3

)}
,

W1 : =W0∪
{

(1−∆)ΩaTmΣ U± : a6N1−1 and m6 2
3N3

}
.

(4.5)

The symbols µl=µl;(G,W,W ′), l∈{0, 1}, satisfy

µ0(ξ, η) = c|ξ−η|3/2d(ξ, η), d(ξ, η) :=χ

(
|ξ−η|
|ξ+η|

)(
ξ−η
|ξ−η|

ξ+η

|ξ+η|

)2
and c∈C,

‖µk,k1,k2

1 ‖S∞ . 2−max(k1,k2,0)23k+
1 ,

(4.6)

for any k, k1, k2∈Z; see definitions (A.5)–(A.6).

Notice that the a-priori energy estimates we prove here are stronger than standard

energy estimates. The terms B0 and B1 are strongly semilinear terms, in the sense that

they either gain one derivative or contain the depletion factor d (which effectively gains

one derivative when the modulation is small, compare with (1.28)).

Proof. The bound (4.2) follows from (3.5) and (3.42),

‖〈∇〉h(t)‖2
HN0∩HN1,N3

Ω

+
∥∥|∇|1/2φ(t)

∥∥2

HN0∩HN1,N3
Ω

. ‖U(t)‖2
HN0∩HN1,N3

Ω

+ε3
1 . Etot(t)+ε3

1.

To prove the remaining claims we start from (3.32) and (3.33). For the terms Wn

we have

d

dt

1

2
‖Wn‖2L2 = Re〈Tγ(cnWn+dn�Wn),Wn〉+Re〈BWn ,Wn〉+Re〈CWn ,Wn〉, (4.7)

since, as a consequence of Lemma A.3 (ii),

Re〈iTΣWn+iTV ·ζWn,Wn〉= 0.

Clearly, |〈CWn ,Wn〉|.ε3
1〈t〉−3/2+2δ2

, so the last term can be placed in BE(t). Moreover,

using (3.8) and the definitions, 〈Tγ(cnWn+dn�Wn),Wn〉 can be written in the Fourier

space as part of the term B0(t) in (4.4).

Finally, 〈BWn
,Wn〉 can be written in the Fourier space as part of the term B1(t) in

(4.4) plus acceptable errors. Indeed, given a symbol f as in (3.36), one can write

f(ξ, η) =µ1(ξ, η)((1+Λ(ξ−η)n)+(1+Λ(η)n)), µ1(ξ, η) :=
f(ξ, η)

2+Λ(ξ−η)n+Λ(η)n
.

The symbol µ1 satisfies the required estimate in (4.6). The summands 1+Λ(ξ−η)n and

1+Λ(η)n can be combined with the functions Ûι1(ξ−η) and Ûι2(η), respectively. Recall-

ing that ΛnU−Wn∈ε2
1O′2,−3n/2 (see (3.42)), the desired representation (4.4) follows, up

to acceptable errors.

The analysis of the terms Ym,p is similar, using (3.37)–(3.38). This completes the

proof.
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In view of (4.2), to prove Proposition 2.2 it suffices to prove that

|Etot(t)−Etot(0)|. ε3
1〈t〉2δ

2

for any t∈ [0, T ].

In view of (4.3), it suffices to prove that, for l∈{0, 1},∣∣∣∣∫ t

0

Bl(s) ds
∣∣∣∣. ε3

1(1+t)2δ2

,

for any t∈[0, T ]. Given t∈[0, T ], we fix a suitable decomposition of the function 1[0,t],

i.e. we fix functions q0, ..., qL+1:R![0, 1], |L−log2(2+t)|62, with the properties

supp q0⊆ [0, 2], supp qL+1⊆ [t−2, t], supp qm⊆ [2m−1, 2m+1] for m∈{1, ..., L},
L+1∑
m=0

qm(s) = 1[0,t](s), qm ∈C1(R), and

∫ t

0

|q′m(s)| ds. 1 for m∈{1, ..., L}.
(4.8)

It remains to prove that, for l∈{0, 1} and m∈{0, ..., L+1},∣∣∣∣∫
R
Bl(s)qm(s) ds

∣∣∣∣. ε3
122δ2m. (4.9)

In order to be able to use the hypothesis ‖V(s)‖Z6ε1 (see (2.6)), we need to modify

slightly the functions G that appear in the terms Bl. More precisely, we define

G′ :=
{

Ωa〈∇〉bUι : ι∈{+,−}, a6 1
2N1 and b6N3+2

}
, (4.10)

where U=〈∇〉h+i|∇|1/2φ, U+=U , and U−=	U . Then, we define the modified bilinear

terms

B′l(t) :=
∑
G∈G′

W,W ′∈Wl

∫∫
R2×R2

µl(ξ, η)Ĝ(ξ−η, t)Ŵ (η, t)Ŵ ′(−ξ, t) dξ dη, (4.11)

where the sets W0 and W1 are as in (4.5), and the symbols µ0 and µ1 are as in (4.6).

In view of (3.5), U(t)−U(t)∈ε2
1O2,0. Therefore, simple estimates as in the proof of

Lemma A.2 show that

|Bl(s)|. ε3
1(1+s)−4/5 and |Bl(s)−B′l(s)|. ε3

1(1+s)−8/5.

As a result of these reductions, for Proposition 2.2 it suffices to prove the following.
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Proposition 4.2. Assume that (h, φ) is a solution of the system (2.1) with g=1,

σ=1 on [0, T ], and let U=〈∇〉h+i|∇|1/2φ, V(t)=eitΛU(t). Assume that

〈t〉−δ
2

‖U(t)‖
HN0∩HN1,N3

Ω
+‖V(t)‖Z 6 ε1, (4.12)

for any t∈[0, T ], see (2.6). Then, for any m∈[D2, L] and l∈{0, 1},∣∣∣∣∫
R

∫∫
R2×R2

qm(s)µl(ξ, η)Ĝ(ξ−η, s)Ŵ (η, s)Ŵ ′(−ξ, s) dξ dη ds
∣∣∣∣. ε3

122δ2m, (4.13)

where G∈G′ (see (4.10)), and W,W ′∈W ′ :=W1 (see (4.5)), and qm are as in (4.8). The

symbols µ0 and µ1 satisfy the bounds (compare with (4.6))

µ0(ξ, η) = |ξ−η|3/2d(ξ, η), d(ξ, η) :=χ

(
|ξ−η|
|ξ+η|

)(
ξ−η
|ξ−η|

· ξ+η

|ξ+η|

)2
,

‖µk,k1,k2

1 ‖S∞ . 2−max(k1,k2,0)23k+
1 .

(4.14)

The proof of this proposition will be done in several steps. We remark that both

the symbols µ0 and µ1 introduce certain strongly semilinear structures. The symbols µ0

contain the depletion factor d, which counts essentially as a gain of one high derivative

in resonant situations. The symbols µ1 clearly contain a gain of one high derivative.

We will need to further subdivide the expression in (4.13) into the contributions of

“good frequencies” with optimal decay and the “bad frequencies” with slower decay. Let

χba(x) : =ϕ(2D(|x|−γ0))+ϕ(2D(|x|−γ1)) and χgo(x) := 1−χba(x), (4.15)

where γ0=
√

1
3 (2
√

3−3) is the radius of the sphere of degenerate frequencies, and γ1=
√

2

is the radius of the sphere of space-time resonances. We then define, for l∈{0, 1} and

Y ∈{go,ba},

AlY [F ;H1, H2] :=

∫∫
R2×R2

µl(ξ, η)χY (ξ−η)F̂ (ξ−η)Ĥ1(η)Ĥ2(−ξ) dξ dη. (4.16)

In the proof of (4.13) we will need to distinguish between functions G and W that

originate from U=U+ and functions that originate from 
U=U−. For this, we define, for

ι∈{+,−},
G′ι :=

{
Ωa〈∇〉bUι : a6 1

2N1 and b6N3+2
}

(4.17)

and

W ′ι :=
{
〈∇〉cΩaTmΣ Uι : either

(
a= c= 0 and m6 2

32N0

)
or
(
c∈{0, 2}, 1

2c+a6N1, and m6 2
3N3

)}
.

(4.18)
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4.1. Some lemmas

In this subsection we collect some lemmas that are used often in the proofs in the next

section. We will often use the following Schur’s test.

Lemma 4.3. (Schur’s lemma) Consider the operator T given by

Tf(ξ) =

∫
R2

K(ξ, η)f(η) dη.

Assume that

sup
ξ

∫
R2

|K(ξ, η)| dη6K1 and sup
η

∫
R2

|K(ξ, η)| dξ6K2.

Then,

‖Tf‖L2 .
√
K1K2‖f‖L2 .

We will also use a lemma about functions in G′+ and W ′+.

Lemma 4.4. (i) Assume G∈G′+ (see (4.17)). Then,

sup
|α|+2a630

‖DαΩa[eitΛG(t)]‖Z1
. ε1, ‖G(t)‖

HN1−2∩HN1/2−1,0
Ω

. ε1〈t〉δ
2

(4.19)

for any t∈[0, T ]. Moreover, G satisfies the equation

(∂t+iΛ)G=NG, ‖NG(t)‖
HN1−4∩HN1/2−2,0

Ω

. ε2
1〈t〉−5/6+δ. (4.20)

(ii) Assume W∈W ′+ ((4.18)). Then,

‖W (t)‖L2 . ε1〈t〉δ
2

(4.21)

for any t∈[0, T ]. Moreover, W satisfies the equation

(∂t+iΛ)W =QW +EW , (4.22)

where, with Σ>2 :=Σ−Λ−Σ1∈ε2
1M

3/2,2
N3−2 as in (3.12),

QW =−iTΣ>2
W−iTV ·ζW, ‖〈∇〉−1/2EW ‖L2 . ε2

1〈t〉−5/6+δ. (4.23)

Using Lemma A.3, we see that, for all k∈Z and t∈[0, T ],

‖(PkTV ·ζW )(t)‖L2 . ε12k
+

〈t〉−5/6+δ‖P[k−2,k+2]W (t)‖L2 ,

‖(PkTΣ>2
W )(t)‖L2 . ε2

123k+/2〈t〉−5/3+δ‖P[k−2,k+2]W (t)‖L2 .
(4.24)



254 y. deng, a. d. ionescu, b. pausader and f. pusateri

Proof. The claims in (4.19) follow from Definition 2.5, the assumptions (4.12), and

interpolation (recall that N0−N3=2N1). The identities (4.20) follow from (3.4)–(3.6),

since (∂t+iΛ)U∈ε2
1O2,−2. The inequalities (4.21) follow from (3.42). The identities

(4.22)–(4.23) follow from Proposition 3.5, since all quadratic terms that lose up to 1
2

derivatives can be placed into EW . Finally, the bounds (4.24) follow from (A.22) and

(A.48).

Next, we summarize some properties of the linear profiles of the functions in G′+.

Lemma 4.5. Assume G∈G′+ as before, and let f=eitΛG. Recall the operators Qjk

and An,γ , A
(j)
n,γ defined in (2.10)–(2.18). For (k, j)∈J and n∈{0, ..., j+1} let

fj,k :=P[k−2,k+2]Qjkf and fj,k,n :=A(j)
n,γ1

fj,k.

Then, if m>0, for all t∈[2m−1, 2m+1] we have

sup
|α|+2a630

‖DαΩaf(t)‖Z1
. ε1, ‖f(t)‖

HN1−2∩HN1/2−1,0
Ω

. ε12δ
2m,

‖Pk∂tf(t)‖L2 . ε2
12−8k+

2−5m/6+δm, ‖Pke−itΛ∂tf(t)‖L∞ . ε2
12−5m/3+δm.

(4.25)

Also, the following L∞ bounds hold for any k∈Z and s∈R with |s−t|62m−δm:

‖e−isΛA62D,γ0Pkf(t)‖L∞ . ε1 min(2k/2, 2−4k)2−m252δm,

‖e−isΛA>2D+1,γ0Pkf(t)‖L∞ . ε12−5m/6+3δ2m.
(4.26)

Moreover, we have

‖e−isΛfj,k(t)‖L∞ . ε1 min(2k, 2−4k)2−j+50δj ,

‖e−isΛfj,k(t)‖L∞ . ε1 min(23k/2, 2−4k)2−m+50δj , if |k|> 10.
(4.27)

Away from the bad frequencies, we have the stronger bound

‖e−isΛA62D,γ0
A62D,γ1

fj,k(t)‖L∞ . ε12−m min(2k, 2−4k)2−j/4, (4.28)

provided that j6(1−δ2)m+ 1
2 |k| and |k|+D6 1

2m.

Finally, for all n∈{0, 1, ..., j}, we have

‖f̂j,k,n‖L∞ . ε122δ2m2−4k+

23δn ·2−(1/2−55δ)(j−n),∥∥∥ sup
θ∈S1

|f̂j,k,n(rθ)|
∥∥∥
L2(r dr)

. ε122δ2m2−4k+

2n/22−j+55δj .
(4.29)

Proof. The estimates in the first line of (4.25) follow from (4.19). The estimates

(4.26), (4.27), and (4.29) then follow from Lemma 7.5, while the estimate (4.28) follows

from (7.53). Finally, the estimate on ∂tf in (4.25) follows from the bound (8.7).
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We prove now a lemma that is useful when estimating multilinear expression con-

taining a localization in the modulation Φ.

Lemma 4.6. Assume that k, k1, k2∈Z, m>D, k̄ :=max(k, k1, k2), |k|6 1
2m, p>−m.

Assume that µ0 and µ1 are symbols supported in the set Dk2,k,k1 and satisfying

µ0(ξ, η) =µ0(ξ, η)n(ξ, η), µ1(ξ, η) =µ1(ξ, η)n(ξ, η), ‖n‖S∞ . 1,

µ0(ξ, η) = |ξ−η|3/2d(ξ, η), ‖µ1(ξ, η)‖S∞ . 23k+−k̄+
(4.30)

(compare with (4.14)). For l∈{0, 1} and Φ=Φσµν as in (10.1), let

Ilp[F ;H1, H2] =

∫∫
(R2)2

µl(ξ, η)ψp(Φ(ξ, η))P̂kF (ξ−η)P̂k1
H1(η)P̂k2

H2(−ξ) dξ dη,

where ψ∈C∞0 (−1, 1) and ψp(x):=ψ(2−px). Then,

|I0
p [F ;H1, H2]|. 23k/2 min(1, 2−k̄

+

2max(2p,3k+)2−2k)N(PkF )‖Pk1
H1‖L2 ‖Pk2

H2‖L2 ,

|I1
p [F ;H1, H2]|. 23k+−k̄+

N(PkF )‖Pk1
H1‖L2 ‖Pk2

H2‖L2 , (4.31)

where

N(PkF ) := sup
|%|62−p2δm

‖ei%ΛPkF‖L∞+2−10m‖PkF‖L2 . (4.32)

In particular, if 2k≈1, then

|I0
p [F ;H1, H2]|.min(1, 22p+−k̄+

)N(PkF )‖Pk1
H1‖L2 ‖Pk2

H2‖L2 ,

|I1
p [F ;H1, H2]|. 2−k̄

+

N(PkF )‖Pk1
H1‖L2 ‖Pk2

H2‖L2 .
(4.33)

Proof. The proof when l=1 is easy. We start from the formula

ψp(Φ(ξ, η)) =C

∫
R

ψ̂(s)eis2
−pΦ(ξ,η) ds. (4.34)

Therefore,

I1
p [F ;H1, H2] =C

∫
R
ψ̂(s)

∫∫
(R2)2

eis2
−pΦ(ξ,η)µ1(ξ, η)P̂kF (ξ−η)P̂k1

H1(η)P̂kH2(−ξ) dξ dη.

Using Lemma A.1 (i) and (4.30), it follows that

|I1
p [F ;H1, H2]|.

∫
R
|ψ̂(s)| 23k+−k̄+

‖e−is2
−pΛµPkF‖L∞ ‖Pk1

H1‖L2 ‖Pk2
H2‖L2 ds.

The bound for l=1 in (4.33) follows.
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In the case l=0, the desired bound follows in the same way unless

k̄++2k>max(2p, 3k+)+D. (4.35)

On the other hand, if (4.35) holds, then we need to take advantage of the depletion

factor d. The main point is the following:

if (4.35) holds and |Φ(ξ, η)|. 2p, then d(ξ, η).
2−k̄(22p+23k+

)

22k
. (4.36)

Indeed, if (4.35) holds then k̄>D and p6 3
2 k̄−

1
4D, and we estimate

d(ξ, η).

(
|ξ|−|η|
|ξ−η|

)2
.

(
2−k̄/2

∣∣λ(|ξ|)−λ(|η|)
∣∣

2k

)2
.

2−k̄(|Φ(ξ, η)|+λ(|ξ−η|))2

22k

in the support of the function d, which gives (4.36).

To continue the proof, we fix a function θ∈C∞0 (R2) supported in the ball of radius

2k
++1 with the property that

∑
v∈(2k+Z)2 θ(x−v)=1 for any x∈R2. For any v∈(2k

+Z)2,

consider the operator Qv defined by

Q̂vf(ξ) = θ(ξ−v)f̂(ξ).

In view of the localization in (ξ−η), we have

I0
p [F ;H1, H2] =

∑
|v1+v2|.2k+

I0
p;v1,v2

, with I0
p;v1,v2

:= I0
p [F ;Qv1

H1, Qv2
H2]. (4.37)

Moreover, using (4.36), we can insert a factor of ϕ6D(2−X(ξ−η)·v1) in the integral

defining Ilp[F ;Qv1
H1, Qv2

H2] without changing the integral, where 2X≈(2p+23k+/2)2k̄/2.

Let

mv1
(ξ, η) :=µ0(ξ, η)ϕ[k2−2,k2+2](ξ)ϕ[k−2,k+2](ξ−η)ϕ6k++2(η−v1)ϕ6D(2−X(ξ−η)·v1).

We will show below that, for any v1∈R2 with |v1|≈2k̄,

‖F−1(mv1)‖L1(R2×R2) . 23k/222X2−2k2−2k̄. (4.38)

Assuming this, the desired bound follows as in the case l=1 treated earlier. To prove

(4.38), we recall that ‖F−1(ab)‖L1.‖F−1(a)‖L1‖F−1(b)‖L1 . Then, we write

(ξ−η)·(ξ+η) = 2(ξ−η)·v1+|ξ−η|2+2(ξ−η)·(η−v1).

The bound (4.38) follows by analyzing the contributions of the three terms above.
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Our next lemma concerns a linear L2 estimate on certain localized Fourier integral

operators.

Lemma 4.7. Assume that k>−100, m>D2,

−(1−δ)m6 p− 1
2k6−δm, and 2m−2 6 |s|6 2m+2. (4.39)

Given χ∈C∞0 (R) supported in [−1, 1], introduce the operator Lp,k defined by

Lp,kf(ξ) :=ϕ>−100(ξ)

∫
R2

eisΦ(ξ,η)χ(2−pΦ(ξ, η))ϕk(η)a(ξ, η)f(η) dη, (4.40)

where, for some µ, ν∈{+,−},

Φ(ξ, η) = Λ(ξ)−Λµ(ξ−η)−Λν(η), a(ξ, η) =A(ξ, η)χba(ξ−η)ĝ(ξ−η),

‖DαA‖L∞x,y .|α| 2
|α|m/3, and ‖g‖

Z1∩H
N1/3,0
Ω

. 1.
(4.41)

Then,

‖Lp,kf‖L2 . 230δm(2(3/2)(p−k/2)+2p−k/2−m/3)‖f‖L2 .

Remark 4.8. (i) Lemma 4.7, which is proved in §6 below, plays a central role in the

proof of Proposition 4.2. A key role in its proof is played by the “curvature” component

Υ(ξ, η) := (∇2
ξ,ηΦ)(ξ, η)[(∇⊥ξ Φ)(ξ, η), (∇⊥η Φ)(ξ, η)], (4.42)

and in particular by its non-degeneracy close to the bad frequencies γ0 and γ1, and to

the resonant hypersurface Φ(ξ, η)=0. The properties of Υ that we are going to use are

described in §11, and in particular in Lemmas 11.1–11.3.

(ii) We can insert S∞ symbols and bounded factors that depend only on ξ or only

on η in the integral in (4.40), without changing the conclusion. We will often use this

lemma in the form∣∣∣∣∫∫
R2×R2

eisΛ(ξ−η)χ(2−pΦ(ξ, η))µ(ξ, η)a(ξ, η)P̂k1F1(η)P̂kF2(−ξ) dξ dη
∣∣∣∣

. 230δm(2(3/2)(p−k/2)+2p−k/2−m/3)‖Pk1
F1‖L2 ‖PkF2‖L2 ,

(4.43)

provided that k, k1>−80, (4.39) and (4.41) hold, and ‖µ‖S∞.1. This follows by writing

µ(ξ, η) =

∫∫
R2×R2

P (x, y)e−ix·ξe−iy·η dξ dη,

with ‖P‖L1(R2×R2).1, and then combining the oscillatory factors with the functions F1

and F2.
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5. Energy estimates II: Proof of Proposition 4.2

In this section we prove Proposition 4.2, thus completing the proof of Proposition 2.2.

Recall definitions (4.15)–(4.18). For G∈G′ and W1,W2∈W ′ let

AlY,m[G,W1,W2] :=

∫
R
qm(s)

∫∫
R2×R2

µl(ξ, η)χY (ξ−η)Ĝ(ξ−η, s)

×Ŵ1(η, s)Ŵ2(−ξ, s) dξ dη ds,
(5.1)

where l∈{0, 1}, m∈[D2, L], Y ∈{go,ba}, and the symbols µl are as in (4.14). The con-

clusion of Proposition 4.2 is equivalent to the uniform bound

|AlY,m[G,W1,W2]|. ε3
122δ2m. (5.2)

In proving this bound, we further decompose the functions W1 and W2 dyadically

and consider several cases. We remark that the most difficult case (which is treated in

Lemma 5.1) is when the “bad” frequencies of G interact with the high frequencies of the

functions W1 and W2.

5.1. The main interactions

We prove the following lemma.

Lemma 5.1. For l∈{0, 1}, m∈[D2, L], G∈G′, and W1,W2∈W ′ we have∑
min(k1,k2)>−40

|Alba,m[G,Pk1W1, Pk2W2]|. ε3
1. (5.3)

The rest of the subsection is concerned with the proof of this lemma. We need to

further decompose our operators based on the size of the modulation. Assuming that
�W2∈W ′σ, W1∈W ′ν , G∈G′µ, and σ, µ, ν∈{+,−}, see (4.17)–(4.18), we define the associated

phase

Φ(ξ, η) = Φσµν(ξ, η) = Λσ(ξ)−Λµ(ξ−η)−Λν(η). (5.4)

Notice that, in proving (5.3), we may assume that σ=+ (otherwise take complex

conjugates) and that the sum is over |k1−k2|650 (due to localization in ξ−η).

Some care is needed to properly sum the dyadic pieces in k1 and k2. For this, we

use frequency envelopes. More precisely, for k>−30, let

%k(s) : =

2∑
i=1

‖P[k−40,k+40]Wi(s)‖L2 +25m/6−δm2−k/2
2∑
i=1

‖P[k−40,k+40]EWi
(s)‖L2 ,

%2
k,m : =

∫
R
%k(s)2(2−mqm(s)+|q′m(s)|) ds,

(5.5)
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where EW1,2
are the “semilinear” non-linearities defined in (4.22). In view of (4.21) and

(4.23), ∑
k>−30

%2
k,m. ε2

122δ2m. (5.6)

Given k>−30, let p=
⌊

1
2k−

7
9m
⌋

(the largest integer 6 1
2k−

7
9m). We define

Al,pba [F,H1, H2] : =

∫∫
R2×R2

µl(ξ, η)ϕ
[p,∞)
p (Φ(ξ, η))χba(ξ−η)

×F̂ (ξ−η)Ĥ1(η)Ĥ2(−ξ) dξ dη,
(5.7)

where p∈[p,∞) and

ϕ
[p,∞)
p =

{
ϕp, if p> p+1,

ϕ6p, if p= p.

Assuming that |k1−k|630 and |k2−k|630, let

Al,pba,m[G,Pk1
W1, Pk2

W2] :=

∫
R
qm(s)Al,pba [G(s), Pk1

W1(s), Pk2
W2(s)] ds. (5.8)

This gives a decomposition Alba,m=
∑
p>pA

l,p
ba,m as a sum of operators localized in mod-

ulation. Notice that the sum is either over p∈
[
p, 1

2k+D
]

(if ν=+ or if ν=− and k6 1
2D)

or over
∣∣p− 3

2k
∣∣6D (if ν=− and k> 1

2D). For (5.3), it remains to prove that

|Al,pba,m[G,Pk1W1, Pk2W2]|. ε12−δm%2
k,m (5.9)

for any k>−30, p>p, and k1, k2∈Z satisfying |k1−k|630 and |k2−k|630.

Using Lemma 4.6 (see (4.33)), we have

|Al,pba [G(s), Pk1W1(s), Pk2W2(s)]|. ε122p+−k2−5m/6+δm‖Pk1W1(s)‖L2 ‖Pk2W2(s)‖L2

for any p>p, due to the L∞ bound in (4.26). The desired bound (5.9) follows if

2p+−k6− 1
5m+D.

Also, using Lemma 4.7, we have

|Al,pba [G,Pk1
W1, Pk2

W2](s)|. ε12−m−δm‖Pk1
W1(s)‖L2 ‖Pk2

W2(s)‖L2 ,

using (4.43), as 2p−k/2.2−7m/9 and ‖eisΛµG(s)‖
Z1∩H

N1/3,0
Ω

.ε12δm (see (4.19)). Thus,

(5.9) follows if p=p. It remains to prove (5.9) when

p> p+1 and k∈
[
−30, 2p++ 1

5m
]
, |k1−k|6 30, |k2−k|6 30. (5.10)
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In the remaining range in (5.10) we integrate by parts in s. We define

Ãl,pba [F,H1, H2] : =

∫∫
R2×R2

µl(ξ, η)ϕ̃p(Φ(ξ, η))χba(ξ−η)

×F̂ (ξ−η)Ĥ1(η)Ĥ2(−ξ) dξ dη,
(5.11)

where ϕ̃p(x):=2px−1ϕp(x). This is similar to the definition in (5.7), but with ϕp replaced

by ϕ̃p. Then, we let Wk1
:=Pk1

W1 and Wk2
:=Pk2

W2, and write

0 =

∫
R

d

ds
(qm(s)Ãl,pba [G(s),Wk1(s),Wk2(s)]) ds

=

∫
R
q′m(s)Ãl,pba [G(s),Wk1

(s),Wk2
(s)] ds+J l,pba,0(k1, k2)+J l,pba,1(k1, k2)+J l,pba,2(k1, k2)

+i2p
∫
R
qm(s)Al,pba [G(s),Wk1

(s),Wk2
(s)] ds, (5.12)

where

J l,pba,0(k1, k2) : =

∫
R
qm(s)Ãl,pba [(∂s+iΛµ)G(s),Wk1(s),Wk2(s)] ds,

J l,pba,1(k1, k2) : =

∫
R
qm(s)Ãl,pba [G(s), (∂s+iΛν)Wk1

(s),Wk2
(s)] ds,

J l,pba,2(k1, k2) : =

∫
R
qm(s)Ãl,pba [G(s),Wk1

(s), (∂s+iΛ−σ)Wk2
(s)] ds.

(5.13)

The integral in the last line of (5.12) is the one we have to estimate. Notice that

2−p|Ãl,pba [G(s),Wk1
(s),Wk2

(s)]|. 2−p2−5m/6+δm‖Wk1
(s)‖L2 ‖Wk2

(s)‖L2 ,

as a consequence of Lemma 4.6 and (4.26). It remains to prove that, if (5.10) holds, then

2−p|J l,pba,0(k1, k2)+J l,pba,1(k1, k2)+J l,pba,2(k1, k2)|. ε12−δm%2
k,m. (5.14)

This bound will be proved in several steps in Lemmas 5.2–5.4 below.

5.1.1. Quasilinear terms

We first consider the quasilinear terms appearing in (5.14), which are those where ∂t+iΛ

hits the high-frequency inputs Wk1 and Wk2 . We start with the case when the frequencies

k1 and k2 are not too large relative to p+.

Lemma 5.2. Assume that (5.10) holds and, in addition, k6 2
3p

++ 1
4m. Then,

2−p(|J l,pba,1(k1, k2)|+|J l,pba,2(k1, k2)|). ε12−δm%2
k,m. (5.15)
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Proof. It suffices to bound the contributions of |J l,pba,1(k1, k2)| in (5.15), since the

contributions of |J l,pba,2(k1, k2)| are similar. We estimate, for s∈[2m−1, 2m+1],

‖(∂s+iΛν)Wk1(s)‖L2 . ε12−5m/6+δm(2k1 +23k1/22−5m/6)%k(s), (5.16)

using (4.22)–(4.24). As before, we use Lemma 4.6 and the pointwise bound (4.26) to

estimate

|Ãl,pba [G(s), (∂s+iΛν)Wk1(s),Wk2(s)]|

.min(1, 22p+−k)ε12−5m/6+δm‖(∂s+iΛν)Wk1(s)‖L2 ‖Wk2(s)‖L2 .
(5.17)

The bounds (5.16) and (5.17) suffice to prove (5.15) when p>0 or when − 1
2m+ 1

2k6p60.

It remains to prove (5.15) when

p+16 p6− 1
2m+ 1

2k and k6 1
5m. (5.18)

For this, we would like to apply Lemma 4.7. We claim that, for s∈[2m−1, 2m+1],

|Ãl,pba [G(s), (∂s+iΛν)Wk1(s),Wk2(s)]|

. 2−kε1231δm(2(3/2)(p−k/2)+2p−k/2−m/3)‖(∂s+iΛν)Wk1(s)‖L2 ‖Wk2
(s)‖L2 .

(5.19)

Assuming this, and using also (5.16), it follows that

2−p|J l,pba,1(k1, k2)|. 2−p2mε1%
2
k,m2−5m/6+40δm(2(3/2)(p−k/2)+2p−k/2−m/3)

. ε1%
2
k,m2m/6+40δm(2p/2−3k/4+2−k/2−m/3),

and the desired conclusion follows using also (5.18).

On the other hand, to prove the bound (5.19), we use (4.43). Clearly, with g=eisΛµG,

we have ‖g‖
Z1∩H

N1/3,0
Ω

.ε12δ
2m (see (4.25)). The factor 2−k in the right-hand side of

(5.19) is due to the symbols µ0 and µ1. This is clear for the symbols µ1, which already

contain a factor of 2−k (see (4.14)). For the symbols µ0, we notice that we can take

A(ξ, η) := 2kd(ξ, η)ϕ64(Φ(ξ, η))ϕ[k2−2,k2+2](ξ)ϕ[−10,10](ξ−η).

This satisfies the bounds required in (4.41), since k6 1
5m. This completes the proof.

We now look at the remaining cases for the quasilinear terms and prove the following.

Lemma 5.3. Assume that (5.10) holds and, in addition,

p> 0 and k∈
[

2
3p+ 1

4m, 2p+ 1
5m
]
. (5.20)

Then,

2−p|J l,pba,1(k1, k2)+J l,pba,2(k1, k2)|. ε12−δm%2
k,m. (5.21)
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Proof. The main issue here is to deal with the case of large frequencies, relative to

the time variable, and avoid the loss of derivatives coming from the terms (∂t±iΛ)W1,2.

For this, we use ideas related to the local existence theory, such as symmetrization.

Notice that in Lemma 5.3 we estimate the absolute value of the sum J l,pba,1+J l,pba,2, and

not each term separately.

First notice that we may assume σ=ν=+, since otherwise J l,pba,n(k1, k2)=0, n=1, 2,

when k> 2
3p+ 1

4m. In particular, 2p.2k/2. We first deal with the semilinear part of the

non-linearity, which is EW1 in equation (4.22). Using Lemma 4.6 and the definition (5.5),

|Ãl,pba [G(s), Pk1EW1(s),Wk2(s)]|. ε12−5m/6+δm‖Pk1EW1(s)‖L2 ‖Wk2(s)‖L2

. ε12−5m/3+2δm2k/2%k(s)2.

Therefore,

2−p
∫
R
qm(s)|Ãl,pba [G(s), Pk1

EW1
(s),Wk2

(s)]| ds. ε12−m/4%2
k,m.

It remains to bound the contributions of QW1
and QW2

. Using again Lemma 4.6,

we can easily prove the estimate when k6 6
5m or when l=1. It remains to show that

2−p
∫
R
qm(s)|Ã0,p

ba [G(s), Pk1
QW1

(s),Wk2
(s)]+Ã0,p

ba [G(s),Wk1
(s), Pk2

QW2
(s)]| ds

. ε12−δm%2
k,m,

(5.22)

provided that

σ= ν= +, k∈
[
2p−D, 2p+ 1

5m
]
, and k> 6

5m. (5.23)

In this case, we consider the full expression and apply a symmetrization procedure

to recover the loss of derivatives. Since W1∈W ′+ and W2∈W ′−, recall from (4.23) that

QW1 =−iTΣ>2
W1−iTV ·ζW1 and QW2 = iTΣ>2

�W2+iTV ·ζ�W2.

Therefore, using the definition (5.11),

Ã0,p
ba [G,Pk1

QW1
,Wk2

] =
∑

σ∈{Σ>2,V ·ζ}

∫∫
R2×R2

µ0(ξ, η)ϕ̃p(Φ(ξ, η))χba(ξ−η)

×Ĝ(ξ−η)ϕk1
(η)(−i)T̂σW1(η)ϕk2

(ξ)Ŵ2(−ξ) dξ dη,

and

Ã0,p
ba [G,Wk1

, Pk2
QW2

] =
∑

σ∈{Σ>2,V ·ζ}

∫∫
R2×R2

µ0(ξ, η)ϕ̃p(Φ(ξ, η))χba(ξ−η)

×Ĝ(ξ−η)ϕk1
(η)Ŵ1(η)ϕk2

(ξ)i
̂
Tσ�W2(−ξ) dξ dη.
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We use definition (2.22) and make suitable changes of variables to write

Ã0,p
ba [G,Pk1

QW1
,Wk2

]+Ã0,p
ba [G,Wk1

, Pk2
QW2

]

=
∑

σ∈{Σ>2,V ·ζ}

−i
4π2

∫∫∫
(R2)3

Ŵ1(η)Ŵ2(−ξ)Ĝba(ξ−η−α)(δM)(ξ, η, α) dξ dη dα,

where Ĝba :=χbaĜ and

(δM)(ξ, η, α) =µ0(ξ, η+α)ϕ̃p(Φ(ξ, η+α))σ̃

(
α,

2η+α

2

)
χ

(
|α|
|2η+α|

)
ϕk1

(η+α)ϕk2
(ξ)

−µ0(ξ−α, η)ϕ̃p(Φ(ξ−α, η))σ̃

(
α,

2ξ−α
2

)
χ

(
|α|
|2ξ−α|

)
ϕk1

(η)ϕk2
(ξ−α).

For (5.22), it suffices to prove that, for any s∈[2m−1, 2m+1] and σ∈{Σ>2, V ·ζ},

2−p
∣∣∣∣∫∫∫

(R2)3

Ŵ1(η, s)Ŵ2(−ξ, s)Ĝba(ξ−η−α, s)(δM)(ξ, η, α, s) dξ dη dα

∣∣∣∣
. ε1%k(s)22−m−δm.

(5.24)

Let

M(ξ, η, α; θ1, θ2) : =µ0(ξ−θ1, η+α−θ1)ϕ̃p(Φ(ξ−θ1, η+α−θ1))ϕk2
(ξ−θ1)

×ϕk1
(η+α−θ1)σ̃

(
α, η+

α

2
+θ2

)
χ

(
|α|

|2η+α+2θ2|

)
.

(5.25)

Therefore,

(δM)(ξ, η, α) =M(ξ, η, α; 0, 0)−M(ξ, η, α;α, ξ−η−α)

=ϕ6k−D(α)(α·∇θ1M(ξ, η, α; 0, 0)+(ξ−η−α)·∇θ2M(ξ, η, α; 0, 0))

+(eM)(ξ, η, α).

Using the formula for µ0 in (4.14) and recalling that σ∈ε1M3/2,1
N3−2 (see Definition A.6),

it follows that, in the support of the integral,

|(eM)(ξ, η, α)|. (1+|α|2)P (α)2−2k23k/2 and ‖(1+|α|)8P‖L2 . 2δm.

The contribution of (eM) in (5.24) can then be estimated by 2−p2δm2−k/2ε1%k(s)2, which

suffices due to the assumptions (5.23).

We are thus left with estimating the integrals

I :=

∫∫∫
(R2)3

Ĝba(ξ−η−α)ϕ6k−D(α)((ξ−η−α)·∇θ2M(ξ, η, α; 0, 0))

×Ŵ1(η)Ŵ2(−ξ) dα dη dξ,

II :=

∫∫∫
(R2)3

Ĝba(ξ−η−α)ϕ6k−D(α)(α·∇θ1M(ξ, η, α; 0, 0))Ŵ1(η)Ŵ2(−ξ) dα dη dξ.
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If |α|�2k, we have

(ξ−η−α)·∇θ2M(ξ, η, α; 0, 0) =µ0(ξ, η+α)ϕ̃p(Φ(ξ, η+α))ϕk2(ξ)ϕk1(η+α)

×(ξ−η−α)·(∇ζ σ̃)
(
α, η+ 1

2α
)
.

We make the change of variable α=β−η to rewrite

I = c

∫∫∫
(R2)3

Ĝba(ξ−β)µ0(ξ, β)ϕ̃p(Φ(ξ, β))(ξ−β)·F{Pk1
TP6k−D∇ζσW1}(β)

×P̂k2W2(−ξ) dβ dξ.

Then, we use Lemma 4.6, (4.26), and (A.22) (recall σ∈ε1M3/2,1
N3−2) to estimate

2−p|I(s)|. 2−p22p−kε12−5m/6+δm‖Pk1
TP6k−D∇ζσW1(s)‖L2 ‖Pk2

W2(s)‖L2

. ε12−3m/22p−k/2%k(s)2.

This is better than the desired bound (5.24). One can estimate 2−p|II(s)| in a similar

way, using the flexibility in Lemma 4.6 due to the fact that the symbol µ0 is allowed to

contain additional S∞ symbols. This completes the proof of the bound (5.24) and the

lemma.

5.1.2. Semilinear terms

The only term in (5.12) that remains to be estimated is J l,p0 (k1, k2). This is a semilinear

term, since the ∂t derivative hits the low-frequency component, for which we will show

the following lemma.

Lemma 5.4. Assume that (5.10) holds. Then,

2−p|J l,pba,0(k1, k2)|. ε12−δm%2
k,m. (5.26)

Proof. Assume first that p>− 1
4m. Using integration by parts we can see that, for

%∈R,

‖F−1{ei%Λ(ξ)ϕ[−20,20](ξ)}‖L1
x
. 1+|%|. (5.27)

Combining this and the bounds in the second line of (4.25), we get

sup
|%|62−p+δm

‖ei%Λ[(∂s+iΛµ)P[−10,10]G(s)]‖L∞ . (2−p+1)2−5m/3+2δm.
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Using this in combination with Lemma 4.6 we get

|Ãl,pba [(∂s+iΛµ)G(s),Wk1
(s),Wk2

(s)]|. (2−p+1)2−5m/3+2δm%k(s)2, (5.28)

which leads to an acceptable contribution.

Assume now that

p+16 p6− 1
4m.

Even though there is no loss of derivatives here, the information that we have so far is not

sufficient to obtain the bound in this range. The main reason is that some components of

(∂s+iΛµ)G(s) undergo oscillations which are not linear. To deal with this term, we are

going to use the following decomposition of (∂s+iΛµ)G, which follows from Lemma 8.3:

χ′ba(ξ)F{(∂s+iΛµ)G(s)}(ξ) = gd(ξ)+g∞(ξ)+g2(ξ) (5.29)

for any s∈[2m−1, 2m+1], where χ′ba(x)=ϕ64(2D(|x|−γ0))+ϕ64(2D(|x|−γ1)) and

‖g2‖L2 . ε2
12−3m/2+20δm,

‖g∞‖L∞ . ε2
12−m−4δm,

sup
|%|627m/9+4δm

‖F−1{ei%Λgd}‖L∞ . ε2
12−16m/9−4δm.

(5.30)

Clearly, the contribution of gd can be estimated as in (5.28), using Lemma 4.6. On

the other hand, we estimate the contributions of g2 and g∞ in the Fourier space, using

Schur’s lemma. For this, we need to use the volume bound in Proposition 10.4 (i). We

have

sup
ξ
‖ϕ̃p(Φ(ξ, η))χba(ξ−η)g∞(ξ−η)‖L1

η
. 2(1−δ)p‖g∞‖L∞ . 2(1−δ)p2−(1+4δ)mε2

1,

and also a similar bound for the ξ integral (keeping η fixed). Therefore, using Schur’s

lemma, we have

|Ãl,pba [F−1g∞(s),Wk1
(s),Wk2

(s)]|. 2(1−δ)p2−(1+4δ)mε2
1%k(s)2,

and the corresponding contribution is bounded as claimed in (5.26). The contribution

of g2 can be bounded in a similar way, using Schur’s lemma and the Cauchy–Schwarz

inequality. This completes the proof of the lemma.

5.2. The other interactions

In this subsection we show how to bound all the remaining contributions to the energy

increment in (5.1). We remark that we do not use the main L2 lemma in the estimates

in this subsection.
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5.2.1. Small frequencies

We consider now the small frequencies and prove the following.

Lemma 5.5. For l∈{0, 1}, m∈[D2, L], G∈G′, and W1,W2∈W ′ we have∑
min(k1,k2)6−40

|Alba,m[G,Pk1W1, Pk2W2]|. ε3
1. (5.31)

Proof. Let k :=min{k1, k2}. We may assume that k6−40, max(k1, k2)∈[−10, 10],

and l=1. We can easily estimate

|A1
ba,m[G,Pk1

W1, Pk2
W2]|. sup

s∈[2m−1,2m+1]

2m2k‖G(s)‖L2 ‖Pk1
W1(s)‖L2 ‖Pk2

W2(s)‖L2 .

By (4.19) and (4.21), this suffices to estimate the sum corresponding to k6−m−3δm.

Therefore, it suffices to show that, if −(1+3δ)m6k̄6−40, then

|A1
ba,m[G,Pk1

W1, Pk2
W2]|. ε3

12−δm. (5.32)

As in the proof of Lemma 5.1, let W2∈W ′−σ, W1∈W ′ν , G∈G′µ, σ, ν, µ∈{+,−}, and

define the associated phase Φ=Φσµν as in (5.4). The important observation is that

|Φ(ξ, η)| ≈ 2k/2 (5.33)

in the support of the integral. We define A1,p
ba and A1,p

ba,m as in (5.7) and (5.8), by

introducing the the cutoff function ϕp(Φ(ξ, η). In view of (5.33), we may assume that∣∣p− 1
2k
∣∣.1. Then, we integrate by parts as in (5.12) and similarly obtain

|A1,p
ba,m[G,Pk1

W1, Pk2
W2]|. 2−p

∣∣∣∣∫
R
q′m(s)Ã1,p

ba [G(s),Wk1
(s),Wk2

(s)] ds

∣∣∣∣
+2−p|J 1,p

ba,0(k1, k2)|+2−p|J 1,p
ba,1(k1, k2)|

+2−p|J 1,p
ba,2(k1, k2)|;

(5.34)

see (5.11) and (5.13) for definitions.

We apply Lemma 4.6 (see (4.33)) to control the terms in the right-hand side of

(5.34). Using (4.21) and (4.26) (recall that 2−p62−k/2+δm62m/2+3δm), the first term is

dominated by

Cε3
12−p2δm2−5m/6+δm. ε3

12−m/4.

Similarly,

2−p|J 1,p
ba,1(k1, k2)|+2−p|J 1,p

ba,2(k1, k2)|. ε3
12m2−p2−5m/6+δm2−5m/6+2δm. ε3

12−m/10.
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For |J 1,p
ba,0(k1, k2)| we first estimate, using also (5.27) and (4.25),

2−p|J 1,p
ba,0(k1, k2)|. ε3

12m2−p(2−p2−5m/3+δm)2δm. ε3
12−2p2−2m/3+2δm.

We can also estimate directly in the Fourier space (placing the factor at low frequency

in L1 and the other two factors in L2),

2−p|J 1,p
ba,0(k1, k2)|. ε3

12m2−p2k2−5m/6+3δm. ε3
12p2m/6+3δm.

These last two bounds show that 2−p|J 1,p
ba,0(k1, k2)|.ε3

12−m/10. The desired conclusion

(5.32) follows using (5.34).

5.2.2. The “good” frequencies

We now estimate the contribution of the terms in (5.1), corresponding to the cutoff χgo.

One should keep in mind that these terms are similar, but easier than the ones we have

already estimated. We often use the sharp decay in (4.28) to bound the contribution of

small modulations.

We may assume that �W2∈W ′σ, W1∈W ′ν , and G∈G′+. For (5.2) it suffices to prove

that ∑
k,k1,k2∈Z

|Algo,m[PkG,Pk1
W1, Pk2

W2]|. ε3
122δ2m. (5.35)

Recalling the assumptions (4.14) on the symbols µl, we have the simple bound

|Algo,m[PkG,Pk1
W1, Pk2

W2]|. 2m2min(k,k1,k2)22k+

× sup
s∈Im

‖PkG(s)‖L2 ‖Pk1
W1(s)‖L2 ‖Pk2

W2(s)‖L2 .

Using now (4.19) and (4.21), it follows that the sum over k>2δm or k6−m−δm in (5.35)

is dominated as claimed. Using also the L∞ bounds (4.27) and Lemma A.1, we have

|Algo,m[PkG,Pk1W1, Pk2W2]|. 2m22k+

sup
s∈Im

‖PkG(s)‖L∞ ‖Pk1W1(s)‖L2 ‖Pk2W2(s)‖L2

. 2m22k+

sup
s∈Im

ε12k−m+50δm‖Pk1
W1(s)‖L2 ‖Pk2

W2(s)‖L2

if |k|>10. This suffices to control the part of the sum over k6−52δm. Moreover,∑
min(k1,k2)6−D−|k|

|Algo,m[PkG,Pk1W1, Pk2W2]|. ε3
12−δm,
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if k∈[−52δm, 2δm]. This follows as in the proof of Lemma 5.5, once we notice that

Φ(ξ, η)≈2min(k1,k2)/2 in the support of the integral, so we can integrate by parts in s.

After these reductions, for (5.35) it suffices to prove that, for any k∈[−52δm, 2δm],

∑
k1,k2∈[−D−|k|,∞)

|Algo,m[PkG,Pk1W1, Pk2W2]|. ε3
122δ2m2−δ|k|. (5.36)

To prove (5.36) we further decompose in modulation. Let k̄ :=max(k, k1, k2) and

p :=
⌊

1
2 k̄

+−110δm
⌋
. We define, as in (5.7) and (5.8),

Al,pgo [F,H1, H2] : =

∫∫
R2×R2

µl(ξ, η)ϕ
[p,∞)
p (Φ(ξ, η))χgo(ξ−η)

×F̂ (ξ−η)Ĥ1(η)Ĥ2(−ξ) dξ dη,
(5.37)

and

Al,pgo,m[PkG,Pk1
W1, Pk2

W2] :=

∫
R
qm(s)Al,pgo [PkG(s), Pk1

W1(s), Pk2
W2(s)] ds. (5.38)

For p>p+1 we integrate by parts in s. As in (5.11) and (5.13), let

Ãl,pgo [F,H1, H2] : =

∫∫
R2×R2

µl(ξ, η)ϕ̃p(Φ(ξ, η))χgo(ξ−η)

×F̂ (ξ−η)Ĥ1(η)Ĥ2(−ξ) dξ dη,
(5.39)

where ϕ̃p(x):=2px−1ϕp(x). Let Wk1
=Pk1

W1, Wk2
=Pk2

W2, and

J l,pgo,0(k1, k2) : =

∫
R
qm(s)Ãl,pgo [Pk(∂s+iΛµ)G(s),Wk1

(s),Wk2
(s)] ds,

J l,pgo,1(k1, k2) : =

∫
R
qm(s)Ãl,pgo [PkG(s), (∂s+iΛν)Wk1

(s),Wk2
(s)] ds,

J l,pgo,2(k1, k2) : =

∫
R
qm(s)Ãl,pgo [PkG(s),Wk1(s), (∂s+iΛ−σ)Wk2(s)] ds.

As in (5.12), we have

|Al,pgo,m[PkG,Pk1
W1, Pk2

W2]|

. 2−p
∣∣∣∣∫

R
q′m(s)Ãl,pgo [PkG(s),Wk1

(s),Wk2
(s)] ds

∣∣∣∣
+2−p|J l,pgo,0(k1, k2)+J l,pgo,1(k1, k2)+J l,pgo,2(k1, k2)|.

(5.40)
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Using Lemma 4.6, (4.21), and (4.26), it is easy to see that∑
k1,k2∈[−D−|k|,∞)

∑
p>p+1

2−p
∣∣∣∣∫

R
q′m(s)Ãl,pgo [PkG(s),Wk1

(s),Wk2
(s)] ds

∣∣∣∣. ε3
12−δm. (5.41)

Using also (5.27) and (4.25), as in the first part of the proof of Lemma 5.4, we have∑
k1,k2∈[−D−|k|,∞)

∑
p>p+1

2−p|J l,pgo,0(k1, k2)|. ε3
12−δm. (5.42)

Using Lemma 4.6, (4.26), and (5.16), it follows that∑
k1,k2∈[−D−|k|,6m/5]

∑
p>p+1

2−p(|J l,pgo,1(k1, k2)|+|J l,pgo,2(k1, k2)|). ε3
12−δm. (5.43)

Finally, a symmetrization argument as in the proof of Lemma 5.3 shows that∑
k1,k2∈[6m/5−10,∞)

∑
p>p+1

2−p|J l,pgo,1(k1, k2)+J l,pgo,2(k1, k2)|. ε3
12−δm. (5.44)

In view of (5.40)–(5.44), to complete the proof of (5.36) it remains to bound the

contribution of small modulations. In the case of “bad” frequencies, this is done using

the main L2 lemma. Here we need a different argument.

Lemma 5.6. Assume that k∈[−52δm, 2δm] and p=
⌊

1
2 k̄

+−110δm
⌋
. Then,∑

min(k1,k2)>−D−|k|

|Al,pgo,m[PkG,Pk1
W1, Pk2

W2]|. ε3
122δ2m2−δ|k|. (5.45)

Proof. We need to further decompose the function G. Recall that G∈G′+ and let,

for (k, j)∈J ,

f(s) = eisΛG(s), fj,k =P[k−2,k+2]Qjkf, and gj,k :=A62D,γ0
A62D,γ1

fj,k. (5.46)

Compare with Lemma 7.5. The functions gj,k are supported away from the bad frequen-

cies γ0 and γ1 and
∑
j gj,k(s)=eisΛG(s) away from these frequencies. This induces a

decomposition

Al,pgo,m[PkG,Pk1
W1, Pk2

W2] =
∑

j>max(−k,0)

Al,pgo,m[e−isΛgj,k, Pk1
W1, Pk2

W2].

Notice that, for j6m−δm, we have the stronger estimate (4.28) on ‖e−isΛgj,k‖L∞ .

Therefore, using Lemma 4.6, if j6m−δm then

|Al,pgo,m[e−isΛgj,k, Pk1
W1, Pk2

W2]|. ε12k2−2k+

2−j/4 sup
s∈Im

‖Pk1
W1(s)‖L2 ‖Pk2

W2(s)‖L2 .
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Therefore,(5)∑
j6m−δm

∑
min(k1,k2)>−D−|k|

|Al,pgo,m[e−isΛgj,k, Pk1W1, Pk2W2]|. ε3
122δ2m2−δ|k|.

Similarly, if j>m+60δm then we also have a stronger bound on ‖e−isΛgj,k‖L∞ in the

first line of (4.27), and the corresponding contributions are controlled in the same way.

It remains to show that, for any j∈[m−δm,m+60δm],∑
min(k1,k2)>−D−|k|

|Al,pgo,m[e−isΛgj,k, Pk1
W1, Pk2

W2]|. ε3
12−δm. (5.47)

For this, we use Schur’s test. As min(k, k1, k2)>−53δm, it follows from Proposition 10.4 (i)

and the bound ‖ĝj,k‖L2.ε12−8k+

2−j+50δj that∫
R2

|µl(ξ, η)|ϕ6p(Φ(ξ, η))|ĝj,k(ξ−η)|ϕ[k1−2,k1+2](η) dη. ε12(p−k̄+/2)/2+δm2−j+50δj

for any ξ∈R2 fixed with |ξ|∈[2k2−4, 2k2+4]. The integral in ξ (for η fixed) can be estimated

in the same way. Given the choice of p, the desired bound (5.47) follows using Schur’s

lemma.

6. Energy estimates III: Proof of the main L2 lemma

In this section we prove Lemma 4.7. We divide the proof into several cases. Let

χγl(x) :=ϕ(2D(|x|−γl)), l∈{0, 1}.

We start the most difficult case when |ξ−η| is close to γ0 and 2k�1. In this case, Υ̂ can

vanish up to order 1 (so we can have 2q�1 in the notation of Lemma 6.1 below).

Lemma 6.1. The conclusion of Lemma 4.7 holds if k> 3
2D1 and ĝ is supported in

the set
{
ξ :
∣∣|ξ|−γ0

∣∣62−100
}

.

Proof. We will often use the results in Lemma 11.1 below. We may assume that

σ=ν=+ in the definition of Φ, since otherwise the operator is trivial. We may also

assume that µ=+, in view of formula (11.23).

In view of Lemma 11.1 (ii), we may assume that either

(ξ−η)·ξ⊥≈ 2k or −(ξ−η)·ξ⊥≈ 2k

(5) This is the only place in the proof of the bound (5.2) where one needs the 22δ
2m factor in the

right-hand side.
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in the support of the integral, due to the factor χ(2−pΦ(ξ, η)). Thus, we may define

a±(ξ, η) = a(ξ, η)1±((ξ−η)·ξ⊥), (6.1)

and decompose the operator Lp,k=L+

p,k+L−p,k accordingly. The two operators can be

treated in similar ways, so we will concentrate on the operator L+

p,k.

To apply the main TT ∗ argument, we first need to decompose the operators Lp,k.

For � :=2−D
3/2

(a small parameter) and ψ∈C∞0 (−2, 2) satisfying
∑
v∈Z ψ( ·+v)≡1, we

write

L+

p,k =
∑
q,r∈Z

∑
j>0

Lr,jp,k,q,

Lr,jp,k,qf(x) : =

∫
R2

eisΦ(x,y)χ(2−pΦ(x, y))ϕq(Υ̂(x, y))ψ(�−12−qΥ̂(x, y)−r)

×ϕk(y)a+

j (x, y)f(y) dy,

a+

j (x, y) : =A(x, y)χγ0
(x−y)1+((x−y)·x⊥)ĝj(x−y),

gj : =A>0,γ0
[ϕ

[0,∞)
j ·g].

(6.2)

In other words, we insert the decompositions

g=
∑
j>0

gj and 1 =
∑
q,r∈Z

ϕq(Υ̂(x, y))ψ(�−12−qΥ̂(x, y)−r)

in formula (4.40) defining the operators Lp,k. The parameters j and r play a somewhat

minor role in the proof (one can focus on the main case j=0) but the parameter q is

important. Notice that q6− 1
2D, in view of (11.8). The hypothesis ‖g‖

Z1∩H
N1/3,0
Ω

.1 and

Lemma 7.5 (i) show that

‖ĝj‖L∞ . 2−j(1/2−55δ) and
∥∥∥sup
θ∈S1

|ĝj(rθ)|
∥∥∥
L2(r dr)

. 2−j(1−55δ). (6.3)

Note that, for fixed x (resp. y), the support of integration is included in S1,−
p,q,r(x)

(resp. S2,−
p,q,r(y)); see (11.11)–(11.12). We can use this to estimate the Schur norm of the

kernel. It follows from (11.14) and the first bound in (6.3) that

sup
x

∫
R2

|χ(2−pΦ(x, y))ϕq(Υ̂(x, y))ϕk(y)a+

j (x, y)| dy. ‖a+

j ‖L∞ |S1,−
p,q,r(x)|

. 2q+p−k/22−j/3.
(6.4)

A similar estimate holds for the x integral (keeping y fixed). Moreover, using the bounds

(11.13)–(11.14) and the second bound in (6.3), we estimate the left-hand side of (6.4) by

C2−j+55δj2p−k/2. In view of Schur’s lemma, we have

‖Lr,jp,k,q‖L2
!L2 .min(2q+p−k/22−j/3, 2−j+55δj2p−k/2).
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These bounds suffice to control the contribution of the operators Lr,jp,k,q, unless

q>D+max
(

1
2

(
p− 1

2k
)
,− 1

3m
)

and 06 j6min
(

4
9m,−

2
3

(
p− 1

2k
))
. (6.5)

Therefore, in the rest of the proof, we may assume that (6.5) holds, so �2q�2p−k/2.

We use the TT ∗ argument and Schur’s test. It suffices to show that

sup
x

∫
R2

|K(x, ξ)| dξ+sup
ξ

∫
R2

|K(x, ξ)| dx. 26δ2m(23(p−k/2)+22(p−k/2)2−2m/3) (6.6)

for p, k, q, r, and j fixed (satisfying (4.39) and (6.5)), where

K(x, ξ) : =

∫
R2

eisΘ(x,ξ,y)χ(2−pΦ(x, y))χ(2−pΦ(ξ, y))ψq,r(x, ξ, y)a+

j (x, y)a+

j (ξ, y) dy,

Θ(x, ξ, y) : = Φ(x, y)−Φ(ξ, y) = Λ(x)−Λ(ξ)−Λ(x−y)+Λ(ξ−y),

ψq,r(x, ξ, y) : =ϕq(Υ̂(x, y))ϕq(Υ̂(ξ, y))ψ(�−12−qΥ̂(x, y)−r)ψ(�−12−qΥ̂(ξ, y)−r)ϕk(y)2.

(6.7)

As K(x, ξ)=K(ξ, x), it suffices to prove the bound on the first term in the left-hand

side of (6.6). The main idea of the proof is to show that K is essentially supported in

the set where ω :=x−ξ is small. Note first that, in view of (11.13), we may assume

|ω|= |x−ξ|.�2q� 1. (6.8)

Step 1. We will show in Step 2 below that

if |ω|>L := 22δ2m(2p−k/22−q+2j−q−m+2−2m/3−q), then |K(x, ξ)|. 2−4m. (6.9)

Assuming this, we show now how to prove the bound on the first term in (6.6).

Notice that L�1, in view of (4.39) and (6.5). We decompose, for fixed x,∫
R2

|K(x, ξ)| dξ.
∫
|ω|6L

|K(x, x−ω)| dω+

∫
|ω|>L

|K(x, x−ω)| dω.

Combining (6.8) and (6.9), we obtain a suitable bound for the second integral. We now

turn to the first integral, which we bound using Fubini and formula (6.7) by

C‖a+

j ‖L∞
∫
R2

|a+

j (x, y)|χ(2−pΦ(x, y))ϕq(Υ̂(x, y))ϕk(y)2

×
(∫
|ω|6L

|χ(2−pΦ(x−ω, y))| dω
)
dy.

(6.10)
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We observe that, for fixed x and y satisfying
∣∣|x−y|−γ0

∣∣�1 and |x|≈2k�1,∫
|ω|6L

|χ(2−pΦ(x−ω, y))| dω. 2p−k/2L. (6.11)

Indeed, it follows from (11.9) that, if

z= (x−y−ω) = (% cos θ, % sin θ), |ω|6L, and |Φ(y+z, y)|6 2p,

then
∣∣%−|x−y|∣∣.L and θ belongs to a union of two intervals of length .2p−k/2. The

desired bound (6.11) follows.

Using also (6.4) and ‖aj‖L∞.2−j/3, it follows that the expression in (6.10) is

bounded by C22(p−k/2)2−2j/32qL. The desired bound (6.6) follows, using also the re-

strictions (6.5).

Step 2. We now prove (6.9). We define orthonormal frames (e1, e2) and (V1, V2):

e1 :=
∇xΦ(x, y)

|∇xΦ(x, y)|
, e2 = e⊥1 , V1 :=

∇yΦ(x, y)

|∇yΦ(x, y)|
, V2 =V ⊥1 ,

ω=x−ξ=ω1e1+ω2e2.

(6.12)

Note that ω1 and ω2 are functions of (x, y, ξ). We first make a useful observation: if

|Θ(x, ξ, y)|.2p and |ω|�1, then

|ω1|. 2−k/2(2p+|ω|2). (6.13)

This follows from a simple Taylor expansion, since

|Φ(x, y)−Φ(ξ, y)−ω ·∇xΦ(x, y)|. |ω|2.

We now turn to the proof of (6.9). Assuming that x and ξ are fixed with |x−ξ|>L
and using (6.13), we see that, on the support of integration, |ω2|≈|ω| and

V2 ·∇yΘ(x, ξ, y) =V2 ·∇y(−Λ(x−y)+Λ(ξ−y))

=V2 ·∇2
x,yΦ(x, y)·(x−ξ)+O(|ω|2)

=ω2Υ̂(x, y)+O(|ω1|+|ω|2).

(6.14)

Using (6.5), (6.9), (6.13) and (6.8) (this is where we need ��1), we obtain that

|V2 ·∇yΘ(x, ξ, y)| ≈ 2q|ω2| ≈ 2q|ω|
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in the support of the integral. Using that

eisΘ =
−i

sV2 ·∇yΘ
V2 ·∇yeisΘ and |Dα

yΘ|. |ω|,

and letting Θ(1) :=V2 ·∇yΘ, after integration by parts we have

K(x, ξ)

= i

∫
R2

eisΘ∂l

(
V l2

1

sΘ(1)
χ(2−pΦ(x, y))χ(2−pΦ(ξ, y))ψq,r(x, ξ, y)a+

j (x, y)a+

j (ξ, y)

)
dy.

We observe that

V l2∂l(χ(2−pΦ(x, y))χ(2−pΦ(ξ, y))) =−2−pΘ(1)(χ(2−pΦ(x, y))χ′(2−pΦ(ξ, y))).

This identity is the main reason for choosing V2 as in (6.12), and this justifies the defi-

nition of the function Υ (intuitively, we can only integrate by parts in y along the level

sets of the function Φ, due to the very large 2−p factor). Moreover,

|Dα
yψq,r(x, ξ, y)|. 2−q|α| and |Dα

y a
+

j (v, y)|.α 2|α|j+2|α|m/3, v ∈{x, ξ},

in the support of the integral defining K(x, ξ). We integrate by parts many times in y

as above. At every step we gain a factor of 2m2q|ω| and lose a factor of 2−p2q|ω|+2−q+

2j+2m/3. The desired bound in (6.9) follows. This completes the proof.

We consider now the (easier) case when |ξ−η| is close to γ1 and k is large.

Lemma 6.2. The conclusion of Lemma 4.7 holds if k> 3
2D1 and ĝ is supported in

the set
{
ξ :
∣∣|ξ|−γ1

∣∣62−100
}

.

Proof. Using (11.8), we see that on the support of integration we have |Υ̂(ξ, η)|≈1.

The proof is similar to the proof of Lemma 6.1 in the case 2q≈1. The new difficulties

come from the less favorable decay in j close to γ1 and from the fact that the conclusions

in Lemma 11.1 (iii) do not apply. We define a±j as in (6.2) (with γ1 replacing γ0 and

gj :=A>4,γ1
[ϕ

[0,∞)
j ·g]), and

Lx0,j
p,k f(x) :=ϕ6−D(x−x0)

∫
R2

eisΦ(x,y)χ(2−pΦ(x, y))ϕk(y)a+

j (x, y)f(y) dy (6.15)

for any x0∈R2. We have

‖ĝj‖L∞ . 26δj and
∥∥∥sup
θ∈S1

∣∣Ân,γ1
gj(rθ)

∣∣∥∥∥
L2(r dr)

. 2(1/2−49δ)n−j(1−55δ) (6.16)
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for n>1, as a consequence of Lemma 7.5 (i). Notice that these bounds are slightly weaker

than the bounds in (6.3). However, we can still estimate (compare with (6.4))

sup
x

∫
R2

|χ(2−pΦ(x, y))ϕk(y)a+

j (x, y)| dy. 2p−k/22−(1−55δ)j . (6.17)

Indeed, we use only the second bound in (6.16), decompose the integral as a sum of

integrals over the dyadic sets
∣∣|x−y|−γ1

∣∣≈2−n, n>1, and use (11.9) and the Cauchy–

Schwarz in each dyadic set. As a consequence of (6.17), it remains to consider the sum

over j6 4
9m.

We can then proceed as in the proof of Lemma 6.1. Using the TT ∗ argument for the

operators Lx0,j
p,k and Schur’s lemma, it suffices to prove bounds similar to those in (6.6).

Let ω=x−ξ, and notice that |ω|62−D+10. This replaces the diameter bound (6.8) and

is the main reason for adding the localization factors ϕ6−D(x−x0) in (6.15). The main

claim is that

if |ω|>L := 22δ2m(2p−k/2+2j−m+2−2m/3), then |K(x, ξ)|. 2−4m. (6.18)

The same argument as in Step 1 in the proof of Lemma 6.1 shows that this claim suffices.

Moreover, this claim can be proved using integration by parts, as in Step 2 in the proof

of Lemma 6.1. The conclusion of the lemma follows.

Finally, we now consider the case of low frequencies.

Lemma 6.3. The conclusion of Lemma 4.7 holds if k∈
[
−100, 7

4D1

]
.

Proof. For small frequencies, the harder case is when |ξ−η| is close to γ1, since the

conclusions of Lemma 11.3 are weaker than the conclusions of Lemma 11.2, and the decay

in j is less favorable. So, we will concentrate on this case.

We first need to decompose our operator. For j>0 and l∈Z we define

a±j,l(x, y) : =A(x, y)χγ1
(x−y)ϕ±l ((x−y)·x⊥)ĝj(x−y),

gj : =A>4,γ1
[ϕ

[0,∞)
j ·P[−8,8]g],

(6.19)

where ϕ±l (v):=1±(v)ϕl(v). This is similar to (6.2), but with the additional dyadic de-

composition in terms of the angle |(x−y)·x⊥|≈2l. Then we decompose, as in (6.2),

Lp,k =
∑
q,r∈Z

∑
j>0

∑
l∈Z

∑
ι∈{+,−}

Lr,j,l,ιp,k,q , (6.20)

where, with �=2−D
3/2

and ψ∈C∞0 (−2, 2) satisfying
∑
v∈Z ψ( ·−v)≡1 as before,

Lr,j,l,ιp,k,q f(x) : =ϕ>−100(x)

∫
R2

eisΦ(x,y)χ(2−pΦ(x, y))ϕq(Υ(x, y))

×ψ(�−12−qΥ(x, y)−r)ϕk(y)aιj,l(x, y)f(y) dy.
(6.21)
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We consider two main cases, depending on the size of q.

Case 1: q6−D1. As a consequence of (11.25), the operators Lr,j,l,ιp,k,q are non-trivial

only if 2k≈1 and 2l≈1. Using also (11.24), it follows that

|∇xΦ| ≈ 1, |∇xΥ·∇⊥x Φ| ≈ 1,

|∇yΦ| ≈ 1, |∇yΥ·∇⊥y Φ| ≈ 1,
(6.22)

in the support of the integrals defining the operators Lr,j,l,ιp,k,q .

Step 1. The proof proceeds as in Lemma 6.1. For simplicity, we assume that ι=+.

Let

S1
p,q,r,l(x) : =

{
z :
∣∣|z|−γ1

∣∣6 2−D+1, |Φ(x, x−z)|6 2p+1, |Υ(x, x−z)|6 2q+2,

|Υ(x, x−z)−r�2q|6 10�2q, and z ·x⊥ ∈ [2l−2, 2l+2]
}
.

(6.23)

Recall that, if z=(% cos θ, % sin θ) and x=(|x| cosα, |x| sinα), then

Φ(x, x−z) =λ(|x|)−µλ(%)−νλ(
√
|x|2+%2−2%|x| cos(θ−α) ). (6.24)

It follows from (6.22) and the change-of-variable argument in the proof of Lemma 11.1 (iii)

that

|S1
p,q,r,l(x)|. 2p+q and diam(S1

p,q,r,l(x)). 2p+�2q, (6.25)

if |x|≈1 and 2l≈1. Moreover, using (6.24), for any x and %,

|{θ : z= (% cos θ, % sin θ)∈S1
p,q,r,l(x)}|. 2p. (6.26)

Therefore, using (6.16) and these last two bounds, if |x|≈1 then∫
R2

|χ(2−pΦ(x, y))ϕq(Υ(x, y))ϕk(y)a+

j,l(x, y)| dy.min(2p+q26δj , 2p2−j+55δj). (6.27)

One can prove a similar bound for the x integral, keeping y fixed. In view of Schur’s

lemma, it remains to bound the contribution of the terms for which

q>D+max
(

1
2p,−

1
3m
)

and 06 j6min
(

4
9m,−

2
3p
)
. (6.28)

Step 2. Assuming (6.28), we use the TT ∗ argument and Schur’s test. It suffices to

show that

sup
x

∫
R2

|K(x, ξ)| dξ+sup
ξ

∫
R2

|K(x, ξ)| dx. 26δm(23p+22p−2m/3) (6.29)
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for p, k, q, r, j, and l fixed satisfying (6.28), where

K(x, ξ) : =ϕ>−100(x)ϕ>−100(ξ)

∫
R2

eisΘ(x,ξ,y)χ(2−pΦ(x, y))χ(2−pΦ(ξ, y))

×ψq,r(x, ξ, y)a+

j,l(x, y)a+

j,l(ξ, y) dy,
(6.30)

and, as in (6.7),

Θ(x, ξ, y) : = Φ(x, y)−Φ(ξ, y) = Λ(x)−Λ(ξ)−Λµ(x−y)+Λµ(ξ−y),

ψq,r(x, ξ, y) : =ϕq(Υ(x, y))ϕq(Υ(ξ, y))ψ(�−12−qΥ(x, y)−r)ψ(�−12−qΥ(ξ, y)−r)ϕk(y)2.

Let ω :=x−ξ. As in the proof of Lemma 6.1, the main claim is that

if |ω|>L := 22δ2m(2p−q+2j−q−m+2−q−2m/3), then |K(x, ξ)|. 2−4m. (6.31)

The same argument as in Step 1 in the proof of Lemma 6.1, using (6.27), shows that

this claim suffices. Moreover, this claim can be proved using integration by parts, as in

Step 2 in the proof of Lemma 6.1. The desired bound (6.29) follows.

Case 2: q>−D1. There is one new issue in this case, namely when the angular

parameter 2l is very small and bounds like (6.26) fail. As in the proof of Lemma 6.2, we

also need to modify the main decomposition (6.20). Let

Lx0,j,l
p,k,q f(x) : =ϕ6−D(x−x0)

∫
R2

eisΦ(x,y)χ(2−pΦ(x, y))

×ϕq(Υ(x, y))ϕk(y)a+

j,l(x, y)f(y) dy.
(6.32)

Here x0∈R2, |x0|>2−110, and the localization factor on x−x0 leads to a good upper

bound on |x−ξ| in the TT ∗ argument below. It remains to prove that, if q>−D1, then

‖Lx0,j,l
p,k,q ‖L2

!L2 . 2δ
2l2−δ

2j230δm(2(3/2)p+2p−m/3). (6.33)

Step 1. We start with a Schur bound. For x∈R2 with |x|∈[2−120, 2D1+10] let

S1
p,q,l(x) : =

{
z :
∣∣|z|−γ1

∣∣6 2−D+1, |Φ(x, x−z)|6 2p+1,

|Υ(x, x−z)| ∈ [2q−2, 2q+2], and z ·x⊥ ∈ [2l−2, 2l+2]
}
.

(6.34)

The condition |Υ(x, x−z)|>2−D1−4 shows that

|∇z(Φ(x, x−z))| ∈ [2−4D1 , 2D1 ] for z ∈S1
p,q,l(x).

Formula (6.24) shows that

|{θ : z= (% cos θ, % sin θ)∈S1
p,q,l(x)}|. 2p−l. (6.35)
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Moreover, we claim that, for any x,

|S1
p,q,l(x)|. 2p+l. (6.36)

Indeed, this follows from (6.35) if l>−D. On the other hand, if l6−D then

∂θ(Φ(x, x−z))6 2−D/2

(due to (6.24)), so

∂%(Φ(x, x−z))> 2−5D1

(due to the inequality |∇z(Φ(x, x−z))|∈[2−4D1 , 2D1 ]). Recalling also (6.16), it follows

from these last two bounds that∫
R2

|χ(2−pΦ(x, y))ϕq(Υ(x, y))ϕk(y)a+

j,l(x, y)| dy.min(26δj2p+l, 2−j+55δj2p−l) (6.37)

if |x|∈[2−120, 2D1+10]. In particular, the integral is also bounded by C2p2−j/2+31δj . The

integral in x, keeping y fixed, can be estimated in a similar way. The desired bound

(6.33) follows unless

j6min
(

2
3m,−p

)
−D and l>max

(
1
2p,−

1
3m
)
+D. (6.38)

Step 2. Assuming (6.38), we use the TT ∗ argument and Schur’s test. It suffices to

show that

sup
x

∫
R2

|K(x, ξ)| dξ. 255δm(23p+22p−2m/3) (6.39)

for p, k, q, x0, j, and l fixed, where Θ(x, ξ, y)=Φ(x, y)−Φ(ξ, y) and

K(x, ξ) :=ϕ6−D(x−x0)ϕ6−D(ξ−x0)

∫
R2

eisΘ(x,ξ,y)χ(2−pΦ(x, y))χ(2−pΦ(ξ, y))

×ϕq(Υ(x, y))ϕq(Υ(ξ, y))ϕk(y)2a+

j,l(x, y)a+

j,l(ξ, y) dy.

(6.40)

Let ω=x−ξ. As before, the main claim is that

if |ω|>L := 22δ2m(2p+2j−m+2−2m/3), then |K(x, ξ)|. 2−4m. (6.41)

To see that this claim suffices, we use an argument similar to the one in Step 1 in

the proof of Lemma 6.1. Indeed, up to acceptable errors, the left-hand side of (6.39) is

bounded by

C‖a+

j,l‖L∞ sup
|x−x0|62−D+2

∫
R2

|a+

j,l(x, y)|χ(2−pΦ(x, y))ϕq(Υ(x, y))

×
(∫
|ω|6L

|χ(2−pΦ(x−ω, y))| dω
)
dy.

(6.42)
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Notice that, if |Υ(x, y)|>2−D1−2, then |(∇xΦ)(x, y)|>2−4D1 , and thus

|(∇wΦ)(x−w, y)|> 2−4D1−1

if |ω|6L62−D. Therefore, the integral in ω in the expression above is bounded by C2pL.

Using also (6.37), the expression in (6.42) is bounded by

C26δj2pL2p2−j/2+32δj . 2δm23p+240δm22p+j/2−m+2δm22p−2m/3.

The desired bound (6.39) follows using also that j6 2
3m; see (6.38).

The claim (6.41) follows by the same integration-by-part argument as in Step 2 in the

proof of Lemma 6.1, once we recall that |(∇xΦ)(x, y)|>2−4D1 and |(∇yΦ)(x, y)|>2−4D1 in

the support of the integral, while |ω|62−D+4. This completes the proof of the lemma.

7. Dispersive analysis I: Setup and the main proposition

7.1. The Duhamel formula and the main proposition

In this section we start the proof of Proposition 2.3. With U=〈∇〉h+i|∇|1/2φ, assume

that U is a solution of the equation

(∂t+iΛ)U =N2+N3+N>4 (7.1)

on some time interval [0, T ], T>1, where N2 is a quadratic non-linearity in U and 	U , N3

is a cubic non-linearity, and N>4 is a higher-order non-linearity. Such an equation will

be verified below (see §C.2) starting from the main system (2.1) and using the expansion

of the Dirichlet–Neumann operator in §B.1. The non-linearity N2 is of the form

N2 =
∑

µ,ν∈{+,−}

Nµν(Uµ,Uν),

(FNµν(f, g))(ξ) =

∫
R2

mµν(ξ, η)f̂(ξ−η)ĝ(η) dη,

(7.2)

where U+=U and U−=	U . The cubic non-linearity is of the form

N3 =
∑

µ,ν,β∈{+,−}

Nµνβ(Uµ,Uν ,Uβ),

(FNµνβ(f, g, h))(ξ) =

∫
R2×R2

nµνβ(ξ, η, σ)f̂(ξ−η)ĝ(η−σ)ĥ(σ) dη dσ.

(7.3)

The multipliers mµν and nµνβ satisfy suitable symbol-type estimates. We define the

profiles Vσ(t)=eitΛσUσ(t), σ∈{+,−}, as in (1.11). The Duhamel formula is

(∂tV̂)(ξ, s) = eisΛ(ξ)N̂2(ξ, s)+eisΛ(ξ)N̂3(ξ, s)+eisΛ(ξ)N̂>4(ξ, s), (7.4)
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or, in integral form,

V̂(ξ, t) = V̂(ξ, 0)+Ŵ2(ξ, t)+Ŵ3(ξ, t)+

∫ t

0

eisΛ(ξ)N̂>4(ξ, s) ds, (7.5)

where, with the definitions in (2.13),

Ŵ2(ξ, t) :=
∑

µ,ν∈{+,−}

∫ t

0

∫
R2

eisΦ+µν(ξ,η)mµν(ξ, η)V̂µ(ξ−η, s)V̂ν(η, s) dη ds, (7.6)

Ŵ3(ξ, t) :=
∑

µ,ν,β∈{+,−}

∫ t

0

∫
R2×R2

eisΦ̃+µνβ(ξ,η,σ)nµνβ(ξ, η, σ)

×V̂µ(ξ−η, s)V̂ν(η−σ, s)V̂β(σ, s) dη dσ ds.

(7.7)

The vector field Ω acts on the quadratic part of the non-linearity according to the

identity

ΩξN̂2(ξ, s) =
∑

µ,ν∈{+,−}

∫
R2

(Ωξ+Ωη)(mµν(ξ, η)Ûµ(ξ−η, s)Ûν(η, s)) dη.

A similar formula holds for ΩξN̂3(ξ, s). Therefore, for 16a6N1, letting

mbµν := (Ωξ+Ωη)bmµν and nbµνβ := (Ωξ+Ωη+Ωσ)bnµνβ ,

we have

Ωaξ (∂tV̂)(ξ, s) = eisΛ(ξ)ΩaξN̂2(ξ, s)+eisΛ(ξ)ΩaξN̂3(ξ, s)+eisΛ(ξ)ΩaξN̂>4(ξ, s), (7.8)

where

eisΛ(ξ)ΩaξN̂2(ξ, s) =
∑

µ,ν∈{+,−}

∑
a1+a2+b=a

∫
R2

eisΦ+µν(ξ,η)mbµν(ξ, η)

×(Ωa1 V̂µ)(ξ−η, s)(Ωa2 V̂ν)(η, s) dη

(7.9)

and

eisΛ(ξ)ΩaξN̂3(ξ, s) =
∑

µ,ν,β∈{+,−}

∑
a1+a2+a3+b=a

∫
R2×R2

eisΦ̃+µνβ(ξ,η,σ)nbµνβ(ξ, η, σ)

×(Ωa1 V̂µ)(ξ−η, s)(Ωa2 V̂ν)(η−σ, s)(Ωa3 V̂β)(σ, s) dη dσ.

(7.10)

To state our main proposition, we need to make suitable assumptions on the non-

linearities N2, N3, and N>4. Recall the class of symbols S∞ defined in (A.5).
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• Concerning the multipliers defining N2, we assume that (Ωξ+Ωη)m(ξ, η)≡0 and

‖mk,k1,k2‖S∞ . 2k2min(k1,k2)/2,

‖Dα
ηm

k,k1,k2‖L∞ .|α| 2
(|α|+3/2) max(|k1|,|k2|),

‖Dα
ξm

k,k1,k2‖L∞ .|α| 2
(|α|+3/2) max(|k|,|k1|,|k2|),

(7.11)

for any k, k1, k2∈Z and m∈{mµν :µ, ν∈{+,−}}, where

mk,k1,k2(ξ, η) :=m(ξ, η)ϕk(ξ)ϕk1
(ξ−η)ϕk2

(η).

• Concerning the multipliers definingN3, we assume that (Ωξ+Ωη+Ωσ)n(ξ, η, σ)≡0

and

‖nk,k1,k2,k3‖S∞ . 2min(k,k1,k2,k3)/223 max(k,k1,k2,k3,0),

‖Dα
η,σn

k,k1,k2,k3;l‖L∞ .|α| 2
|α|max(|k1|,|k2|,|k3|,|l|)2(7/2) max(|k1|,|k2|,|k3|),

‖Dα
ξ n

k,k1,k2,k3‖L∞ .|α| 2
(|α|+7/2) max(|k|,|k1|,|k2|,|k3|),

(7.12)

for any k, k1, k2, k3, l∈Z and n∈{nµνβ :µ, ν∈{+,−}}, where

nk,k1,k2,k3(ξ, η, σ) : =n(ξ, η, σ)ϕk(ξ)ϕk1(ξ−η)ϕk2(η−σ)ϕk3(σ),

nk,k1,k2,k3;l(ξ, η, σ) : =n(ξ, η, σ)ϕk(ξ)ϕk1(ξ−η)ϕk2(η−σ)ϕk3(σ)ϕl(η).

Our main result is the following.

Proposition 7.1. Assume that U is a solution of the equation

(∂t+iΛ)U =N2+N3+N>4, (7.13)

on some time interval [0, T ], T>1, with initial data U0. Define, as before, V(t)=eitΛU(t)

and V0=U0. With δ as in Definition 2.5, assume that

‖U0‖HN0∩HN1,N3
Ω

+‖V0‖Z 6 ε0� 1 (7.14)

and

(1+t)−δ
2

‖U(t)‖
HN0∩HN1,N3

Ω
+‖V(t)‖Z 6 ε1� 1,

(1+t)2‖N>4(t)‖
HN0−N3∩HN1,0

Ω
+(1+t)1+δ2

‖eitΛN>4(t)‖Z 6 ε2
1,

(7.15)

for all t∈[0, T ]. Moreover, assume that the non-linearities N2 and N3 satisfy (7.2)–(7.3)

and (7.11)–(7.12). Then, for any t∈[0, T ],

‖V(t)‖Z . ε0+ε2
1. (7.16)

We will show in §C.2 below how to use this proposition and a suitable expansion of

the Dirichlet–Neumann operator to complete the proof of Proposition 2.3.
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7.2. Some lemmas

In this subsection we collect several important lemmas which are used often in the proofs

in the next two sections. Let Φ=Φσµν be as in (2.13).

7.2.1. Integration by parts

In this subsection we state two lemmas that are used in the paper in integration-by-part

arguments. We start with an oscillatory integral estimate. See [42, Lemma 5.4] for the

proof of (i), and the proof of (ii) is similar.

Lemma 7.2. (i) Assume that 0<ε61/ε6K, N>1 is an integer, and f, g∈CN (R2).

Then, ∣∣∣∣∫
R2

eiKfg dx

∣∣∣∣.N (Kε)−N
( ∑
|α|6N

ε|α|‖Dα
x g‖L1

)
, (7.17)

provided that f is real-valued,

|∇xf |>1supp g, and ‖Dα
xf ·1supp g‖L∞ .N ε

1−|α|, 26 |α|6N+1. (7.18)

(ii) Similarly, if 0<%61/%6K, then∣∣∣∣∫
R2

eiKfg dx

∣∣∣∣.N (K%)−N
( ∑
m6N

%m‖Ωmg‖L1

)
, (7.19)

provided that f is real-valued,

|Ωf |>1supp g, and ‖Ωmf ·1supp g‖L∞ .N %
1−m, 26m6N+1. (7.20)

We will need another result about integration by parts using the vector field Ω. This

lemma is more subtle. It is needed many times in the next two sections to localize and

then estimate bilinear expressions. The point is to be able to take advantage of the fact

that our profiles are “almost radial” (due to the bootstrap assumption involving many

copies of Ω), and prove that for such functions one has better localization properties than

for general functions.

Lemma 7.3. Assume that N>100, m>0, p, k, k1, k2∈Z,

2−k1 6 22m/5, 2max(k,k1,k2) 6U 6U2 6 2m/10, and U2+23|k1|/2 6 2p+m/2. (7.21)

For some A>max(1, 2−k1), assume that

sup
06a6100

(‖Ωag‖L2 +‖Ωaf‖L2)+ sup
|α|6N

A−|α|‖Dαf‖L2 6 1,

sup
ξ,η

sup
|α|6N

(2−m/2|η|)|α||Dα
ηm(ξ, η)|6 1.

(7.22)
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Fix ξ∈R2 and let, for t∈[2m−1, 2m+1],

Ip(f, g) :=

∫
R2

eitΦ(ξ,η)m(ξ, η)ϕp(ΩηΦ(ξ, η))ϕk(ξ)ϕk1(ξ−η)ϕk2(η)f(ξ−η)g(η) dη.

If 2p6U2|k1|/2+100 and A62mU−2, then

|Ip(f, g)|.N (2p+m)−NU2N [2m/2+A2p]N+2−10m. (7.23)

In addition, assuming that
(
1+ 1

4δ
)
ν>−m, the same bound holds when Ip is replaced by

Ĩp(f, g) : =

∫
R2

eitΦ(ξ,η)ϕν(Φ(ξ, η))m(ξ, η)ϕp(ΩηΦ(ξ, η))

×ϕk(ξ)ϕk1
(ξ−η)ϕk2

(η)f(ξ−η)g(η) dη.

A slightly simpler version of this integration by parts lemma was used recently in

[30]. The main interest of this lemma is that we have essentially no assumption on g and

very mild assumptions on f .

Proof of Lemma 7.3. We decompose first

f =R6m/10f+[I−R6m/10]f and g=R6m/10g+[I−R6m/10]g,

where the operators R6L are defined in polar coordinates by

(R6Lh)(r cos θ, r sin θ) :=
∑
n∈Z

ϕ6L(n)hn(r)einθ if h(r cos θ, r sin θ) :=
∑
n∈Z

hn(r)einθ.

(7.24)

Since Ω corresponds to d/dθ in polar coordinates, using (7.22) we have,

‖[I−R6m/10]f‖L2 +‖[I−R6m/10]g‖L2 . 2−10m.

Therefore, using the Hölder inequality,

|Ip([I−R6m/10]f, g)|+|Ip(R6m/10f, [I−R6m/10]g)|. 2−10m.

It remains to prove a similar inequality for Ip :=Ip(f1, g1), where

f1 :=ϕ[k1−2,k1+2]R6m/10f and g1 :=ϕ[k2−2,k2+2]R6m/10g.

It follows from (7.22) and the definitions that

‖Ωag1‖L2 .a 2am/10 and ‖ΩaDαf1‖L2 .a 2am/10A|α|, (7.25)
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for any a>0 and |α|6N . Integration by parts gives

Ip = cϕk(ξ)

∫
R2

eitΦ(ξ,η)Ωη

(
m(ξ, η)ϕk1

(ξ−η)ϕk2
(η)

tΩηΦ(ξ, η)
ϕp(ΩηΦ(ξ, η))f1(ξ−η)g1(η)

)
dη.

Iterating N times, we obtain an integrand made of a linear combination of terms like

eitΦ(ξ,η)ϕk(ξ)

(
1

tΩηΦ(ξ, η)

)N
Ωa1
η (m(ξ, η)ϕk1(ξ−η)ϕk2(η))

×Ωa2
η f1(ξ−η)·Ωa3

η g1(η)·Ωa4
η ϕp(ΩηΦ(ξ, η))·

Ωa5+1
η Φ

ΩηΦ
...

Ω
aq+1
η Φ

ΩηΦ
,

where
∑
i ai=N . The desired bound follows from the pointwise bounds

|Ωaη{m(ξ, η)ϕk1
(ξ−η)ϕk2

(η)}|. 2am/2,

|Ωaηϕp(ΩηΦ(ξ, η))|+
∣∣∣∣Ωa+1

η Φ

ΩηΦ

∣∣∣∣.U2a2am/2,
(7.26)

which hold in the support of the integral, and the L2 bounds

‖Ωaηg1(η)‖L2 . 2am/4,

‖Ωaηf1(ξ−η)ϕk(ξ)ϕ[k2−2,k2+2](η)ϕ6p+2(ΩηΦ(ξ, η))‖L2
η
.U2a(2m/2+A2p)a.

(7.27)

The first bound in (7.26) is direct (see (7.21)). For the second bound we notice that

Ωη(ξ ·η⊥) =−ξ ·η, Ωη(ξ ·η) = ξ ·η⊥, ΩηΦ(ξ, η) =
λ′µ(|ξ−η|)
|ξ−η|

(ξ ·η⊥),

|ΩaηΦ(ξ, η)|.λ(|ξ−η|)(|ξ−η|−2a|ξ ·η⊥|a+|ξ−η|−aUa).

(7.28)

Since λ′(|ξ−η|)≈2|k1|/2 in the support of the integral, we have

|ξ−η|−2|ξ ·η⊥| ≈ 2p2−k1−|k1|/2.

The second bound in (7.26) follows, once we recall the assumptions in (7.21).

We now turn to the proof of (7.27). The first bound follows from the construction

of g1. For the second bound, if 2p&2|k1|/2+min(k,k2), then we have the simple bound

‖Ωaηf1(ξ−η)ϕk(ξ)ϕ[k2−2,k2+2](η)‖L2
η
. (A2min(k,k2)+2m/10)a,

which suffices. On the other hand, if 2p�2|k1|/2+min(k,k2), then we may assume that

ξ=(s, 0), with s≈2k. The identities (7.28) show that ϕ6p+2(ΩηΦ(ξ, η)) 6=0 only if

|ξ ·η⊥|6 2p+202k1−|k1|/2,
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which gives

|η2|6 2p+302k1−|k1|/22−k.

Therefore |η2|�2k1 , so we may assume that |η1−s|≈2k1 .

We now write

−Ωηf1(ξ−η) = (η1∂2f1−η2∂1f1)(ξ−η) =
η1

s−η1
(Ωf1)(ξ−η)− sη2

s−η1
(∂1f1)(ξ−η).

By iterating this identity, we see that Ωaηf1(ξ−η) can be written as a sum of terms of

the form

P (s, η)

(
1

s−η1

)c+d+e(
sη2

s−η1

)|b|−d
(DbΩcf1)(ξ−η),

where |b|+c+d+e6a, |b|, c, d, e∈Z+, |b|>d, and P (s, η) is a polynomial of degree at most

a in s and at most a in (η1, η2). The second bound in (7.27) follows using the bounds on

f1 in (7.25) and the bounds proved earlier: |sη2|.2p2k1−|k1|/2 and |η1−s|≈2k1 .

The last claim follows using formula (7.30), as in Lemma 7.4 below.

7.2.2. Localization in modulation

Our lemma in this subsection shows that localization with respect to the phase is often

a bounded operation.

Lemma 7.4. Let s∈[2m−1, 2m+1], m>0, and −p6m−2δ2m. Let Φ=Φσµν be as in

(2.13) and assume that 1
2 =1/q+1/r and χ is a Schwartz function. Then, if ‖m‖S∞61,∥∥∥∥ϕ610m(ξ)

∫
R2

eisΦ(ξ,η)m(ξ, η)χ(2−pΦ(ξ, η))f̂(ξ−η)ĝ(η) dη

∥∥∥∥
L2
ξ

. sup
|%|62−p+δ2m

‖e−i(s+%)Λµf‖Lq ‖e−i(s+%)Λνg‖Lr+2−10m ‖f‖L2 ‖g‖L2 ,
(7.29)

where the constant in the inequality only depends on the function χ.

Proof. We may assume that m>10 and use the Fourier transform to write

χ(2−pΦ(ξ, η)) = c

∫
R
ei%2

−pΦ(ξ,η)χ̂(%) d%. (7.30)

The left-hand side of (7.29) is dominated by

C

∫
R
|χ̂(%)|

∥∥∥∥ϕ610m(ξ)

∫
R2

ei(s+2−p%)Φ(ξ,η)m(ξ, η)f̂(ξ−η)ĝ(η) dη

∥∥∥∥
L2
ξ

d%.

Using (A.2), the contribution of the integral over |%|62δ
2m is dominated by the first

term in the right-hand side of (7.29). The contribution of the integral over |%|>2δ
2m is

arbitrarily small and is dominated by the second term in the right-hand side of (7.29).
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7.2.3. Linear estimates

We first note the straightforward estimates

‖Pkf‖L2 .min(2(1−50δ)k, 2−Nk)‖f‖Z1∩HN for N > 0. (7.31)

We now prove several linear estimates for functions in Z1∩HN
Ω . As in Lemma 7.3, it

is important to take advantage of the fact that our functions are “almost radial”. The

bounds we prove here are much stronger than the bounds one would normally expect for

general functions with the same localization properties, and this is important in the next

two sections.

Lemma 7.5. Assume that N>10 and

‖f‖Z1
+ sup
k∈Z
a6N

‖ΩaPkf‖L2 6 1. (7.32)

Let δ′ :=50δ+1/2N . For any (k, j)∈J and n∈{0, ..., j+1} let (recall the notation (2.9))

fj,k :=P[k−2,k+2]Qjkf and f̂j,k,n(ξ) :=ϕ
[−j−1,0]
−n (2100(|ξ|−γ1))f̂j,k(ξ). (7.33)

For any ξ0∈R2\{0} and �, %∈[0,∞) let R(ξ0;�, %) denote the rectangle

R(ξ0;�, %) :=

{
ξ ∈R2 :

∣∣∣∣ (ξ−ξ0)·ξ0
|ξ0|

∣∣∣∣6 % and

∣∣∣∣ (ξ−ξ0)·ξ⊥0
|ξ0|

∣∣∣∣6�}. (7.34)

(i) Then, for any (k, j)∈J , n∈[0, j+1], and �, %∈(0,∞) satisfying �+%62k−10,∥∥∥sup
θ∈S1

|f̂j,k,n(rθ)|
∥∥∥
L2(r dr)

. 2(1/2−49δ)n−(1−δ′)j , (7.35)

∫
R2

|f̂j,k,n(ξ)|1R(ξ0;�,%)(ξ) dξ.�2−j+δ
′j2−49δn min(1, 2n%2−k)1/2, (7.36)

‖f̂j,k,n‖L∞ .

{
2(δ+(1/2N))n2−(1/2−δ′)(j−n), if |k|6 10,

2−δ
′k2−(1/2−δ′)(j+k), if |k|> 10,

(7.37)

and

‖Dβ f̂j,k,n‖L∞ .|β|

{
2|β|j2(δ+1/2N)n2−(1/2−δ′)(j−n), if |k|6 10,

2|β|j2−δ
′k2−(1/2−δ′)(j+k), if |k|> 10.

(7.38)

(ii) (Dispersive bounds) If m>0 and |t|∈[2m−1, 2m+1], then

‖e−itΛfj,k,n‖L∞ . ‖f̂j,k,n‖L1 . 2k2−j+50δj2−49δn, (7.39)

‖e−itΛfj,k,0‖L∞ . 23k/22−m+50δj , if |k|> 10. (7.40)
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Recall the operators An,γ0
defined in (2.17). If j6(1−δ2)m+ 1

2 |k| and |k|+D6 1
2m, then

we have the more precise bounds

‖e−itΛA60,γ0
fj,k,n‖L∞ .

{
2−m+2δ2m2−(j−n)(1/2−δ′)2n(δ+1/2N), if n> 1,

2−m+2δ2m2k2−(1/2−δ′)j , if n= 0.
(7.41)

Moreover, for l>1,

‖e−itΛAl,γ0fj,k,0‖L∞ .

{
2−m+2δ2m2δ

′j2m/2−j/2−l/2−max(j,l)/2, if 2l+max(j, l)>m,

2−m+2δ2m2δ
′j2(l−j)/2, if 2l+max(j, l)6m.

(7.42)

In particular, if j6(1−δ2)m+ 1
2 |k| and |k|+D6 1

2m, then

‖e−itΛA60,γ0
fj,k‖L∞ . 2−m+2δ2m2k2j(δ+1/2N),∑

l>1

‖e−itΛAl,γ0fj,k‖L∞ . 2−m+2δ2m2δ
′j2(m−3j)/6. (7.43)

For all k∈Z we have the bounds

‖e−itΛA60,γ0
Pkf‖L∞ . (2k/2+22k)2−m(251δm+2m(2δ+1/2N)),

‖e−itΛA>1,γ0Pkf‖L∞ . 2−5m/6+2δ2m.
(7.44)

Proof. (i) The hypothesis gives

‖fj,k,n‖L2 . 2(1/2−49δ)n−(1−50δ)j and ‖ΩNfj,k,n‖L2 . ‖ΩNPkf‖L2 . 1. (7.45)

The bounds (7.35) follow using the general interpolation inequality∥∥∥sup
θ∈S1

|h(rθ)|
∥∥∥
L2(r dr)

.L1/2‖h‖L2 +L1/2−N‖ΩNh‖L2 , (7.46)

for any h∈L2(R2) and L>1, which easily follows using the operators R6L defined in

(7.24).

Inequality (7.36) follows from (7.35). Indeed, the left-hand side is dominated by

C(�2−k) sup
θ∈S1

∫
R
|f̂j,k,n(rθ)|1R(ξ0;�,%)(rθ)r dr

. sup
θ∈S1

‖f̂j,k,n(rθ)‖L2(r dr)(�2−k)(2k min(%, 2k−n))1/2,

which gives the desired result.

We now consider (7.37). For any fixed θ∈S1 we have

‖f̂j,k,n(rθ)‖L∞ . 2j/2‖f̂j,k,n(rθ)‖L2(dr)+2−j/2‖(∂rf̂j,k,n)(rθ)‖L2(dr)

. 2j/22−k/2‖f̂j,k,n(rθ)‖L2(r dr),
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using the support property of Qjkf in the physical space. The desired bound follows

using (7.35) and the observation that f̂j,k,n=0 unless n=0 or k∈[−10, 10]. The bound

(7.38) also follows since differentiation in the Fourier space essentially corresponds to

multiplication by factors of 2j , due to space localization.

(ii) The bound (7.39) follows directly from Hausdorff–Young and (7.45). To prove

(7.40), if |k|>10 then the standard dispersion estimate∣∣∣∣∫
R2

e−itλ(|ξ|)ϕk(ξ)eix·ξ dξ

∣∣∣∣. 22k(1+|t|2k+|k|/2)−1 (7.47)

gives

‖e−itΛfj,k,n‖L∞ .
22k

1+|t|2k/2
‖fj,k,n‖L1 .

22k

1+|t|2k/2
250δj . (7.48)

The bound (7.40) follows (in case m610 and k>0, one can use (7.39)).

We now prove (7.41). The operator A60,γ0 is important here, because the function

λ has an inflection point at γ0; see (10.3). Using Lemma 7.2 (i) and the observation that

|(∇Λ)(ξ)|≈2|k|/2 if |ξ|≈2k, it is easy to see that

|(e−itΛA60,γ0
fj,k,n)(x)|. 2−10m unless |x| ≈ 2m+|k|/2.

Also, letting f ′j,k,n :=R6m/5fj,k,n (see (7.24)), we have ‖fj,k,n−f ′j,k,n‖L2.2−mN/5, and

thus

‖e−itΛA60,γ0(fj,k,n−f ′j,k,n)‖L∞ . ‖f̂j,k,n−f̂ ′j,k,n‖L1 . 2−2m2k. (7.49)

On the other hand, if |x|≈2m+|k|/2 then, using again Lemma 7.2 and (7.38),

(e−itΛA60,γ0f
′
j,k,n)(x)

=C

∫
R2

eiΨ(ξ)ϕ(�−1
r ∇ξΨ)ϕ(�−1

θ ΩξΨ)f̂ ′j,k,n(ξ)ϕ>−100(|ξ|−γ0) dξ+O(2−10m),
(7.50)

where

Ψ : =−tΛ(ξ)+x·ξ,

�r : = 2δ
2m(2(m+|k|/2−k)/2+2j),

�θ : = 2δ
2m2(m+k+|k|/2)/2.

(7.51)

We notice that the support of the integral in (7.50) is contained in a �×% rectangle

in the direction of the vector x, where

%.
�r

2m+|k|/2−k , �.
�θ

2m+|k|/2 , and �. %.
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This is because the function λ′′ does not vanish in the support of the integral, and so

λ′′(|ξ|)≈2|k|/2−k. Therefore, we can estimate the contribution of the integral in (7.50)

using either (7.36) or (7.37). More precisely, if j6 1
2

(
m+ 1

2 |k|−k
)
, then we use (7.37),

while if j> 1
2

(
m+ 1

2 |k|−k
)
, then we use (7.36) (and estimate min(1, 2n%2−k)62n%2−k);

in both cases the desired estimate follows.

We now prove (7.42). We may assume that |k|610 and m>D. As before, we may

assume that |x|≈2m and replace fj,k,0 by f ′j,k,0. As in (7.50), we have

(e−itΛAl,γ0
fj,k,0)(x)

=C

∫
R2

eiΨ(ξ)ϕ(2−m/2−δ
2mΩξΨ)f̂ ′j,k,0(ξ)ϕ−l−100(|ξ|−γ0) dξ+O(2−2m),

(7.52)

where Ψ is as in (7.51). The support of the integral above is contained in a �×% rectangle

in the direction of the vector x, where %.2−l and �.2−m/2+δ2m. Since

|f̂ ′j,k,0(ξ)|. 2−j/2+δ′j

in this rectangle (see (7.37)), the bound in the first line of (7.42) follows if l>j. On the

other hand, if l6j then we use (7.36) to show that the absolute value of the integral in

(7.52) is dominated by C2−j+δ
′j
�%1/2, which gives again the bound in the first line of

(7.42).

It remains to prove the stronger bound in the second line of (7.42) in the case

2l+max(j, l)6m. We notice that λ′′(|ξ|)≈2−l in the support of the integral. Assume

that x=(x1, 0), with x1≈2m, and notice that we can insert an additional cutoff function

of the form

ϕ[�−1
r (x1−tλ′(|ξ1|) sgn (ξ1))], where �r := 2δ

2m(2(m−l)/2+2j+2l),

in the integral in (7.52), at the expense of an acceptable error. This can be verified using

Lemma 7.2 (i). The support of the integral is then contained in a �×% rectangle in the

direction of the vector x, where %.�r2−m2l and �.2−m/2+δ2m. The desired estimate

then follows as before, using the L∞ bound (7.37) if 2j6m−l and the integral bound

(7.36) if 2j>m−l.
The bounds in (7.43) follow from (7.41) and (7.42) by summation over n and l,

respectively. Finally, the bounds in (7.44) follow by summation (use (7.39) if j>(1−δ2)m

or m64D, use (7.40) if j6(1−δ2)m and |k|>10, and use (7.43) if j6(1−δ2)m and

|k|610).

Remark 7.6. We notice that we also have the bound (with no loss of 22δ2m)

‖e−itΛA60,γ0
fj,k,0‖L∞ . 2−m2k2−(1/2−δ′−δ)j , (7.53)
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provided that j6(1−δ2)m+ 1
2 |k| and |k|+D6 1

2m. Indeed, this follows from (7.41) if

j> 1
10m. On the other hand, if j6 1

10m, then we can decompose (compare with (7.50)),

(e−itΛA60,γ0
fj,k,0)(x) =

∑
p>0

C

∫
R2

eiΨ(ξ)ϕ[0,∞)
p (�−1∇ξΨ)f̂j,k,0(ξ)ϕ>−100(|ξ|−γ0) dξ,

where � :=2(m+|k|/2−k)/2. The contribution of p=0 is estimated as before, using (7.37),

while for p>1 we can first integrate by parts at most three times, and then estimate the

integral in the same way.

8. Dispersive analysis II: The function ∂tV

In this section we prove several lemmas describing the function ∂tV. These lemmas rely

on the Duhamel formula (7.8),

Ωaξ (∂tV̂)(ξ, s) = eisΛ(ξ)ΩaξN̂2(ξ, s)+eisΛ(ξ)ΩaξN̂3(ξ, s)+eisΛ(ξ)ΩaξN̂>4(ξ, s), (8.1)

where

eisΛ(ξ)ΩaξN̂2(ξ, s)

=
∑

µ,ν∈{+,−}

∑
a1+a2=a

∫
R2

eisΦ+µν(ξ,η)mµν(ξ, η)(Ωa1 V̂µ)(ξ−η, s)(Ωa2 V̂ν)(η, s) dη
(8.2)

and

eisΛ(ξ)ΩaξN̂3(ξ, s)

=
∑

µ,ν,β∈{+,−}

∑
a1+a2+a3=a

∫
R2×R2

eisΦ̃+µνβ(ξ,η,σ)nµνβ(ξ, η, σ)

×(Ωa1 V̂µ)(ξ−η, s)(Ωa2 V̂ν)(η−σ, s)(Ωa3 V̂β)(σ, s) dη dσ.

(8.3)

Recall also the assumptions on the non-linearity N>4 and the profile V (see (7.15)),

‖V(t)‖
HN0∩HN1,N3

Ω
6 ε1(1+t)δ

2

, ‖V(t)‖Z 6 ε1,

‖N>4(t)‖
HN0−N3∩HN1

Ω
. ε2

1(1+t)−2,
(8.4)

and the symbol-type bounds (7.11) on the multipliers mµν . Given Φ=Φσµν as in (2.13),

let

Ξ= Ξµν(ξ, η) := (∇ηΦσµν)(ξ, η) = (∇Λµ)(ξ−η)−(∇Λν)(η), Ξ:R2×R2−!R2,

Θ= Θµ(ξ, η) := (ΩηΦσµν)(ξ, η) =
λ′µ(|ξ−η|)
|ξ−η|

(ξ ·η⊥), Θ:R2×R2−!R.
(8.5)

In this section we prove three lemmas describing the function ∂tV.
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Lemma 8.1. (i) Assume (8.1)–(8.4), m>0, s∈[2m−1, 2m+1], k∈Z, and σ∈{+,−}.
Then,

‖(∂tVσ)(s)‖
HN0−N3∩HN1

Ω
. ε2

12−5m/6+6δ2m, (8.6)

sup
a6N1/2+20

2a+|α|6N1+N4

‖e−isΛσPkDαΩa(∂tVσ)(s)‖L∞ . ε2
12−5m/3+6δ2m. (8.7)

(ii) In addition, if a6 1
2N1+20 and 2a+|α|6N1+N4, then we may decompose

PkD
αΩa(∂tVσ) = ε2

1

∑
a1+a2=a
α1+α2=α

µ,ν∈{+,−}

∑
[(k1,j1),(k2,j2)]∈Xm,k

Aa1,α1;a2,α2

k;k1,j1;k2,j2
+ε2

1PkE
a,α
σ , (8.8)

where

‖PkEa,ασ (s)‖L2 . 2−3m/2+5δm. (8.9)

Moreover, with m+µν(ξ, η):=mµν(ξ, η) and m−µν(ξ, η):=m(−µ)(−ν)(−ξ,−η), we have

F{Aa1,α1;a2,α2

k;k1,j1;k2,j2
}(ξ, s) :=

∫
R2

eisΦ(ξ,η)mσµν(ξ, η)ϕk(ξ)f̂µj1,k1
(ξ−η, s)f̂νj2,k2

(η, s) dη, (8.10)

where

fµj1,k1
= ε−1

1 P[k1−2,k1+2]Qj1k1D
α1Ωa1Vµ and fνj2,k2

= ε−1
1 P[k2−2,k2+2]Qj2k2

Dα2Ωa2Vν .

Let N ′0=N1−N4=1/δ. The sets Xm,k and the functions Aa1,α1;a2,α2

k;k1,j1;k2,j2
have the following

properties:

(1) Xm,k=∅, unless m>D2, k∈
[
− 3

4m,m/N
′
0

]
, and

Xm,k ⊆
{

[(k1, j1), (k2, j2)]∈J ×J : k1, k2 ∈
[
− 3

4m,m/N
′
0

]
, max(j1, j2)6 2m

}
. (8.11)

(2) If [(k1, j1), (k2, j2)]∈Xm,k and min(k1, k2)6−2m/N ′0, then

max(j1, j2)6 (1−δ2)m−|k|, max(|k1−k|, |k2−k|)6 100, µ= ν, (8.12)

and

‖Aa1,α1;a2,α2

k;k1,j1;k2,j2
(s)‖L2 . 22k2−m+6δ2m. (8.13)

(3) If [(k1, j1), (k2, j2)]∈Xm,k, min(k1, k2)>−5m/N ′0, k6min(k1, k2)−200, then

max(j1, j2)6 (1−δ2)m−|k|, max(|k1|, |k2|)6 10, µ=−ν, (8.14)
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and

‖Aa1,α1;a2,α2

k;k1,j1;k2,j2
(s)‖L2 . 2k2−m+4δm. (8.15)

(4) If [(k1, j1), (k2, j2)]∈Xm,k and min(k, k1, k2)>−6m/N ′0, then

either j1 6 5
6m or |k1|6 10, (8.16)

either j2 6 5
65m or |k2|6 10, (8.17)

and

min(j1, j2)6 (1−δ2)m. (8.18)

Moreover,

‖Aa1,α1;a2,α2

k;k1,j1;k2,j2
(s)‖L2 . 2k2−m+4δm, (8.19)

and

if max(j1, j2)> (1−δ2)m−|k|, then ‖Aa1,α1;a2,α2

k;k1,j1;k2,j2
(s)‖L2 . 2−4m/3+4δm. (8.20)

(iii) As a consequence of (8.9), (8.13), (8.15), and (8.19), if

a6 1
2N1+20 and 2a+|α|6N1+N4,

then we have the L2 bound

‖PkDαΩa(∂tVσ)‖L2 . ε2
1[2k2−m+5δm+2−3m/2+5δm]. (8.21)

Proof. (i) We first consider the quadratic part of the non-linearity. Let Iσµν denote

the bilinear operator defined by

F{Iσµν [f, g]}(ξ) :=

∫
R2

eisΦσµν(ξ,η)m(ξ, η)f̂(ξ−η)ĝ(η) dη,

‖mk,k1,k2‖S∞ 6 2k2min(k1,k2)/2, ‖Dα
ηm

k,k1,k2‖L∞ .|α| 2(|α|+3/2) max(|k1|,|k2|),

(8.22)

where, for simplicity of notation, m=mσµν . For simplicity, we often write Φ, Ξ, and Θ

instead of Φσµν , Ξµν , and Θµ in the rest of this proof.

We define the operators P+

k for k∈Z+ by P+

k :=Pk for k>1 and P+

0 :=P60. In view

of Lemma A.1 (ii), (8.4), and (7.44), for any k>0 we have

‖P+

k I
σµν [Vµ,Vν ](s)‖HN0−N3

. 2(N0−N3)k
∑

06k16k2

k2>k−10

2k2k1/2‖P+

k2
V(s)‖L2‖e−isΛP+

k1
V(s)‖L∞

. ε2
12−k2−5m/6+6δ2m,

(8.23)
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which is consistent with (8.6). Similarly,

‖P+

k I
σµν [Ωa2Vµ,Ωa3Vν ](s)‖L2 . 2−kε2

12−5m/6+6δ2m, a2+a3 6N1, (8.24)

by placing the factor with less than 1
2N1 Ω-derivatives in L∞, and the other factor in L2.

Finally, using L∞ estimates on both factors,

‖e−isΛσP+

k I
σµν [Dα2Ωa2Vµ, Dα3Ωa3Vν ](s)‖L∞ .

{
ε2

12−5m/3+6δ2m, if k6 20,

ε2
124k2−11m/6+52δm, if k> 20,

(8.25)

provided that a2+a3=a and α2+α3=α (see also (8.26) below). The conclusions in part

(i) follow for the quadratic components.

The conclusions for the cubic components follow by the same argument, using the

assumption (7.12) instead of (7.11), and the formula (8.3). The contributions of the

higher-order non-linearity N>4 are estimated using directly the bootstrap hypothesis

(8.4).

(ii) We assume that s is fixed and, for simplicity, drop it from the notation. In view of

(8.4) and using interpolation, the functions fµ :=ε−1
1 Dα2Ωa2Vµ and fν :=ε−1

1 Dα3Ωa3Vν
satisfy

‖fµ‖
HN
′
0∩Z1∩H

N′1
Ω

+‖fν‖
HN
′
0∩Z1∩H

N′1
Ω

. 2δ
2m, (8.26)

where (compare with the notation in Theorem 1.1)

N ′1 :=
N1−N4

2
=

1

2δ
and N ′0 :=

N0−N3

2
−N4 =

1

δ
. (8.27)

In particular, the dispersive bounds (7.39)–(7.44) hold with N=N ′1=1/2δ.

The contributions of the higher-order non-linearities N3 and N>4 can all be esti-

mated as part of the error term PkE
a,α
σ , so we focus on the quadratic non-linearity N2.

Notice that

Aa1,α1;a2,α2

k;k1,j1;k2,j2
=PkI

σµν(fµj1,k1
, fνj2,k2

).

Proof of property (1). In view of Lemma A.1 and (7.43), we have the general bound

‖Aa1,α1;a2,α2

k;k1,j1;k2,j2
‖L2 . 2k+min(k1,k2)/22−5m/6+5δ2m min(2−(1/2−δ) max(j1,j2), 2−N

′
0 max(k1,k2)).

This bound suffices to prove the claims in (1). Indeed, if k>m/N ′0 or if k6− 3
4m+D2,

then the sum of all the terms can be bounded as in (8.9). Similarly, if k∈
[
− 3

4m+

D2,m/N ′0
]

then the sums of the L2 norms corresponding to max(k1, k2)>m/N ′0, or

max(j1, j2)>2m, or min(k1, k2)6− 3
4m+D2, are all bounded by 2−3m/2 as desired.
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Proof of property (2). Assume now that

min(k1, k2)6−2m

N ′0
and j2 = max(j1, j2)> (1−δ2)m−|k|.

Then, using the L2×L∞ estimate as before,

‖PkIσµν [fµj1,k1
, A60,γ1

fνj2,k2
]‖L2 . 2k+min(k1,k2)/22−5m/6+5δ2m2−j2(1−50δ) . 2−3m/2.

Moreover, we notice that, if A>1,γ1
fνj2,k2

is non-trivial, then |k2|610 and k16−2m/N ′0,

therefore

‖PkIσµν [fµj1,k1
, A>1,γ1

fνj2,k2
]‖L2 . 2k+k1/22−m+5δ2m2−j2(1/2−δ) . 2−3m/2+3δm

if j16(1−δ2)m, using (7.41) if k1>− 1
2m and (7.40) if k16− 1

2m. On the other hand, if

j1>(1−δ2)m, then we use again the L2×L∞ estimate (placing fµj1,k1
in L2) to conclude

that

‖PkIσµν [fµj1,k1
, A>1,γ1f

ν
j2,k2

]‖L2 . 2k+k1/22−j1+50δj12−m+52δm. 2−3m/2.

The last three bounds show that

‖Aa1,α1;a2,α2

k;k1,j1;k2,j2
‖L2 . 2−3m/2+3δm, if max(j1, j2)> (1−δ2)m−|k|. (8.28)

Assume now that

k1 = min(k1, k2)6−2m

N ′0
and max(j1, j2)6 (1−δ2)m−|k|.

If k2>k1+20, then |∇ηΦ(ξ, η)|&2|k1|/2, and so ‖Aa1,α1;a2,α2

k;k1,j1;k2,j2
‖L2.2−3m by Lemma 7.2 (i).

On the other hand, if k, k26k1+30 then, using again the L2×L∞ argument as before,

‖PkIσµν [fµj1,k1
, fνj2,k2

]‖L2 . 2k+k12−m+5δ2m. (8.29)

The L2 bound in (8.9) follows if k+k16− 1
2m. On the other hand, if k+k1>− 1

2m and

max(|k1−k|, |k2−k|)> 100 or µ=−ν,

then |∇ηΦ(ξ, η)|&2k−max(k1,k2) in the support of the integral, in view of (10.18). There-

fore, ‖Aa1,α1;a2,α2

k;k1,j1;k2,j2
‖L2.2−3m in view of Lemma 7.2 (i). The inequalities in (8.12) follow.

The bound (8.13) then follows from (8.29).
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Proof of property (3). Assume first that

min(k1, k2)>−5m

N ′0
, k6min(k1, k2)−200, max(j1, j2)> (1−δ2)m−|k|−|k2|. (8.30)

We may assume that j2>j1. Using the L2×L∞ estimate and Lemma 7.5 (ii) as before,

‖PkIσµν [fµj1,k1
, A(j2)

n2,γ1
fνj2,k2

]‖L2 . 2k+k1/22−5m/6+5δ2m2−j2(1−50δ) . 2−3m/2

if n26D. On the other hand, if n2∈[D, j2], then

PkI
σµν [fµj1,k1

, A(j2)
n2,γ1

fνj2,k2
] =PkI

σµν [A>1,γ1f
µ
j1,k1

, A(j2)
n2,γ1

fνj2,k2
].

If j16(1−δ2)m, then we estimate

‖PkIσµν [A>1,γ1f
µ
j1,k1

, A(j2)
n2,γ1

fνj2,k2
]‖L2 . 2k2−m+5δ2m+2δm2−j2(1/2−δ)

. 2−3m/2+3δm+8δ2m.

Finally, if j2>j1>(1−δ2)m, then we use Schur’s lemma in the Fourier space and estimate

‖PkIσµν [A(j1)
n1,γ1

fµj1,k1
, A(j2)

n2,γ1
fνj2,k2

]‖L2

. 2k2−max(n1,n2)/2‖A(j1)
n1,γ1

fµj1,k1
‖L2 ‖A(j2)

n2,γ1
fνj2,k2

‖L2

. 2k22δ2m2−max(n1,n2)/22−j1(1−50δ)2(1/2−49δ)n12−j2(1−50δ)2(1/2−49δ)n2

. 22δ2m2min(n1,n2)/22−j1(1−50δ)2−49δ(n1+n2)2−j2(1−50δ)

. 22δ2m2−(2−2δ2)(1−50δ)m2(1/2−98δ)m

(8.31)

for any n1∈[1, j1+1] and n2∈[1, j2+1]. Therefore, if (8.30) holds, then

‖Aa1,α1;a2,α2

k;k1,j1;k2,j2
‖L2 . 2−3m/2+4δm. (8.32)

Assume now that

min(k1, k2)>−5m

N ′0
, k6min(k1, k2)−200, max(j1, j2)6 (1−δ2)m−|k|−|k2|. (8.33)

If, in addition, max(|k1|, |k2|)>11 or µ=ν, then |∇ηΦ(ξ, η)|&2k−k2 in the support of the

integral. Indeed, this is a consequence of (10.18) if k6−100 and it follows easily from

formula (10.22) if k>−100. Therefore, ‖Aa1,α1;a2,α2

k;k1,j1;k2,j2
‖L2.2−3m, using Lemma 7.2 (i). As

a consequence, the functions Aa1,α1;a2,α2

k;k1,j1;k2,j2
can be absorbed into the error term PkE

a,α
σ ,

unless all the inequalities in (8.14) hold.
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Assume now that (8.14) holds and we are looking to prove (8.15). It suffices to prove

that

‖PkIσµν [A>1,γ0
fµj1,k1

, A>1,γ0
fνj2,k2

]‖L2 . 2k2−m+4δm, (8.34)

after using (7.41) and the L2×L∞ argument. We may assume that max(j1, j2)6 1
3m;

otherwise, (8.34) follows from the L2×L∞ estimate. Using (7.37) and the more precise

bound (7.42), we get

‖Ap,γ0
h‖L2 . 2δ

2m2−p/2 and ‖e−itΛAp,γ0
h‖L∞ . 2−m+3δ2m min(2p/2, 2m/2−p),

where h∈{fj1,k1
, gj2,k2

} and p>1. Therefore, using Lemma A.1,

‖PkIσµν [Ap1,γ0
fµj1,k1

, Ap2,γ0
fνj2,k2

]‖L2 . 2k2−m+5δ2m2−max(p1,p2)/22min(p1,p2)/2.

The desired bound (8.34) follows, using also the simple estimate

‖PkIσµν [Ap1,γ0f
µ
j1,k1

, Ap2,γ0f
ν
j2,k2

]‖L2 . 2k22δ2m2−(p1+p2)/2.

This completes the proof of (8.15).

Proof of property (4). The same argument as in the proof of (8.32), using just L2×
L∞ estimates, shows that ‖Aa1,α1;a2,α2

k;k1,j1;k2,j2
‖L2.2−3m/2+4δm if either (8.16) or (8.18) do not

hold. The bounds (8.20) follow in the same way. The same argument as in the proof of

(8.34), together with L2×L∞ estimates using (7.43) and (7.39), gives (8.19).

The proof of Lemma 8.1 is completed.

In our second lemma we give a more precise description of the basic functions

Aa1,α1;a2,α2

k;k1,j1;k2,j2
(s) in case min(k, k1, k2)>−6m/N ′0.

Lemma 8.2. Assume that [(k1, j1), (k2, j2)]∈Xm,k and k, k1, k2∈[−6m/N ′0,m/N
′
0]

(as in Lemma 8.1 (ii) (4)), and recall the functions Aa1,α1;a2,α2

k;k1,j1;k2,j2
(s) defined in (8.10).

(i) We can decompose

Aa1,α1;a2,α2

k;k1,j1;k2,j2
=

3∑
i=1

A
a1,α1;a2,α2;[i]
k;k1,j1;k2,j2

=

3∑
i=1

G[i], (8.35)

FAa1,α1;a2,α2;[i]
k;k1,j1;k2,j2

(ξ, s) : =

∫
R2

eisΦ(ξ,η)mσµν(ξ, η)ϕk(ξ)χ[i](ξ, η)

×f̂µj1,k1
(ξ−η, s)f̂νj2,k2

(η, s) dη,

(8.36)

where χ[i] are defined as

χ[1](ξ, η) =ϕ(210δmΦ(ξ, η))ϕ(230δm∇ηΦ(ξ, η))1[0,5m/6](max(j1, j2)),

χ[2](ξ, η) =ϕ>1(210δmΦ(ξ, η))ϕ(220δmΩηΦ(ξ, η)),

χ[3] = 1−χ[1]−χ[2].
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The functions A
a1,α1;a2,α2;[1]
k;k1,j1;k2,j2

(s) are non-trivial only when max(|k|, |k1|, |k2|)610. More-

over

‖G[1](s)‖L2 . 2−m+4δm2−(1−50δ) max(j1,j2), (8.37)

‖G[2](s)‖L2 . 2k2−m+4δm, (8.38)

‖G[3](s)‖L2 . 2−3m/2+4δm. (8.39)

(ii) We have

‖F{A6D,2γ0
Aa1,α1;a2,α2

k;k1,j1;k2,j2
}(s)‖L∞ . (2−k+23k)2−m+14δm. (8.40)

As a consequence, if k>−6m/N ′0+D, then we can decompose

A6D−10,2γ0
∂tf

σ
j,k =h2+h∞, (8.41)

with

‖h2(s)‖L2 . 2−3m/2+5δm and ‖ĥ∞(s)‖L∞ . (2−k+23k)2−m+15δm.

(iii) If j1, j26 1
2m+δm, then we can write

Ĝ[1](ξ, s) = eis(Λσ(ξ)−2Λσ(ξ/2))g[1](ξ, s)ϕ(23δm(|ξ|−γ1))+h[1](ξ, s), (8.42)

with

‖Dα
ξ g

[1](s)‖L∞ .α 2−m+4δm2|α|(m/2+4δm),

‖∂sg[1](s)‖L∞ . 2−2m+18δm,

‖h[1](s)‖L∞ . 2−4m.

(8.43)

Proof. (i) To prove the bounds (8.37)–(8.39), we decompose

Aa1,α1;a2,α2

k;k1,j1;k2,j2
=

5∑
i=1

Ai, Ai :=PkIi[f
µ
j1,k1

, fνj2,k2
], (8.44)

with

F{Ii[f, g]}(ξ) :=

∫
R2

eisΦ(ξ,η)m(ξ, η)χi(ξ, η)f̂(ξ−η)ĝ(η) dη, (8.45)

where m=ma1
σµν and χi are defined as

χ1(ξ, η) : =ϕ>1(220δmΘ(ξ, η)),

χ2(ξ, η) : =ϕ>1(210δmΦ(ξ, η))ϕ(220δmΘ(ξ, η)),

χ3(ξ, η) : =ϕ(210δmΦ(ξ, η))ϕ(220δmΘ(ξ, η))1(5m/6,∞)(max(j1, j2)),

χ4(ξ, η) : =ϕ(210δmΦ(ξ, η))ϕ(220δmΘ(ξ, η))ϕ>1(230δmΞ(ξ, η))1[0,5m/6](max(j1, j2)),

χ5(ξ, η) : =ϕ(210δmΦ(ξ, η))ϕ(220δmΘ(ξ, η))ϕ(230δmΞ(ξ, η))1[0,5m/6](max(j1, j2)).

(8.46)
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Notice that A2=G[2], A5=G[1], and A1+A3+A4=G[3]. We will show first that

‖A1‖L2 +‖A3‖L2 +‖A4‖L2 . 2−3m/2+4δm. (8.47)

It follows from Lemma 7.3 and (8.16)–(8.18) that ‖A1‖L2.2−2m, as desired. Also,

‖A4‖L2.2−4m, as a consequence of Lemma 7.2 (i). It remains to prove that

‖A3‖L2 . 2−3m/2+4δm. (8.48)

Assume that j2>
5
6m (the proof of (8.48) when j1>

5
6m is similar). We may assume that

|k2|610 (see (8.17)), and then |k|, |k1|∈[0, 100] (due to the restrictions |Φ(ξ, η)|.2−10δm

and |Θ(ξ, η)|.2−20δm; see also (10.6)). We first show that

‖PkI3[fµj1,k1
, A60,γ1f

ν
j2,k2

]‖L2 . 2−3m/2+4δm. (8.49)

Indeed, we notice that, as a consequence of the L2×L∞ argument,

‖PkIσµν [fµj1,k1
, A60,γ1f

ν
j2,k2

]‖L2 . 2−3m/2,

where Iσµν is defined as in (8.22). Let I || be defined by

F{I ||[f, g]}(ξ) :=

∫
R2

eisΦ(ξ,η)m(ξ, η)ϕ(220δmΘ(ξ, η))f̂(ξ−η)ĝ(η) dη. (8.50)

Using Lemma 7.3 and (8.18), it follows that

‖PkI ||[fµj1,k1
, A60,γ1

fνj2,k2
]‖L2 . 2−3m/2.

The same averaging argument as in the proof of Lemma 7.4 gives (8.49).

We show now that

‖PkI3[fµj1,k1
, A>1,γ1

fνj2,k2
]‖L2 . 2−3m/2+4δm. (8.51)

Recall that |k2|610 and |k|, |k1|∈[0, 100]. It follows that |∇ηΦ(ξ, η)|>2−D in the sup-

port of the integral (otherwise |η| would be close to 1
2γ1, as a consequence of Proposi-

tion 10.2 (iii), which is not the case). The bound (8.51) (in fact, rapid decay) follows

using Lemma 7.2 (i), unless

j2 > (1−δ2)m. (8.52)

Finally, assume that (8.52) holds. Notice that PkI3[A>1,γ0
fµj1,k1

, A>1,γ1
fνj2,k2

]≡0.

This is due to the fact that |λ(γ1)±λ(γ0)±λ(γ1±γ0)|&1; see Lemma 10.1 (iv). Moreover,

‖PkIσµν [A60,γ0
fµj1,k1

, A>1,γ1
fνj2,k2

]‖L2 . 2−3m/2+3δm+6δ2m,
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as a consequence of the L2×L∞ argument and the bound (7.43). Therefore, using

Lemma 7.3,

‖PkI ||[A60,γ0
fµj1,k1

, A>1,γ1
fνj2,k2

]‖L2 . 2−3m/2+3δm+6δ2m.

The same averaging argument as in the proof of Lemma 7.4 shows that

‖PkI3[A60,γ0
fµj1,k1

, A>1,γ1
fνj2,k2

]‖L2 . 2−3m/2+3δm+6δ2m,

and the desired bound (8.51) follows in this case as well. This completes the proof of

(8.48).

We now prove the bounds (8.37). We notice that |η| and |ξ−η| are close to 1
2γ1 in

the support of the integral, due to Proposition 10.2 (iii), so

Ĝ[1](ξ) =

∫
R2

eisΦ(ξ,η)m(ξ, η)ϕk(ξ)χ[1](ξ, η)

×F{A>1,γ1/2f
µ
j1,k1
}(ξ−η)F{A>1,γ1/2f

ν
j2,k2
}(η) dη.

Then, we notice that the factor ϕ(230δm∇ηΦ(ξ, η)) can be removed at the expense of

negligible errors (due to Lemma 7.2 (i)). The bound follows using the L2×L∞ argument

and Lemma 7.4.

The bound (8.38) follows using (8.19), (8.37), and (8.47).

(ii) The plan is to localize suitably in the Fourier space, both in the radial and the

angular directions, and use (7.36) or (7.37). More precisely, let

B�θ,�r (ξ) : =

∫
R2

eisΦ(ξ,η)m(ξ, η)ϕk(ξ)ϕ(�−1
r Ξ(ξ, η))ϕ(�−1

θ Θ(ξ, η))

×f̂µj1,k1
(ξ−η)f̂νj2,k2

(η) dη,

(8.53)

where �θ and �r are to be fixed.

Let j̄ :=max(j1, j2). If

min(k1, k2)>−2m

N ′0
and j̄6

m

2
,

then we set �r=22δm−m/2 (we do not localize in the angular variable in this case). Notice

that

|F{Aa1,α1;a2,α2

k;k1,j1;k2,j2
}(ξ)−B�θ,�r (ξ)|. 2−4m,

in view of Lemma 7.2 (i). If
∣∣|ξ|−2γ0

∣∣>2−2D, then we use Proposition 10.2 (ii) and

conclude that the integration in η is over a ball of radius .2|k|�r. Therefore,

|B�θ,�r (ξ)|. 2k+min(k1,k2)/2(2|k|�r)
2‖f̂µj1,k1

‖L∞ ‖f̂νj2,k2
‖L∞

. (2−k+23k)2−m+10δm.
(8.54)
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If

min(k1, k2)>−2m

N ′0
and j̄ ∈

[
m

2
,m−10δm

]
,

then we set �r=22δm+j̄−m and �θ=23δm−m/2. Notice that

|F{Aa1,α1;a2,α2

k;k1,j1;k2,j2
}(ξ)−B�θ,�r (ξ)|. 2−2m

in view of Lemma 7.2 (i) and Lemma 7.3. If
∣∣|ξ|−2γ0

∣∣>2−2D, then we use Proposi-

tion 10.2 (ii) (notice that the hypothesis (10.16) holds in our case) to conclude that the

integration in η in the integral defining B�θ,�r (ξ) is over an O(�×%) rectangle in the

direction of the vector ξ, where � :=2|k|2δm�θ and %:=2|k|�r. Then, we use (7.36) for

the function corresponding to the larger j and (7.37) to the other function to estimate

|B�θ,�r (ξ)|. 2k�2−j̄+51δj̄%49δ22δj̄22δm. (2−k+23k)2−m+10δm. (8.55)

If

min(k1, k2)>−2m

N ′0
and j̄>m−10δm,

then we have two subcases: if min(j1, j2)6m−10δm, then we still localize in the angular

direction (with �θ=23δm−m/2 as before) and do not localize in the radial direction. The

same argument as above, with %.22δm, gives the same pointwise bound (8.55). On the

other hand, if min(j1, j2)>m−10δm, then the desired conclusion follows by Hölder’s

inequality. The bound (8.40) follows if min(k1, k2)>−2m/N ′0.

On the other hand, if min(k1, k2)6−2m/N ′0, then 2k≈2k1≈2k2 (due to (8.12)) and

the bound (8.40) can be proved in a similar way. The decomposition (8.41) is a conse-

quence of (8.40) and the L2 bounds (8.9).

(iii) We now prove the decomposition (8.42). With � :=2−m/2+δm+δ2m, we define

g[1](ξ, s) : =

∫
R2

eisΦ
′(ξ,η)m(ξ, η)ϕk(ξ)χ[1](ξ, η)f̂µj1,k1

(ξ−η, s)

×f̂νj2,k2
(η, s)ϕ(�−1Ξ(ξ, η)) dη,

h[1](ξ, s) : =

∫
R2

eisΦ(ξ,η)m(ξ, η)ϕk(ξ)χ[1](ξ, η)f̂µj1,k1
(ξ−η, s)

×f̂νj2,k2
(η, s)ϕ>1(�−1Ξ(ξ, η)) dη,

(8.56)

where Φ′(ξ, η)=Φσµν(ξ, η)−Λσ(ξ)+2Λσ
(

1
2ξ
)
. In view of Proposition 10.2 (iii) and the

definition of χ[1], the function G[1] is non-trivial only when µ=ν=σ, and it is supported

in the set
{
ξ :
∣∣|ξ|−γ1

∣∣.2−10δm
}

. The conclusion ‖h[1](s)‖L∞.2−4m in (8.43) follows

from Lemma 7.2 (i) and the assumption j1, j26 1
2m+δm.
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To prove the bounds on g[1], we notice that Φ′(ξ, η)=2Λσ
(

1
2ξ
)
−Λσ(ξ−η)−Λσ(η)

and
∣∣η− 1

2ξ
∣∣.� (due to (10.21)). Therefore,

|Φ′(ξ, η)|.�2, |(∇ξΦ′)(ξ, η)|.�, and |(Dα
ξ Φ′)(ξ, η)|.|α| 1

in the support of the integral. The bounds on ‖Dαξ g[1](s)‖L∞ in (8.43) follow using L∞

bounds on f̂µj1,k1
(s) and f̂νj2,k2

(s). The bounds on ‖∂sg[1](s)‖L∞ follow in the same way,

using also the decomposition (8.41) when the s-derivative hits either f̂µj1,k1
(s) or f̂νj2,k2

(s)

(the contribution of the L2 component is estimated using Hölder’s inequality). This

completes the proof.

Our last lemma concerning ∂tV is a refinement of Lemma 8.2 (ii). It is only used in

the proof of the decomposition (5.29)–(5.30) in Lemma 5.4.

Lemma 8.3. For s∈[2m−1, 2m+1] and k∈[−10, 10] we can decompose

F{PkA6D,2γ0
(DαΩa∂tVσ)(s)}(ξ) = gd(ξ)+g∞(ξ)+g2(ξ), (8.57)

provided that a6 1
2N1+20 and 2a+|α|6N1+N4, where

‖g2‖L2 . ε2
12−3m/2+20δm,

‖g∞‖L∞ . ε2
12−m−4δm,

sup
|%|627m/9+4δm

‖F−1{e−i(s+%)Λσgd}‖L∞ . ε2
12−16m/9−4δm.

(8.58)

Proof. Starting from Lemma 8.1 (ii), we notice that the error term Ea,ασ can be

placed in the L2 component g2 (due to (8.9)). It remains to decompose the functions

Aa1,α1;a2,α2

k;k1,j1;k2,j2
. We may assume that we are in case (4), k1, k2∈[−2m/N ′0,m/N

′
0]. We

define the functions B�θ,�r as in (8.53). We notice that the argument in Lemma 8.2 (ii)

already gives the desired conclusion if j̄=max(j1, j2)> 1
2m+20δm (without having to use

the function gd).

It remains to decompose the functions A6D,2γ0A
a1,α1;a2,α2

k;k1,j1;k2,j2
(s) when

j̄= max(j1, j2)6 1
2m+20δm. (8.59)

As in (8.53), let

B�r (ξ) :=

∫
R2

eisΦ(ξ,η)m(ξ, η)ϕk(ξ)ϕ(�−1
r Ξ(ξ, η))f̂µj1,k1

(ξ−η)f̂νj2,k2
(η) dη, (8.60)

where �r :=230δm−m/2 (we do not need angular localization here). In view of Lemma 7.2 (i),

|FAa1,α1;a2,α2

k;k1,j1;k2,j2
(ξ)−B�r (ξ)|.2−4m. It remains to prove that∥∥F−1

{
e−i(s+%)Λσ(ξ)ϕ>−D

(
2100

∣∣|ξ|−2γ0

∣∣)B�r (ξ)}∥∥L∞ . 2−16m/9−5δm (8.61)
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for any k, j1, k1, j2, k2, and % fixed, |%|627m/9+4δm.

In proving (8.61), we may assume that m>D2. The condition |Ξ(ξ, η)|62�r shows

that the variable η is localized to a small ball. More precisely, using Lemma 10.2, we

have

|η−p(ξ)|.�r for some p(ξ)∈Pµν(ξ), (8.62)

provided that
∣∣|ξ|−2γ0

∣∣&1. The sets Pµν(ξ) are defined in (10.15) and contain two or

three points. We parameterize these points by

p`(ξ) = q`(|ξ|)
ξ

|ξ|
,

where

q1(r) = 1
2r, q2(r) = p++2(r), and q3(r) = r−p++2(r),

if µ=ν, and

q1(r) = p+−1(r) and q2(r) = r−p+−1(r),

if µ=−ν. Then, we rewrite

B�r (ξ) =
∑
`

eisΛσ(ξ)e−is(Λµ(ξ−p`(ξ))+Λν(p`(ξ)))H`(ξ), (8.63)

where

H`(ξ) : =

∫
R2

eis(Φ(ξ,η)−Φ(ξ,p`(ξ))m(ξ, η)ϕk(ξ)ϕ(�−1
r Ξ(ξ, η))

×f̂µj1,k1
(ξ−η)f̂νj2,k2

(η)ϕ(2m/2−31δm(η−p`(ξ)) dη.
(8.64)

Clearly,

|Φ(ξ, η)−Φ(ξ, p`(ξ)|. |η−p`(ξ)|2 and |∇ξ[Φ(ξ, η)−Φ(ξ, p`(ξ)]|. |η−p`(ξ)|.

Therefore,

|DβH`(ξ)|.β 2−m+70δm2|β|(m/2+35δm), if
∣∣|ξ|−2γ0

∣∣& 1. (8.65)

We can now prove (8.61). Notice that the factor eisΛσ(ξ) simplifies and that the

remaining phase ξ 7!Λµ(ξ−p`(ξ))+Λν(p`(ξ)) is radial. Let Γl=Γl;µν be defined such

that Γl(|ξ|)=Λµ(ξ−p`(ξ))+Λν(p`(ξ)). Standard stationary phase estimates, using also

(8.65), show that (8.61) holds provided that

|Γ′`(r)| ≈ 1 and |Γ′′` (r)| ≈ 1, if r∈ [2−20, 220] and |r−2γ0|> 2−3D/2. (8.66)
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To prove (8.66), assume first that µ=ν. If `=1, then p`(ξ)= 1
2ξ, and the desired con-

clusion is clear. If `∈{2, 3}, then ±Γ`(r)=λ(r−p++2(r))+λ(p++2(r)). In view of Propo-

sition 10.2 (i), r−2γ0>2−2D, p++2(r)∈(0, γ0−2−2D], and λ′(r−p++2(r))=λ′(p++2(r)).

Therefore,

|Γ′`(r)|=λ′(r−p++2(r)) and |Γ′′` (r)|= |λ′′(r−p++2(r))(1−p′++2(r))|.

The desired conclusions in (8.66) follow, since |1−p′++2(r)|≈1 in the domain of r (due to

the identity λ′′(r−p++2(r))(1−p′++2(r))=λ′′(p++2(r))p′++2(r)).

The proof of (8.66) in the case µ=−ν is similar. This completes the proof of the

lemma.

9. Dispersive analysis III: Proof of Proposition 7.1

9.1. Quadratic interactions

In this section we prove Proposition 7.1. We start with the quadratic component in the

Duhamel formula (7.5) and show how to control its Z norm.

Proposition 9.1. With the hypothesis in Proposition 7.1, for any t∈[0, T ] we have

sup
06a6N1/2+20

2a+|α|6N1+N4

‖DαΩaW2(t)‖Z1 . ε2
1. (9.1)

The rest of this section is concerned with the proof of this proposition. First notice

that

ΩaξŴ2(ξ, t) =
∑

µ,ν∈{+,−}

∑
a1+a2=a

∫ t

0

∫
R2

eisΦ+µν(ξ,η)mµν(ξ, η)

×(Ωa1 V̂µ)(ξ−η, s)(Ωa2 V̂ν)(η, s) dη ds.

(9.2)

Given t∈[0, T ], we fix a suitable decomposition of the function 1[0,t], i.e. we fix functions

q0, ..., qL+1:R![0, 1], |L−log2(2+t)|62, as in (4.8). For µ, ν∈{+,−} and m∈[0, L+1]

we define the operator Tµνm by

F{Tµνm [f, g]}(ξ) :=

∫
R
qm(s)

∫
R2

eisΦ+µν(ξ,η)mµν(ξ, η)f̂(ξ−η, s)ĝ(η, s) dη ds. (9.3)

In view of Definition 2.5, Proposition 9.1 follows from Proposition 9.2 below.

Proposition 9.2. Assume that t∈[0, T ] is fixed and define the operators Tµνm as

above. If a1+a2=a, α1+α2=α, µ, ν∈{+,−}, m∈[0, L+1], and (k, j)∈J , then∑
k1,k2∈Z

‖QjkTµνm [Pk1D
α1Ωa1Vµ, Pk2D

α2Ωa2Vν ]‖Bj . 2−δ
2mε2

1. (9.4)
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Assume that a1, a2, b, α1, α2, µ, and ν are fixed and let, for simplicity of notation,

fµ := ε−1
1 Dα1Ωa1Vµ, fν := ε−1

1 Dα2Ωa2Vν , Φ := Φ+µν , m0 :=mµν , Tm :=Tµνm . (9.5)

The bootstrap assumption (7.15) gives, for any s∈[0, t],

‖fµ(s)‖
HN
′
0∩Z1∩H

N′1
Ω

+‖fν(s)‖
HN
′
0∩Z1∩H

N′1
Ω

. (1+s)δ
2

. (9.6)

We recall also the symbol-type bounds, which hold for any k, k1, k2∈Z, |α|>0,

‖mk,k1,k2

0 ‖S∞ . 2k2min(k1,k2)/2,

‖Dα
ηm

k,k1,k2

0 ‖L∞ .|α| 2
(|α|+3/2) max(|k1|,|k2|),

‖Dα
ξm

k,k1,k2

0 ‖L∞ .|α| 2
(|α|+3/2) max(|k1|,|k2|,|k|),

(9.7)

where mk,k1,k2

0 (ξ, η)=m0(ξ, η)ϕk(ξ)ϕk1
(ξ−η)ϕk2

(η).

We first consider a few simple cases before moving to the main analysis in the next

subsections. Recall (see (7.44)) that, for any k∈Z, m∈{0, ..., L+1}, and s∈Im :=supp qm,

‖Pkfµ(s)‖L2 +‖Pkfν(s)‖L2 . 2δ
2m min(2(1−50δ)k, 2−N

′
0k),

‖Pke−isΛµfµ(s)‖L∞+‖Pke−isΛνfν(s)‖L∞ . 23δ2m min(2(2−50δ)k, 2−5m/6).
(9.8)

Lemma 9.3. Assume that fµ and fν are as in (9.5) and let (k, j)∈J . Then,∑
max(k1,k2)>1.01(j+m)/N ′0−D2

‖QjkTm[Pk1f
µ, Pk2f

ν ]‖Bj . 2−δ
2m, (9.9)

∑
min(k1,k2)6−(j+m)/2+D2

‖QjkTm[Pk1
fµ, Pk2

fν ]‖Bj . 2−δ
2m, (9.10)

∑
k1,k2∈Z

‖QjkTm[Pk1
fµ, Pk2

fν ]‖Bj . 2−δ
2m, (9.11)

if 2k6−j−m+49δj−δm,∑
−j6k1,k262j/N ′0

‖QjkTm[Pk1f
µ, Pk2f

ν ]‖Bj . 2−δ
2m, if j> 2.1m. (9.12)

Proof. Using (9.8), the left-hand side of (9.9) is dominated by

C
∑

max(k1,k2)>1.01(m+j)/N ′0−D2

2j+m22k+

2min(k1,k2)/2 sup
s∈Im

‖Pk1
fµ(s)‖L2 ‖Pk2

fν(s)‖L2

. 2−δm,

which is acceptable. Similarly, if k16k2 and k16D2, then

2j‖PkTm[Pk1
fµ, Pk2

fν ]‖L2 . 2j+m2k+k1/2 sup
s∈Im

‖P̂k1
fµ(s)‖L1‖Pk2

fν(s)‖L2

. 2j+m2(5/2−50δ)k12−(N ′0−1) max(k2,0),
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and the bound (9.10) follows by summation over min(k1, k2)6− 1
2 (j+m)+2D2.

To prove (9.11), we may assume that

2k6−j−m+49δj−δm and − j+m

2
6 k1, k2 6

1.01(j+m)

N ′0
. (9.13)

Then

‖QjkTm[Pk1f
µ, Pk2f

ν ]‖Bj
. 2j(1−50δ)‖PkTm[Pk1f

µ, Pk2f
ν ]‖L2

. 2j(1−50δ)2m2k+min(k1,k2)/22k sup
s∈Im
‖Pk1

fµ(s)‖L2 ‖Pk2
fν(s)‖L2

. 2−δ(j+m)/3.

Summing in k1 and k2 as in (9.13), we obtain an acceptable contribution.

Finally, to prove (9.12), we may assume that

j> 2.1m, j+k>
j

10
+D, and −j6 k1, k2 6

2j

N ′0
,

and define

fµj1,k1
:=P[k1−2,k1+2]Qj1k1

fµ and fνj2,k2
:=P[k2−2,k2+2]Qj2k2

fν . (9.14)

If min{j1, j2}> 99
100j−D then, using also (7.36),

‖PkTm[fµj1,k1
, fνj2,k2

]‖L2 . 2m2k+min(k1,k2)/2 sup
s∈Im

‖f̂µj1,k1
(s)‖L1 ‖fνj2,k2

(s)‖L2

. 2m2k+3k1/22−(1−δ′)j1−(1/2−δ)j224δ2m,

and therefore ∑
−j6k1,k262j/N ′0

∑
min{j1,j2}>99j/100−D

‖QjkTm[fµj1,k1
, fνj2,k2

]‖Bj . 2−δm.

On the other hand, if j16 99
100j−D, then we rewrite

QjkTm[fµj1,k1
, fνj2,k2

](x)

=Cϕ̃
(k)
j (x)

∫
R
qm(s)

∫
R2

(∫
R2

ei(sΦ(ξ,η)+x·ξ)ϕk(ξ)m0(ξ, η)f̂µj1,k1
(ξ−η, s) dξ

)
×f̂νj2,k2

(η, s) dη ds.

(9.15)

In the support of integration, we have the lower bound |∇ξ [sΦ(ξ, η)+x·ξ]|≈|x|≈2j . In-

tegration by parts in ξ using Lemma 7.2 yields

|QjkTm[fµj1,k1
, fνj2,k2

](x)|. 2−10j , (9.16)

which gives an acceptable contribution. This finishes the proof.
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9.2. The main decomposition

We may assume that

k1, k2 ∈
[
−j+m

2
,

1.01(j+m)

N ′0

]
, k>

−j−m+49δj−δm
2

, j6 2.1m, m>
D2

8
. (9.17)

Recall the definition (2.9). We fix l− :=
⌊
−
(
1− 1

2δ
)
m
⌋
, and decompose

Tm[f, g] =
∑
l−6l

Tm,l[f, g],

̂Tm,l[f, g](ξ) : =

∫
R
qm(s)

∫
R2

eisΦ(ξ,η)ϕ
[l−,m]
l (Φ(ξ, η))m0(ξ, η)

×f̂(ξ−η, s)ĝ(η, s) dη ds.

(9.18)

Assuming (9.17), we notice that Tm,l[Pk1f
µ, Pk2f

ν ]≡0 if l>10m/N ′0. When l>l−, we

may integrate by parts in time to rewrite Tm,l[Pk1f
µ, Pk2f

ν ]:

Tm,l[Pk1f
µ, Pk2f

ν ] = iAm,l[Pk1f
µ, Pk2f

ν ]+iBm,l[Pk1∂sf
µ, Pk2f

ν ]

+iBm,l[Pk1
fµ, Pk2

∂sf
ν ],

̂Am,l[f, g](ξ) : =

∫
R
q′m(s)

∫
R2

eisΦ(ξ,η)2−lϕ̃l(Φ(ξ, η))m0(ξ, η)

×f̂(ξ−η, s)ĝ(η, s) dη ds,

̂Bm,l[f, g](ξ) : =

∫
R
qm(s)

∫
R2

eisΦ(ξ,η)2−lϕ̃l(Φ(ξ, η))m0(ξ, η)

×f̂(ξ−η, s)ĝ(η, s) dη ds,

(9.19)

where ϕ̃l(x):=2lx−1ϕl(x). For s fixed, let Il denote the bilinear operator defined by

Îl[f, g](ξ) :=

∫
R2

eisΦ(ξ,η)2−lϕ̃l(Φ(ξ, η))m0(ξ, η)f̂(ξ−η)ĝ(η) dη. (9.20)

It is easy to see that Proposition 9.2 follows from Lemma 9.3 and Lemmas 9.4–9.8

below.

Lemma 9.4. Assume that (9.17) holds and, in addition,

j>m+2D+ 1
2 max(|k|, |k1|, |k2|). (9.21)

Then, for l−6l610m/N ′0,

2(1−50δ)j‖QjkTm,l[Pk1
fµ, Pk2

fν ]‖L2 . 2−2δ2m.
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Notice that the assumptions (9.17) and j6m+2D+ 1
2 max(|k|, |k1|, |k2|) show that

k, k1, k2 ∈
[
−4m

3
−2D, 3.2m

N ′0

]
and m>

D2

8
. (9.22)

Lemma 9.5. Assume that (9.22) holds and, in addition,

j6m+2D+
max(|k|, |k1|, |k2|)

2
and min(k, k1, k2)6−3.5m

N ′0
. (9.23)

Then, for l−6l610m/N ′0,

2(1−50δ)j‖QjkTm,l[Pk1f
µ, Pk2f

ν ]‖L2 . 2−2δ2m.

Lemma 9.6. Assume that (9.22) holds and, in addition,

j6m+2D+
max(|k|, |k1|, |k2|)

2
and min(k, k1, k2)>−3.5m

N ′0
. (9.24)

Then, for l−<l610m/N ′0,

‖QjkTm,l− [Pk1
fµ, Pk2

fν ]‖Bj+‖QjkAm,l[Pk1
fµ, Pk2

fν ]‖Bj . 2−2δ2m.

Lemma 9.7. Assume that (9.22) holds and, in addition,

j6m+2D+
max(|k|, |k1|, |k2|)

2
, min(k, k1, k2)>−3.5m

N ′0
, and l>−m

14
. (9.25)

Then,

2(1−50δ)j‖QjkBm,l[Pk1
fµ, Pk2

∂sf
ν ]‖L2 . 2−2δ2m.

Lemma 9.8. Assume that (9.22) holds and, in addition,

j6m+2D+
max(|k|, |k1|, |k2|)

2
, min(k, k1, k2)>−3.5m

N ′0
, and l−< l6−

m

14
. (9.26)

Then,

‖QjkTm,l[Pk1
fµ, Pk2

fν ]‖Bj . 2−2δ2m.

We prove these lemmas in the following five subsections. Lemma 9.4 takes advantage

of the approximate finite speed of propagation. Lemma 9.5 uses the null structure at low

frequencies. Lemma 9.6 controls interactions that lead to the creation of a space-time

resonance. Lemmas 9.7 and 9.8 correspond to interactions that are particularly difficult

to control in dimension 2, and contain the main novelty of our analysis (see also [30]).

They rely on all the estimates in Lemmas 8.1 and 8.2, and on the “slow propagation of

iterated resonances” properties in Lemma 10.6.

We will use repeatedly the symbol bounds (9.7) and the main assumption (9.6).
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9.3. Approximate finite speed of propagation

In this subsection we prove Lemma 9.4. We define the functions fµj1,k1
and fνj2,k2

as

before (see (9.14)), and further decompose

fµj1,k1
=

j1+1∑
n1=0

fµj1,k1,n1
and fνj2,k2

=

j2+1∑
n2=0

fνj2,k2,n2
, (9.27)

as in (7.33). If min{j1, j2}6j−δm, then the same argument as in the proof of (9.12)

leads to rapid decay, as in (9.16). To bound the sum over min{j1, j2}>j−δm, we consider

several cases.

Case 1. Assume first that

min(k, k1, k2)6− 1
2m. (9.28)

Then we notice that

‖F{PkTm,l[fµj1,k1
, fνj2,k2

]}‖L∞ . 2m2k+min(k1,k2)/2 sup
s∈Im

(‖f̂µj1,k1
(s)‖L2 ‖f̂νj2,k2

(s)‖L2)

. 2m22δ2m2k2−(1/2−δ)(j1+j2).

Therefore, the sum over j1 and j2, with min(j1, j2)>j−δm, is controlled as claimed,

provided k6− 1
2m. On the other hand, if k1=min(k1, k2)6− 1

2m, then we estimate

‖PkTm,l[fµj1,k1
, fνj2,k2

]‖L2

. 2m2k+k1/2 sup
s∈Im

(‖f̂µj1,k1
(s)‖L1‖f̂νj2,k2

(s)‖L2)

. 2m22δ2m2k+k1/22k12−(1−50δ)j12−(1/2−δ)j22−4 max(k2,0).

(9.29)

The sum over j1 and j2, with min(j1, j2)>j−δm, is controlled as claimed in this case as

well.

Case 2. Assume now that

min(k, k1, k2)>− 1
2m and l6 1

2 min(k, k1, k2, 0)− 1
5m. (9.30)

We use Lemma 10.5: we may assume that min(k, k1, k2)+max(k, k1, k2)>−100 and es-

timate

‖PkTm,l[fµj1,k1,n1
, fνj2,k2,n2

]‖L2

. 2m2k+min(k1,k2)/225 max(k1,k2,0)2l/2−n1/2−n2/2

× sup
s∈Im

(∥∥∥sup
θ
|f̂µj1,k1,n1

(rθ, s)|
∥∥∥
L2(r dr)

∥∥∥sup
θ
|f̂νj2,k2,n2

(rθ, s)|
∥∥∥
L2(r dr)

)
.
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Using (7.35) and (9.6), and summing over n1 and n2, we have

2(1−50δ)j‖PkTm,l[fµj1,k1
, fνj2,k2

]‖L2 . 27 max(k1,k2,0)2m22δ2m2(1−50δ)j2l/22−(1−δ′)(j1+j2).

The sum over j1 and j2, with min(j1, j2)>j−δm, is controlled as claimed.

Case 3. Finally, assume that

min(k, k1, k2)>− 1
2m and l> 1

2 min(k, k1, k2, 0)− 1
5m. (9.31)

We use formula (9.19). The contribution of Am,l can be estimated as in (9.29), with 2m

replaced by 2−l, and we focus on the contribution of Bm,l[Pk1
fµ, Pk2

∂sf
ν ]. We decompose

∂sf
ν(s), according to (8.8). The contribution of Pk2

Ea2,α2
ν can be estimated easily:

‖PkBm,l[fµj1,k1
, Pk2E

a2,α2
ν ]‖L2

. 2m2−l2k+min(k1,k2)/2 sup
s∈Im

(‖f̂µj1,k1
(s)‖L1 ‖Pk2E

a2,α2
ν (s)‖L2)

. 2m22δ2m2m/5−min(k,k1,k2,0)/22k+k2/22k12−(1−51δ)j12−3m/2+5δm

. 2−(1−51δ)j12−m/4,

(9.32)

and the sum over j1>j−δm of

2(1−50δ)j‖PkBm,l[fµj1,k1
, Pk2

Ea2,α2
ν ]‖L2

is suitably bounded.

We consider now the terms Aa3,α3;a4,α4

k2;k3,j3,k4,j4
(s) in (8.8), [(k3, j3), (k4, j4)]∈Xm,k2 , with

α3+α4=α2 and a3+a46a2. In view of (8.12), (8.14), and (8.20),

‖Aa3,α3;a4,α4

k2;k3,j3,k4,j4
(s)‖L2 . 2−4m/3+4δm

if

max(j3, j4)> (1−δ2)m−|k2| or |k2|+ 1
2D6min(|k3|, |k4|).

The contributions of these terms can be estimated as in (9.32). On the other hand, to

control the contribution of QjkBm,l[fµj1,k1
, Aa3,α3;a4,α4

k2;k3,j3,k4,j4
] when

max(j3, j4)6 (1−δ2)m−|k2| and |k2|+ 1
2D> |k3|,

we simply rewrite this in the form

cϕ̃
(k)
j (x)

∫
R
qm(s)

∫
R2

f̂µj1,k1
(η, s)

(∫
R2×R2

ei[x·ξ+sΦ̃
′(ξ,η,σ)]2−lϕ̃l(Φσµν(ξ, ξ−η))

×ϕk(ξ)ϕk2
(ξ−η)mµν(ξ, ξ−η)mνβγ(ξ−η, σ)

×f̂βj3,k3
(ξ−η−σ, s)f̂γj4,k4

(σ, s) dξ dσ

)
dη ds,

(9.33)
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where Φ̃′(ξ, η, σ):=Λ(ξ)−Λµ(η)−Λβ(ξ−η−σ)−Λγ(σ). Notice that

|∇ξ(x·ξ+sΛ(ξ)−sΛµ(η)−sΛβ(ξ−η−σ)−sΛγ(σ))| ≈ |x| ≈ 2j . (9.34)

We can integrate by parts in ξ using Lemma 7.2 (i) to conclude that these are negligible

contributions, pointwise bounded by C2−5m. This completes the proof of the lemma.

9.4. The case of small frequencies

In this subsection we prove Lemma 9.5. The main point is that, if

k := min(k, k1, k2)6−3.5m

N ′0
,

then |Φ(ξ, η)|&2k/2 for any (ξ, η)∈Dk,k1,k2
, as a consequence of (10.6) and (9.22). There-

fore, the operators Tm,l are non-trivial only if

l> 1
2k−D. (9.35)

Step 1. We consider first the operators Am,l. Since l>− 2
3m−2D, it suffices to prove

that

2(1−50δ)(m−k/2)‖PkIl[fµj1,k1
(s), fνj2,k2

(s)]‖L2 . 2−3δ2m, (9.36)

for any s∈Im and j1, j2, where Il are the operators defined in (9.20), and fµj1,k1
and fνj2,k2

are as in (9.14). We may assume k16k2 and consider two cases.

Case 1. If k=k1 then we estimate first the left-hand side of (9.36) by

C2(1−50δ)(m−k/2)2k+k/22−l
(

sup
s,t≈2m

‖e−itΛµfµj1,k1
(s)‖L∞‖fνj2,k2

(s)‖L2 +2−8m
)

. 2(1−50δ)(m−k/2)2k26δ2m(2k2−m+50δj12−4k+

+2−8m),

using Lemma 7.4 and (7.40). This suffices to prove (9.36) if j16 9
10m. On the other hand,

if j1> 9
10m, then we estimate the left-hand side of (9.36) by

C2(1−50δ)(m−k/2)2k+k/22−l
(

sup
s,t≈2m

‖fµj1,k1
(s)‖L2 ‖e−itΛνfνj2,k2

(s)‖L∞+2−8m
)

. 2(1−50δ)(m−k/2)2k26δ2m(2−(1−50δ)j12−5m/62−2k+

+2−8m),

using Lemma 7.4 and (7.44). This suffices to prove the desired bound (9.36).

Case 2. If k=k, then (9.36) follows using the L2×L∞ estimate, as in Case 1, unless

max(|k1|, |k2|)6 20 and max(j1, j2)6 1
3m. (9.37)
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On the other hand, if (9.37) holds, then it suffices to prove that, for |%|62m−D,

2(1−50δ)(m−k/2)2−k/2‖PkI0[fµj1,k1
(s), fνj2,k2

(s)]‖L2 . 2−3δ2m,

Î0[f, g](ξ) :=

∫
R2

ei(s+%)Φ(ξ,η)m0(ξ, η)f̂(ξ−η)ĝ(η) dη.
(9.38)

Indeed, (9.36) would follow from (9.38) and the inequality l> 1
2k−D>−

2
3m−2D (see

(9.22)–(9.35)), using the superposition argument in Lemma 7.4. On the other hand, the

proof of (9.38) is similar to the proof of (8.15) in Lemma 8.1.

Step 2. We consider now the operators Bm,l. In some cases, we prove the stronger

bound

2(1−50δ)(m−k/2)2m‖PkIl[fµj1,k1
(s), Pk2

∂sf
ν(s)]‖L2 . 2−3δ2m, (9.39)

for any s∈Im and j1. We consider three cases.

Case 1. If k=k1, then we use the bounds

‖Pk2∂sf
ν(s)‖L2 . 2−m+5δm(2k2 +2−m/2),

‖e−isΛνPk2∂sf
ν(s)‖L∞ . 2−5m/3+6δ2m;

(9.40)

see (8.21) and (8.7). We also record the bound, which can be easily verified using

integration by parts and Plancherel for any %∈R and k′∈Z,

‖e−i%ΛPk′‖L∞!L∞ . ‖F−1{e−i%Λ(ξ)ϕk′(ξ)}‖L1 . 1+2k
′/22k

′
+ |%|. (9.41)

If

k1 >− 1
4m and j1 6 (1−δ2)m, (9.42)

then we use (7.43), (9.40), and Lemma 7.4 to estimate the left-hand side of (9.39) by

C2k+k1/22(1−50δ)(m−k/2)2m

×
(

2−l sup
|%|62m/2

‖e−i(s+%)Λµfµj1,k1
(s)‖L∞ ‖Pk2∂sf

ν(s)‖L2 +2−8m
)

. 26k+

2k1/22−40δm.

This suffices to prove (9.39) when (9.42) holds (recall the choice of δ, N0, and N1 in

Definition 2.5). On the other hand, if

k1 >− 1
4m and j1 > (1−δ2)m, (9.43)
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then we use (9.41), (7.39), (9.40), and Lemma 7.4 to estimate the left-hand side of (9.39)

by

C2k+k1/22(1−50δ)(m−k/2)2m

×
(

2−l‖fµj1,k1
(s)‖L2 sup

|%|62−l+4δ2m

‖e−i(s+%)ΛνPk2∂sf
ν(s)‖L∞+2−8m

)
. 210k+

2−2m/3+10δm2−2l.

This suffices to prove (9.39), provided that (9.43) holds.

Finally, if k16− 1
4m, then we use the bound

sup
|%|62m−D

‖e−i(s+%)Λµfµj1,k1
(s)‖L∞ . 2(3/2−25δ)k12−m+50δm2δ

2m,

which follows from (7.39)–(7.40).Then, we estimate the left-hand side of (9.39) by

C22k++k1/22(1−50δ)(m−k/2)2m2−l2(3/2−25δ)k12−m+51δm2−m+5δm. 26k+

210δm2k1 .

The desired bound (9.39) follows, provided that k16− 1
4m.

Case 2. If k=k, then (9.39) follows using L2×L∞ estimates, as in Case 1, unless

max(|k1|, |k2|)6 20. (9.44)

Assuming (9.44), we notice that

sup
|%|62m−D

‖e−i(s+%)ΛµA60,γ0
fµj1,k1

(s)‖L∞ . 2−m+3δm, if j1 6 (1−δ2)m,

sup
|%|62m−D

‖e−i(s+%)ΛµA>1,γ0
fµj1,k1

(s)‖L∞ . 2−m, if 1
2m6 j1 6 (1−δ2)m,

(9.45)

as a consequence of (7.43). Therefore, using the L2×L∞ estimate and (9.40), as before,

2(1−50δ)(m−k/2)2m‖PkIl[A60,γ0f
µ
j1,k1

(s), Pk2∂sf
ν(s)]‖L2 . 2−3δ2m, (9.46)

if j16(1−δ2)m, and

2(1−50δ)(m−k/2)2m‖PkIl[A>1,γ0
fµj1,k1

(s), Pk2
∂sf

ν(s)]‖L2 . 2−3δ2m, (9.47)

if 1
2m6j16(1−δ2)m.

On the other hand, if j1>(1−δ2)m, then we can use the L∞ bound

‖e−isΛνPk2
∂sf

ν(s)‖L∞ . 2−5m/3+6δ2m
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in (9.40), together with the general bound (9.41). As in (9.27), we decompose

fµj1,k1
=

j1∑
n1=0

fµj1,k1,n1
,

and record the bound ‖fµj1,k1,n1
(s)‖L2.2−j1+50δj12n1/2−49δn12δ

2m. Let

X := 2(1−50δ)(m−k/2)2m‖PkIl[fµj1,k1,n1
(s), Pk2∂sf

ν(s)]‖L2 .

Using Lemma 7.4, it follows that

X . 2(1−50δ)(m−k/2)2m

×
(

2k2−l‖fµj1,k1,n1
(s)‖L2 sup

|%|62−l+2δ2m

‖e−i(s+%)ΛνPk2∂sf
ν(s)‖L∞+2−8m

)
. 2−k/22−2m/32n1/2−49δn124δm.

Using only L2 bounds (see (9.40)) and Cauchy–Schwarz inequality, we also have

X . 2(1−50δ)(m−k/2)2m22k2−l‖fµj1,k1,n1
(s)‖L2 ‖Pk2

∂sf
ν(s)‖L2 . 2k2n1/2−49δn126δm.

Finally, using (7.36), we have

X . 2(1−50δ)(m−k/2)2m2k2−l‖f̂µj1,k1,n1
(s)‖L1 ‖Pk2

∂sf
ν(s)‖L2 . 2−49δn127δm.

We can combine the last three estimates (using the last one for n1> 1
4m and the first two

for n16 1
4m) to conclude that, if j1>(1−δ2)m, then

2(1−50δ)(m−k/2)2m‖PkIl[fµj1,k1
(s), Pk2

∂sf
ν(s)]‖L2 . 2−3δ2m. (9.48)

In view of (9.46)–(9.48), it remains to prove that, for j16 1
2m,

2(1−50δ)(m−k/2)2m‖PkIl[A>1,γ0f
µ
j1,k1

(s), Pk2∂sf
ν(s)]‖L2 . 2−3δ2m. (9.49)

To prove (9.49), we decompose Pk2
∂sf

ν(s) as in (8.8). The terms that are bounded

in L2 by 2−4m/3+4δm lead to acceptable contributions, using the L2×L∞ argument

with Lemma 7.4 and (7.44). It remains to consider the terms Aa3,α3;a4,α4

k2;k3,j3,k4,j4
(s) when

max(j3, j4)6(1−δ2)m and k3, k4∈[−2m/N ′0, 300]. For these terms, it suffices to prove

that

‖PkIl[A>1,γ0f
µ
j1,k1

(s), Aa3,α3;a4,α4

k2;k3,j3,k4,j4
(s)]‖L2 . 2−4m. (9.50)
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Notice that Aa3,α3;a4,α4

k2;k3,j3,k4,j4
(s) is given by an expression similar to (8.10). Therefore,

F{PkIl[A>1,γ0
fµj1,k1

(s), Aa3,α3;a4,α4

k2;k3,j3,k4,j4
(s)]}(ξ)

=

∫
R2×R2

eisΦ̃(ξ,η,σ)f̂µj1,k1
(ξ−η, s)ϕ6−101(|ξ−η|−γ0)2−lϕ̃l(Φ+µν(ξ, η))ϕk(ξ)

×ϕk2
(η)mµν(ξ, η)mνβγ(η, σ)f̂βj3,k3

(η−σ, s)f̂γj4,k4
(σ, s) dσ dη,

(9.51)

where

Φ̃(ξ, η, σ) = Λ(ξ)−Λµ(ξ−η)−Λβ(η−σ)−Λγ(σ).

The main observation is that either

|∇ηΦ̃(ξ, η, σ)|= |∇Λµ(ξ−η)−∇Λβ(η−σ)|& 1, (9.52)

or

|∇σΦ̃(ξ, η, σ)|= |∇Λβ(η−σ)−∇Λγ(σ)|& 1, (9.53)

in the support of the integral. Indeed,
∣∣|η|−γ0

∣∣62−95 in view of the cutoffs on the

variables ξ and ξ−η. If |∇σΦ̃(ξ, η, σ)|62−D, then max(|k3|, |k4|)6300 and, using Propo-

sition 10.2 (ii) (in particular (10.17)), it follows that |η−σ| is close to either 1
2γ0, or

p+−1(γ0)>1.1γ0, or p+−1(γ0)−γ060.9γ0. In these cases, the lower bound (9.52) follows.

The desired bound (9.50) then follows using Lemma 7.2 (i).

Case 3. If k=k2, then we do not prove the stronger estimate (9.39). In this case,

the desired bound follows from Lemma 9.9 below.

Lemma 9.9. Assume that (9.22) holds and, in addition,

j6m+2D+ 1
2 max(|k|, |k1|, |k2|), k2 6−2D, and 2−l6 210δm+2−k2/2+D. (9.54)

Then, for any j1,

2(1−50δ)j‖QjkBm,l[fµj1,k1
, Pk2∂sf

ν ]‖L2 . 2−3δ2m. (9.55)

Proof. We record the bounds

‖Pk2
∂sf

ν(s)‖L2 . 2−m+5δm(2k2 +2−m/2),

sup
|%|62−l+2δ2m

‖e−i(s+%)ΛνPk2
∂sf

ν(s)‖L∞ . 2−5m/3+10δ2m(2k2/2+10δm+1);
(9.56)

see (8.7), (8.21), and (9.41). We will prove that, for any s∈Im,

2(1−50δ)j2m‖QjkIl[fµj1,k1
(s), Pk2

∂sf
ν(s)]‖L2 . 2−3δ2m. (9.57)
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Step 1. We notice the identity

QjkIl[fµj1,k1
(s), Pk2

∂sf
ν(s)](x)

=Cϕ̃
(k)
j (x)

∫
R2×R2

ei(sΦ(ξ,η)+x·ξ)2−lϕ̃l(Φ(ξ, η))ϕk(ξ)m0(ξ, η)

×f̂µj1,k1
(ξ−η, s) ̂Pk2

∂sfν(η, s) dξ dη.

Therefore, ‖QjkIl[fµj1,k1
(s), Pk2∂sf

ν(s)]‖L2.2−4m, using integration by parts in ξ and

Lemma 7.2 (i), unless

2j 6max(2j1+δm, 2m+max(|k|,|k1|)/2+D). (9.58)

On the other hand, assuming (9.58), L2×L∞ bounds using Lemma 7.4, the bounds

(9.56), and Lemma 7.5 show that (9.57) holds in the following cases:

either (k1 6−10 and j1 6m−δm),

or (k1 6−10 and j1 >m−δm),

or
(
k1 > 10 and j1 6 2

3m
)
,

or
(
k1 > 10 and j1 > 2

3m
)
.

(9.59)

See the similar estimates in the proof of Lemma 9.5, in particular those in Cases 1 and 2 of

Step 2. In each case, we estimate e−i(s+%)Λµfµj1,k1
(s) in L∞ and e−i(s+%)ΛνPk2

∂sf
ν(s) in

L2 when j1 is small, and we estimate e−i(s+%)Λµfµj1,k1
(s) in L2 and e−i(s+%)ΛνPk2

∂sf
ν(s)

in L∞ when j1 is large. We estimate the contribution of the symbol m0 by 2(k+k1+k2)/2

in all cases.

It remains to prove the desired bound (9.57) when k, k1∈[−20, 20]. We can still

prove this, when fµj1,k1
(s) is replaced by A60,γ0f

µ
j1,k1

(s), or when j1> 1
3m−δm, or when

k26− 1
3m+δm, using L2×L∞ estimates as before.

Step 2. To deal with the remaining cases, we use the decomposition (8.8). The

contribution of the error component Pk2
Ea2,α2
ν can also be estimated in the same way

when j16 1
3m−δm. After these reductions, we may assume that

k, k1 ∈ [−20, 20], j1 6 1
3m−δm, j6m+2D, k2 ∈

[
− 1

3m+δm,−2D
]
,

2−l. 210δm+2−k2/2.
(9.60)

It remains to prove that, for any [(k3, j3), (k4, j4)]∈Xm,k2 ,

2(1−50δ)j2m‖QjkIl[A>1,γ0
fµj1,k1

, Aa3,α3;a4,α4

k2;k3,j3;k4,j4
]‖L2 . 2−4δ2m. (9.61)
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The L2×L∞ argument still works to prove (9.61) if

‖Aa3,α3;a4,α4

k2;k3,j3;k4,j4
(s)‖L2 . 2−7m/6+25δm. (9.62)

We notice that this bound holds if max(j3, j4)> 1
3m−δm. Indeed, since k26−2D, we

have

Pk2
Iνβγ [A>1,γ1

fβj3,k3
(s), A>1,γ0

fγj4,k4
(s)]≡ 0,

and the bound (9.62) follows by L2×L∞ arguments as in the proof of Lemma 8.1.

Thus, we may assume that j3, j46 1
3m−δm. We examine the explicit formula (9.51).

We claim that

|F{PkIl[A>1,γ0f
µ
j1,k1

(s), Aa3,α3;a4,α4

k2;k3,j3;k4,j4
(s)]}(ξ)|. 2−10m, if |k3|> 100.

Indeed, in this case the η derivative of the phase Φ̃ is &2|k3|/2 in the support of the

integral (recall that |k1|620). Integration by parts in η, using Lemma 7.2 (i), shows that

the resulting integral is negligible, as desired.

In view of Lemma 8.1 (ii) (3), it remains to prove (9.61) when, in addition to (9.60),

k3, k4 ∈ [−100, 100], j3, j4 6 1
3m−δm, and β=−γ. (9.63)

We examine again formula (9.51) and notice that the (η, σ) derivative of the phase Φ̃

is &1 unless
∣∣|η−σ|−γ0

∣∣62−98 and
∣∣|σ|−γ0

∣∣62−98. Therefore, we may replace fβj3,k3

by A>−5,γ0
fβj3,k3

, and fγj4,k4
by A>−5,γ0

fγj4,k4
, at the expense of negligible errors. Fi-

nally, we may assume that l>−D if µ=−, and that j6m+k2+D if µ=+ (otherwise,

the approximate-finite-speed-of-propagation argument used in the proof of (9.12) and

Lemma 9.4, which relies on integration by parts in ξ, gives rapid decay). Therefore, in

proving (9.61), we may assume that

2−l2(1−50δ)j . 2m−50δm(1+2k2/2+10δm). (9.64)

Let �r :=2δ
2m2k2/2−m/2. We now observe that, if

∣∣|η−σ|−γ0

∣∣+∣∣|σ|−γ0

∣∣62−90 and

|Ξβγ(η, σ)|=|(∇σΦνβγ)(η, σ)|62�r, then∣∣|σ|−γ0

∣∣> 2k2−10 and
∣∣|η−σ|−γ0

∣∣> 2k2−10. (9.65)

Indeed, we may assume that σ=(σ1, 0), η=(η1, η2), |σ1−γ0|62−90, |η|∈[2k2−2, 2k2+2].

Recalling that β=−γ and using formula (10.22), the condition |Ξβγ(η, σ)|62�r gives∣∣∣∣λ′(σ1)− σ1−η1

|σ−η|
λ′(|σ−η|)

∣∣∣∣6 2�r and
|η2|
|σ−η|

λ′(|σ−η|)6 2�r.
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Since k2∈
[
− 1

3m+δm,−2D
]

and �r=2δ
2m+k2/2−m/2, it follows that |η2|6�r2D62k2−D,

|η1|∈[2k2−3, 2k2+3], and |λ′(σ1)−λ′(σ1−η1)|64�r. On the other hand, if |σ1−γ0|62k2−10

and |η1|∈[2k2−3, 2k2+3], then |λ′(σ1)−λ′(σ1−η1)|&22k2 (as λ′′(γ0)=0 and λ′′′(γ0)≈1),

which gives a contradiction. The claims in (9.65) follow.

We now examine formula (9.51) and recall (9.63) and (9.65). Using Lemma 7.2 (i)

and integration by parts in σ, we notice that we may insert the factor ϕ(�−1
r Ξβγ(η, σ)),

at the expense of a negligible error. It remains to prove that

2(1−50δ)j2m‖H‖L2 . 2−4δ2m, (9.66)

where, with

g1 :=A>1,γ0
fµj1,k1

(s), g3 :=A[−20,20−k2],γ0
fβj3,k3

(s), and g4 :=A[−20,20−k2],γ0
fγj4,k4

(s),

we have

Ĥ(ξ) : =ϕk(ξ)

∫
R2

eis(Λ(ξ)−Λµ(ξ−η)−Λν(η))ĝ1(ξ−η)2−lϕ̃l(Φ+µν(ξ, η))mµν(ξ, η)Ĝ2(η) dη,

Ĝ2(η) : =ϕk2(η)

∫
R2

eis(Λν(η)−Λβ(η−σ)−Λγ(σ))mνβγ(η, σ)ϕ(�−1
r Ξβγ(η, σ))ĝ3(η−σ)ĝ4(σ) dσ.

We use now the more precise bound (7.42) to see that

‖e−isΛβg3‖L∞+‖e−isΛγg4‖L∞ . 2−m+4δ2m2−k2/2.

This bound is the main reason for proving (9.65). After removing the factor

ϕ(�−1
r Ξβγ(η, σ))

at the expense of a small error, and using also (A.2) and (9.41), it follows that

‖e−i(s+%)ΛνG2‖L∞ . (1+|%|2k2/2)2k2

for any %∈R. We now use the L2×L∞ argument, together with Lemma 7.4, to estimate

‖H‖L2 . 2k2/22−l(1+2−l2k2/2)2−2m+12δ2m. 2−2m+12δ2m2k2/22−l(1+210δm+k2/2).

The desired bound (9.66) follows using also (9.64).

9.5. The case of strongly resonant interactions I

In this subsection we prove Lemma 9.6. This is where we need the localization operators

A
(j)
n,γ1 to control the output. It is an instantaneous estimate, in the sense that the time
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evolution will play no role. Hence, it suffices to show the following: let χ∈C∞c (R2) be

supported in [−1, 1] and assume that j, l, s, and m satisfy

−m+
δm

2
6 l6

10m

N ′0
and 2m−4 6 s6 2m+4. (9.67)

Assume that

‖f‖
HN
′
0∩HN

′
1

Ω ∩Z1

+‖g‖
HN
′
0∩HN

′
1

Ω ∩Z1

6 1, (9.68)

and define, with χl(x)=χ(2−lx),

Î[f, g](ξ) : =

∫
R2

eisΦ(ξ,η)χl(Φ(ξ, η))m0(ξ, η)f̂(ξ−η)ĝ(η) dη.

Assume also that k, k1, k2, j, and m satisfy (9.22) and (9.24). Then,

2δm/22−l‖QjkI[Pk1
f, Pk2

g]‖Bj . 2−5δ2m. (9.69)

To prove (9.69), we define fj1,k1
, gj2,k2

, fj1,k1,n1
, and gj2,k2,n2

, for (k1, j1), (k2, j2)∈
J , n1∈[0, j1+1], and n2∈[0, j2+1], as in (7.33). We will analyze several cases depending

on the relative sizes of the main parameters m, l, k, j, k1, j1, k2, and j2. In many cases,

we will prove the stronger bound

2δm/22−l2(1−50δ)j‖QjkI[fj1,k1
, gj2,k2

]‖L2 . 2−6δ2m. (9.70)

However, in the main case (9.72), we can only prove the weaker bound

2δm/22−l‖QjkI[fj1,k1
, gj2,k2

]‖Bj . 2−6δ2m. (9.71)

These bounds clearly suffice to prove (9.69).

Case 1. We first prove the bound (9.71) under the assumption

max(j1, j2)6 9
10m and 2l6min(k, k1, k2, 0)−D. (9.72)

We may assume j16j2. With

�θ := 2−m/2+δ2m and �r := 2δ
2m(2−m/2+3 max(|k|,|k1|,|k2|)/4+2j2−m),

we decompose

FI[fj1,k1
, gj2,k2

] =R1+R2+NR,
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where

R1(ξ) : =

∫
R2

eisΦ(ξ,η)χl(Φ(ξ, η))m0(ξ, η)ϕ(�−1
r Ξ(ξ, η))ϕ(�−1

θ Θ(ξ, η))

×f̂j1,k1(ξ−η)ĝj2,k2(η) dη,

R2(ξ) : =

∫
R2

eisΦ(ξ,η)χl(Φ(ξ, η))m0(ξ, η)ϕ(�−1
r Ξ(ξ, η))ϕ>1(�−1

θ Θ(ξ, η))

×f̂j1,k1(ξ−η)ĝj2,k2(η) dη,

NR(ξ) : =

∫
R2

eisΦ(ξ,η)χl(Φ(ξ, η))m0(ξ, η)ϕ>1(�−1
r Ξ(ξ, η))

×f̂j1,k1
(ξ−η)ĝj2,k2

(η) dη.

With ψ1 :=ϕ6(1−δ/4)m and ψ2 :=ϕ>(1−δ/4)m, we rewrite

NR(ξ) =C2l(NR1(ξ)+NR2(ξ)),

NRi(ξ) : =

∫
R

∫
R2

ei(s+λ)Φ(ξ,η)χ̂(2lλ)ψi(λ)m0(ξ, η)ϕ>1(�−1
r Ξ(ξ, η))

×f̂j1,k1
(ξ−η)ĝj2,k2

(η) dη dλ.

Since χ̂ is rapidly decreasing, we have ‖ϕkNR2‖L∞.2−4m, which gives an acceptable

contribution. On the other hand, in the support of the integral defining NR1, we have

that |s+λ|≈2m, and integration by parts in η (using Lemma 7.2 (i)) gives

‖ϕkNR1‖L∞ . 2−4m.

The contribution of R=R1+R2 is only present if we have a space-time resonance.

In particular, in view of Proposition 10.2 (iii) (notice that the assumption (10.20) is

satisfied, due to (9.72)), we may assume that

−106 k, k1, k2 6 10, ±(σ, µ, ν) = (+,+,+), and
∣∣|ξ|−γ1|+|η− 1

2ξ
∣∣6 2−D. (9.73)

Notice that, if R(ξ) 6=0, then

∣∣|ξ|−γ1

∣∣. ∣∣Φ(ξ, 1
2ξ
)∣∣. |Φ(ξ, η)|+

∣∣Φ(ξ, η)−Φ
(
ξ, 1

2ξ
)∣∣. 2l+�2

r . (9.74)

Integration by parts using Lemma 7.3 shows that ‖ϕkR2‖L∞.2−5m/2, which gives an

acceptable contribution. To bound the contribution of R1, we will show that

2δm/22−l sup
|ξ|≈1

∣∣∣(1+2m
∣∣|ξ|−γ1

∣∣)R1(ξ)
∣∣∣. 29δm/10, (9.75)
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which is stronger than the bound we need in (9.71). Indeed, for j fixed, we estimate

sup
06n6j

2(1−50δ)j2−n/2+49δn‖A(j)
n,γ1

QjkF−1R1‖L2

. sup
06n6j

2(1−50δ)j2−n/2+49δn
∥∥ϕ[−j,0]
−n

(
2100

∣∣|ξ|−γ1

∣∣)R1(ξ)
∥∥
L2
ξ

.
∑
n>0

2(1−50δ)j2−n/2−(1/2−49δ) min(n,j)
∥∥ϕ(−∞,0]
−n

(
2100

∣∣|ξ|−γ1

∣∣)R1(ξ)
∥∥
L∞ξ

,

(9.76)

and notice that (9.71) would follow from (9.75) and the assumption j6m+3D.

Recall from Lemma 7.5 and (9.73) (note that we may assume that fj1,k1 =fj1,k1,0

and gj2,k2 =gj2,k2,0) that

2(1/2−δ′)j1‖f̂j1,k1‖L∞+2(1−δ′)j1 sup
θ∈S1

‖f̂j1,k1(rθ)‖L2(r dr) . 1,

2(1/2−δ′)j2‖ĝj2,k2
‖L∞+2(1−δ′)j2 sup

θ∈S1

‖ĝj2,k2
(rθ)‖L2(r dr) . 1.

(9.77)

We first ignore the factor χl(Φ(ξ, η)). In view of Proposition 10.2 (ii), the η integration

in the definition of R1(ξ) takes place essentially over a �θ×�r box in the neighborhood

of 1
2ξ. Using (9.74) and (9.77), and estimating ‖f̂j1,k1

‖L∞.1, we have, if j2> 1
2m,∣∣∣(1+2m

∣∣|ξ|−γ1

∣∣)R1(ξ)
∣∣∣. 2m(2l+�2

r )2−j2+δ′j2
�θ�

1/2
r . (2l+�2

r )2−j2(1/2−δ′)22δ2m.

On the other hand, if j26 1
2m, we estimate ‖f̂j1,k1

‖L∞+‖f̂j2,k2
‖L∞.1 and conclude that∣∣∣(1+2m

∣∣|ξ|−γ1

∣∣)R1(ξ)
∣∣∣. 2m+l

�θ�r . 2l22δ2m.

The desired bound (9.75) follows if �2
r2−l62j2/4.

Assume now �
2
r>2l2j2/4 (in particular j2> 11

20m). In this case, the restriction

|Φ(ξ, η)|6 2l

is stronger, and we have to use it. We decompose, with p− :=blog2(2l/2�−1
r )+Dc,

R1(ξ) =
∑

p∈[p−,0]

Rp1(ξ),

Rp1(ξ) : =

∫
R2

eisΦ(ξ,η)χl(Φ(ξ, η))m0(ξ, η)ϕ[p−,1]
p (�−1

r Ξ(ξ, η))

×ϕ(�−1
θ Θ(ξ, η))f̂j1,k1

(ξ−η)ĝj2,k2
(η) dη.

As in (9.74), notice that, if Rp1(ξ) 6=0, then
∣∣|ξ|−γ1

∣∣.22p
�

2
r . The term Rp−1 (ξ) can be

bounded as before. Moreover, using formula (10.46), it is easy to see that, if ξ=(s, 0) is

fixed, then the set of points η that satisfy the three restrictions

|Φ(ξ, η)|. 2l, |∇ηΦ(ξ, η)| ≈ 2p�r, and |ξ ·η⊥|.�θ
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is essentially contained in a union of two �θ×2l2−p�−1
r boxes. Using (9.77), and esti-

mating ‖f̂j1,k1
‖L∞.1, we have∣∣∣(1+2m

∣∣|ξ|−γ1

∣∣)Rp1(ξ)
∣∣∣. 2m+2p

�
2
r2−j2+δ′j2

�θ(2
l2−p�−1

r )1/2

. 23p/22−m+4δ2m2l/22j2/2+δ′j2 .

This suffices to prove (9.75), since 2p61, 2−l/262m/2, and 2j2629m/10; see (9.72).

Case 2. We now assume that

2l>min(k, k1, k2, 0)−D. (9.78)

In this case, we prove the stronger bound (9.70). We can still use the standard L2×L∞

argument, with Lemmas 7.4 and 7.5, to bound the contributions away from γ0. For

(9.70), it remains to prove that

2−l2(1−50δ)(m+|k|/2)‖PkI[A>1,γ0
fj1,k1

, A>1,γ0
gj2,k2

]‖L2 . 2−δm. (9.79)

The bound (9.79) follows if max(j1, j2)> 1
3m, using the same L2×L∞ argument. On

the other hand, if j1, j26 1
3m, then we use (7.37) and the more precise bound (7.42) to

see that

‖Ap,γ0
h‖L2 . 2−p/2 and ‖e−itΛAp,γ0

h‖L∞ . 2−m+2δ2m min(2p/2, 2m/2−p),

where h∈{fj1,k1
, gj2,k2

}, p>1, and t≈2m. Therefore, using Lemma 7.4,

‖PkI[Ap1,γ0
fj1,k1

, Ap2,γ0
gj2,k2

]‖L2 . 2k2−max(p1,p2)/22−m+2δ2m2min(p1,p2)/2.

The desired bound (9.79) follows, using also the simple estimate

‖PkI[Ap1,γ0
fj1,k1

, Ap2,γ0
gj2,k2

]‖L2 . 2k2−(p1+p2)/2.

Case 3. Assume now that

max(j1, j2)> 9
10m, j6min(j1, j2)+ 1

4m, and 2l6min(k, k1, k2, 0)−D.

Using Lemma 10.5 and (7.35), we estimate

‖PkI[fj1,k1,n1
, gj2,k2,n2

]‖L2

. 2k/2230δm2l/2−n1/2−n2/2
∥∥∥sup
θ∈S1

|f̂j1,k1,n1
(rθ)|

∥∥∥
L2(r dr)

∥∥∥sup
θ∈S1

|ĝj2,k2,n2
(rθ)|

∥∥∥
L2(r dr)

. 2k/22l/22−j1+δ′j12−j2+δ′j2230δm, (9.80)
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and the desired bound (9.70) follows.

Case 4. Finally, assume that

j2 > 9
10m, j> j1+ 1

4m, and 2l6min(k, k1, k2, 0)−D. (9.81)

In particular, j16 7
8m. We decompose, with �θ=2−2m/5,

I[fj1,k1 , gj2,k2 ] = I||[fj1,k1 , gj2,k2 ]+I⊥[fj1,k1 , gj2,k2 ],

Î||[f, g](ξ) =

∫
R2

eisΦ(ξ,η)χl(Φ(ξ, η))ϕ(�−1
θ ΩηΦ(ξ, η))f̂(ξ−η)ĝ(η) dη,

̂I⊥[f, g](ξ) =

∫
R2

eisΦ(ξ,η)χl(Φ(ξ, η))(1−ϕ(�−1
θ ΩηΦ(ξ, η)))f̂(ξ−η)ĝ(η) dη.

(9.82)

Integration by parts using Lemma 7.3 shows that ‖FPkI⊥[fj1,k1
, gj2,k2

]‖L∞.2−5m/2. In

addition, using Schur’s test and Proposition 10.4 (i), (iii),

‖PkI||[fj1,k1
, gj2,k2,n2

]‖L2 . 280δm2l�
1/2
θ ‖f̂j1,k1

‖L∞ ‖ĝj2,k2,n2
‖L2

. 295δm2l−m/52−(1−50δ)j22n2/2,

which gives an acceptable contribution if n26D.

It remains to estimate the contribution of I||[fj1,k1
, gj2,k2,n2

] for n2>D. Since |η|
is close to γ1 and |Φ(ξ, η)| is sufficiently small (see (9.81)), it follows from (10.6) that

min(k, k1, k2)>−40; moreover, the vectors ξ and η are almost aligned and |Φ(ξ, η)| is

small, so we may also assume that max(k, k1, k2)6100. Moreover, |∇ηΦ(ξ, η)|&1 in the

support of integration of I||[fj1,k1 , gj2,k2,n2 ], in view of Proposition 10.2 (iii). Integration

by parts in η using Lemma 7.2 (i) then gives an acceptable contribution, unless j2>

(1−δ2)m. We may also reset �θ=2δ
2m−m/2, up to small errors, using Lemma 7.3.

To summarize, we may assume that

j2 > (1−δ2)m, j> j1+ 1
4m, k, k1, k2 ∈ [−100, 100],

n2 >D, and �θ = 2δ
2m−m/2.

(9.83)

We decompose, with p− :=
⌊

1
2 l
⌋
,

I||[fj1,k1 , gj2,k2,n2 ] =
∑

p−6p6D

Ip||[fj1,k1 , gj2,k2,n2 ],

Îp||[f, g](ξ) : =

∫
R2

eisΦ(ξ,η)χl(Φ(ξ, η))ϕ(�−1
θ Θ(ξ, η))ϕ[p−,D]

p (∇ξΦ(ξ, η))

×f̂(ξ−η)ĝ(η) dη.
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It suffices to prove that, for any p,

2−l2(1−50δ)j‖QjkIp||[fj1,k1
, gj2,k2,n2

]‖L2 . 2−δm. (9.84)

As a consequence of Proposition 10.4 (iii), under our assumptions in (9.83) and

recalling that |∇ηΦ(ξ, η)|&1 in the support of the integral,

sup
ξ

∫
R2

|χl(Φ(ξ, η))|ϕ(�−1
θ Θ(ξ, η))ϕ6−D/2(|η|−γ1)1Dk,k1,k2

(ξ, η) dη. 2δ
2m2l�θ,

and, for any p>p−,

sup
η

∫
R2

|χl(Φ(ξ, η))|ϕ(�−1
θ Θ(ξ, η))ϕp(∇ξΦ(ξ, η))ϕ6−D/2(|η|−γ1)1Dk,k1,k2

(ξ, η) dξ

. 2δ
2m2l−p�θ.

Using Schur’s test, we can then estimate, for p>p−,

‖PkIp||[fj1,k1
, gj2,k2,n2

]‖L2 . 2−p/22l2−m/2+4δ2m‖f̂j1,k1
‖L∞ ‖gj2,k2,n2

‖L2

. 2−p/22l2−m+5δm.

The desired bound (9.83) follows if j6m+p+4δm. On the other hand, if

j>m+p+4δm,

then we use the approximate-finite-speed-of-propagation argument to show that

‖QjkIp||[fj1,k1 , gj2,k2,n2 ]‖L2 . 2−3m. (9.85)

Indeed we write, as in Lemma 7.4,

χl(Φ(ξ, η)) = c2l
∫
R
χ̂(2l%)ei%Φ(ξ,η) d%,

and notice that |∇ξ(x·ξ+(s+%)Φ(ξ, η))|≈2j in the support of the integral, provided that

|x|≈2j and |%|62m. Then, we recall that j>j1+ 1
4m (see (9.83)) and use Lemma 7.2 (i)

to prove (9.85). This completes the proof of Lemma 9.6.

9.6. The case of weakly resonant interactions

In this subsection we prove Lemma 9.7. We decompose Pk2
∂sf

ν as in (8.8) and notice

that the contribution of the error term can be estimated using the L2×L∞ argument as

before.
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To estimate the contributions of the terms Aa3,α3;a4,α4

k2;k3,j3;k4,j4
, we need more careful anal-

ysis of trilinear operators. With Φ̃(ξ, η, σ)=Λ(ξ)−Λµ(ξ−η)−Λβ(η−σ)−Λγ(σ) and p∈Z,

we define the trilinear operators Jl,p by

̂Jl,p[f, g, h](ξ, s) : =

∫
R2×R2

eisΦ̃(ξ,η,σ)f̂(ξ−η)2−lϕ̃l(Φ+µν(ξ, η))ϕp(Φ̃(ξ, η, σ))

×ϕk2
(η)mµν(ξ, η)mνβγ(η, σ)ĝ(η−σ)ĥ(σ) dσ dη.

(9.86)

Let Jl,6p=
∑
q6p Jl,q and Jl=

∑
q∈Z Jl,q. Let

Cl,p[f, g, h] :=

∫
R
qm(s)Jl,p[f, g, h](s) ds, Cl,6p :=

∑
q6p

Cl,q, Cl =
∑
q∈Z
Cl,q. (9.87)

Notice that

Bm,l[fµj1,k1
, Aa3,α3;a4,α4

k2;k3,j3;k4,j4
] = Cl[fµj1,k1

, fβj3,k3
, fγj4,k4

]. (9.88)

To prove the lemma, it suffices to show that

2(1−50δ)j‖QjkCl[fµj1,k1
, fβj3,k3

, fγj4,k4
]‖L2 . 2−3δ2m, (9.89)

provided that

k, k1, k2 ∈
[
−3.5m

N ′0
,

3.2m

N ′0

]
, j6m+2D+

max(|k|, |k1|, |k2|)
2

,

l>−m
14
, m>

D2

8
, k2, k3, k4 6

m

N ′0
, [(k3, j3), (k4, j4)]∈Xm,k2 .

(9.90)

The bound (9.41) and the same argument as in the proof of Lemma 7.4 show that

‖PkJl,6p[f, g, h](s)‖L2

. 2(k+k1+k2)/22(k2+k3+k4)/22−l

×min(|f |∞|g|2 |h|∞, |f |∞ |g|∞ |h|2, (1+2−l+2δ2m+3 max(k2,0)/2)|f |2 |g|∞ |h|∞)

+2−10m|f |2 |g|2 |h|2,

(9.91)

provided that s∈Im, 2−p+2−l62m−2δ2m,

f =P[k1−8,k1+8]f, g=P[k3−8,k3+8]g, h=P[k4−8,k4+8]h,

and, for F∈{f, g, h},
|F |q := sup

|t|∈[2m−4,2m+4]

‖eitΛF‖Lq . (9.92)
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In particular, the bounds (9.91) and (7.43) show that

2(1−50δ)j‖QjkCl[fµj1,k1
, fβj3,k3

, fγj4,k4
]‖L2 . 2−δm,

provided that max(j1, j3, j4)> 20
21m. Therefore, it remains to prove (9.89) when

max(j1, j3, j4)6 20
21m. (9.93)

Step 1. We first consider the contributions of Cl,p[fµj1,k1
, fβj3,k3

, fγj4,k4
] for p>− 11

21m.

In this case, we integrate by parts in s and rewrite

Cl,p[fµj1,k1
, fβj3,k3

, fγj4,k4
]

= i2−p
(∫

R
q′m(s)J̃l,p[fµj1,k1

, fβj3,k3
, fγj4,k4

](s) ds+C̃l,p[∂sfµj1,k1
, fβj3,k3

, fγj4,k4
]

+C̃l,p[fµj1,k1
, ∂sf

β
j3,k3

, fγj4,k4
]+C̃l,p[fµj1,k1

, fβj3,k3
, ∂sf

γ
j4,k4

]

)
,

where the operators J̃l,p and C̃l,p are defined in the same way as the operators Jl,p and

Cl,p, but with ϕp(Φ̃(ξ, η, σ)) replaced by ϕ̃p(Φ̃(ξ, η, σ)), with ϕ̃p(x)=2px−1ϕp(x) (see

formula (9.86)). The operator J̃l,p also satisfies the L2 bound (9.91). Recall the L2

bounds (8.21) on ∂sPk′fσ. Using (9.91) (with ∂sPk′fσ always placed in L2, notice that

2−2l62m/7), it follows that∑
p>−11m/21

2(1−50δ)j‖PkCl,p[fµj1,k1
, fβj3,k3

, fγj4,k4
]‖L2 . 2−3δ2m.

Step 2. For (9.89) it remains to prove that

2(1−50δ)j‖QjkCl,6−11m/21[fµj1,k1
, fβj3,k3

, fγj4,k4
]‖L2 . 2−3δ2m. (9.94)

Since max(j1, j3, j4)6 20
21m, see (9.93), we have the pointwise approximate identity

PkCl,6−11m/21[fµj1,k1
, fβj3,k3

, fγj4,k4
]

=PkCl,6−11m/21[A>D1,γ0
fµj1,k1

, A>D1−10,γ0
fβj3,k3

, A>D1−20,γ0
fγj4,k4

]

+PkCl,6−11m/21[A<D1,γ0
fµj1,k1

, A6D1+10,γ0
fβj3,k3

, A6D1+20,γ0
fγj4,k4

]

+O(2−4m),

(9.95)

where D1 is the large constant used in §10. This is a consequence of Lemma 7.2 (i) and

the observation that |∇η,σΦ̃(ξ, η, σ)|&1 in the other cases. Letting

g1 =A>D1,γ0f
µ
j1,k1

, g3 =A>D1−10,γ0f
β
j3,k3

, g4 =A>D1−20,γ0f
γ
j4,k4

,

h1 =A<D1,γ0
fµj1,k1

, h3 =A<D1+10,γ0
fβj3,k3

, h4 =A<D1+20,γ0
fγj4,k4

,
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it remains to prove that

2(1−50δ)j‖QjkCl,6−11m/21[g1, g3, g4]‖L2 . 2−3δ2m (9.96)

and

2(1−50δ)j‖QjkCl,6−11m/21[h1, h3, h4]‖L2 . 2−3δ2m. (9.97)

Proof of (9.96). We use Lemma 10.6 (i). If l6−4m/N ′0, then |∇η,σΦ̃(ξ, η, σ)|&1 in

the support of the integral (due to (10.66)) and the contribution is negligible (due to

Lemma 7.2 (i) and (9.93)). On the other hand, if

l>−4m

N ′0
and j6

2m

3
+max(j1, j3, j4), (9.98)

then we apply (9.91). The left-hand side of (9.96) is dominated by

C2(1−50δ)j2m(1+2−2l)2−5m/3+8δ2m2−max(j1,j3,j4)(1−50δ) . 2−10δ,

as we notice that max(k, k1, k2, k3, k4)620. This suffices to prove (9.96) in this case.

Finally, if

l>−4m

N ′0
and j>

2m

3
+max(j1, j3, j4), (9.99)

then max(j1, j3, j4)6 1
3m+10δm and j> 2

3m. We define the localized trilinear operators

F{Jl,6p,� [f, g, h]}(ξ, s)

: =

∫
R2×R2

eisΦ̃(ξ,η,σ)f̂(ξ−η)2−lϕ̃l(Φ+µν(ξ, η))ϕ6p(Φ̃(ξ, η, σ))

×ϕ(�−1∇η,σΦ̃(ξ, η, σ))ϕk2
(η)mµν(ξ, η)mνβγ(η, σ)ĝ(η−σ)ĥ(σ) dσ dη,

(9.100)

which are similar to the trilinear operators defined in (9.86), with the additional cutoff

factor in ∇η,σΦ̃(ξ, η, σ) and p=− 11
21m. Set � :=2−m/2+δ2m, and notice that

‖F{Jl,6−11m/21[g1, g3, g4]−Jl,6−11m/21,� [g1, g3, g4]}‖L∞ . 2−6m,

as a consequence of Lemma 7.2 (i). Also, |∇ξΦ̃(ξ, η, σ)|.22p/3≈2−22m/63 in the support

of the integral defining Jl,6−11m/21,� [g1, g3, g4], due to Lemma 10.6 (i). Thus, using the

approximate-finite-speed-of-propagation argument (integration by parts in ξ),

‖QjkJl,6−11m/21,� [g1, g3, g4]‖L∞ . 2−6m.

The desired bound (9.96) follows in this case as well (in fact, one has rapid decay if (9.99)

holds).



gravity-capillary water-wave system in 3d 327

Proof of (9.97). The desired estimate follows from (9.91) and the dispersive bounds

(7.41)–(7.42) if max(j1, j3, j4)> 1
3m or if j6 2

3m or if l>−10δm. Assume that

max(j1, j3, j4)6 1
3m, j> 2

3m, and l6−10δm. (9.101)

As before, we may replace Jl,6−11m/21[h1, h3, h4] by Jl,6−11m/21,� [h1, h3, h4], at the

expense of a small error, where �=2−m/2+20δm. Moreover, |∇ξΦ̃(ξ, η, σ)|.� in the

support of the integral defining Jl,6−11m/21,� [h1, h3, h4], due to Lemma 10.6 (ii). The

approximate-finite-speed-of-propagation argument (integration by parts in ξ) then gives

rapid decay in the case when (9.101) holds. This completes the proof.

9.7. The case of strongly resonant interactions II

In this subsection we prove Lemma 9.8. Let k̄ :=max(k, k1, k2, 0). It suffices to prove the

lemma in the case

k, k1, k2 ∈ [−k̄−20, k̄], j6m+3D+
k̄

2
, k̄6

7m

6N ′0
, and l−< l6−

m

14
. (9.102)

Indeed, we may assume that k, k1, k2>−k̄−20, since otherwise the operator is trivial

(due to (10.6)). Moreover, if max(k1, k2)>7m/6N ′0−10, then the L2×L∞ argument

(with Lemma 7.4) easily gives the desired conclusion due to the assumption (9.6).

We define (compare with the definition of the operators Tm,l in (9.18))

̂
T
‖
m,l[f, g](ξ)

=

∫
R
qm(s)

∫
R2

eisΦ(ξ,η)ϕ(�−1
θ Θ(ξ, η))ϕl(Φ(ξ, η))m0(ξ, η)f̂(ξ−η, s)ĝ(η, s) dη ds,

where �θ :=2−m/2+6k̄+δ2m. Let T⊥m,l=Tm,l−T
‖
m,l, and define A‖m,l and B‖m,l similarly, by

inserting the factor ϕ(�−1
θ Θ(ξ, η)) in the integrals in (9.19). We notice that

T
‖
m,l[Pk1

fµ, Pk2
fν ] = iA‖m,l[Pk1

fµ, Pk2
fν ]+iB‖m,l[Pk1

∂sf
µ, Pk2

fν ]

+iB‖m,l[Pk1f
µ, Pk2∂sf

ν ].

It remains to prove that, for any j1 and j2,

2(1−50δ)j‖QjkT⊥m,l[f
µ
j1,k1

, fνj2,k2
]‖L2 . 2−3δ2m, (9.103)

‖QjkA‖m,l[f
µ
j1,k1

, fνj2,k2
]‖Bj . 2−3δ2m, (9.104)

and

‖QjkB‖m,l[f
µ
j1,k1

, ∂sPk2f
ν ]‖Bj . 2−3δ2m. (9.105)
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Proof of (9.103). We may assume that min(j1, j2)>m−2k̄−δ2m, otherwise the con-

clusion follows from Lemma 7.3. We decompose

fµj1,k1
=

j1+1∑
n1=0

fj1,k1,n1
and fνj2,k2

=

jj+1∑
n2=0

fj2,k2,n2
,

and estimate, using Lemma 10.5 and (7.35),

‖PkT⊥m,l[fj1,k1,n1
, fj2,k2,n2

]‖L2

. 22k̄2m2l/2−n1/2−n2/2
∥∥∥sup
θ∈S1

|f̂j1,k1,n1
(rθ)|

∥∥∥
L2(r dr)

∥∥∥sup
θ∈S1

|f̂j2,k2,n2
(rθ)|

∥∥∥
L2(r dr)

. 22k̄2m2l/226δ2m2−j1+51δj12−j2+51δj2 .

Therefore, using also (9.102), the left-hand side of (9.103) is dominated by

2(1−50δ)j26δ2m22k̄2m2l/22−j1+51δj12−j2+51δj2 . 28k̄2l/2254δm.

This suffices to prove the desired bound, since

2l/2 . 2−m/28 and 28k̄254δm. 264δm. 2m/30.

Proof of (9.104). In view of Lemma 9.6, it suffices to prove that

2(1−50δ)j‖QjkA⊥m,l[f
µ
j1,k1

, fνj2,k2
]‖L2 . 2−3δ2m.

This is similar to the proof of (9.103) above, using Lemma 10.5 and (7.35).

Proof of (9.105). This is the more difficult estimate, where we need to use the more

precise information in Lemma 8.2. We may assume j163m, since in the case j1>3m we

can simply estimate ‖f̂µj1,k1
‖L1.2−j1+51δj1 (see (7.36)) and the desired estimate easily

follows. We decompose ∂sPk2
fν as in (8.8), and then we decompose

Aa3,α3;a4,α4

k2;k3,j3;k4,j4
=

3∑
i=1

A
a3,α3;a4,α4;[i]
k2;k3,j3;k4,j4

as in (8.35). Note that, as k2>−3m/2N ′0 (see (9.102)), it follows from Lemma 8.1 (ii) (2)

that min(k2, k3, k4)>−2m/N ′0, so Lemma 8.2 applies. It remains to prove that

‖QjkB‖m,l[f
µ
j1,k1

, Pk2E
a2,α2
ν ]‖Bj . 2−4δ2m (9.106)

and, for any [(k3, j3), (k4, j4)]∈Xm,k2
, i∈{1, 2, 3},

‖QjkB‖m,l[f
µ
j1,k1

, A
a3,α3;a4,α4;[i]
k2;k3,j3;k4,j4

]‖Bj . 2−4δ2m. (9.107)

These bounds follow from Lemmas 9.10–9.12 below. Recall the definition

̂B‖m,l[f, g](ξ) =

∫
R
qm(s)

∫
R2

eisΦ(ξ,η)ϕ(�−1
θ Θ(ξ, η))2−l (9.108)

×ϕ̃l(Φ(ξ, η))m0(ξ, η)f̂(ξ−η, s)ĝ(η, s) dη ds.
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Lemma 9.10. Assume that (9.102) holds and �θ=2−m/2+6k̄+δ2m. Then,

‖QjkB‖m,l[f
µ
j1,k1

, h]‖Bj . 2−4δ2m, (9.109)

provided that, for any s∈Im,

h(s) =P[k2−2,k2+2]h(s), with ‖h(s)‖L2 . 2−3m/2+35δm−22k̄. (9.110)

Proof. The lemma is slightly stronger (with a weaker assumption on h) than we

need to prove (9.106), since we intend to apply it in some cases in the proof of (9.107)

as well. We would like to use Schur’s lemma and Proposition 10.4 (iii). For this, we need

to further decompose the operator B‖m,l. For p, q∈Z we define the operators B′p,q by

̂B′p,q[f, g](ξ) : =

∫
R
qm(s)

∫
R2

eisΦ(ξ,η)ϕ(�−1
θ Θ(ξ, η))2−lϕ̃l(Φ(ξ, η))

×ϕp(∇ξΦ(ξ, η))ϕq(∇ηΦ(ξ, η))m0(ξ, η)f̂(ξ−η, s)ĝ(η, s) dη ds.

(9.111)

Let Hp,q :=PkB′p,q[f
µ
j1,k1

, h]. Using the bounds ‖f̂µj1,k1
‖L∞.22δj125δ2m251δk̄.27δm (see

(7.37)), Proposition 10.4 (iii), and (9.110), we estimate

‖Hp,q‖L2 . 22k̄2m(210k̄2l�θ2
−p−/22−q−/22δ

2m)2−l sup
s∈Im

‖f̂µj1,k1
(s)‖L∞ ‖h(s)‖L2

. 2−4k̄2−p−/22−q−/22−m+43δm,

(9.112)

where x−=min(x, 0). In particular,∑
p>−4δm

q>−4δm

2j−50δj‖PkB′p,q[f
µ
j1,k1

, h]‖L2 . 2−δm. (9.113)

We now show that ∑
p6−4δm

q∈Z

2j−50δj‖PkB′p,q[f
µ
j1,k1

, h]‖L2 . 2−δm. (9.114)

For this, we now notice that, if p6−4δm, then PkB′p,q[f
µ
j1,k1

, h] is non-trivial only when

|η| is close to γ1, and |ξ| and |ξ−η| are close to 1
2γ1 (as a consequence of Proposi-

tion 10.2 (iii)). In particular, 2k̄.1, 2q≈1, and |f̂µj1,k1
(ξ−η, s)|.22δ2m2−j1/2+51δj1 in the

support of the integral. Therefore, using also (10.44), we have the stronger estimate

(compare with (9.112))

‖Hp,q‖L2 . 2m−l2l�θ min(2−p/2, 2p/2−l/2)2δ
2m sup

s∈Im
‖f̂µj1,k1

(s)‖L∞ ‖h(s)‖L2

. 2−j1/2+51δj1 min(2−p/2, 2p/2−l/2)2−m+36δm.

(9.115)
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The desired bound (9.114) follows if j1>j−δm or if j6 3
43m−5δm, since

min(2−p/2, 2p/2−l/2). 2−l/4 . 2m/4.

On the other hand, if

j1 6 j−δm and j> 3
4m−5δm,

then the sum over p>(j−m)−10δm in (9.114) can also be estimated using (9.115). The

remaining sum over p6(j−m)−10δm is negligible using the approximate-finite-speed-of-

propagation argument (integration by parts in ξ). This completes the proof of (9.114).

Finally, we show that ∑
p∈Z

q6−4δm

‖QjkB′p,q[f
µ
j1,k1

, h]‖Bj . 2−δm. (9.116)

As before, we now notice that, if q6−4δm, then PkB′p,q[f
µ
j1,k1

, h] is non-trivial only when

|ξ| is close to γ1, and |η| and |ξ−η| are close to 1
2γ1 (as a consequence of Proposi-

tion 10.2 (iii)). In particular 2k̄.1, 2p≈1, and we have the stronger estimate (compare

with (9.115))

‖Hp,q‖L2 . 2−j1/2+51δj1 min(2−q/2, 2q/2−l/2)2−m+36δm.
2q/2

2q+2l/2
2−m+36δm. (9.117)

Moreover, since |Φ(ξ, η)|.2l and |∇ηΦ(ξ, η)|.2q, the function Ĥp,q is supported in the

set
{
ξ :
∣∣|ξ|−γ1

∣∣.2l+22q
}

(see (10.21)). The main observation is that the Bj norm for

functions supported in such a set carries an additional small factor. More precisely, after

localization to a 2j-ball in the physical space, the function F{QjkB′p,q[f
µ
j1,k1

, h]}(ξ) is

supported in the set
{
ξ :
∣∣|ξ|−γ1

∣∣.2l+22q+2−j+2δm
}

, up to a negligible error. Therefore,

using (9.117),

‖QjkB′p,q[f
µ
j1,k1

, Pk2
Ea3
ν ]‖Bj . 2j−50δj(2l+22q+2−j+2δm)1/2−49δ‖Hp,q‖L2

. 2j−50δj2−m+36δm(2l/2+2q+2−j/2+δm)
2q/2−100δq

2q+2l/2

. 2q/82−4δm.

So, (9.116) follows. The bound (9.109) follows from (9.113), (9.114), and (9.116).

Lemma 9.11. Assume that (9.102) holds and �θ=2−m/2+6k̄+δ2m. Then,

‖QjkB‖m,l[f
µ
j1,k1

, A
a3,α3;a4,α4;[1]
k2;k3,j3;k4,j4

]‖Bj . 2−4δ2m. (9.118)
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Proof. Notice that A
a3,α3;a4,α4;[1]
k2;k3,j3;k4,j4

is supported in the set
∣∣|η|−γ1

∣∣62−D. Using also

the conditions Φ(ξ, η).2l and Θ(ξ, η).�θ, we have∣∣|η|−γ1

∣∣6 2−D, |ξ|, |ξ−η| ∈ [2−50, 250], min
(∣∣|ξ|−γ1

∣∣, ∣∣|ξ−η|−γ1

∣∣)> 2−50 (9.119)

in the support of the integral defining F{PkB‖m,l[f
µ
j1,k1

, G[1]](ξ)}, where

G[1] =A
a3,α3;a4,α4;[1]
k2;k3,j3;k4,j4

.

Case 1. Assume first that

max(j3, j4)> 1
2m. (9.120)

In this case,

‖G[1]‖L2 . 2−3m/2+30δm

(see (8.37)), and the conclusion follows from Lemma 9.10.

Case 2. Assume now that

max(j3, j4)6 1
2m and j1 > 1

2m. (9.121)

The bound (9.118) again follows by the same argument as in the proof of (9.109) above.

In this case, ‖Ĝ[1](s)‖L∞.2−m+4δm (due to (8.42) and (8.43)) and

‖F{A60,γ1f
µ
j1,k1
}(s)‖L2 . 22δ2m2−j1+50δj1

(see (7.37)). We make the change of variables η 7!ξ−η, define Φ′(ξ, η)=Φ(ξ, ξ−η), and

define the operators B′′p,q as in (9.111), by inserting cutoff factors ϕp((∇ξΦ′)(ξ, η)) and

ϕq((∇ηΦ′)(ξ, η)). In this case, we notice that we may assume both p>−D and q>−D.

Indeed, we have |Φ′(ξ, η)|62−D and
∣∣|ξ−η|−γ1

∣∣62−D, so

|(∇ξΦ′)(ξ, η)|& 1 and |(∇ηΦ′)(ξ, η)|& 1

in the support of the integral (in view of Proposition 10.2 (iii)). Then we estimate, using

(10.42),

‖PkB′′p,q[A60,γ1f
µ
j1,k1

, G[1]]‖L2 . 2−j1+50δj12−m/2+5δm.

The bound (9.118) follows by summation over p and q.

Case 3. Assume now that

max(j1, j3, j4)6 1
2m and j6 1

2m+10δm. (9.122)
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We use the bounds ‖Ĝ[1](s)‖L∞.2−m+4δm (see (8.42)–(8.43)) and ‖f̂µj1,k1
(s)‖L∞.23δm.

Moreover, |∇ηΦ(ξ, η)|&1 in the support of the integral. Therefore, using the first bound

in (10.42),

‖F{PkB‖m,l[f
µ
j1,k1

, G[1]]}‖L∞ . 2m−l�θ2
l2δ

2m sup
s∈Im

‖Ĝ[1](s)‖L∞ ‖f̂µj1,k1
(s)‖L∞

. 2−m/2+8δm.

The desired bound (9.118) follows when j6 1
2m+10δm.

Case 4. Finally, assume that

max(j1, j3, j4)6 1
2m and j> 1

2m+10δm. (9.123)

We examine formula (9.108), decompose G[1] as in (8.42) and notice that the contribution

of the error term is easy to estimate. To estimate the main term, we define the modified

phase

p(ξ, η) := Φ+µν(ξ, η)+Λν(η)−2Λν
(

1
2η
)

= Λ(ξ)−Λµ(ξ−η)−2Λν
(

1
2η
)
. (9.124)

For r∈Z we define the functions Gr=Gr,m,l,j,j1 by

Ĝr(ξ) : =

∫
R
qm(s)

∫
R2

eisp(ξ,η)ϕ(�−1
θ Θ(ξ, η))2−lϕ̃l(Φ(ξ, η))m0(ξ, η)

×ϕr(∇ηp(ξ, η))f̂µj1,k1
(ξ−η, s)g[1](η, s)ϕ(23δm(|η|−γ1)) dη ds.

(9.125)

Notice that the functions Gr are negligible for, say, r6−10m. It suffices to prove that

2j−50δj‖QjkGr‖L2 . 2−5δ2m for any r∈Z. (9.126)

We first notice that ‖PkGr‖L2.2−4m if r>max
(
δ2m−l−m, 6δm− 1

2m
)
, in view of

Lemma 7.2 (i). In particular, we may assume that r6−D. In this case, the functions Gr
are non-trivial only when −µ=ν=+ and ξ is close to 1

2η. Therefore,

p(ξ, η) = Λ(ξ)+Λ(η−ξ)−2Λ
(

1
2η
)
,

and we have, in the support of the integral defining Ĝr(ξ),

|∇ηp(ξ, η)| ≈
∣∣ξ− 1

2η
∣∣≈ |∇ξp(ξ, η)| ≈ |∇ξΦ(ξ, η)| ≈ 2r,

|p(ξ, η)| ≈
∣∣ξ− 1

2η
∣∣2≈ 22r,∣∣|η|−γ1| ≈

∣∣Λ(η)−2Λ
(

1
2η
)∣∣. |Φ(ξ, η)|+|p(ξ, η)|. 2l+22r,∣∣|ξ|− 1

2γ1

∣∣. 2l+2r.

(9.127)
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The finite-speed-of-propagation argument (integration by parts in ξ) shows that

‖QjkGr‖L2 . 2−4m

if j>3δ2m+max(m+r,−r). To summarize, it remains to prove that

(2m+r+2−r)1−50δ‖PkGr‖L2 . 2−δm, if r6max
(
δ2m−l−m, 6δm− 1

2m
)
. (9.128)

For ξ fixed, the variable η satisfies three restrictions:

|η ·ξ⊥|.�θ, |Φ(ξ, η)|. 2l, and |η−2ξ|. 2r.

Therefore, using also (8.42) and (8.43), we have the pointwise bound

|Ĝr(ξ)|. 25δ2m2m−l min(2r, 2−m/2) min(2r, 2l) sup
s∈Im

‖f̂µj1,k1
(s)‖L∞ ‖g[1](s)‖L∞

. 28δm min(2r, 2−m/2) min(2r−l, 1).

(9.129)

The desired bound (9.128) follows, using also the support assumption
∣∣|ξ|− 1

2γ1

∣∣.2l+2r

in (9.127), if r6− 1
2m or if r∈

[
− 1

2m,−
1
3m
]
.

It remains to prove (9.128) when − 1
3m6r6−l−m+δ2m. The main observation in

this case is that |p(ξ, η)|≈22r is large enough to be able to integrate by parts in s. It

follows that

|Ĝr(ξ)|.
∫
R

∫
R2

2−2r|ϕ(�−1
θ Θ(ξ, η))2−lϕ̃l(Φ(ξ, η))ϕr(∇ηp(ξ, η))ϕ(23δm(|η|−γ1))|

×|∂s(f̂µj1,k1
(ξ−η, s)g[1](η, s)qm(s)) | dη ds.

For ξ fixed, the integral is supported in an O(�θ×2l) rectangle centered at η=2ξ. In this

support, we have the bounds see Lemma 8.2 (ii) and (iii),

‖f̂µj1,k1
(s)‖L∞ . 2δ

2m, ‖g[1](s)‖L∞ . 2−m+4δm, ‖∂sg[1](s)‖L∞ . 2−2m+18δm,

∂sf
µ
j1,k1

=h2+h∞, ‖h2(s)‖L2 . 2−3m/2+5δm, ‖ĥ∞(s)‖L∞ . 2−m+15δm.

The integrals that do not contain the function h2 can all be estimated pointwise, as in

(9.129) by C2−2r2−l2−m+20δm(2l�θ).2−2r2−3m/2+21δm. The integral that contains the

function h2 can be estimated pointwise, using Hölder’s inequality, by

C2−2r2−l2−3m/2+10δm(2l�θ)
1/2 . 2−2r2−l/22−7m/4+11δm. 2−2r2−5m/4+11δm.

Therefore, using also the support assumption
∣∣|ξ|− 1

2γ1

∣∣.2r in (9.127), and recalling that

r>− 1
3m and l6− 1

2m, we have

2m+r‖PkGr‖L2 . 2−r/22−m/4+11δm.

This suffices to prove (9.128), which completes the proof of the lemma.
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Lemma 9.12. With the same notation as in Lemma 9.11, and assuming (9.102), we

have

‖QjkB‖m,l[f
µ
j1,k1

, A
a3,α3;a4,α4;[2]
k2;k3,j3;k4,j4

]‖Bj . 2−4δ2m. (9.130)

Proof. The main observation here is that, since

|Φ+µν(ξ, η)|. 2l and |Φνβγ(η, σ)|& 2−10δm,

we have |Φ̃(ξ, η, σ)|&2−10δm, and thus we can integrate by parts in s once more. Before

this, however, we notice that we may assume that

k3, k4 ∈
[
−2m

N ′0
,
m

N ′0

]
and min(j3, j4)6m−4δm. (9.131)

Indeed, we first use Lemma 8.1 (ii) (2), (3). Moreover, if

min(j3, j4)>m−4δm or max(k3, k4)>
m

N ′0
,

then we would have

‖Aa3,α3;a4,α4;[2]
k2;k3,j3;k4,j4

‖L2 . 2−3m/2+8δm

(by the same argument as in the proof of (8.31) or an L2×L∞ estimate), and the desired

bound would follow from Lemma 9.10.

Step 1. For r∈Z we define (compare with (9.86)) the trilinear operators J [2]
l,r by

F{J [2]
l,r [f, g, h]}(ξ, s)

: =

∫
R2×R2

eisΦ̃(ξ,η,σ)f̂(ξ−η)ϕ(�−1
θ Θ(ξ, η))2−lϕ̃l(Φ+µν(ξ, η))ϕr(Φ̃(ξ, η, σ))

×χ[2](η, σ)ϕk2
(η)mµν(ξ, η)mνβγ(η, σ)ĝ(η−σ)ĥ(σ) dσ dη.

(9.132)

Let

C[2]
l,r [f, g, h] :=

∫
R
qm(s)J [2]

l,r [f, g, h](s) ds, (9.133)

and notice that

B‖m,l[f
µ
j1,k1

, A
b1,b2,b3,[2]
k2;k3,j3;k4,j4

] =
∑

r>−11δm

C[2]
l,r [f

µ
j1,k1

, fβj3,k3
, fγj4,k4

].

We integrate by parts in s to rewrite

C[2]
l,r [f

µ
j1,k1

, fβj3,k3
, fγj4,k4

]

= i2−r
(∫

R
q′m(s)J̃ [2]

l,r [fµj1,k1
, fβj3,k3

, fγj4,k4
](s) ds+C̃[2]

l,r [∂sf
µ
j1,k1

, fβj3,k3
, fγj4,k4

]

+C̃[2]
l,r [f

µ
j1,k1

, ∂sf
β
j3,k3

, fγj4,k4
]+C̃[2]

l,r [f
µ
j1,k1

, fβj3,k3
, ∂sf

γ
j4,k4

]

)
,
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where the operators J̃ [2]
l,r and C̃[2]

l,r are defined in the same way as the operators J [2]
l,r and

C[2]
l,r , but with ϕp(Φ̃(ξ, η, σ)) replaced by ϕ̃p(Φ̃(ξ, η, σ)), where ϕ̃p(x)=2px−1ϕp(x) (see

formula (9.132)). It suffices to prove that, for any s∈Im and r>−11δm,

2j−50δj‖QjkJ̃ [2]
l,r [f, g, h]‖L2 . 2−12δm, (9.134)

where one of the following hold:

[f, g, h] = [fµj1,k1
, fβj3,k3

, fγj4,k4
](s),

[f, g, h] = [2m∂sf
µ
j1,k1

, fβj3,k3
, fγj4,k4

](s),

[f, g, h] = [fµj1,k1
, 2m∂sf

β
j3,k3

, fγj4,k4
](s),

[f, g, h] = [fµj1,k1
, fβj3,k3

, 2m∂sf
γ
j4,k4

](s).

Step 2. As in the proof of Lemma 7.4, the function ϕ̃r(Φ̃(ξ, η, σ)) can be incorporated

with the phase eisΦ̃(ξ,η,σ), using formula (7.30) and the fact that 2−r6211δm. Then, we

integrate in the variable σ and denote by H1, H2, and H3 the resulting functions:

H1 : = I [2][fβj3,k3
(s), fγj4,k4

(s)],

H2 : = I [2][∂sf
β
j3,k3

(s), fγj4,k4
(s)],

H3 : = I [2][fβj3,k3
(s), ∂sf

γ
j4,k4

(s)],

F{I [2][g, h]}(η) : =

∫
R2

ei(s+λ)Φνβγ(η,σ)χ[2](η, σ)ϕk2(η)mνβγ(η, σ)ĝ(η−σ)ĥ(σ) dσ.

We claim that, for |λ|62m−100,

‖H1‖L2 +2m‖H2‖L2 +2m‖H3‖L2 . 2−5m/6+10δm. (9.135)

Notice that the bound on H1 is already proved (in a stronger form) in the proof of

(8.38) and (8.39). The bounds on H2 and H3 follow in the same way from the L2×L∞

argument: indeed, we have ‖∂sfβj3,k3
(s)‖L2 +‖∂sfγj4,k4

(s)‖L2.2−m+7δm (due to (8.21)).

Then, we notice that we can remove the factor ϕ(220δmΘβ(η, σ)) from the multiplier

χ[2](η, σ), at the expenses of a small error (due to Lemma 7.3 and (9.131)). The desired

bounds in (9.135) follow using the L2×L∞ argument with Lemma 7.4.

Step 3. We now prove (9.134) for [f, g, h]=[fµj1,k1
, fβj3,k3

, fγj4,k4
](s). It suffices to show

that

24k̄2m−30δm‖S[fµj1,k1
(s), H1]‖L2 . 1 (9.136)
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for any s∈Im, where

F{S[f, g]}(ξ) : = |ϕk(ξ)|
∫
R2

|f̂(ξ−η)ϕ(�−1
θ Θ(ξ, η))2−lϕ̃l(Φ(ξ, η))

×ϕ[k2−2,k+2](η)ĝ(η)| dη.
(9.137)

This follows using Schur’s lemma, the bound (9.135), and Proposition 10.4 (iii). Indeed,

we have |∇ηΦ(ξ, η)|+|∇ξΦ(ξ, η)|&2−4δm in the support of the integral (due to the location

of space-time resonances), therefore the left-hand side of (9.136) is dominated by

C24k̄2m−30δm2−l(210k̄
�θ2

3l/424δm)‖f̂µj1,k1
(s)‖L∞ ‖Ĥ1‖L2 . 230k̄2−l/42−m/3.

This suffices to prove (9.136), since 2−l62m. Moreover, (9.134) follows in the same way

for [f, g, h]=[fµj1,k1
, 2m∂sf

β
j3,k3

, fγj4,k4
](s) or [f, g, h]=[fµj1,k1

, fβj3,k3
, 2m∂sf

γ
j4,k4

](s), as the

L2 bounds on 2mH2 and 2mH3 are the same as for H1.

It remains to prove (9.134) for [f, g, h]=[2m∂sf
µ
j1,k1

, fβj3,k3
, fγj4,k4

](s). It suffices to

prove that

24k̄2m−30δm‖S[2m∂sf
µ
j1,k1

(s), H1]‖L2 . 1 for any s∈ Im. (9.138)

Let f=2m∂sf
µ
j1,k1

(s) and f2γ0
:=A>D−11,2γ0

f . We decompose, using (8.41),

f = f2γ0
+f2+f∞,

with

‖f2γ0
‖L2 . 27δm, ‖f2‖L2 . 2−m/2+5δm, and ‖f̂∞‖L∞ . 23k̄+15δm.

The contribution of f∞ can be estimated as before, using Schur’s lemma, (9.135), and

Proposition 10.4 (iii). To estimate the other contributions, we also use the bound (see

(8.40))

‖Ĥ1,∞‖L∞ . 23k̄2−m+14δm

where

H1 =H1,2γ0 +H1,∞=A>D+1,2γ0H1+A6D,2γ0H1.

As before, we use Schur’s test and Proposition 10.4 (iii), together with the fact that

space-time resonances are possible only when |ξ|, |η|, and |ξ−η| are all close to either γ1

or 1
2γ1. We estimate

‖S[f2, H1,∞]‖L2 . 2−l(212k̄
�θ2

3l/424δm)‖f̂2‖L2 ‖Ĥ1,∞‖L∞ . 220k̄2−l/42−2m+40δm,

‖S[f2γ0 , H1,∞]‖L2 . 2−l(212k̄
�θ2

3l/424δm)‖f̂2γ0‖L2 ‖Ĥ1,∞‖L∞ . 220k̄2−l/42−3m/2+40δm,

‖S[f2, H1,2γ0 ]‖L2 . 2−l(210k̄
�θ2

l24δm)1/2‖f̂2‖L2 ‖Ĥ1,2γ0‖L2 . 215k̄2−l/22−19m/12+20δm,

S[f2γ0
, H1,2γ0

]≡ 0.

These bounds suffice to prove (9.138), which completes the proof of the lemma.



gravity-capillary water-wave system in 3d 337

9.8. Higher-order terms

In this subsection we consider the higher-order components in the Duhamel formula (7.5)

and show how to control their Z norms.

Proposition 9.13. With the hypothesis in Proposition 7.1, for any t∈[0, T ] we have

‖W3(t)‖Z+

∥∥∥∥∫ t

0

eisΛN>4(s) ds

∥∥∥∥
Z

. ε2
1. (9.139)

The rest of this section is concerned with the proof of Proposition 9.13. The bound

on N>4 follows directly from the hypothesis ‖eisΛN>4(s)‖Z6ε2
1(1+s)−1−δ2

; see (7.15).

To prove the bound on W3 we start from the formula

ΩaξŴ3(ξ, t) =
∑

µ,ν,β∈{+,−}
a1+a2+a3=a

∫ t

0

∫
R2×R2

eisΦ̃+µνβ(ξ,η,σ)nµνβ(ξ, η, σ)(Ωa1 V̂µ)(ξ−η, s)

×(Ωa2 V̂ν)(η−σ, s)(Ωa3 V̂β)(σ, s) dη dσ ds.

(9.140)

We define the functions qm as in (4.8) and the trilinear operators Cm=Cµνβm,b by

F{Cm[f, g, h]}(ξ) : =

∫
R
qm(s)

∫
R2×R2

eisΦ̃(ξ,η,σ)n0(ξ, η, σ)

×f̂(ξ−η, s)ĝ(η−σ, s)ĥ(σ, s) dη dσ ds,

(9.141)

where Φ̃:=Φ̃+µνβ and n0 :=nµνβ . It remains to prove that, for any (k, j)∈J and any

m∈[0, L+1],∑
k1,k2,k3∈Z

2j−50δj‖QjkCm[Pk1D
α1Ωa1Vµ, Pk2

Dα2Ωa2Vν , Pk3
Dα3Ωa3Vβ ]‖L2 . 2−δ

2mε3
1

(9.142)

for any µ, ν, β∈{+,−}, provided that a1+a2+a3=a and α1+α2+α3=α. Let

fµ := ε−1Dα1Ωa1Vµ, fν := ε−1Dα2Ωa2Vν , and fβ := ε−1Dα3Ωa3Vβ . (9.143)

The bootstrap assumption (7.15) gives, for any s∈[0, t] and γ∈{µ, ν, β},

‖fγ(s)‖
HN
′
0∩Z1∩H

N′1
Ω

. (1+s)δ
2

. (9.144)

Simple estimates, as in the proof of Lemma 9.3, show that the parts of the sum

in (9.142) over max(k1, k2, k3)>2(j+m)/N ′0−D2 or over min(k1, k2, k3)6− 1
2 (j+m) are

bounded as claimed. For (9.142) it remains to prove that

2j−50δj‖QjkCm[Pk1
fµ, Pk2

fν , Pk3
fβ ]‖L2 . 2−2δ2m−δ2j (9.145)
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for any fixed m∈[0, L+1], (k, j)∈J , and k1, k2, k3∈Z satisfying

k1, k2, k3 ∈
[
−j+m

2
,

2(j+m)

N ′0
−D2

]
. (9.146)

Let k̄ :=max(k, k1, k2, k3, 0), k :=min(k, k1, k2, k3), and [k]:=max(|k|, |k1|, |k2|, |k3|).
The S∞ bound in (7.12) and Lemma A.1 (ii) show that

‖Cm[Pk1f
µ, Pk2f

ν , Pk3f
β ]‖L2

. 2k/223k̄2m sup
s∈Im

‖e−isΛµPk1f
µ‖Lp1 ‖e−isΛνPk2f

ν‖Lp2 ‖e−isΛβPk3f
β‖Lp3

(9.147)

if p1, p2, p3∈{2,∞} and 1/p1+1/p2+1/p3= 1
2 . The desired bound (9.145) follows unless

j> 2
3m+ 1

2 [k]+D2, (9.148)

using the pointwise bounds in (7.44). Also, by estimating ‖PkH‖L2.2k‖PkH‖L1 , and

using a bound similar to (9.147), the desired bound (9.145) follows unless

k>− 2
3

(
j+ 1

6m+δm
)
. (9.149)

Next, we notice that, if j>m+ 1
2D+[k] and (9.149) holds, then the desired bound

(9.145) follows. Indeed, we use the approximate-finite-speed-of-propagation argument

as in the proof of (9.12). First, we define fµj1,k1
, fνj2,k2

, and fβj3,k3
as in (9.14). Then, we

notice that the contribution in the case min(j1, j2, j3)> 9
10j is suitably controlled, due to

(9.147). On the other and, if

min(j1, j2, j3)6 9
10j,

then we may assume that j16 9
10j (using changes of variables), and it follows that the

contribution is negligible, using integration by parts in ξ as before. To summarize, in

proving (9.145) we may assume that

2m

3
+

[k]

2
+D2 6 j6m+D+

[k]

2
, max(j, [k])6 2m+2D, and k̄6

6m

N ′0
. (9.150)

We define now the functions fµj1,k1
, fνj2,k2

, and fβj3,k3
as in (9.14). The contribution

in the case max(j1, j2, j3)> 2
3m can be bounded using (9.147). On the other hand, if

max(j1, j2, j3)6 2
3m, then we can argue as in the proof of Lemma 9.7 when 2l≈1. More

precisely, we define

g1 :=A>D1,γ0
fµj1,k1

, g2 :=A>D1−10,γ0
fνj2,k2

, and A>D1−20,γ0
fβj3,k3

. (9.151)
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As in the proof of Lemma 9.7 (see (9.95)–(9.97)), and after inserting cutoff functions of

the form ϕ6l(η) and ϕ>l(η), l=m−δm, to bound the other terms, for (9.145) it suffices

to prove that

2j−50δj‖QjkCm[g1, g2, g3]‖L2 . 2−δm. (9.152)

In proving (9.152), we may assume that max(j1, j2, j3)6 1
3m and m6L (otherwise

we could use directly (9.147)) and that k>−100 (otherwise the contribution is negligible,

by integrating by parts in η and σ). Therefore, using (9.150), we may assume that

[k]6 100, m6L, 2
3m+D2 6 j6m+2D, and j1, j2, j3 ∈

[
0, 1

3m
]
. (9.153)

As in the proof of Lemma 9.7, we decompose the operator Cm in dyadic pieces

depending on the size of the modulation. More precisely, let

̂Jp[f, g, h](ξ, s) : =

∫
R2×R2

eisΦ̃(ξ,η,σ)ϕp(Φ̃(ξ, η, σ))n0(ξ, η, σ)

×f̂(ξ−η, s)ĝ(η−σ, s)ĥ(σ, s) dσ dη.

Let J6p=
∑
q6p Jq and

Cm,p[f, g, h] :=

∫
R
qm(s)Jl,p[f, g, h](s) ds.

For p>− 2
3m we integrate by parts in s. As in Step 1 in the proof of Lemma 9.7, using

also the L2 bound (8.21), it easily follows that

2j−50δj
∑

p>−2m/3

‖PkCm,p[g1, g2, g3]‖L2 . 2−δm.

To complete the proof of (9.152), it suffices to show that

2j−50δj2m sup
s∈Im

‖QjkJ6−m/2[g1, g2, g3](s)‖L2 . 2−δm. (9.154)

Let �=2−m/3 and define the operators J6−m/2,60 and J6−m/2,l by inserting the factors

ϕ(�−1∇η,σΦ̃(ξ, η, σ)) and ϕl(�
−1∇η,σΦ̃(ξ, η, σ)), l>1, in the definition of the operators

Jp above. The point is to observe that |∇ξΦ̃(ξ, η, σ)|62−m/3+D in the support of the

integral defining the operator J6−m/2,>0, due to Lemma 10.6 (i). Since j> 2
3m+D2 (see

(9.153)), the contribution of this operator is negligible, using integration by parts in ξ.

To estimate the operators J6−m/2,l, we may insert a factor ϕ(22m/3+l−δmη), at the

expense of a negligible error (due to Lemma 7.2 (i)). To summarize, we define

̂J ′6−m/2,l[f, g, h](ξ, s)

: =

∫
R2×R2

eisΦ̃(ξ,η,σ)ϕl(�
−1∇η,σΦ̃(ξ, η, σ))ϕ6−m/2(Φ̃(ξ, η, σ))

×ϕ(22m/3+l−δmη)n0(ξ, η, σ)f̂(ξ−η, s)ĝ(η−σ, s)ĥ(σ, s) dσ dη,
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and it remains to show that, for l>1 and s∈Im,

2j−50δj2m‖QjkJ ′6−m/2,l[g1, g2, g3](s)‖L2 . 2−2δm. (9.155)

Using L∞ estimates in the Fourier space, (9.155) follows when l> 1
3m−δm, since

2j.2m (see (9.153)). On the other hand, if l6 1
3m−δm, then the operator is non-trivial

only if

Φ̃(ξ, η, σ) = Λ(ξ)−Λ(ξ−η)−Λν(η−σ)+Λν(σ), ν ∈{+,−},

due to the smallness of |η|, |∇σΦ̃(ξ, η, σ)|, and |Φ̃(ξ, η, σ)| (recall the support restrictions

in (9.151)). In this case, |∇ξΦ̃(ξ, η, σ)|62−m/2 in the support of the integral, and the

contribution is again negligible using integration by parts in ξ. This completes the proof

of Proposition 9.13.

10. Analysis of phase functions

In this section we collect and prove some important facts about the phase functions Φ.

10.1. Basic properties

Recall that

Φ(ξ, η) = Φσµν(ξ, η) = Λσ(ξ)−Λµ(ξ−η)−Λν(η), σ, µ, ν ∈{+,−},

Λ�(ξ) =λ�(|ξ|) =�λ(|ξ|) =�
√
|ξ|+|ξ|3.

(10.1)

We have

λ′(x) =
1+3x2

2
√
x+x3

, λ′′(x) =
3x4+6x2−1

4(x+x3)3/2
, and λ′′′(x) =

3(1+5x2−5x4−x6)

8(x+x3)5/2
. (10.2)

Therefore,

λ′′(x)> 0 if x> γ0, λ′′(x)6 0 if x∈ [0, γ0], and γ0 :=

√
2
√

3−3

3
≈ 0.393. (10.3)

It follows that

λ(γ0)≈ 0.674, λ′(γ0)≈ 1.086, λ′′′(γ0)≈ 4.452, and λ′′′′(γ0)≈−28.701. (10.4)

Let γ1 :=
√

2≈1.414 denote the radius of the space-time resonant sphere, and notice

that

λ(γ1) =
√

3
√

2≈ 2.060, λ′(γ1) =
7

2
√

3
√

2
≈ 1.699, and λ′′(γ1) =

23

4
√

54
√

2
≈ 0.658.

(10.5)
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The following simple observation will be used many times: if U2>1, ξ, η∈R2,

max(|ξ|, |η|, |ξ−η|)6U2, and min(|ξ|, |η|, |ξ−η|) = a6 2−10U−1
2 ,

then

|Φ(ξ, η)|>λ(a)− sup
b∈[a,U2]

(λ(a+b)−λ(b))>λ(a)−amax{λ′(a), λ′(U2+1)}> 1
4λ(a).

(10.6)

Lemma 10.1. (i) The function λ′ is strictly decreasing on the interval (0, γ0] and

strictly increasing on the interval [γ0,∞), and

lim
x!∞

(
λ′(x)− 3

√
x

2

)
= 0 and lim

x!0

(
λ′(x)− 1

2
√
x

)
= 0. (10.7)

The function λ′ is concave up on the interval (0, 1] and concave down on the interval

[1,∞). For every y>λ′(γ0) the equation λ′(r)=y has two solutions r1(y)∈(0, γ0) and

r2(y)∈(γ0,∞).

(ii) If a 6=b∈(0,∞), then

λ′(a) =λ′(b) if and only if (a−b)2 =
(3ab+1)(3a2b2+6ab−1)

1−9ab
. (10.8)

In particular, if a 6=b∈(0,∞) and λ′(a)=λ′(b), then ab∈
(

1
9 , γ

2
0

]
.

(iii) Let b: [γ0,∞)!(0, γ0] be the implicit function defined by λ′(a)=λ′(b(a)). Then,

b is a smooth decreasing function and(6)

b′(a)∈
[
−1,−b(a)

a

]
, a+b(a) is increasing on [γ0,∞),

b(a)≈ 1

a
, −b′(a)≈ 1

a2
, b′(a)+1≈ a−γ0

a
.

(10.9)

In particular,

a+b(a)−2γ0≈
(a−γ0)2

a
. (10.10)

Moreover,

−(λ′′(b(a))+λ′′(a))≈ a−1/2(a−γ0)2. (10.11)

(iv) If a, b∈(0,∞), then

λ(a+b) =λ(a)+λ(b) if and only if (a−b)2 =
4+8ab−32a2b2

9ab−4
. (10.12)

In particular, if a, b∈(0,∞) and λ(a+b)=λ(a)+λ(b), then ab∈
[

4
9 ,

1
2

]
. Moreover,

if ab> 1
2 , then λ(a+b)−λ(a)−λ(b)> 0,

if ab< 4
9 , then λ(a+b)−λ(a)−λ(b)< 0.

(10.13)

(6) In a neighborhood of γ0, λ′(x) behaves like A+B(x−γ0)2−C(x−γ0)3, where A,B,C>0. The
asymptotics described in (10.9)–(10.11) are consistent with this behaviour.



342 y. deng, a. d. ionescu, b. pausader and f. pusateri

Proof. The conclusions (i) and (ii) follow from (10.2)–(10.4) by elementary argu-

ments. For part (iii) we notice that, with Y =ab,

(a+b(a))2 =F (Y ) :=
−9Y 3−21Y 2−3Y +1

9Y −1
+4Y =

32/81

9Y −1
−Y 2+

14Y

9
− 49

81
,

as a consequence of (10.8). Taking the derivative with respect to a, it follows that

2(a+b(a))(1+b′(a)) = (ab′(a)+b(a))F ′(Y ). (10.14)

Since F ′(Y )6− 1
10 for all Y ∈

(
1
9 , γ

2
0

]
, it follows that b′(a)∈[−1,−b(a)/a] for all a∈[γ0,∞).

The claims in the first line of (10.9) follow.

The claim −b′(a)≈1/a2 follows from the identity λ′′(a)−λ′′(b(a))b′(a)=0. The last

claim in (10.9) is clear if a−γ0&1; on the other hand, if a−γ0=%�1, then (10.14) gives

− 1+b′(a)

b′(a)+b(a)/a
≈ 1 and γ0−b(a)≈ %.

In particular, 1−b(a)/a≈%, and the last conclusion in (10.9) follows.

The claim in (10.10) follows by integrating the approximate identity

b′(x)+1≈ x−γ0

x

between γ0 and a. To prove (10.11), we recall that λ′′(a)−λ′′(b(a))b′(a)=0. Therefore,

−(λ′′(b(a))+λ′′(a)) =−λ′′(b(a))(1+b′(a)) =λ′′(a)
1+b′(a)

−b′(a)
,

and the desired conclusion follows using also (10.9).

To prove (iv), note that (10.12) and the claim ab∈
[

4
9 ,

1
2

]
follow from (10.2)–(10.4) by

elementary arguments. To prove (10.13), let G(x):=λ(a+x)−λ(a)−λ(x). For a∈(0,∞)

fixed, we notice that G(x)>0 if x is sufficiently large, and G(x)<0 if x>0 is sufficiently

small. The desired conclusion follows from the continuity of G.

10.2. Resonant sets

We now prove an important proposition describing the geometry of resonant sets.

Proposition 10.2. (Structure of resonance sets) The following claims hold :

(i) There are functions p++1=p−−1: (0,∞)!(0,∞), p++2=p−−2: [2γ0,∞)!(0, γ0],

p+−1=p−+1: (0,∞)!(γ0,∞) such that, if σ, µ, ν∈{+,−} and ξ 6=0, then

(∇ηΦσµν)(ξ, η) = 0 if and only if η ∈Pµν(ξ), (10.15)
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where (the pµν2 parts are absent when µ 6=ν)

Pµν(ξ) :=

{
pµν1(|ξ|) ξ

|ξ|
, pµν2(|ξ|) ξ

|ξ|
, ξ−pµν1(|ξ|) ξ

|ξ|
, ξ−pµν2(|ξ|) ξ

|ξ|

}
.

(ii) (Space resonances) With Dk,k1,k2
as in (2.11), assume that

(ξ, η)∈Dk,k1,k2
and |(∇ηΦσµν)(ξ, η)|6 ε2 6 2−D12k−max(k1,k2) (10.16)

for some constant D1 sufficiently large. So,
∣∣|k1|−|k2|

∣∣620 and, for some p∈Pµν(ξ),(7)

the following conditions are satisfied :

• if |k|6100, then max(|k1|, |k2|)6200 and

either (µ=−ν and |η−p|. ε2),

or

(
µ= ν,

∣∣∣∣ (η−p)·ξ⊥|ξ|

∣∣∣∣. ε2, and

∣∣∣∣ (η−p)·ξ|ξ|

∣∣∣∣. ε2

ε
2/3
2 +

∣∣|ξ|−2γ0

∣∣
)

;
(10.17)

• if k6−100, then

either (µ=−ν, k1, k2 ∈ [−10, 10], and |η−p|. ε22|k|),

or
(
µ= ν, k1, k2 ∈ [k−10, k+10], and

∣∣η− 1
2ξ
∣∣. 2−3|k|/2ε2

)
;

(10.18)

• if k>100, then

|η−p|. ε22k/2. (10.19)

(iii) (Space-time resonances) Assume that (ξ, η)∈Dk,k1,k2
,

|Φσµν(ξ, η)|6 ε1 6 2−D12min(k,k1,k2,0)/2,

|(∇ηΦσµν)(ξ, η)|6 ε2 6 2−D12k−max(k1,k2)2−2k+

.
(10.20)

Then, with γ1 :=
√

2,

±(σ, µ, ν) = (+,+,+), |η−p++1(ξ)|=
∣∣η− 1

2ξ
∣∣. ε2,

∣∣|ξ|−γ1

∣∣. ε1+ε2
2. (10.21)

Proof. (i) We have

(∇ηΦσµν)(ξ, η) =µλ′(|ξ−η|) ξ−η
|ξ−η|

−νλ′(|η|) η
|η|
. (10.22)

(7) The set Pµν(ξ) contains two points if (µ, ν)∈{(+,−), (−,+)} and at most three points if
(µ, ν)∈{(+,+), (−,−)}.
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Assume that ξ=αe for some α∈(0,∞) and e∈S1. In view of (10.22), (∇ηΦσµν)(ξ, η)=0

if and only if

η=βe, β ∈R\{0, α}, and µλ′(|α−β|) sgn(α−β) = νλ′(|β|) sgn(β). (10.23)

We observe that it suffices to define the functions p++1, p++2, and p+−1 satisfying (10.15),

since clearly p−−1=p++1, p−−2=p++2, and p−+1=p+−1.

If (µ, ν)=(+,+) then, as a consequence of (10.23), β∈(0, α) and λ′(α−β)=λ′(β).

Therefore, according to Lemma 10.1 (i)–(iii), there are two possible solutions:

β= p++1(α) := 1
2α,

β= p++2(α), uniquely determined by λ′(β) =λ′(α−β) and β ∈ (0, γ0].
(10.24)

The uniqueness of the point p++2(α) is due to the fact that the function x 7!x+b(x) is

increasing in [γ0,∞); see (10.9). On the other hand, if (µ, ν)=(+,−) then, as a conse-

quence of (10.23), either β<0, or β>α and λ′(|α−β|)=λ′(|β|). Therefore, according to

Lemma 10.1, there is only one solution β>γ0:

β= p+−1(α), uniquely determined by λ′(β) =λ′(β−α) and β ∈ [max(α, γ0), α+γ0].

(10.25)

The conclusions in part (i) follow.

(ii) Assume that (10.16) holds and that (µ, ν)∈{(+,+), (+,−)}. Let ξ=αe, |e|=1,

α∈[2k−4, 2k+4], η=βe+v, v ·e=0, and (β2+|v|2)1/2∈[2k2−4, 2k2+4]. The condition

|(∇ηΦσµν)(ξ, η)|6 ε2

gives, using (10.22),
∣∣|k1|−|k2|

∣∣620,∣∣∣∣µλ′(|ξ−η|) (α−β)

|ξ−η|
−νλ′(|η|) β

|η|

∣∣∣∣6 ε2, and

∣∣∣∣−µλ′(|ξ−η|)|ξ−η|
−ν λ

′(|η|)
|η|

∣∣∣∣|v|6 ε2. (10.26)

Since α&2k and |ξ−η|−1λ′(|ξ−η|)&2|k1|/2−k1 , the first inequality in (10.26) shows that∣∣∣∣µλ′(|ξ−η|) −β|ξ−η| −νλ′(|η|) β|η|
∣∣∣∣& 2k+|k1|/2−k1 .

Since 1/|β|>2−k2−4, using also the second inequality in (10.26), it follows that

|v|. ε22−k−|k1|/2+k1+k2 (10.27)

and ∣∣∣∣−µλ′(|ξ−η|)|ξ−η|
−ν λ

′(|η|)
|η|

∣∣∣∣& 2k+|k1|/2−k1−k2 .
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In particular, |v|62−202min(k1,k2),∣∣|η|−|β|∣∣. ε2
22−2k−|k1|+2k1+k2 , and

∣∣|ξ−η|−|α−β|∣∣. ε2
22−2k−|k1|+k1+2k2 . (10.28)

Using the first inequality in (10.26), it follows that∣∣µλ′(|α−β|) sgn(α−β)−νλ′(|β|) sgn(β)
∣∣6 ε2+Cε2

22−2k−|k1|/2+2 max(k1,k2). (10.29)

Proof of (10.17). Assume first that |k|6100. Then, max(|k1|, |k2|)6200, since oth-

erwise (10.29) cannot hold (so there are no points (ξ, η) satisfying (10.16)). The conclu-

sion
∣∣(η−p)·ξ⊥/|ξ|∣∣.ε2 in (10.17) follows from (10.27).

Case 1. If (µ, ν)=(+,−) then (10.29) gives∣∣λ′(|α−β|)−λ′(|β|)∣∣6 2ε2 and sgn(α−β)+sgn(β) = 0.

Therefore, either β>α and |λ′(β−α)−λ′(β)|62ε2, in which case β−α<γ0, β>γ0, and

|β−p+−1(α)|.ε2, or β<0 and |λ′(α−β)−λ′(−β)|62ε2, in which case α−β>γ0, −β<γ0,

and |α−β−p+−1(α)|.ε2. The desired conclusion follows in the stronger form |η−p|.ε2.

Case 2. If (µ, ν)=(+,+), then (10.29) gives∣∣λ′(|α−β|)−λ′(|β|)∣∣6 2ε2 and sgn(α−β) = sgn(β).

Therefore,

β ∈ (0, α) and |λ′(α−β)−λ′(β)|6 2ε2. (10.30)

Assume α fixed and let G(β):=λ′(β)−λ′(α−β). The function G vanishes when β= 1
2α

or β∈{p++2(α), α−p++2(α)} (if α>2γ0).

Assume that α=2γ0+%>2γ0, %∈[0, 2110]. Then, using Lemma 10.1 (iii),

p++2(α)6 γ0 6 1
2α6α−p++2(α), 1

2α−γ0 = 1
2%, γ0−p++2(α)≈√%, (10.31)

where the last conclusion follows from (10.10) with a=α−p++2(α) and b(a)=p++2(α).

Moreover, |G′(β)|=|λ′′(β)+λ′′(α−β)|≈% if β∈
{

1
2α, p++2(α), α−p++2(α)

}
, using (10.11)

and (10.31). Also, |G′′(β)|=|λ′′′(β)−λ′′′(α−β)|.√% if
∣∣β− 1

2α
∣∣.√%, therefore

|G′(β)| ≈ %, if β ∈ Iα, (10.32)

where

Iα :=

{
x : min

(∣∣∣∣x−α2
∣∣∣∣, |x−p++2(α)|, |x−α+p++2(α)|

)
6
√
%

C0

}
,

for some large constant C0.
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If %6C4
0ε

2/3
2 , then the points 1

2α, p++2(α), and α−p++2(α) are at distance 6C4
0ε

1/3
2 .

In this case, it suffices to prove that |G(β)|>3ε2 if
∣∣β− 1

2α
∣∣>2C4

0ε
1/3
2 . Assume, by con-

tradiction, that this is not true, so there is β6γ0−C4
0ε

1/3
2 such that

|λ′(β)−λ′(α−β)|6 3ε2.

So, there is x close to β, say |x−β|.ε2/3
2 , such that λ′(x)=λ′(α−β). In particular,

using (10.10) with a=α−β and b(a)=x, we have α−β+x−2γ0>C7
0ε

2/3
2 . Therefore,

α−2γ0>C6
0ε

2/3
2 , in contradiction with the assumption α−2γ0=%6C4

0ε
2/3
2 .

Assume now %>C4
0ε

2/3
2 . In view of (10.32), it suffices to prove that, if β /∈Iα, then

|G(β)|>3ε2. Assume, by contradiction, that this is not true, so there is β∈
(
0, 1

2α
]
\Iα

such that |λ′(β)−λ′(α−β)|63ε2. Since β6 1
2α−

√
%/C0, we may in fact assume that

β6γ0−
√
%/2C0, provided that the constant D1 in (10.16) is sufficiently large. So, there is

x close to β, say |x−β|.ε2C0/
√
%, such that λ′(x)=λ′(α−β). Using (10.9), it follows that

there is a point y close to x, say |y−x|.ε2C
2
0/%, such that λ′(y)=λ′(α−y). Therefore,

y=p++2(α). In particular, |β−p++2(α)|.ε2C
2
0/%, in contradiction with the assumption

β /∈Iα, so |β−p++2(α)|>√%/C0 (recall that %>C4
0ε

2/3
2 ).

The case α=2γ0−%62γ0 is easier, since there is only one point to consider, namely
1
2α. As in (10.32), |G′(β)|≈% if

∣∣β− 1
2α
∣∣6√%/C0. The proof then proceeds as before, by

considering the two cases %6C4
0ε

2/3
2 and %>C4

0ε
2/3
2 .

Proof of (10.18). Assume now that k6−100, so |k1−k2|620, and consider two

cases.

Case 1. Assume first that (µ, ν)=(+,−). In view of (10.22), we have∣∣∣∣λ′(|η|) η|η| −λ′(|w|) w|w|
∣∣∣∣6 ε2, where w= η−ξ. (10.33)

If max(|η|, |w|)6γ0−2−10 or min(|η|, |w|)>γ0+2−10, then it follows from (10.33) that∣∣λ′(|η|)−λ′(|w|)∣∣6ε2, and thus
∣∣|η|−|w|∣∣.ε22−|k1|/2+k1 . Therefore,∣∣∣∣ η|η| − w

|w|

∣∣∣∣. ε22−|k1|/2 and

∣∣∣∣ 1

|η|
− 1

|w|

∣∣∣∣. ε22−|k1|/2−k1 .

As a consequence, |η−w|.ε22−|k1|/2+k1 . On the other hand, |η−w|=|ξ|&2k, in contra-

diction with the assumption ε262−D12k−k1 .

Since |η−w|62−90, it remains to consider the case

∣∣η|, |η−ξ∣∣∈ [γ0−2−9, γ0+2−9]. (10.34)
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In particular, k1, k2∈[−10, 10] as claimed. Moreover, |v|.ε22|k| as desired, in view

of (10.27). The condition (10.29) gives∣∣λ′(|α−β|)−λ′(|β|)∣∣6 ε2+Cε2
22−2k and sgn(α−β)+sgn(β) = 0.

Without loss of generality, we may assume that

β >α and |λ′(β−α)−λ′(β)|6 ε2+Cε2
22−2k. (10.35)

Notice that p+−1(α)∈(γ0, α+γ0). We have two cases: if ε2>2−D122k, then we need

to prove that |β−γ0|624D1ε22|k|. This follows from (10.33): otherwise, if |β−γ0|=d>
24D1ε22|k|>23D12k, then

∣∣|η|−γ0

∣∣≈d and
∣∣|w|−γ0

∣∣≈d, using also (10.27). As a conse-

quence of (10.33), we have
∣∣|η|−|w|∣∣.ε2d

−1, so∣∣∣∣ η|η| − w

|w|

∣∣∣∣. ε2 and

∣∣∣∣ 1

|η|
− 1

|w|

∣∣∣∣. ε2d
−1.

Thus, |η−w|.ε2+ε2d
−1.ε2+2k−4D1 , in contradiction with |η−w|=|ξ|&2k.

On the other hand, if ε262−D122k, then (10.35) gives |λ′(β−α)−λ′(β)|62ε2 and

β∈(γ0, γ0+α). Let H(β):=λ′(β)−λ′(β−α), and notice that

|H ′(β)|& |β−γ0|+|β−α−γ0|& 2k

if β is in this set. The desired conclusion follows, since H(p+−1(α))=0.

Case 2. If (µ, ν)=(+,+), then (10.29) gives

|λ′(α−β)−λ′(β)|6 ε2+Cε2
22−2k−|k1|/2+2 max(k1,k2), β ∈ (0, α).

This easily shows that k1, k2∈[k−10, k+10] and |α−2β|.2−3|k|/2ε2. The desired con-

clusion follows using also (10.27).

Proof of (10.19). Assume now that k>100 and consider two cases.

Case 1. If (µ, ν)=(+,−), then (10.29) gives

|λ′(|α−β|)−λ′(|β|)|6 ε2+Cε2
22−2k−|k1|/2+2 max(k1,k2) and sgn(α−β)+sgn(β) = 0.

We may assume β>α, |max(k1, k2)−k|620, and |λ′(β−α)−λ′(β)|62ε2. In particular,

β∈(α, α+γ0). Let H(β):=λ′(β)−λ′(β−α) as before, and notice that |H ′(β)|&23k/2 in

this set. The desired conclusion follows, since H(p+−1(α))=0, using also (10.27).

Case 2. If (µ, ν)=(+,+), then (10.29) gives

|λ′(α−β)−λ′(β)|6 ε2+Cε2
22−2k−|k1|/2+2 max(k1,k2), β ∈ (0, α). (10.36)

If both β and α−β are in [γ0,∞), then (10.36) gives
∣∣β− 1

2α
∣∣.ε22k/2, which suffices

(using also (10.27)). Otherwise, assuming for example that β∈(0, γ0), (10.36) implies that

β62−k+20. Let, as before, G(β):=λ′(β)−λ′(α−β), and notice that |G′(β)|&23k/2 if β∈
(0, 2−k+20]. The desired conclusion follows, since G(p++2(α))=0, using also (10.27).
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(iii) If k6−100, then Φσµν(ξ, η)&2k/2, in view of (10.6) and (10.18), which is not

allowed by the condition on ε1.

If k>100 and (µ, ν)=(+,−), then p+−1(α)−α62−k+1062k−106α and

|Φ(ξ, η)|> |±λ(α)−λ(p+−1(α))+λ(p+−1(α)−α)|−Cε22k,

for some constant C sufficiently large. Moreover, in view of Lemma 10.1 (i),

α(p+−1(α)−α)6 γ2
0 6 0.2.

In particular, using also Lemma 10.1 (iv), |Φ(ξ, η)|&2−k/2, which is impossible in view

of the assumption on ε1. A similar argument works also in the case k>100 and (µ, ν)=

(+,+) to show that there are no points (ξ, η) satisfying (10.20).

Finally, assume that |k|6100, so |k1|, |k2|∈[0, 200]. If (µ, ν)=(+,−), then there

are still no solutions (ξ, η) of (10.20), using the same argument as before: in view of

Lemma 10.1 (i),

α(p+−1(α)−α)6 γ2
0 6 0.2,

so |Φ(ξ, η)|&1, as a consequence of Lemma 10.1 (iv).

On the other hand, if (µ, ν)=(+,+), then we may also assume that σ=+. If β is

close to p++2(α) or to α−p++2(α), then Φ(ξ, η)&1, for the same reason as before. We are

left with the case
∣∣β− 1

2α
∣∣.ε2 and α>1. Therefore,

∣∣η− 1
2ξ
∣∣.ε2. We now notice that the

equation λ(x)−2λ
(

1
2x
)
=0 has the unique solution x=

√
2=:γ1, and the desired bound

on
∣∣|ξ|−γ1

∣∣ follows, since∣∣|ξ|−γ1

∣∣. ∣∣Φσµν(ξ, 1
2ξ
)∣∣. |Φσµν(ξ, η)|+

∣∣Φσµν(ξ, 1
2ξ
)
−Φσµν(ξ, η)

∣∣. ε1+ε2
2.

This completes the proof of the proposition.

10.3. Bounds on sublevel sets

In this subsection we analyze the sublevel sets of the phase functions Φ, and the interac-

tion of these sublevel sets with several other structures. We start with a general bound

on the size of sublevel sets of functions; see [30, Lemma 8.5] for the proof.

Lemma 10.3. Let L,R,M∈R, with M>max(1, L, L/R), and let Y :BR!R, with

BR :={x∈Rn :|x|<R}, be a function satisfying ‖∇Y ‖Cl(BR)6M for some l>1. Then,

for any ε>0,∣∣∣∣{x∈BR : |Y (x)|6 ε and
∑
|α|6l

|∂αxY (x)|>L

}∣∣∣∣.RnML−1−1/lε1/l. (10.37)

Moreover, if n=l=1, K is a union of at most A intervals, and |Y ′(x)|>L on K, then∣∣{x∈K : |Y (x)|6 ε}
∣∣.AL−1ε. (10.38)
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We now prove several important bounds on the sets of time resonances. Assume

that Φ=Φσµν for some choice of σ, µ, ν∈{+,−}, and let D1 be the large constant fixed

in Proposition 10.2.

Proposition 10.4. (Volume bounds of sublevel sets) Assume that k, k1, k2∈Z, de-

fine Dk,k1,k2 as in (2.11), let k̄ :=max(k, k1, k2), and assume that

min(k, k1, k2)+max(k, k1, k2)>−100. (10.39)

(i) Let

Ek,k1,k2;ε := {(ξ, η)∈Dk,k1,k2 : |Φ(ξ, η)|6 ε}.

Then,

sup
ξ

∫
R2

1Ek,k1,k2;ε
(ξ, η) dη. 2−k̄/2ε log

(
2+

1

ε

)
24 min(k+

1 ,k
+
2 ),

sup
η

∫
R2

1Ek,k1,k2;ε
(ξ, η) dξ. 2−k̄/2ε log

(
2+

1

ε

)
24 min(k+

1 ,k
+).

(10.40)

(ii) Assume that r0∈[2−D1 , 2D1 ], ε62min(k,k1,k2,0)/2−D1 , and ε′61, and let

E′k,k1,k2;ε,ε′ =
{

(ξ, η)∈Dk,k1,k2 : |Φ(ξ, η)|6 ε and
∣∣|ξ−η|−r0

∣∣6 ε′
}
.

Then, we can write E′k,k1,k2;ε,ε′=E
′
1∪E′2, with

sup
ξ

∫
R2

1E′1(ξ, η) dη+sup
η

∫
R2

1E′2(ξ, η) dξ. ε

(
log

1

ε

)
22k̄(ε′)1/2. (10.41)

(iii) Assume that ε62min(k,k1,k2,0)/2−D1 , �61, and p, q60, and let

E′′k,k1,k2;ε,� = {(ξ, η)∈Dk,k1,k2 : |Φ(ξ, η)|6 ε and |(ΩηΦ)(ξ, η)|6�}.

Then,

sup
ξ

∫
R2

1E′′k,k1,k2;ε,�
(ξ, η)ϕ>q(∇ηΦ(ξ, η)) dη. 28 min(|k1|,|k2|)ε

(
log

1

ε

)
�2−q22k̄,

sup
η

∫
R2

1E′′k,k1,k2;ε,�
(ξ, η)ϕ>p(∇ξΦ(ξ, η)) dξ. 28 min(|k1|,|k|)ε

(
log

1

ε

)
�2−p22k̄.

(10.42)

As a consequence, we can write E′′k,k1,k2;ε,�=E′′1 ∪E′′2 , with

sup
ξ

∫
R2

1E′′1 (ξ, η) dη+sup
η

∫
R2

1E′′2 (ξ, η) dξ. ε

(
log

1

ε

)
�212k̄. (10.43)
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Moreover, if �62−8 max(k,k1,k2)−D1 , then

sup
ξ

∫
R2

1E′′k,k1,k2;ε,�
(ξ, η)ϕ6q(∇ηΦ(ξ, η)) dη.�2q28k̄,

sup
η

∫
R2

1E′′k,k1,k2;ε,�
(ξ, η)ϕ6p(∇ξΦ(ξ, η)) dξ.�2p28k̄.

(10.44)

Proof. The condition (10.39) is natural, due to (10.6), otherwise

|Φ(ξ, η)|& 2min(k,k1,k2)/2 in Dk,k1,k2
.

Compare also with the condition ε62min(k,k1,k2,0)/2−D1 in (ii) and (iii).

(i) By symmetry, it suffices to prove the inequality in the first line of (10.40). We

may assume that k26k1, so, using (10.39),

k1,max(k, k2)∈ [k̄−10, k̄] and k, k2 >−k̄−100. (10.45)

Assume that ξ=(s, 0) and η=(r cos θ, r sin θ), so

−Φ(ξ, η) =−σλ(s)+νλ(r)+µλ((s2+r2−2sr cos θ)1/2) =:Z(r, θ). (10.46)

We may assume that ε62min(k,k2)2k̄/2−D1 . Notice that∣∣∣∣ ddθZ(r, θ)

∣∣∣∣= ∣∣∣∣λ′((s2+r2−2sr cos θ)1/2)
sr sin θ

(s2+r2−2sr cos θ)1/2

∣∣∣∣. (10.47)

Assume that |s−r|>2k̄−100, s∈[2k−4, 2k+4], and r∈[2k2−4, 2k2+4]. Then, for r and

s fixed, ∣∣{θ∈ [0, 2π] : |Z(r, θ)|6 ε}
∣∣. ∑

b∈{0,1}

ε√
2k̄/22min(k,k2)(ε+Z(r, bπ))

. (10.48)

Indeed, this follows from (10.47), since in this case |∂θZ(r, θ)|≈2min(k,k2)2k̄/2|sin θ| for all

θ∈[0, 2π]. Next, we observe that∣∣{r∈ [2k2−4, 2k2+4] : |s−r|> 2k̄−100 and |Z(r, bπ)|6�2min(k,k2)2k̄/2}
∣∣.�2k2 , (10.49)

provided that k̄>200 and b∈{0, 1}. Indeed, in proving (10.49), we may assume that

�62−D1 . Then, we notice that the set in the left-hand side of (10.49) is non-trivial only

if either

±Z(r, bπ) =λ(s)−λ(s±r)±λ(r) and s∈ [2k̄−10, 2k̄+10], r∈ [2−k̄−10, 2−k̄+10],
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or

±Z(r, bπ) =λ(r)−λ(r±s)±λ(s) and r∈ [2k̄−10, 2k̄+10], s∈ [2−k̄−10, 2−k̄+10].

In all cases, the desired conclusion (10.49) easily follows, since |∂rZ(r, bπ)| is suitably

bounded away from zero. Using also (10.48) it follows that∣∣∣{η : |η| ∈ [2k2−4, 2k2+4],
∣∣|ξ|−|η|∣∣> 2k̄−100, and |Φ(ξ, η)|6 ε

}∣∣∣. ε2−k̄/224k+
2 , (10.50)

provided that |ξ|∈[2k−4, 2k+4], k̄>200, and (10.45) holds.

The case k̄6200 is easier. In this case we have 2k, 2k1 , 2k2≈1, due to (10.45). In

view of Proposition 10.2 (iii), if |Z(r, bπ)|6�62−2D1 and |∂rZ(r, bπ)|62−2D1 , then s is

close to γ1, r is close to 1
2γ1, and b=0. As a consequence, |∂2

rZ(r, bπ)|&1. It follows from

Lemma 10.3 that∣∣{r∈ [2k2−4, 2k2+4] : |s−r|> 2k̄−100 and |Z(r, bπ)|6�}
∣∣.�1/2,

provided that k̄6200 and �>0. Using (10.48) again, it follows that

∣∣∣{η : |η| ∈ [2k2−4, 2k2+4],
∣∣|ξ|−|η|∣∣> 2k̄−100, and |Φ(ξ, η)|6 ε

}∣∣∣. ε log

(
2+

1

ε

)
, (10.51)

provided that |ξ|∈[2k−4, 2k+4] and k̄6200.

Finally, we estimate the contribution of the set where
∣∣|ξ|−|η|∣∣62k̄−100. In this case,

we may assume that k, k1, k2>k̄−20. We replace (10.48) by∣∣{θ∈ [2−D1 , 2π−2−D1 ] : |Z(r, θ)|6 ε}
∣∣. ε√

23k̄/2(ε+Z(r, π))
, (10.52)

which follows from (10.47) (since |∂θZ(r, θ)|≈23k̄/2|sin θ| for all θ∈[2−D1 , 2π−2−D1 ]).

The proof proceeds as before, by analyzing the vanishing of the function r 7!Z(r, π) (it

is in fact slightly easier, since |Z(r, π)|&23k̄/2 if k̄>200). It follows that

∣∣∣{η : |η| ∈ [2k2−4, 2k2+4],
∣∣|ξ|−|η|∣∣6 2k̄−100, and |Φ(ξ, η)|6 ε

}∣∣∣. ε

(
log

(
2+

1

ε

))
2k̄/2.

The desired bound in the first line of (10.40) follows using also (10.50)–(10.51).

(ii) We may assume that min(k, k2)>−2D1 and that ε′62−D
2
1 . Define

E′1 : = {(ξ, η)∈E′k,k1,k2;ε,ε′ : |∇ηΦ(ξ, η)|> 2−20D1},

E′2 : = {(ξ, η)∈E′k,k1,k2;ε,ε′ : |∇ξΦ(ξ, η)|> 2−20D1}.
(10.53)
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It is easy to see that

E′k,k1,k2;ε,ε′ =E′1∪E′2,

using Proposition 10.2 (ii). By symmetry, it suffices to prove (10.41) for the first term in

the left-hand side. Let ξ=(s, 0), η=(r cos θ, r sin θ), and

E′1,ξ,1 : = {η : (ξ, η)∈E′1 and |sin θ|6 (ε′)1/22−2k2},

E′1,ξ,2 : = {η : (ξ, η)∈E′1 and |sin θ|> (ε′)1/22−2k2}.
(10.54)

It follows from Lemma 10.3 that |E′1,ξ,1|.ε·(ε′)1/2. Indeed, as |∇ηΦ(ξ, η)|>2−20D1 and

|sin θ|6(ε′)1/22−2k2 , it follows from formula (10.46) that |∂r(Φ(ξ, η))|>2−21D1 in E′1,ξ,1.

The desired conclusion follows by applying Lemma 10.3 for every suitable angle θ.

To estimate |E′1,ξ,2|, we use formula (10.46). It follows from the definitions that

E′1,ξ,2⊆{η : r∈ [2k2−4, 2k2+4], λ(r)∈Ks,r0 , |sin θ|> (ε′)1/22−2k2 , and |Φ(ξ, η)|6 ε},

where Ks,r0 is an interval of length .ε′ and k2>−2D1. Therefore, using formula (10.46)

as before, |E′1,ξ,2|.22k2ε(ε′)1/2, as desired.

(iii) For (10.42) it suffices to prove the inequality in the first line. We may also

assume that (10.39) holds, and that �62q−2 max(k,k1,k2)−D1 . Assume, as before, that

ξ=(s, 0) and η=(r cos θ, r sin θ). Since

|(ΩηΦ)(ξ, η)|= λ′(|ξ−η|)
|ξ−η|

|(ξ ·η⊥)|,

the condition |(ΩηΦ)(ξ, η)|6� gives

|sin θ|.�2k1−k−k2−|k1|/2 (10.55)

in the support of the integral. Formula (10.46) shows that

r−1|∂θΦ(ξ, η)|= λ′(|ξ−η|)
|ξ−η|

s| sin θ|.�2−k2

in the support of the integral. Therefore, |∂rΦ(ξ, η)|>2q−4 in the support of the integral.

We now assume that θ is fixed satisfying (10.55). If
∣∣|k2|−|k1|

∣∣>100, then

|∂rΦ(ξ, η)|& 2|k1|/2+2|k2|/2 for all (ξ, η)∈Dk,k1,k2
,

and the desired bound follows from (10.37), with l=1 and n=1. If
∣∣|k2|−|k1|

∣∣6100, then

we still use (10.37) to conclude that the integral is dominated by

Cε2−2q25|k1|/2
�2k1−k−|k1|/2 . ε�2−2q24|k1|.
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This suffices to prove (10.42) if 2q>2−6 max(k,k1,k2)−D1 . Finally, if∣∣|k2|−|k1|
∣∣6 100, 2q 6 2−6 max(k,k1,k2)−D1 , and �6 2q−2 max(k,k1,k2)−D1 ,

then we would like to apply (10.38). For this, it suffices to verify that, for any θ fixed

satisfying (10.55), the number of intervals (in the variable r) where |∂rΦ(ξ, η)|62q−4

is uniformly bounded. In view of Proposition 10.2 (iii), these intervals are present only

when k, k1, k2∈[−10, 10], |s−γ1|�1,
∣∣r− 1

2γ1

∣∣�1, and

Φ(ξ, η) =±(λ(s)−λ(r)−λ((s2+r2−2sr cos θ)1/2)).

In this case, however, |∂2
rΦ(ξ, η)|&1. As a consequence, for any s and θ there is at most

one interval in r where |∂rΦ(ξ, η)|62q−4, and the desired bound follows from (10.38).

The decomposition (10.43) follows from (10.42) and Proposition 10.2 (iii), by setting

2p=2q=2−2D12−2 max(k,k1,k2).

To prove the first inequality in (10.44), we may assume q6−5 max(k, k1, k2)−D1

(due to (10.55)). By Proposition 10.2 (iii), we may assume k, k1, k2∈[−10, 10], |s−γ1|�1,∣∣r− 1
2γ1

∣∣�1, and

Φ(ξ, η) =±(λ(s)−λ(r)−λ((s2+r2−2sr cos θ)1/2)).

As before, |∂2
rΦ(ξ, η)|&1 in this case. As a consequence, for any s and θ fixed, the

measure of the set of numbers r for which |∂rΦ(ξ, η)|.2q is bounded by C2q, and the

desired bound follows.

We will also need a variant of Schur’s lemma for suitably localized kernels.

Lemma 10.5. Assume that n, p6− 1
10D, k, k1, k2∈Z, l6 1

2 min(k, k1, k2, 0)− 1
10D,

and %1, %2∈{γ0, γ1}. Then, with Dk,k1,k2 as in (2.11), and assuming that∥∥∥ sup
ω∈S1

|f̂(rω)|
∥∥∥
L2(r dr)

6 1,

we have∥∥∥∥∫
R2

1Dk,k1,k2
(ξ, η)ϕl(Φ(ξ, η))ϕn(|ξ−η|−%1)f̂(ξ−η)ĝ(η) dη

∥∥∥∥
L2
ξ

. 2(l+n)/2‖g‖L2 , (10.56)

∥∥∥∥∫
R2

1Dk,k1,k2
(ξ, η)ϕl(Φ(ξ, η))ϕn(|ξ−η|−%1)ϕp(|η|−%2)f̂(ξ−η)ĝ(η) dη

∥∥∥∥
L2
ξ

.min(2l/2, 2p/2)2(l+n)/2‖g‖L2 ,

(10.57)

and∥∥∥∥∫
R2

1Dk,k1,k2
(ξ, η)ϕl(Φ(ξ, η))f̂(ξ−η)ĝ(η) dη

∥∥∥∥
L2
ξ

. 25|k1|23l/4(1+|l|)‖g‖L2 . (10.58)
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Proof. By (10.6), we may assume that min(k, k1, k2)+k̄>−100, where

k̄= max(k, k1, k2).

We start with (10.56). We may assume that min(k, k1, k2)>−200. By Schur’s test,

it suffices to show that

sup
ξ

∫
R2

1Dk,k1,k2
(ξ, η)ϕl(Φ(ξ, η))ϕn(|ξ−η|−%1)|f̂(ξ−η)| dη. 2(l+n)/2,

sup
η

∫
R2

1Dk,k1,k2
(ξ, η)ϕl(Φ(ξ, η))ϕn(|ξ−η|−%1)|f̂(ξ−η)| dξ. 2(l+n)/2.

(10.59)

We focus on the first inequality. Fix ξ∈R2 and introduce polar coordinates, η=ξ−rω,

r∈(0,∞), ω∈S1. The left-hand side is dominated by

C

∫
ω∈S1

∫ 2k1+4

2k1−4

1Dk,k1,k2
(ξ, ξ−rω)ϕl(Φ(ξ, ξ−rω))ϕn(r−%1)|f̂(rω)|r dr dω,

for a constant C sufficiently large. Therefore, it suffices to show that

sup
r,ξ

∫
ω∈S1

1Dk,k1,k2
(ξ, ξ−rω)ϕl(Φ(ξ, ξ−rω)) dω. 2l/22|k1|/2, (10.60)

which is easily verified as in Proposition 10.4, using the identity (10.46). Indeed, for ξ

and r fixed, and letting ω=(cos θ, sin θ), the absolute value of the d/dθ derivative of the

function θ 7!Φ(ξ, ξ−r(cos θ, sin θ)) is bounded from below by

c|sin θ|2k+k1−k22|k2|/2 & |sin θ|2−|k1|/2.

The bound (10.60) follows using also (10.38). The second inequality in (10.59) follows

similarly.

We now prove (10.57). We may assume that k, k1, k2∈[−80, 80], and it suffices to

show that

sup
ξ

∫
R2

1Dk,k1,k2
(ξ, η)ϕl(Φ(ξ, η))ϕn(|ξ−η|−%1)ϕp(|η|−%2)|f̂(ξ−η)| dη. 2n/2 min(2l, 2p),

sup
η

∫
R2

1Dk,k1,k2
(ξ, η)ϕl(Φ(ξ, η))ϕn(|ξ−η|−%1)ϕp(|η|−%2)|f̂(ξ−η)| dξ. 2l+n/2.

We proceed as for (10.59), but replace (10.60) by

sup
|ξ|≈1

sup
r

∫
ω∈S1

ϕl(Φ(ξ, ξ−rω))ϕn(r−%1)ϕp(|ξ−rω|−%2) dω.min{2l, 2p},

sup
η

sup
r

∫
ω∈S1

ϕl(Φ(η+rω, η))ϕn(r−%1)ϕp(|η|−%2)ϕ>−90(η+rω) dω. 2l.

(10.61)
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The bounds (10.61) easily follow, using also formula (10.46) to prove the 2l bounds, once

we notice that |sin θ|&1 in the support of the integrals. For this, we only need to verify

that the points ξ and η cannot be almost aligned; more precisely, we need to verify that,

if ξ and η are aligned, then |Φ(ξ, ξ−η)|+
∣∣|ξ−η|−%2

∣∣+∣∣|η|−%1

∣∣&1. For this, it suffices

to notice that∣∣±λ(|ξ|)±λ(%1)±λ(%2)
∣∣& 1, if |ξ|& 1 and ±|ξ|±%1±%2 = 0.

Recalling that %1, %2∈{γ0, γ1}, it suffices to verify λ(2γ0)−2λ(γ0) 6=0, λ(2γ1)−2λ(γ1) 6=0,

λ(γ0+γ1)−λ(γ0)−λ(γ1) 6=0, and λ(−γ0+γ1)+λ(γ0)−λ(γ1) 6=0. These claims follow from

Lemma 10.1 (iv), since the numbers γ2
0 , γ2

1 , γ0γ1, and γ0(γ1−γ0) are not in the interval[
4
9 ,

1
2

]
.

We now turn to (10.58). By Schur’s lemma, it suffices to show that

sup
ξ

∫
R2

ϕl(Φ(ξ, η))1Dk,k1,k2
(ξ, η)|f̂(ξ−η)| dη. 25|k1|23l/4(1+|l|),

sup
η

∫
R2

ϕl(Φ(ξ, η))1Dk,k1,k2
(ξ, η)|f̂(ξ−η)| dξ. 25|k1|23l/4(1+|l|).

(10.62)

We show the first inequality. Introducing polar coordinates, as before, we estimate∫
R2

ϕl(Φ(ξ, ξ−rω))1Dk,k1,k2
(ξ, ξ−rω)|f̂(rω)|r dr dω

.
∥∥∥sup
ω
|f̂(rω)|

∥∥∥
L2(r dr)

∥∥∥∥∫
S1

ϕl(Φ(ξ, ξ−rω))1Dk,k1,k2
(ξ, ξ−rω) dω

∥∥∥∥
L2(r dr)

. ‖ϕ6l+2(Φ(ξ, ξ−η))1Dk,k1,k2
(ξ, ξ−η)‖L2

η
‖ϕ6l+2(Φ(ξ, ξ−rω))1Dk,k1,k2

(ξ, ξ−rω)‖L∞r L2
ω

. 25|k1|23l/4(1+|l|),

using Proposition 10.4 (i) and the bound (10.60). The second inequality in (10.62) follows

similarly.

10.4. Iterated resonances

In this subsection we prove a lemma concerning some properties of the cubic phases

Φ̃(ξ, η, σ) = Φ̃+µβγ(ξ, η, σ) = Λ(ξ)−Λµ(ξ−η)−Λβ(η−σ)−Λγ(σ). (10.63)

These properties are used only in the proofs of Lemmas 9.7 and 9.8.

Lemma 10.6. (i) Assume that ξ, η, σ∈R2 satisfy

max
(∣∣|ξ−η|−γ0

∣∣, ∣∣|η−σ|−γ0

∣∣, ∣∣|σ|−γ0

∣∣)6 2−D1/2, (10.64)
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and

|∇η,σΦ̃(ξ, η, σ)|6�1 6 2−4D1 . (10.65)

Then, for ν∈{+,−},
Λ(ξ)−Λµ(ξ−η)−Λν(η)& |η|. (10.66)

Moreover,

if |∇ξΦ̃(ξ, η, σ)|>�2 > 2D1�1, then |Φ̃(ξ, η, σ)|&�3/2
2 . (10.67)

(ii) Assume that ξ, η, σ∈R2 satisfy |ξ−η|, |η−σ|, |σ|∈[2−10, 210] and

|Φ+µν(ξ, η)|= |Λ(ξ)−Λµ(ξ−η)−Λν(η)|6 2−2D1 ,

|Φνβγ(η, σ)|= |Λν(η)−Λβ(η−σ)−Λγ(σ)|6 2−2D1 .
(10.68)

If

|∇η,σΦ̃(ξ, η, σ)|6�6 2−4D1 (10.69)

then

µ=−, ν=β= γ= +, |η−2σ|+|ξ−σ|.�, and |∇ξΦ̃(ξ, η, σ)|.�. (10.70)

Proof. (i) If (10.64) and (10.65) hold, then the vectors ξ−η, η−σ, and σ are almost

aligned. Thus, either |η|62−D1/2+10 or
∣∣|η|−2γ0

∣∣62−D1/2+10. We will assume that we

are in the second case,
∣∣|η|−2γ0

∣∣62−D1/2+10 (the other case is similar, in fact slightly

easier because the inequality (10.66) is a direct consequence of (10.6)). Therefore, either∣∣|ξ|−3γ0

∣∣62−D1/2+20, and the desired conclusions are trivial, or
∣∣|ξ|−γ0

∣∣62−D1/2+20.

In the latter case, (10.66) follows since |λ(γ0)±λ(γ0)±λ(2γ0)|&1; it remains to prove

(10.67) in the case µ=−, β=γ=+,

Φ̃(ξ, η, σ) = Λ(ξ)+Λ(ξ−η)−Λ(η−σ)−Λ(σ),∣∣|η|−2γ0

∣∣6 2−D1/2+20,
∣∣|ξ|−γ0

∣∣6 2−D1/2+20.
(10.71)

In view of (10.65), the angle between any two of the vectors ξ−η, η−σ, and σ is either

O(�1) or π+O(�1). Given σ=ze for some e∈S1, we write η=ye+η′, ξ=xe+ξ′, with

e·η′=e·ξ′=0, and |η′|+|ξ′|.�1. Notice that |Φ̃(ξ, η, σ)−Φ̃(xe, ye, ze)|.�2
1 . Therefore,

we may assume that

|x−γ0|+|y−2γ0|+|z−γ0|6 2−D1/2+30,

|λ′(y−z)−λ′(z)|6 2�1,

|λ′(y−x)−λ′(y−z)|6 2�1,

|λ′(x)−λ′(y−x)|> 1
2�2,

(10.72)
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and it remains to prove that

|Φ̃(xe, ye, ze)|= |λ(x)+λ(y−x)−λ(y−z)−λ(z)|&�3/2
2 . (10.73)

Let z′ 6=z denote the unique solution to the equation λ′(z′)=λ′(z), and let d:=|z−γ0|.
Then |z′−γ0|≈d, in view of (10.10). Moreover, d>

√
�1; otherwise |y−z−γ0|.

√
�1 and

|y−x−γ0|.
√
�1, so |x−γ0|.

√
�1, in contradiction with the assumption

|λ′(x)−λ′(y−x)|> 1
2�2.

Moreover,

there are σ1, σ2 ∈{z, z′} such that |y−z−σ1|+|y−x−σ2|.
�1

d
. (10.74)

In fact, we may assume d>2−D1/4�
1/2
2 , since otherwise |x−γ0|+|y−x−γ0|.d, and hence

|λ′(x)−λ′(y−x)|.d2, which contradicts (10.65).

Now, we must have σ1=z; in fact, if σ1=z′, then x=z+z′−σ2+O(�1/d), and thus

|λ′(x)−λ′(σ2)|.�1,

which again contradicts (10.72). Similarly, σ2=z′. Therefore,

y= 2z+O
(
�1

d

)
, x= 2z−z′+O

(
�1

d

)
, y−x= z′+O

(
�1

d

)
. (10.75)

We expand the function λ at γ0 in its Taylor series:

λ(v) =λ(γ0)+c1(v−γ0)+c3(v−γ0)3+O(v−γ0)4,

where c1, c3 6=0. Using (10.75), we have

Φ̃(xe, ye, ze) = c3((x−γ0)3+(y−x−γ0)3−(z−γ0)3−(y−z−γ0)3)+O(d4)

= c3((2z−z′−γ0)3+(z′−γ0)3−2(z−γ0)3)+O(d4+�1d).

In view of (10.10), z+z′−2γ0=O(d2). Therefore, Φ̃(xe, ye, ze)=24(z−γ0)3+O(d4+

�1d), which shows that |Φ̃(xe, ye, ze)|&d3. The desired conclusion (10.73) follows.

(ii) The conditions |Φνβγ(η, σ)|62−2D1 and |(∇σΦνβγ)(η, σ)|6� show that η corre-

sponds to a space-time resonance output. It follows from Lemma 10.2 (iii) that

|η−ye|+
∣∣σ− 1

2ye
∣∣.�, |y−γ1|. 2−2D1 , and ν=β= γ, (10.76)

for some e∈S1. Let b≈0.207 denote the unique non-negative number b 6= 1
2γ1 with the

property that λ′(b)=λ′
(

1
2γ1

)
. The condition |∇ηΦ̃(ξ, η, σ)|6� shows that ξ−η is close to
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one of the vectors
(

1
2γ1

)
e,−

(
1
2γ1

)
e, be, and −be. However, λ(b)≈0.465, λ(γ1+b)≈2.462,

λ(γ1−b)≈1.722, and λ(γ1)≈2.060. Therefore, the condition |Φ+µν(ξ, η)|62−2D1 prevents

ξ−η from being close to one of the vectors be or −be. Similarly, ξ−η cannot be close to

the vector
(

1
2γ1

)
e, since λ

(
1
2γ1

)
≈1.030, λ

(
3
2γ1

)
≈3.416. It follows that∣∣(ξ−η)+

(
1
2γ1

)
e|. 2−2D1 ,

∣∣|ξ|− 1
2γ1

∣∣. 2−2D1 , µ=−, and ν= +.

The condition |∇ηΦ̃(ξ, η, σ)|6� then gives

|(η−ξ)−(η−σ)|.�,

and remaining bounds in (10.70) follow using also (10.76).

11. The functions Υ

The analysis in the proofs of the crucial L2 lemmas in §6 depends on understanding the

properties of the functions Υ:R2×R2
!R,

Υ(ξ, η) := (∇2
ξ,ηΦ)(ξ, η)[(∇⊥ξ Φ)(ξ, η), (∇⊥η Φ)(ξ, η)]. (11.1)

We calculate

(∇ηΦ)(ξ, η) =−λ′ν(|η|) η
|η|

+λ′µ(|ξ−η|) ξ−η
|ξ−η|

,

(∇ξΦ)(ξ, η) =λ′σ(|ξ|) ξ
|ξ|
−λ′µ(|ξ−η|) ξ−η

|ξ−η|
,

(11.2)

and

(∇2
ξ,ηΦ)(ξ, η)[∂i, ∂j ] =λ′′µ(|ξ−η|) (ξi−ηi)(ξj−ηj)

|ξ−η|2

+λ′µ(|ξ−η|)δij |ξ−η|
2−(ξi−ηi)(ξj−ηj)
|ξ−η|3

.

(11.3)

Using these formulas and the identity (v ·w⊥)2+(v ·w)2=|v|2|w|2, we calculate

−Υ(ξ, η) =
λ′′µ(|z|)
|z|2

λ′σ(|ξ|)
|ξ|

λ′ν(|η|)
|η|

(η ·ξ⊥)2

+
λ′µ(|z|)
|z|3

(
λ′µ(|z|)|z|− λ

′
σ(|ξ|)
|ξ|

ξ ·z
)(

λ′µ(|z|)|z|− λ
′
ν(|η|)
|η|

η ·z
)
,

(11.4)

where z :=ξ−η. We also define the normalized function

Υ̂(ξ, η) :=
Υ(ξ, η)

|(∇ξΦ)(ξ, η)| |(∇ηΦ)(ξ, η)|
. (11.5)

We first consider the case of large frequencies.
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Lemma 11.1. Assume that σ=ν=+, k>D1, and p− 1
2k6−D1.

(i) Assume that

|Φ(ξ, η)|6 2p, |ξ|, |η| ∈ [2k−2, 2k+2], and 2−20 6 |ξ−η|6 220. (11.6)

Let z :=ξ−η. Then, with p+=max(p, 0),

|ξ ·η⊥|
|ξ| |η|

≈ 2−k and
|ξ ·z|
|ξ| |z|

+
|η ·z|
|η| |z|

. 2p
+−k/2. (11.7)

Moreover, we can write

−µΥ(ξ, η) =λ′′(|z|)A(ξ, η)+B(ξ, z)B(η, z),

|A(ξ, η)|& 2k, ‖DαA‖L∞ .α 2k, ‖B‖L∞ . 2p
+

, ‖DαB‖L∞ .α 2k/2.
(11.8)

(ii) Assume that z=(% cos θ, % sin θ), |%|∈[2−20, 220]. There exist functions θ1=θ1
|ξ|,µ

and θ2=θ2
|η|,µ such that

if 2k−2 6 |ξ|6 2k+2 and |Φ(ξ, ξ−z)|6 2p, then min∓ |θ−arg(ξ)∓θ1(%)|. 2p−k/2,

if 2k−2 6 |η|6 2k+2 and |Φ(η+z, η)|6 2p, then min∓ |θ−arg(η)∓θ2(%)|. 2p−k/2.

(11.9)

Moreover,∣∣θ1(%)− 1
2π
∣∣+∣∣θ2(%)− 1

2π
∣∣. 2−k/2 and |∂%θ1|+|∂%θ2|. 2−k/2. (11.10)

(iii) Assume that |ξ|, |η|∈[2k−2, 2k+2]. For 0<�62−D1 and integers r and q such

that q6−D1 and |�r|∈
[

1
4 , 4
]
, define

S1,∓
p,q,r(ξ) : = {z : |z|= %∈ [2−15, 215], |Φ(ξ, ξ−z)|6 2p,

|arg(z)−arg(ξ)∓θ1(%)|6 2−D1/2,

and |Υ̂(ξ, ξ−z)−�r2q|6 10�2q},

(11.11)

and

S2,∓
p,q,r(η) : = {z : |z|= %∈ [2−15, 215], |Φ(η+z, η)|6 2p,

|arg(z)−arg(η)∓θ1(%)|6 2−D1/2,

and |Υ̂(η+z, η)−�r2q|6 10�2q}.

(11.12)

Then, for any ι∈{+,−},

|S1,ι
p,q,r(ξ)|+|S2,ι

p,q,r(η)|. 2q+p−k/2,

diam(S1,ι
p,q,r(ξ))+diam(S2,ι

p,q,r(η)). 2p−k/2+�2q.
(11.13)
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Moreover, if 2p−k/2��2q, then there exist intervals I1
p,q,r and I2

p,q,r such that

S1,∓
p,q,r(ξ)⊆{(% cos θ, % sin θ) : %∈ I1

p,q,r, |θ−arg(ξ)∓θ1(%)|. 2p−k/2}, |I1
p,q,r|.�2q,

S2,∓
p,q,r(η)⊆{(% cos θ, % sin θ) : %∈ I2

p,q,r, |θ−arg(η)∓θ2(%)|. 2p−k/2}, |I2
p,q,r|.�2q.

(11.14)

Proof. (i) Notice that, if |ξ|=s, |η|=r, and z=ξ−η=(% cos θ, % sin θ), then

2ξ ·η= r2+s2−%2, 2z ·ξ= %2+s2−r2, 2z ·η= s2−r2−%2,

(2η ·ξ⊥)2 = 4r2s2−(r2+s2−%2)2.
(11.15)

Under the assumptions (11.6), we see that |λ(r)−λ(s)|.2p
+

, therefore |r−s|.2−k/22p
+

.

The bounds (11.7) follow using also (11.15). The decomposition (11.8) follows from

(11.4), with

A(x, y) : =
λ′(|x|)
|x|

λ′(|y|)
|y|

(x·y⊥)2

|x−y|2
, B(w, z) :=

√
λ′(|z|)
|z|3/2

(
|z|λ′(|z|)− λ

′(|w|)
|w|

(w·z)
)
.

The bounds in the second line of (11.8) follow from this definition and (11.7).

(ii) We will show the estimates for fixed ξ, since the estimates for fixed η are similar.

We may assume that ξ=(s, 0), so

Φ(ξ, ξ−z) =λ(s)−λµ(%)−λ(
√
s2+%2−2s% cos θ ). (11.16)

Let

f(θ) :=−λ(s)+λµ(%)+λ(
√
s2+%2−2s% cos θ ).

We notice that −f(0)&2k/2, f(π)&2k/2, and f ′(θ)≈2k/2 sin θ for θ∈[0, π]. Therefore, f is

increasing on the interval [0, π] and vanishes at a unique point θ1(%)=θ1
s,µ(%). Moreover, it

is easy to see that |cos(θ1(%))|.2−k/2, and therefore
∣∣θ1(%)− 1

2π
∣∣.2−k/2. The remaining

conclusions in (11.9)–(11.10) easily follow.

(iii) We will only prove the estimates for the sets S1,−
p,q,r(ξ), since the others are

similar. With z=(% cos θ, % sin θ) and ξ=(s, 0), we define

F (%, θ) := Φ(ξ, ξ−z) and G(%, θ) := Υ̂(ξ, ξ−z).

The condition |Υ̂(ξ, ξ−z)|.2−D1 shows that |Υ(ξ, ξ−z)|.2k−D1 , thus |%−γ0|62−D1/2

(see (11.8)). Moreover,
∣∣θ− 1

2π
∣∣.2−D1/2, in view of (11.9) and (11.10). Using (11.16),

|∂θF (%, θ)| ≈ 2k/2 and |∂%F (%, θ)|. 2k/2−D1/2
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in the set
{

(%, θ):|%−γ0|62−D1/2 and
∣∣θ− 1

2π
∣∣.2−D1/2

}
. In addition, using (11.8), we

have

−µ∂%G(%, θ) =λ′′′(%)
A(ξ, ξ−z)

|Λ′(ξ)| |Λ′(ξ−z)|
+O(2−D1/2) and |∂θG(%, θ)|=O(2−D1/2).

Therefore, the mapping (%, θ) 7!(2−k/2F (%, θ), G(%, θ)) is a regular change of variables for

(%, θ) satisfying |%−γ0|62−D1/2 and
∣∣θ− 1

2π
∣∣.2−D1/2. The conclusions follow.

It follows from (11.4) and (11.15) that, if |ξ|=s, |η|=r, and |ξ−η|=%, then

−4Υ(ξ, η)
%3

λ′µ(%)

s

λ′σ(s)

r

λ′ν(r)
=G(s, r, %), (11.17)

where

G(s, r, %) : =
%λ′′(%)

λ′(%)
(4r2s2−(r2+s2−%2)2)

+

(
2%s

λ′(%)

λ′(s)
−%2−s2+r2

)(
2%r

λ′(%)

λ′(r)
+%2+r2−s2

)
.

(11.18)

We now assume that |ξ−η| is close to γ0, and consider the case of bounded frequen-

cies.

Lemma 11.2. If |ξ|=s, |η|=r, |ξ−η|=%, |%−γ0|62−8D1 , and 2−2006r, s622D1 ,

then

|Φ(ξ, η)|+|Υ(ξ, η)|& 1. (11.19)

Proof. Case 1: (σ, µ, ν)=(+,+,+). Notice first that the function

f(r) :=λ(r)+λ(γ0)−λ(r+γ0)

is concave down for r∈[0, γ0] (in view of (10.3)) and satisfies f(0)=0 and f(γ0)>0.1.

Therefore, f(r)&1 if r∈[2−200, γ0], so

|Φ(ξ, η)|& 1, if r6 γ0 or s6 2γ0. (11.20)

Assume, by contradiction, that (11.19) fails. In view of (11.17), |Φ(ξ, η)|�1 and∣∣∣∣(2%r
λ′(%)

λ′(r)
+(%2+r2−s2)

)(
2%s

λ′(%)

λ′(s)
−(%2+s2−r2)

)∣∣∣∣� 1+s+r. (11.21)

It is easy to see that, if |Φ(ξ, η)|=|λ(s)−λ(%)−λ(r)|�1, r>100, and |%−γ0|62−8D1 ,

then

r6 s− λ(%)−0.1

λ′(s)
and s> r+

λ(%)−0.1

λ′(r)
.
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Therefore, using (10.2)–(10.4), if r>100, then

−2%s
λ′(%)

λ′(s)
+%2+s2−r2 >

2s

λ′(s)
(λ(%)−0.1−%λ′(%))&

√
s

−2%r
λ′(%)

λ′(r)
−%2−r2+s2 >

2r

λ′(r)
(λ(%)−0.1−%λ′(%))−%2 &

√
r.

In particular, (11.21) cannot hold if r>100.

For y∈[0,∞), the equation λ(x)=y admits a unique solution x∈[0,∞):

x=− 1

Y (y)
+
Y (y)

3
, Y (y) :=

(
27y2+

√
27
√

27y4+4

2

)1/3
. (11.22)

Assuming |%−γ0|62−8D1 , 2γ06s6110, and |λ(s)−λ(r)−λ(%)|�1, we now show

that G(s, r, %)&1, where G is as in (11.18). Indeed, we solve the equation λ(r(s))=

λ(s)−λ(γ0) according to (11.22), and define the function G0(s):=G(s, r(s), γ0). A simple

Mathematica program shows that G0(s)&1 if 2γ06s6110. This completes the proof of

(11.19) when (σ, µ, ν)=(+,+,+).

Case 2: the other triplets. Notice that, if (σ, µ, ν)=(+,−,+), then

Φ+−+(ξ, η) =−Φ+++(η, ξ) and Υ+−+(ξ, η) =−Υ+++(η, ξ). (11.23)

The desired bound in this case follows from the case (σ, µ, ν)=(+,+,+) analyzed earlier.

On the other hand, if (σ, µ, ν)=(+,−,−), then Φ(ξ, η)=λ(s)+λ(r)+λ(%)&1, so

(11.19) is clearly verified. Finally, if (σ, µ, ν)=(+,+,−), then Φ(ξ, η)=λ(s)+λ(r)−λ(%)

and we estimate, assuming 2−2006r6 1
2%,

λ(s)+λ(r)−λ(%)>λ(r)+λ(%−r)−λ(%) =

∫ r

0

(λ′(x)−λ′(x+%−r)) dx& 1.

A similar estimate holds if 2−2006s6 1
2%, or if s, r> 1

2%. Therefore, Φ(ξ, η)&1 in this case.

The cases corresponding to σ=− are similar, by replacing Φ by −Φ and Υ by −Υ.

This completes the proof of the lemma.

Finally, we consider the case when |ξ−η| is close to γ1.
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Lemma 11.3. If |ξ|=s, |η|=r, |ξ−η|=%, |%−γ1|62−D1 , and 2−2006r, s, then

|Φ(ξ, η)|+ |Υ(ξ, η)|
|ξ|+|η|

+
|(∇ηΥ)(ξ, η)·(∇⊥η Φ)(ξ, η)|

(|ξ|+|η|)6
& 1,

|Φ(ξ, η)|+ |Υ(ξ, η)|
|ξ|+|η|

+
|(∇ξΥ)(ξ, η)·(∇⊥ξ Φ)(ξ, η)|

(|ξ|+|η|)6
& 1,

(11.24)

and

|Φ(ξ, η)|+ |Υ(ξ, η)|
|ξ|+|η|

+
|(ξ−η)·(∇⊥η Φ)(ξ, η)|

(|ξ|+|η|)6
& 1,

|Φ(ξ, η)|+ |Υ(ξ, η)|
|ξ|+|η|

+
|(ξ−η)·(∇⊥ξ Φ)(ξ, η)|

(|ξ|+|η|)6
& 1.

(11.25)

Proof. Case 1: (σ, µ, ν)=(+,+,+). Notice first that the function

f(r) :=λ(r)+λ(γ1)−λ(r+γ1)

is concave down for r∈[0, 0.3] (in view of (10.3)) and satisfies f(0)=0 and f(0.3)>0.02.

Therefore, f(r)&1 if r∈[2−200, 0.3], so

|Φ(ξ, η)|& 1, if r6 0.3 or s6 γ1+0.3. (11.26)

On the other hand, if |Φ(ξ, η)|�1, r>1000, and |%−γ1|62−D1 , then

s6 r+
λ(%)+0.2

λ′(r)
and r> s− λ(%)+0.2

λ′(s)
.

Therefore, using also (10.5), if r>1000 then

2%r
λ′(%)

λ′(r)
+%2+r2−s2 >

2r

λ′(r)
(%λ′(%)−λ(%)−0.2)&

√
r,

2%s
λ′(%)

λ′(s)
−%2−s2+r2 >

2s

λ′(s)
(%λ′(%)−λ(%)−0.2)−%2 &

√
s,

%λ′′(%)

λ′(%)
(4r2s2−(r2+s2−%2)2)& r2.

Using the formula (11.17) and assuming |%−γ1|62−D1 , it follows that

if |Φ(ξ, η)|� 1 and r> 1000 then −Υ(ξ, η)& r. (11.27)

Therefore both (11.24) and (11.25) follow if r>1000.

It remains to consider the case γ1+0.36s61010. We show first that

if 36 s6 1010 and |λ(s)−λ(r)−λ(%)|� 1, then −Υ(ξ, η)& 1. (11.28)



364 y. deng, a. d. ionescu, b. pausader and f. pusateri

Indeed, we solve the equation λ(r(s))=λ(s)−λ(γ1) according to (11.22), and define the

function G1(s):=G(s, r(s), γ1), see (11.17)–(11.18). A simple Mathematica program

shows that G1(s)&1 if 36s61010. The bound (11.28) follows, so both (11.24) and

(11.25) follow if 36s61010.

On the other hand, the function G1(s) does vanish for some s∈[γ1+0.3, 3] (more

precisely at s≈1.94). In this range we can only prove the weaker estimates in the lemma.

Notice that

Υ(ξ, η) = Υ̃(|ξ|, |η|, |ξ−η|) and Υ̃(s, r, %) :=−1

4
G(s, r, %)

λ′(%)

%3

λ′(s)

s

λ′(r)

r
.

Then, using also (11.2), we have

(∇ηΥ)(ξ, η)·(∇⊥η Φ)(ξ, η) = (r%)−1(η ·ξ⊥)((∂rΥ̃)(s, r, %)λ′(%)−(∂%Υ̃)(s, r, %)λ′(r)),

(∇ξΥ)(ξ, η)·(∇⊥ξ Φ)(ξ, η) = (s%)−1(ξ ·η⊥)((∂sΥ̃)(s, r, %)λ′(%)+(∂%Υ̃)(s, r, %)λ′(s)).

(11.29)

It is easy to see, using formulas (11.15) and (11.17), that

|Φ(ξ, η)|+|Υ(ξ, η)|+|ξ ·η⊥|& 1 (11.30)

if s∈[γ1+0.3, 3]. Moreover, let

G11(s) : = (∂rΥ̃)(s, r(s), γ1)λ′(γ1)−(∂%Υ̃)(s, r(s), γ1)λ′(r(s)),

G12(s) : = (∂sΥ̃)(s, r(s), γ1)λ′(γ1)+(∂%Υ̃)(s, r(s), γ1)λ′(s),

where, as before, r(s) is the unique solution of the equation λ(r(s))=λ(s)−λ(γ1), ac-

cording to (11.22). A simple Mathematica program shows that G1(s)+G11(s)&1 and

G1(s)+G12(s)&1 if s∈[γ1+0.3, 3]. Using also (11.29) and (11.30), it follows that

|Υ(ξ, η)|+|(∇ηΥ)(ξ, η)·(∇⊥η Φ)(ξ, η)|& 1,

|Υ(ξ, η)|+|(∇ξΥ)(ξ, η)·(∇⊥ξ Φ)(ξ, η)|& 1,
(11.31)

if s∈[γ1+0.3, 3], |Φ(ξ, η)|�1, and |%−γ0|62−D1 . The bounds in (11.24) follow from

(11.26)–(11.28) and (11.31). Those in (11.25) follow from (11.26)–(11.28) and (11.30).

Case 2: the other triplets. The desired bounds in case (σ, µ, ν)=(+,−,+) fol-

low from the corresponding bounds in case (σ, µ, ν)=(+,+,+) and (11.23). Moreover,

if (σ, µ, ν)=(+,−,−), then Φ(ξ, η)=λ(s)+λ(r)+λ(%)&1, so (11.24)–(11.25) are clearly

verified.
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Finally, if (σ, µ, ν)=(+,+,−), then Φ(ξ, η)=λ(s)+λ(r)−λ(%). We may assume that

s, r∈[2−20, γ1]. In this case, we prove the stronger bound

|Φ(ξ, η)|+|Υ(ξ, η)|& 1. (11.32)

Indeed, for this, it suffices to notice that the function x 7!λ(x)+λ(γ1−x)−λ(γ1) is non-

negative for x∈[0, γ1] and vanishes only when x∈
{

0, 1
2γ1, γ1

}
. Moreover,

Υ
((

1
2γ1

)
e,−

(
1
2γ1

)
e
)
6= 0

if |e|=1 (using (11.4)), and the lower bound (11.32) follows.

The cases corresponding to σ=− are similar, by replacing Φ by −Φ and Υ by −Υ.

This completes the proof of the lemma.

Appendix A. Paradifferential calculus

The paradifferential calculus allows us to understand the high-frequency structure of our

system. In this section we record the definitions, and state and prove several useful

lemmas.

A.1. Operator bounds

In this subsection we define our main objects, and prove several basic non-linear bounds.

A.1.1. Fourier multipliers

We will mostly work with bilinear and trilinear multipliers. Many of the simpler estimates

follow from the following basic result (see [44, Lemma 5.2] for the proof).

Lemma A.1. (i) Assume l>2, f1, ..., fl, fl+1∈L2(R2), and let m: (R2)l!C be a con-

tinuous compactly supported function. Then,∣∣∣∣∫
(R2)l

m(ξ1, ..., ξl)f̂1(ξ1) ... f̂l(ξl)f̂l+1(−ξ1−...−ξl) dξ1 ... dξl
∣∣∣∣

. ‖F−1(m)‖L1 ‖f1‖Lp1 ... ‖fl+1‖Lpl+1 ,

(A.1)

for any exponents p1, ... pl+1∈[1,∞] satisfying 1/p1+...+1/pl+1=1.

(ii) Assume l>2 and let Lm be the multilinear operator defined by

F{Lm[f1, ..., fl]}(ξ) =

∫
(R2)l−1

m(ξ, η2, ..., ηl)f̂1(ξ−η2) ... f̂l−1(ηl−1−ηl)f̂l(ηl) dη2 ... dηl.
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Then, for any exponents p, q1, ... ql∈[1,∞] satisfying 1/q1+...+1/ql=1/p, we have

‖Lm[f1, ..., fl]‖Lp . ‖F−1(m)‖L1 ‖f1‖Lq1 ... ‖fl‖Lql . (A.2)

Given a multiplier m: (R2)2
!C, we define the bilinear operator M by the formula

F(M [f, g])(ξ) =
1

4π2

∫
R2

m(ξ, η)f̂(ξ−η)ĝ(η) dη. (A.3)

With Ω=x1∂2−x2∂1, we notice the formula

ΩM [f, g] =M [Ωf, g]+M [f,Ωg]+M̃ [f, g], (A.4)

where M̃ is the bilinear operator defined by the multiplier m̃(ξ, η)=(Ωξ+Ωη)m(ξ, η).

For simplicity of notation, we define the following classes of bilinear multipliers:

S∞ : = {m: (R2)n!C continuous : ‖m‖S∞ := ‖F−1m‖L1 <∞},

S∞Ω : =
{
m : (R2)2

!C continuous : ‖m‖S∞Ω := sup
l6N1

‖(Ωξ+Ωη)lm‖S∞ <∞
}
.

(A.5)

We will often need to analyze bilinear operators more carefully, by localizing in the

frequency space. We therefore define, for any symbol m,

mk,k1,k2(ξ, η) :=ϕk(ξ)ϕk1
(ξ−η)ϕk2

(η)m(ξ, η). (A.6)

For any t∈[0, T ], p>−N3, and m>1 let 〈t〉=1+t and let Om,p=Om,p(t) denote the

Banach spaces of functions f∈L2 defined by the norms

‖f‖Om,p := 〈t〉(m−1)(5/6−20δ2)−δ2

(‖f‖HN0+p+‖f‖
H
N1,N3+p
Ω

+〈t〉5/6−2δ2

‖f‖
W̃
N1/2,N2+p
Ω

).

(A.7)

This is similar to the definition of the spaces Om,p in Definition 2.4, except for the supre-

mum over t∈[0, T ]. We first show that these spaces are compatible with S∞Ω multipliers.

Lemma A.2. Let M be a bilinear operator with symbol m satisfying

‖mk,k1,k2‖S∞Ω 6 1 for any k, k1, k2 ∈Z.

Then, if p∈[−N3, 10], t∈[0, T ], and m,n>1,

〈t〉12δ2

‖M [f, g]‖Om+n,p
. ‖f‖Om,p ‖g‖On,p . (A.8)
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Proof. By definition, we may assume that m=n=1 and ‖f‖Om,p=‖g‖On,p=1. Thus,

we may assume that

‖h‖HN0+p+ sup
j6N1

‖Ωjh‖HN3+p 6 〈t〉δ
2

and sup
j6N1/2

‖Ωjh‖
W̃N2+p 6 〈t〉3δ

2−5/6, (A.9)

where h∈{f(t), g(t)}. With F :=M [f(t), g(t)], it suffices to prove that

‖F‖HN0+p+ sup
j6N1

‖ΩjF‖HN3+p . 〈t〉6δ
2−5/6,

sup
j6N1/2

‖ΩjPkF‖W̃N2+p . 〈t〉8δ
2−5/3.

(A.10)

For k, k1, k2∈Z let

Fk :=PkM [f(t), g(t)] and Fk,k1,k2
:=PkM [Pk1

f(t), Pk2
g(t)].

For k∈Z let

X 1
k : = {(k1, k2)∈Z×Z : k1 6 k−8 and |k2−k|6 4},

X 2
k : = {(k1, k2)∈Z×Z : k2 6 k−8 and |k1−k|6 4},

X 3
k : = {(k1, k2)∈Z×Z : min(k1, k2)> k−7 and |k1−k2|6 20},

and let Xk :=X 1
k ∪X 2

k ∪X 3
k . Let

ak := ‖Pkh‖HN0+p , bk := sup
06j6N1

‖ΩjPkh‖HN3+p , ck := sup
06j6N1/2

‖ΩjPkh‖W̃N2+p ,

ãk :=
∑
m∈Z

ak+m2−|m|/100, b̃k :=
∑
m∈Z

bk+m2−|m|/100, c̃k :=
∑
m∈Z

ck+m2−|m|/100.

(A.11)

We can now prove (A.10). Assuming k∈Z fixed, we estimate, using Lemma A.1 (ii),

‖Fk,k1,k2‖HN0+p . ak1(2−4 max(k2,0)ck2), if (k1, k2)∈X 2
k ,

‖Fk,k1,k2‖HN0+p . ak2(2−4 max(k1,0)ck1), if (k1, k2)∈X 1
k ∪X 3

k .
(A.12)

Since
∑
l cl6〈t〉3δ

2−5/6, it follows that

∑
(k1,k2)∈Xk

‖Fk,k1,k2
‖HN0+p . 〈t〉3δ

2−5/6

(
ãk+

∑
l>k

ãl2
−4l+

)
. (A.13)

Therefore, since
∑
k∈Z ã

2
k.〈t〉2δ

2

, it follows that( ∑
2k>(1+t)−10

‖Fk‖2HN0+p

)1/2
. 〈t〉6δ

2−5/6. (A.14)
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To bound the contribution of small frequencies, 2k6〈t〉−10, we also use the bound

‖Fk,k1,k2
‖L2 . 2k‖Fk,k1,k2

‖L1 . 2kak1
ak2

, (A.15)

when (k1, k2)∈X 3
k , in addition to the bounds (A.12). Therefore,∑

(k1,k2)∈Xk

‖Fk,k1,k2
‖HN0+p . 〈t〉3δ

2−5/6ãk+2k
∑
l∈Z

a2
l , (A.16)

if 2k6〈t〉−10. It follows that( ∑
2k6〈t〉−10

‖Fk‖2HN0+p

)1/2
. 〈t〉6δ

2−5/6, (A.17)

and the desired bound ‖F‖HN0+p.(1+t)6δ2−5/6 in (A.10) follows.

The proof of the second bound in (A.10) is similar. We start by estimating, as in

(A.12),

‖ΩjFk,k1,k2
‖HN3+p

. 2(N3+p)k+

(bk12−(N3+p)k+
1 ck22−(N2+p)k+

2 +bk22−(N3+p)k+
2 ck12−(N2+p)k+

1 )

for any j∈[0, N1]. We remark that this is weaker than (A.12), since the Ω-derivatives

can distribute on either Pk1
f(t) or Pk2

(t), and we are forced to estimate the factor with

more than 1
2N1 Ω-derivatives in L2. To bound the contributions of small frequencies, we

also estimate

‖ΩjFk,k1,k2
‖HN3+p . 2min(k,k1,k2)bk1

bk2
,

as in (A.15). Recall that N2−N3>5. We combine these two bounds to estimate∑
(k1,k2)∈Xk

‖ΩjFk,k1,k2
‖HN3+p . 〈t〉3δ

2−5/6

(
b̃k+

∑
l>k

b̃l2
−4l+

)
+〈t〉2δ

2

2−(N2−N3)k+

c̃k.

When 2k6(1+t)−10, this does not suffice; we have instead the bound∑
(k1,k2)∈Xk

‖ΩjFk,k1,k2‖HN3+p . 〈t〉3δ
2−5/6b̃k+2k

∑
l∈Z

b2l +〈t〉2δ
2

2−(N2−N3)k+

c̃k.

The desired estimate ‖ΩjF‖HN3+p.〈t〉6δ2−5/6 in (A.10) follows.

For the last bound in (A.10), we estimate as before, for any j∈
[
0, 1

2N1

]
,

‖ΩjFk,k1,k2
‖
W̃N2+p . 2(N2+p)k+

ck1
2−(N2+p)k+

1 ck2
2−(N2+p)k+

2 ,

‖ΩjFk,k1,k2
‖
W̃N2+p . 22kbk1

bk2
,

where the last estimate holds only for k60. The desired bound follows as before.
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A.1.2. Paradifferential operators

We first recall the definition of paradifferential operators (see (2.22)): given a symbol

a=a(x, ζ):R2×R2
!C, we define the operator Ta by

F {Taf} (ξ) =
1

4π2

∫
R2

χ

(
|ξ−η|
|ξ+η|

)
ã

(
ξ−η, ξ+η

2

)
f̂(η) dη, (A.18)

where ã denotes the partial Fourier transform of a in the first coordinate, and χ=ϕ−20.

We define the Poisson bracket between two symbols a and b by

{a, b} :=∇xa·∇ζb−∇ζa·∇xb. (A.19)

We will use several norms to estimate symbols of degree zero. For q∈{2,∞} and

r∈Z+ let

‖a‖Mr,q
:= sup

ζ

∥∥|a|r( · , ζ)
∥∥
Lqx
, where |a|r(x, ζ) :=

∑
|α|+|β|6r

|ζ||β| |∂βζ ∂
α
x a(x, ζ)|. (A.20)

At later stages, we will use more complicated norms, which also keep track of multiplicity

and degree. For now, we record a few simple properties, which directly follow from the

definitions:

‖ab‖Mr,q
+
∥∥|ζ|{a, b}∥∥Mr−2,q

. ‖a‖Mr,q1
‖b‖Mr,q2

, {∞, q}= {q1, q2},

‖Pka‖Mr,q. 2−sk‖Pka‖Mr+s,q , q ∈{2,∞}, k∈Z, s∈Z+.
(A.21)

We start with some simple properties.

Lemma A.3. (i) Let a be a symbol and 16q6∞. Then,

‖PkTaf‖Lq . ‖a‖M8,∞ ‖P[k−2,k+2]f‖Lq (A.22)

and

‖PkTaf‖L2 . ‖a‖M8,2
‖P[k−2,k+2]f‖L∞ . (A.23)

(ii) If a∈M8,∞ is real valued, then Ta is a bounded self-adjoint operator on L2.

(iii) We have

Taf =Ta′ f̄ , where a′(y, ζ) := a(y,−ζ) (A.24)

and

Ω(Taf) =Ta(Ωf)+Ta′′f, where a′′(y, ζ) = (Ωya)(y, ζ)+(Ωζa)(y, ζ). (A.25)
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Proof. (i) Inspecting the Fourier transform, we directly see that

PkTaf =PkTaP[k−2,k+2]f.

By rescaling, we may assume that k=0 and write

〈P0Tah, g〉=C

∫
R4

ḡ(x)h(y)I(x, y) dx dy

and

I(x, y) =

∫
R6

a

(
z,
ξ+η

2

)
eiξ·(x−z)eiη·(z−y)χ

(
|ξ−η|
|ξ+η|

)
ϕ0(ξ) dη dξ dz

=

∫
R6

a

(
z, ξ+

θ

2

)
eiθ·(z−y)eiξ·(x−y)χ

(
|θ|
|2ξ+θ|

)
ϕ0(ξ) dξ dθ dz.

We observe that

(1+|x−y|2)2I(x, y) =

∫
R6

a(z, ξ+θ/2)

(1+|z−y|2)2
χ

(
|θ|
|2ξ+θ|

)
ϕ0(ξ)

×(1−∆θ)
2(1−∆ξ)

2(eiθ·(z−y)eiξ·(x−y)) dξdθ dz.

By integration by parts in ξ and θ, it follows that

(1+|x−y|2)2 |I(x, y)|.
∫
R6

|a|8(z, ξ+θ/2)

(1+|z−y|2)2
ϕ[−4,4](ξ)ϕ6−10(θ) dξ dθ dz, (A.26)

where |a|8 is defined as in (A.20).

The bounds (A.22) and (A.23) now easily follow. Indeed, it follows from (A.26) that

(1+|x−y|2)2 |I(x, y)|. ‖a‖M8,∞ .

Therefore, |〈P0Tah, g〉|.‖a‖M8,∞ ‖h‖Lq ‖g‖Lq′ . This gives (A.22), and (A.23) follows

similarly.

Part (ii) and (A.24) follow directly from definitions. To prove (A.25), we start from

the formula

F{ΩTaf}(ξ) =
1

4π2

∫
R2

(Ωξ+Ωη)

(
χ

(
|ξ−η|
|ξ+η|

)
ã

(
ξ−η, ξ+η

2

)
f̂(η)

)
, dη,

and notice that

(Ωξ+Ωη)

(
χ

(
|ξ−η|
|ξ+η|

))
≡ 0.

Formula (A.25) follows.
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The paradifferential calculus is useful to linearize products and compositions. More

precisely, we have the following.

Lemma A.4. (i) If f, g∈L2, then

fg=Tfg+Tgf+H(f, g),

where H is smoothing in the sense that

‖PkH(f, g)‖Lq .
∑

k′,k′′>k−40

|k′−k′′|640

min(‖Pk′f‖Lq ‖Pk′′g‖L∞ , ‖Pk′f‖L∞ ‖Pk′′g‖Lq ).

As a consequence, if f∈Om,−5 and g∈On,−5, then

〈t〉12δ2

‖H(f, g)‖Om+n,5
. ‖f‖Om,−5

‖g‖On,−5
. (A.27)

(ii) Let F (z)=z+h(z), where h is analytic for |z|< 1
2 and satisfies |h(z)|.|z|3. If

‖u‖L∞6 1
100 and N>10, then

F (u) =TF ′(u)u+E(u),

〈t〉12δ2‖E(u)‖O3,5 . ‖u‖3O1,−5
if ‖u‖O1,−5 6 1.

(A.28)

Proof. (i) This follows easily by defining H(f, g)=fg−Tfg−Tgf and observing that

PkH(Pk′f, Pk′′g)≡ 0 unless k′, k′′> k−40, with |k′−k′′|6 40.

The bound (A.27) follows as in the proof of Lemma A.2 (the remaining bilinear interac-

tions correspond essentially to the set X 3
k ).

(ii) Since F is analytic, it suffices to show this for F (x)=xn, n>3. This follows,

however, as in part (i), using the Littlewood–Paley decomposition for u.

We show now that compositions of paradifferential operators can be approximated

well by paradifferential operators with suitable symbols. More precisely, we have the

following.

Proposition A.5. Let 16q6∞. Given symbols a and b, we may decompose

TaTb =Tab+
1
2 iT{a,b}+E(a, b), (A.29)

where {a, b} denotes the Poisson bracket as defined in (A.19). The error E obeys the

following bounds: assuming k>−100,

‖PkE(a, b)f‖Lq . 2−2k‖a‖M16,∞ ‖b‖M16,∞ ‖P[k−5,k+5]f‖Lq for q ∈{2,∞}, (A.30)

and

‖PkE(a, b)f‖L2 . 2−2k‖a‖M16,2
‖b‖M16,∞ ‖P[k−5,k+5]f‖L∞ ,

‖PkE(a, b)f‖L2 . 2−2k‖a‖M16,∞ ‖b‖M16,2
‖P[k−5,k+5]f‖L∞ .

(A.31)

Moreover, E(a, b)=0 if both a and b are independent of x.
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Proof. We may assume that a=P6k−100a and b=P6k−100, since the other contribu-

tions can also be estimated using Lemma A.3 (i) and (A.21). In this case, we write

16π4F{Pk(TaTb−Tab)f}(ξ)

=ϕk(ξ)

∫
R4

f̂(η)ϕ6k−100(ξ−θ)ϕ6k−100(θ−η)

×
(
ã

(
ξ−θ, ξ+θ

2

)
b̃

(
θ−η, η+θ

2

)
−ã
(
ξ−θ, ξ+η

2

)
b̃

(
θ−η, ξ+η

2

))
dη dθ.

Moreover, using the definition,

16π4F
{
Pk

(
i

2

)
T{a,b}f

}
(ξ) =ϕk(ξ)

∫
R4

f̂(η)ϕ6k−100(ξ−θ)ϕ6k−100(θ−η)

×
(
θ−η

2
(∇ζ ã)

(
ξ−θ, ξ+η

2

)
b̃

(
θ−η, ξ+η

2

)
−ã
(
ξ−θ, ξ+η

2

)
ξ−θ

2
(∇ζ b̃)

(
θ−η, ξ+η

2

))
dη dθ.

Therefore,

16π4PkE(a, b)f =U1f+U2f+U3f,

F(U jf)(ξ) =ϕk(ξ)

∫
R4

f̂(η)ϕ6k−100(ξ−θ)ϕ6k−100(θ−η)mj(ξ, η, θ) dη dθ,
(A.32)

where

m1(ξ, η, θ) : = ã

(
ξ−θ, ξ+η

2

)
b̃

(
θ−η, η+θ

2

)
−ã
(
ξ−θ, ξ+η

2

)
b̃

(
θ−η, ξ+η

2

)
−ã
(
ξ−θ, ξ+η

2

)
θ−ξ

2
(∇ζ b̃)

(
θ−η, ξ+η

2

)
,

(A.33)

m2(ξ, η, θ) : = ã

(
ξ−θ, ξ+θ

2

)
b̃

(
θ−η, η+θ

2

)
−ã
(
ξ−θ, ξ+η

2

)
b̃

(
θ−η, η+θ

2

)
− θ−η

2
(∇ζ ã)

(
ξ−θ, ξ+η

2

)
b̃

(
θ−η, η+θ

2

)
,

(A.34)

and

m3(ξ, η, θ) : =
θ−η

2
(∇ζ ã)

(
ξ−θ, ξ+η

2

)(
b̃

(
θ−η, η+θ

2

)
−b̃
(
θ−η, ξ+η

2

))
. (A.35)

It remains to prove the bounds (A.30) and (A.31) for the operators U j , j∈{1, 2, 3}.
The operators U j are similar, so we will only provide the details for the operator U1. We

rewrite

m1(ξ, η, θ) =

∫ 1

0

ã

(
ξ−θ, ξ+η

2

)
(θ−ξ)j(θ−ξ)k

4
(∂ζj∂ζk b̃)

(
θ−η, ξ+η

2
+s

θ−ξ
2

)
(1−s) ds.

(A.36)
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Therefore,

U1f(x) =

∫
R2

f(y)K1(x, y) dy, (A.37)

where

K1(x, y) :=C

∫
R6

e−iy·ηeix·ξϕk(ξ)ϕ6k−100(ξ−θ)ϕ6k−100(θ−η)m1(ξ, η, θ) dη dθ dξ.

We use formula (A.36) and make changes of variables to rewrite

K1(x, y) =C

∫ 1

0

ds (1−s)
∫
R10

e−iy·(ξ+µ+ν)eix·ξeiz·µeiw·νϕk(ξ)ϕ6k−100(µ)ϕ6k−100(ν)

×(∂xj∂xka)

(
z, ξ+

µ

2
+
ν

2

)
(∂ζj∂ζkb)

(
w, ξ+

µ

2
+
ν

2
+
sµ

2

)
dµ dν dξ dz dw.

We integrate by parts in ξ, µ, and ν, using the operators (2−2k−∆ξ)
2, (2−2k−∆µ)2, and

(2−2k−∆ν)2. It follows that

|K1(x, y)|.
∫
R10

2−2k

(2−2k+|x−y|2)2

2−2k

(2−2k+|z−y|2)2

2−2k

(2−2k+|w−y|2)2
Fa,b(z, w) dz dw,

(A.38)

where, with ϕ(X,Y, Z):=ϕ0(X)ϕ6−100(Y )ϕ6−100(Z),

Fa,b(z, w)

: = 26k

∫ 1

0

ds

∫
R6

∣∣∣∣(2−2k−∆ξ)
2(2−2k−∆µ)2(2−2k−∆ν)2

{
ϕ(2−kξ, 2−kµ, 2−kν)

×(∂xj∂xka)

(
z, ξ+

µ

2
+
ν

2

)
(∂ζj∂ζkb)

(
w, ξ+

µ

2
+
ν

2
+
sµ

2

)}∣∣∣∣ dξ dµ dν.
With |a|16 and |b|16 defined as in (A.20), it follows that

|Fa,b(z, w)|. 2−2k

∫ 1

0

ds

∫
R6

|a|16

(
z, ξ+

µ

2
+
ν

2

)
|b|16

(
w, ξ+

µ

2
+
ν

2
+
sµ

2

)
×ϕ[−4,4](2

−kξ)ϕ6−10(2−kµ)ϕ6−10(2−kν)
dξ dµ dν

26k
.

The desired bounds (A.30) and (A.31) for U1 follow using also (A.37) and (A.38).

We also make the following observation: if a=a(ζ) is a Fourier multiplier, b is a

symbol, and f is a function, then

Ê(a, b)f(ξ) =
1

4π2

∫
R2

χ

(
|ξ−η|
|ξ+η|

)(
a(ξ)−a

(
ξ+η

2

)
− ξ−η

2
·∇a

(
ξ+η

2

))
×b̃
(
ξ−η, ξ+η

2

)
f̂(η) dη,

Ê(b, a)f(ξ) =
1

4π2

∫
R2

χ

(
|ξ−η|
|ξ+η|

)(
a(η)−a

(
ξ+η

2

)
− η−ξ

2
·∇a

(
ξ+η

2

))
×b̃
(
ξ−η, ξ+η

2

)
f̂(η) dη.

(A.39)
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A.2. Decorated norms and estimates

In the previous subsection we proved bounds on paraproduct operators. In our study of

the problem, we need to keep track of several parameters, such as order, decay, and vector

fields. It is convenient to use two compatible hierarchies of bounds, one for functions and

one for symbols of operators.

A.2.1. Decorated norms

Recall the spaces Om,p defined in (A.7). We define now the norms we will use to measure

symbols.

Definition A.6. For l∈[−10, 10], r∈Z+, m∈{1, 2, 3, 4}, t∈[0, T ], and q∈{2,∞}, we

define classes of symbols Ml,m
r,q =Ml,m

r,q (t)⊆C(R2×R2 :C) by the norms

‖a‖Ml,m
r,∞

: = sup
j6N1/2

sup
|α|+|β|6r

sup
ζ∈R2

〈t〉m(5/6−20δ2)+16δ2

〈ζ〉−l
∥∥|ζ||β|∂βζ ∂αxΩjx,ζa

∥∥
L∞x

, (A.40)

‖a‖Ml,m
r,2

: = sup
j6N1

sup
|α|+|β|6r

sup
ζ∈R2

〈t〉(m−1)(5/6−20δ2)−2δ2

〈ζ〉−l
∥∥|ζ||β|∂βζ ∂αxΩjx,ζa

∥∥
L2
x
. (A.41)

Here,

Ωx,ζa := Ωxa+Ωζa= (x1∂x2
−x2∂x1

+ζ1∂ζ2−ζ2∂ζ1)a;

see (A.25). We also define

‖a‖Ml,m
r

:= ‖a‖Ml,m
r,∞

+‖a‖Ml,m
r,2
, m> 1. (A.42)

Note that this hierarchy is naturally related to the hierarchy in terms of Om,p. In

this definition the parameters m (the “multiplicity” of a, related to the decay rate) and

l (the “order”) will play an important role. Observe that for a function f=f(x), and

m∈[1, 4],

‖f‖M0,m
N3+p

. ‖f‖Om,p . (A.43)

Note also that we have the simple linear rule

‖Pka‖Ml,m
r,q

. 2−sk‖Pka‖Ml,m
r+s,q

, k∈Z, s> 0, q ∈{2,∞}, (A.44)

and the basic multiplication rules

〈t〉2δ
2

(‖ab‖Ml1+l2,m1+m2
r

+‖ζ{a, b}‖Ml1+l2,m1+m2
r−2

). ‖a‖Ml1,m1
r

‖b‖Ml2,m2
r

. (A.45)
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A.2.2. Bounds on operators

We may now pass the bounds proved in §A.1 to decorated norms. We consider the action

of paradifferential operators on the classes Ok,p. We will often use the following simple

facts. Paradifferential operators preserve frequency localizations:

PkTaf =PkTaP[k−4,k+4]f =PkTa(x,ζ)ϕ6k+4(ζ)f. (A.46)

The rotation vector field Ω acts nicely on such operators (see (A.25)):

Ω(Taf) =TΩx,ζaf+Ta(Ωf). (A.47)

The following relations between basic and decorated norms for symbols hold:

‖Ωjx,ζa(x, ζ)ϕ6k(ζ)‖
Mr,∞

. 2lk
+‖a‖Ml,m

r,∞
〈t〉−m(5/6−20δ2)−16δ2

, 06 j6 1
2N1,

‖Ωjx,ζa(x, ζ)ϕ6k(ζ)‖
Mr,2

. 2lk
+‖a‖Ml,m

r,2
〈t〉−(m−1)(5/6−20δ2)+2δ2

, 06 j6N1.
(A.48)

A simple application of the above remarks and Lemma A.3 (i) gives the bound

‖Tσf‖Hs . 〈t〉−m(5/6−20δ2)−16δ2

‖σ‖Ml,m
8
‖f‖Hs+l . (A.49)

We now prove two useful lemmas.

Lemma A.7. If q, q−l∈[−N3, 10] and m,m1>1, then

〈t〉12δ2

TaOm,q ⊆Om+m1,q−l for a∈Ml,m1

10 , (A.50)

In particular, using also (A.43),

〈t〉12δ2

TOm1,−10Om,q ⊆Om+m1,q. (A.51)

Proof. The estimate (A.50) follows using the definitions and the linear estimates

(A.22) and (A.23) in Lemma A.3. We may assume that m=m1=1. Using (A.22) and

(A.48), we estimate

2(N0+q−l)k+

‖PkTaf‖L2 . ‖a‖M8,∞
2(N0+q−l)k+

‖P[k−2,k+2]f‖L2

. 〈t〉−5/6+4δ2

‖a‖Ml,1
8,∞

2(N0+q)k+

‖P[k−2,k+2]f‖L2

for any f∈O1,q. By orthogonality, we deduce the desired bound on the HN0 norm.
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To bound the weighted norm, we use (A.22), (A.23), and (A.48) to estimate

2(N3+q−l)k+

‖ΩjPkTaf‖L2

.
∑
n6j/2

2(N3+q−l)k+

(‖PkTΩnx,ζa
Ωj−nf‖

L2
+‖PkTΩj−nx,ζ a

Ωnf‖
L2

)

.
∑
n6j/2

2(N3+q−l)k+

(‖Ωnx,ζa‖M8,∞ ‖P[k−2,k+2]Ω
j−nf‖

L2

+‖Ωj−nx,ζ a‖M8,2 ‖P[k−2,k+2]Ω
nf‖

L∞
)

.
∑
n6j/2

2(N3+q)k+

‖a‖Ml,1
8

(〈t〉−5/6+4δ2

‖P[k−2,k+2]Ω
j−nf‖

L2

+〈t〉2δ
2

‖P[k−2,k+2]Ω
nf‖

L∞
)

for every j∈[0, N1]. The desired weighted L2 bound follows since(∑
k∈Z

22(N3+q)k+

‖P[k−2,k+2]Ω
j−nf‖2

L2

)1/2

+〈t〉5/6−2δ2

(∑
k∈Z

22(N3+q)k+

‖P[k−2,k+2]Ω
nf‖2

L∞

)1/2
. 〈t〉2δ

2

‖f‖O1,q
.

Finally, for the L∞ bound, we use (A.22) to estimate

2(N2+q−l)k+

‖ΩjPkTaf‖L∞ .
∑

j1,j26N1/2

2(N2+q−l)k+

‖Ωj1x,ζa‖M8,∞
‖P[k−2,k+2]Ω

j2f‖
L∞

. 〈t〉−5/6+4δ2

‖a‖Ml,1
8,∞

∑
j26N1/2

2(N2+q)k+

‖P[k−2,k+2]Ω
j2f‖

L∞

for any j∈
[
0, 1

2N1

]
. The desired bound follows by summation over k.

Lemma A.8. Let E be defined as in Proposition A.5. Assume that m,m1,m2>1,

q, q−l1, q−l2, q−l1−l2∈[−N3, 10], and consider a∈Ml1,m1

20 and b∈Ml2,m2

20 . Then,

〈t〉12δ2

P>−100E(a, b)Om,q ⊂Om+m1+m2,q−l1−l2+2,

〈t〉12δ2

P>−100(TaTb+TbTa−2Tab)Om,q ⊂Om+m1+m2,q−l1−l2+2.
(A.52)

In addition,

〈t〉12δ2

[Ta, Tb]Om,q ⊆Om+m1+m2,q−l1−l2+1,

〈t〉12δ2

(TaTb−Tab)Om,q ⊆Om+m1+m2,q−l1−l2+1.
(A.53)

Moreover, if a∈M0,m1

20 and b∈M0,m2

20 are functions, then

〈t〉12δ2

(TaTb−Tab)Om,−5⊆Om+m1+m2,5. (A.54)



gravity-capillary water-wave system in 3d 377

Proof. We record the formulas

Ωx,ζ(ab) = (Ωx,ζa)b+a(Ωx,ζb) and Ωx,ζ({a, b}) = {Ωx,ζa, b}+{a,Ωx,ζb}. (A.55)

Therefore, letting U(a, b):=TaTb−Tab, we have

[Ta, Tb] =U(a, b)−U(b, a), E(a, b) =U(a, b)− 1
2 iT{a,b},

TaTb+TbTa−2Tab =E(a, b)+E(b, a),
(A.56)

and

Ω(U(a, b)f) =U(Ωx,ζa, b)f+U(a,Ωx,ζb)f+U(a, b)Ωf,

Ω(T{a,b}f) =T{Ωx,ζa,b}f+T{a,Ωx,ζb}f+T{a,b}Ωf,

Ω(E(a, b)f) =E(Ωx,ζa, b)f+E(a,Ωx,ζb)f+E(a, b)Ωf.

(A.57)

The bound (A.54) follows as in the proof of Lemma A.2, once we notice that

Pk[(TaTb−Tab)f ] =
∑

max(k1,k2)>k−40

Pk((TPk1
aTPk2

b−TPk1
aPk2

b)f).

The bounds (A.52) follow from (A.30)–(A.31) and (A.48), in the same way the bound

(A.50) in Lemma A.7 follows from (A.22)–(A.23). Moreover, using (A.45),

〈t〉12δ2

‖{a, b}(x, ζ)ϕ>−200(ζ)‖Ml1+l2−1,m1+m2
18

. ‖a‖Ml1,m1
20

‖b‖Ml2,m2
20

.

Therefore, using (A.50) and frequency localization,

〈t〉12δ2

P>−100T{a,b}Om,q ⊆Om+m1+m2,q−l1−l2+1. (A.58)

Therefore, using (A.56) and (A.52),

〈t〉12δ2

P>−100U(a, b)Om,q ⊆Om+m1+m2,q−l1−l2+1.

For (A.53), it remains to prove that

〈t〉12δ2

P60U(a, b)Om,q ⊆Om+m1+m2,q−l1−l2+1. (A.59)

However, using (A.50) and (A.45), we have

〈t〉12δ2

TaTbOm,q ⊆Om+m1+m2,q−l1−l2 and 〈t〉12δ2

TabOm,q ⊆Om+m1+m2,q−l1−l2 ,

and (A.59) follows. This completes the proof of (A.53).
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Appendix B. The Dirichlet–Neumann operator

Let (h, φ) be as in Proposition 2.2 and let Ω:={(x, z)∈R3 :z6h(x)}. Let Φ denote

the (unique in a suitable space, see Lemma B.4) harmonic function in Ω satisfying

Φ(x, h(x))=φ(x). We define the Dirichlet–Neumann(8) map as

G(h)φ=
√

1+|∇h|2(ν ·∇Φ), (B.1)

where ν denotes the outward-pointing unit normal to the domain Ω. The main result of

this section is the following paralinearization of the Dirichlet–Neumann map.

Proposition B.1. Assume that t∈[0, T ] is fixed and let (h, φ) satisfy

‖〈∇〉h‖O1,0
+
∥∥|∇|1/2φ∥∥O1,0

. ε1. (B.2)

Define

B :=
G(h)φ+∇xh·∇xφ

1+|∇h|2
, V :=∇xφ−B∇xh, and ω :=φ−TBh. (B.3)

Then, we can paralinearize the Dirichlet–Neumann operator as

G(h)φ=TλDNω−div(TV h)+G2+ε3
1O3,3/2 (B.4)

(recall definition (A.7)), where

λDN : =λ(1)+λ(0),

λ(1)(x, ζ) : =
√

(1+|∇h|2)|ζ|2−(ζ ·∇h)2,

λ(0)(x, ζ) : =

(
(1+|∇h|2)2

2λ(1)

{
λ(1)

1+|∇h|2
,

ζ ·∇h
1+|∇h|2

}
+

1

2
∆h

)
ϕ>0(ζ).

(B.5)

The quadratic terms are given by

G2 =G2(h, |∇|1/2ω)∈ ε2
1O2,5/2, Ĝ2(ξ) =

1

4π2

∫
R2

g2(ξ, η)ĥ(ξ−η)|η|1/2ω̂(η) dη, (B.6)

where g2 is a symbol satisfying (see the definition of the class S∞Ω in (A.5))

‖gk,k1,k2

2 (ξ, η)‖S∞Ω . 2k2min(k1,k2)/2

(
1+2min(k1,k2)

1+2max(k1,k2)

)7/2
. (B.7)

(8) To be precise, this is
√

1+|∇h|2 times the standard Dirichlet–Neumann operator, but we will
slightly abuse notation and call G(h)φ the Dirichlet–Neumann operator.
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Remark B.2. Using (B.5), Definition A.6, and (A.43)–(A.45) we see that, for any

t∈[0, T ],

λ(1) = |ζ|(1+ε2
1M

0,2
N3−1) and λ(0) ∈ ε1M0,1

N3−2. (B.8)

For later use, we further decompose λ(0) into its linear and higher-order parts:

λ(0) =λ
(0)
1 +λ

(0)
2 , λ

(0)
1 :=

[
1

2
∆h− 1

2

ζjζk∂j∂kh

|ζ|2

]
ϕ>0(ζ), λ

(0)
2 ∈ ε3

1M
0,3
N3−2. (B.9)

According to the formulas in (B.5) and (B.9), we have

λDN−|ζ|−λ(0)
1 ∈ ε2

1M
1,2
N3−2 and λDN−λ(1)−λ(0)

1 ∈ ε3
1M

0,3
N3−2. (B.10)

The proof of Proposition B.1 relies on several results and is given at the end of the

section.

B.1. Linearization

We start with a result that identifies the linear and quadratic part of the Dirichlet–

Neumann operator.

We first use a change of variable to flatten the surface. We thus define

u(x, y) : = Φ(x, h(x)+y), (x, y)∈R2×(−∞, 0],

Φ(x, z) =u(x, z−h(x)).
(B.11)

In particular, u|y=0=φ and ∂yu|y=0=B, and the Dirichlet–Neumann operator is given

by

G(h)φ= (1+|∇h|2)∂yu|y=0−∇xh·∇xu|y=0. (B.12)

A simple computation yields

0 = ∆x,zΦ = (1+|∇xh|2)∂2
yu+∆xu−2∂y∇xu·∇xh−∂yu∆xh. (B.13)

Since we will also need to study the linearized operator, it is convenient to also allow for

error terms and consider the equation

(1+|∇xh|2)∂2
yu+∆xu−2∂y∇xu·∇xh−∂yu∆xh= ∂yea+|∇|eb. (B.14)

With R:=|∇|−1∇ (the Riesz transform), this can be rewritten in the form

(∂2
y−|∇|2)u= ∂yQa+|∇|Qb,

Qa :=∇u·∇h−|∇h|2∂yu+ea, Qb :=R(∂yu∇h)+eb.
(B.15)

To study the solution u, we will need an additional class of Banach spaces, to

measure functions that depend on y∈(−∞, 0] and x∈R2. These spaces are only used in

this section.
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Definition B.3. For t∈[0, T ], p>−10, andm>1 let Lm,p=Lm,p(t) denote the Banach

space of functions g∈C((−∞, 0]:Ḣ1/2,1/2) defined by the norm

‖g‖Lm,p :=
∥∥|∇|g∥∥

L2
yOm,p

+‖∂yg‖L2
yOm,p+

∥∥|∇|1/2g∥∥
L∞y Om,p

. (B.16)

The point of these spaces is to estimate solutions of equations of the form

(∂y−|∇|)u=N ,

in terms of the initial data u(0)=ψ. It is easy to see that, if |∇|1/2ψ∈Om,p, then

‖ey|∇|ψ‖Lm,p .
∥∥|∇|1/2ψ∥∥Om,p . (B.17)

To see this estimate for the L2
yW̃

N1/2,N2+p
Ω component, we use the bound

‖c‖L2
y`

1
k
. ‖c‖`1kL2

y

for any c:Z×(−∞, 0]!C. Moreover, if Q∈L2
yOm,p, then∥∥∥∥|∇|1/2 ∫ 0

−∞
e−|y−s| |∇|1±(y−s)Q(s) ds

∥∥∥∥
L∞y Om,p

. 〈t〉δ
2/2‖Q‖L2

yOm,p (B.18)

and ∥∥∥∥|∇|∫ 0

−∞
e−|y−s| |∇|1±(y−s)Q(s) ds

∥∥∥∥
L2
yOm,p

. 〈t〉δ
2/2‖Q‖L2

yOm,p . (B.19)

Indeed, these bounds follow directly from the definitions for the L2-based components of

the space Om,p, which are HN0+p and HN1,N3+p
Ω . For the remaining component, one can

control uniformly the W̃
N1/2,N2+p
Ω norm of the function localized at every single dyadic

frequency, without the factor 〈t〉δ2/2 in the right-hand side. The full bounds follow,

once we notice that only the frequencies satisfying 2k∈[〈t〉−8, 〈t〉8] are relevant in the

W̃
N1/2,N2+p
Ω component of the space O1,p; the other frequencies are already accounted

by the stronger Sobolev norms.

Our first result is the following.

Lemma B.4. (i) Assume that t∈[0, T ] is fixed, ‖〈∇〉h‖O1,0.ε1, as in (B.2), and∥∥|∇|1/2ψ∥∥O1,p
6A<∞ and ‖ea‖L2

yO1,p
+‖eb‖L2

yO1,p
6Aε1〈t〉−12δ2

(B.20)

for some p∈[−10, 0]. Then, there is a unique solution u∈L1,p of the equation

u(y) = ey|∇|
(
ψ− 1

2

∫ 0

−∞
es|∇|(Qa(s)−Qb(s)) ds

)
+

1

2

∫ 0

−∞
e−|y−s| |∇|(sgn(y−s)Qa(s)−Qb(s)) ds,

(B.21)
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where Qa and Qb are as in (B.15). Moreover, u is a solution of the equation

(∂2
y−|∇|2)u= ∂yQa+|∇|Qb

in (B.15) (and therefore a solution of (B.14) in R2×(−∞, 0]), and

‖u‖L1,p =
∥∥|∇|u∥∥

L2
yO1,p

+‖∂yu‖L2
yO1,p

+
∥∥|∇|1/2u∥∥

L∞y O1,p
.A. (B.22)

(ii) Assume that we make the stronger assumptions (compare with (B.20))∥∥|∇|1/2ψ∥∥O1,p
6A< 0 and ‖∂jye‖L2

yO2,p−j+‖∂jye‖L∞y O2,p−1/2−j 6Aε1〈t〉−12δ2

(B.23)

for e∈{ea, eb} and j∈{0, 1, 2}. Then,∥∥∂jy(∂yu−|∇|u)
∥∥
L2
yO2,p−j

+
∥∥∂jy(∂yu−|∇|u)

∥∥
L∞y O2,p−1/2−j

.Aε1. (B.24)

Proof. (i) We use a fixed-point argument in a ball of radius ≈A in L1,p for the

functional

Φ(u) : = ey|∇|
(
ψ− 1

2

∫ 0

−∞
es|∇|(Qa(s)−Qb(s)) ds

)
+

1

2

∫ 0

−∞
e−|y−s| |∇|(sign(y−s)Qa(s)−Qb(s)) ds.

(B.25)

Notice that, using Lemma A.2 and (B.20), if ‖u‖L1,p.1, then

‖Qa‖L2
yO1,p

+‖Qb‖L2
yO1,p

.Aε1〈t〉−12δ2

.

Therefore, using (B.17)–(B.19), ‖Φ(u)−ey|∇|ψ‖L1,p
.Aε1. Similarly, one can show that

‖Φ(u)−Φ(v)‖L1,p
.ε1‖u−v‖L1,p

, and the desired conclusion follows.

(ii) The identity (B.21) shows that

∂yu(y)−|∇|u(y) =Qa(y)+

∫ y

−∞
|∇|e−|s−y| |∇|(Qb(s)−Qa(s)) ds. (B.26)

Given (B.22), definition (B.15), and the stronger assumptions in (B.23), we have

‖Q‖L2
yO2,p

+‖Q‖L∞y O2,p−1/2
.Aε1〈t〉−12δ2

(B.27)

for Q∈{Qa, Qb}. Using estimates similar to (B.18) and (B.19), it follows that∥∥∂yu−|∇|u∥∥L2
yO2,p

+
∥∥∂yu−|∇|u∥∥L∞y O2,p−1/2

.Aε1. (B.28)

To prove (B.24) for j∈{1, 2}, we observe that, as a consequence of (B.14),

∂2
yu−|∇|2u= (1+|∇xh|2)−1(−|∇|2u|∇xh|2+2∂y∇xu·∇xh+∂yu∆xh+∂yea+|∇|eb).

(B.29)

Using (B.22) and (B.28), together with Lemma A.2, it follows that∥∥∂2
yu−|∇|2u

∥∥
L2
yO2,p−1

+
∥∥∂2

yu−|∇|2u
∥∥
L∞y O2,p−3/2

.Aε1.

The desired bound (B.24) for j=1 follows using also (B.28). The bound for j=2 then

follows by differentiating (B.29) with respect to y. This completes the proof of the

lemma.
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B.2. Paralinearization

The previous analysis allows us to isolate the linear (and the higher-order) components

of the Dirichlet–Neumann operator. However, this is insufficient for our purpose, because

we also need to avoid losses of derivatives in the equation. To deal with this, we follow

the approach of Alazard–Metivier [5], Alazard–Burq–Zuily [1], [2] and Alazard–Delort

[3] using paradifferential calculus. Our choice is to work with the (somewhat unusual)

Weyl quantization, instead of the standard one used by the cited authors. We refer to

Appendix A for a review of the paradifferential calculus using the Weyl quantization.

For simplicity of notation, we set α=|∇h|2 and let

ω :=u−T∂yuh. (B.30)

Notice that ω is naturally extended to the fluid domain; compare with the definition

(B.3). We will also assume (B.2) and use Lemma B.4. Using (A.51) in Lemma A.7 and

(B.24), we see that

‖ω−u‖L2
yO2,1∩L∞y O2,1

. ε2
1. (B.31)

Using Lemma A.4 to paralinearize products, we may rewrite the equation (B.13) as

T1+α∂
2
yω+∆ω−2T∇h∇∂yω−T∆h∂yω=Q+C, (B.32)

where

−Q=−2H(∇h,∇∂yu)−H(∆h, ∂yu),

−C= ∂y(T1+αT∂2
yu

+T∆u−2T∇hT∇∂yu−T∆hT∂yu)h+2(T∂2
yu
T∇h−T∇hT∂2

yu
)∇h

+T∂2
yu
H(∇h,∇h)+H(α, ∂2

yu).

(B.33)

Notice that the error terms are quadratic and cubic strongly semilinear. More precisely,

using Lemmas A.4 and A.8, and equation (B.13), we see that

Q∈ ε2
1[L2

yO2,4∩L∞y O2,4] and C ∈ ε3
1〈t〉−11δ2

[L2
yO3,4∩L∞y O3,4]. (B.34)

We now look for a factorization of the main elliptic equation into

T1+α∂
2
y+∆−2T∇h∇∂y−T∆h∂y

= (T√1+α∂y−A+B)(T√1+α∂y−A−B)+E

=T 2√
1+α∂

2
y−((AT√1+α+T√1+αA)+[T√1+α, B])∂y+A2−B2+[A,B]+E ,

where the error term is acceptable (in a suitable sense to be made precise later), and

[A, ∂y]=0 and [B, ∂y]=0. Identifying the terms, this leads to the system

T√1+αA+AT√1+α+[T√1+α, B] = 2Tiζ·∇h+E ,

A2−B2+[A,B] = ∆+E .
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We may now look for paraproduct solutions in the form

A= iTa, a= a(1)+a(0), B=Tb, b= b(1)+b(0),

where both a and b are real and are a sum of two symbols of order 1 and 0, respectively.

Therefore, A corresponds to the skew-symmetric part of the system, while B corresponds

to the symmetric part. Using Proposition A.5, and formally identifying the symbols, we

obtain the system

2ia
√

1+α+i{
√

1+α, b}= 2iζ ·∇h+ε2
1M

−1,2
N3−2,

a2+b2+{a, b}= |ζ|2+ε2
1M

0,2
N3−2.

We can solve this by letting

a(1) : =
ζ ·∇h√
1+α

, a(0) : =− 1

2
√

1+α
{
√

1+α, b(1)}ϕ>0(ζ),

b(1) =
√
|ζ|2−(a(1))2, b(0) =

1

2b(1)
(−2a(1)a(0)−{a(1), b(1)}ϕ>0(ζ)).

This gives us the following formulas:

a(1) =
1√

1+|∇h|2
(ζ ·∇h) = (ζ ·∇h)(1+ε2

1M
0,2
N3

), (B.35)

b(1) =

√
(1+|∇h|2)|ζ|2−(ζ ·∇h)2

1+|∇h|2
= |ζ|(1+ε2

1M
0,2
N3

), (B.36)

a(0) =−
{
√

1+|∇h|2, b(1)}
2
√

1+|∇h|2
ϕ>0(ζ) =ϕ>0(ζ)ε2

1M
0,2
N3−1, (B.37)

b(0) =−
√

1+|∇h|2
2b(1)

{
ζ ·∇h

1+|∇h|2
, b(1)

}
ϕ>0(ζ) =ϕ>0(ζ)

(
−ζjζk∂j∂kh

2|ζ|2
+ε3

1M
0,3
N3−1

)
.

(B.38)

We now verify that

(T√1+α∂y−iTa+Tb)(T√1+α∂y−iTa−Tb)

=T1+α∂
2
y−(2Ta

√
1+α+T{

√
1+α,b(1)})i∂y−Ta2−Tb2−T{a(1),b(1)}ϕ>0(ζ)+E ,

(B.39)

where

E : = (T√1+αT
√

1+α−T1+α)∂2
y−(TaT√1+α+T√1+αTa−2Ta

√
1+α)i∂y

−[T√1+α, Tb(0) ]∂y−([T√1+α, Tb(1) ]−iT{√1+α,b(1)})∂y+(Ta2−T 2
a )

+(Tb2−T 2
b )+i[Ta, Tb]+T{a(1),b(1)}ϕ>0(ζ).

We also verify that

2a
√

1+α+{
√

1+α, b(1)}= 2ζ ·∇h+{
√

1+α, b(1)}ϕ6−1(ζ),

a2+b2+{a(1), b(1)}ϕ>0(ζ) = |ζ|2+(a(0))2+(b(0))2.
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Lemma B.5. With the definitions above, we have

(T√1+α∂y−iTa+Tb)(T√1+α∂y−iTa−Tb)ω=Q0+C̃, (B.40)

where

C̃ ∈ ε3
1〈t〉−11δ2

[L∞y O3,1/2∩L2
yO3,1], Q0 ∈ ε2

1[L∞y O2,3/2∩L2
yO2,2],

Q̂0(ξ, y) =
1

4π2

∫
R2

q0(ξ, η)ĥ(ξ−η)û(η, y) dη,
(B.41)

and

q0(ξ, η) : =χ

(
|ξ−η|
|ξ+η|

)
(|ξ|−|η|)2(|ξ|+|η|)

2

(
2ξ ·η−2|ξ| |η|
|ξ+η|2

ϕ>0

(
ξ+η

2

)
+ϕ6−1

(
ξ+η

2

))
+

(
1−χ

(
|ξ−η|
|ξ+η|

)
−χ
(
|η|
|2ξ−η|

))
(|η|2−|ξ|2)|η|.

(B.42)

Notice that (see (A.6) for the definition)

‖qk,k1,k2

0 ‖S∞Ω . 2k222k1 [2−(2k2−2k1)1[−40,∞)(k2−k1)+1(−∞,4](k2)],

(Ωξ+Ωη)q0 = 0.
(B.43)

Proof. Using (B.32) and (B.39), we have

(T√1+α∂y−iTa+Tb)(T√1+α∂y−iTa−Tb)ω

=Q+C+Eω−T(a(0))2+(b(0))2ω−T{√1+α,b(1)}ϕ6−1(ζ)i∂yω.

The terms C, T(a0)2+(b(0))2ω, and T{
√

1+α,b(1)}ϕ6−1(ζ)i∂yω are in

ε3
1(1+t)−11δ2

[L∞y O3,1/2∩L2
yO3,1].

Moreover, using Lemmsa B.4 and A.8, and (B.35)–(B.38), we can verify that

Eω−(T
2|ζ|b(0)

1
−T|ζ|Tb(0)

1
−T

b
(0)
1
T|ζ|)ω−(i[Tζ·∇h, T|ζ|]+T{ζ·∇h,|ζ|}ϕ>0(ζ))ω

is an acceptable cubic error, where

b
(0)
1 :=−ϕ>0(ζ)

ζjζk∂j∂kh

2|ζ|2
.

Indeed, most of the terms in E are already acceptable cubic errors; the last three terms

become acceptable cubic errors after removing the quadratic components corresponding
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to the symbols ζ ·∇h in a(1), |ζ| in b(1), and b
(0)
1 in b(0). As a consequence, we have that

Eω−Q′0∈ε3
1〈t〉−11δ2

[L∞y O3,1/2∩L2
yO3,1], where

Q̂′0(ξ, y) : =
1

4π2

∫
R2

χ

(
|ξ−η|
|ξ+η|

)
q′0(ξ, η)ĥ(ξ−η)ω̂(η, y) dη,

q′0(ξ, η) : =
(|ξ|−|η|)2(|ξ|+|η|)(ξ ·η−|ξ| |η|)

|ξ+η|2
ϕ>0

(
ξ+η

2

)
+

(|ξ|−|η|)2(|ξ|+|η|)
2

ϕ6−1

(
ξ+η

2

)
.

The desired conclusions follow, using also the formula Q=2H(∇h,∇∂yu)+H(∆h, ∂yu) in

(B.33), and the approximations ∂yu≈|∇|u and ω≈u, up to suitable quadratic errors.

In order to continue, we want to invert the first operator in (B.40), which is elliptic

in the domain under consideration.

Lemma B.6. Let U :=(T√1+α∂y−iTa−Tb)ω∈ε1[L∞y O1,−1/2∩L2
yO1,0], so

(T√1+α∂y−iTa+Tb)U =Q0+C̃. (B.44)

Define

M̂0[f, g](ξ) =
1

4π2

∫
R2

m0(ξ, η)f̂(ξ−η)ĝ(η) dη, m0(ξ, η) :=
q0(ξ, η)

|ξ|+|η|
. (B.45)

Then, recalling notation (A.7), and letting U0 :=U |y=0 and u0 :=u|y=0=φ, we have

P>−10(U0−M0[h, u0])∈ ε3
1〈t〉−δ

2

O3,3/2. (B.46)

Proof. Set

Ũ :=T(1+α)1/4U ∈ ε1[L∞y O1,−1/2∩L2
yO1,0], σ :=

b−ia√
1+α

= |ζ|(1+ε1M0,1
N3−1). (B.47)

Using (B.44) and Lemma A.8, and letting f :=(1+α)1/4−1∈ε2
1O2,0, we calculate

T(1+α)1/4(∂y+Tσ)Ũ =Q0+C1

and

C1 := C̃+(T 2
f −Tf2)∂yU+(Tf+1TσTf+1−T(f+1)2σ)U ∈ ε3

1〈t〉−11δ2

[L∞y O3,1/2∩L2
yO3,1].

Let g=(1+f)−1−1∈ε2
1O2,0, and apply the operator T1+g to the identity above. Using

Lemma A.8, it follows that

(∂y+Tσ)Ũ =Q0+C2, C2 ∈ ε3
1〈t〉−11δ2

[L∞y O3,1/2∩L2
yO3,1]. (B.48)
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Notice that, using Lemma B.4, (B.43), (B.45), and Lemma A.2,

M0[h, u]∈ ε2
1[L∞y O2,5/2∩L2

yO2,3] and M0[h, ∂yu]∈ ε2
1[L∞y O2,3/2∩L2

yO2,2]. (B.49)

We define V :=Ũ−M0[h, u]. Since

V =T(1+α)1/4U−M0[h, u] =T(1+α)1/4(U−M0[h, u])+C′ and C′ ∈ ε3
1〈t〉−11δ2

L∞y O3,3/2,

for (B.46) it suffices to prove that

P>−20V (y)∈ ε3
1〈t〉−δ

2

O3,3/2 for any y ∈ (−∞, 0]. (B.50)

Using also (B.24), we verify that

(∂y+Tσ)V = (∂y+Tσ)Ũ−(∂y+|∇|)M0[h, u]−T(σ−|ζ|)M0[h, u]

= C2+M0[h, |∇|u−∂yu]−T(σ−|ζ|)M0[h, u]

= C3 ∈ ε3
1〈t〉−11δ2

[L∞y O3,1/2∩L2
yO3,1].

(B.51)

Letting σ′ :=σ−|ζ| and Vk :=PkV , k∈Z, we calculate

(∂y+T|ζ|)Vk =PkC3−PkTσ′V.

We can rewrite this equation in integral form,

Vk(y) =

∫ y

−∞
e(s−y)|∇|(PkC3(s)−PkTσ′V (s)) ds. (B.52)

To prove the desired bound for the high Sobolev norm, let, for k∈Z,

Xk := sup
y60

2(N0+3/2)k‖Vk(y)‖L2 .

Since σ′/|ζ|∈ε1M0,1
N3−1, it follows from Lemma A.7 that, for any y60,

2(N0+3/2)k

∫ y

−∞
‖e(s−y)|∇|PkTσ′V (s)‖L2 ds

. 2(N0+3/2)kε1

∑
|k′−k|64

∫ y

−∞
e(s−y)2k−4

2k‖Pk′V (s)‖L2 ds. ε1

∑
|k′−k|64

Xk′ .

It follows from (B.52) that, for any k∈Z

Xk . ε1

∑
|k′−k|64

Xk′+sup
y60

2(N0+3/2)k

∫ y

−∞
e(s−y)2k−4

‖PkC3(s)‖L2 ds

. ε1

∑
|k′−k|64

Xk′+2(N0+1)k

(∫ 0

−∞
‖PkC3(s)‖2L2 ds

)1/2
.
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We take l2 summation in k, and absorb the first term in the right-hand side(9) into the

left-hand side, to conclude that(∑
k∈Z

X2
k

)1/2
.

(∑
k∈Z

22(N0+1)k

∫ 0

−∞
‖PkC3(s)‖2L2 ds

)1/2
. ε3

1〈t〉−11δ2

〈t〉−2(5/6−20δ2)+δ2

,

(B.53)

where the last inequality in this estimate is a consequence of C3∈ε3
1〈t〉−11δ2

L2
yO3,1. The

desired bound ‖P>−20V (y)‖HN0+3/2.ε3
1〈t〉−11δ2〈t〉−2(5/6−20δ2)+δ2

in (B.50) follows.

The proof of the bound for the weighted norms is similar. For k∈Z let

Yk := sup
y60

2(N3+3/2)k
∑
j6N1

‖ΩjVk(y)‖L2 .

As before, we have the bounds

2(N3+3/2)k

∫ y

−∞
‖e(s−y)|∇|ΩjPkTσ′V (s)‖L2 ds. ε1

∑
|k′−k|64

[Yk′+〈t〉6δ
2

Xk′ ]

for any y∈(−∞, 0] and j6N1, and therefore, using (B.52),

Yk . ε1

∑
|k′−k|64

Yk′+ε1〈t〉6δ
2 ∑
|k′−k|64

Xk′+
∑
j6N1

2(N3+1)k

(∫ 0

−∞
‖ΩjPkC3(s)‖2L2 ds

)1/2
.

As before, we take the l2 sum in k, and use (B.53) and the hypothesis

C3 ∈ ε3
1〈t〉−11δ2

L2
yO3,1.

The desired bound

‖P>−20V (y)‖
H
N1,N3+3/2
Ω

. ε3
1〈t〉−4δ2

〈t〉−2(5/6−20δ2)+δ2

in (B.50) follows.

Finally, for the L∞ bound, we let, for k∈Z,

Zk := sup
y60

2(N2+3/2)k
∑

j6N1/2

‖ΩjVk(y)‖L∞ .

(9) To make this step rigorous, one can modify the definition of Xk to

X′
k := sup

y60
2(N0+3/2)min(k,K)‖Vk(y)‖L2 ,

in order to make sure that
∑
k(X′

k)2<∞, and then prove uniform estimates in K and finally let K!∞.
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As before, using (B.52), it follows that

Zk . ε1

∑
|k′−k|64

Zk′+
∑

j6N1/2

2(N2+1)k

(∫ 0

−∞
‖ΩjPkC3(s)‖2L∞ ds

)1/2
.

After taking l2 summation in k, it follows that(∑
k∈Z

Z2
k

)1/2
.

∑
j6N1/2

(∑
k∈Z

22(N2+1)k

∫ 0

−∞
‖ΩjPkC3(s)‖2L∞ ds

)1/2
. ε3

1〈t〉−11δ2

〈t〉−5/2+45δ2

,

where the last inequality is a consequence of C3∈ε3
1〈t〉−11δ2

L2
yO3,1. The desired bound

on ‖P>−20V (y)‖
W̃
N1/2,N2+3/2
Ω

in (B.50) follows, once we recall that only the sum over

2|k|6〈t〉8 is relevant when estimating the W̃
N1/2,N2+3/2
Ω norm; the remaining frequencies

are already accounted for by the stronger Sobolev norms.

We are now ready to obtain the paralinearization of the Dirichlet–Neumann operator.

Proof of Proposition B.1. Recall that G(h)φ=(1+|∇h|2)∂yu|y=0−∇h·∇u|y=0; see

(B.12), and B=∂yu|y=0. All the calculations below are done on the interface, at y=0.

We observe that, using Corollary C.1,

P66((1+|∇h|2)∂yu−∇h·∇u)

=P66(∂yu−∇h·∇u)+ε3
1O3,3/2

=P66(|∇|ω−div(TV h))+P66(div(TV h)+|∇|T|∇|ωh+N2[h, ω])+ε3
1O3,3/2.

(B.54)

Thus, low frequencies give acceptable contributions. To estimate high frequencies, we

compute

(1+|∇h|2)∂yu−∇h·∇u

=T1+α∂yu−T∇h∇u−T∇u∇h+T∂yuα+H(α, ∂yu)−H(∇h,∇u)

=T1+α∂yω−T∇h∇ω−T∇u∇h+T∇hT∂yu∇h+(T∂yuα−2T∇hT∂yu∇h)

+T1+αT∂2
yu
h−T∇hT∇∂yuh+H(α, ∂yu)−H(∇h,∇u).

Using Lemma B.6 with U=(T√1+α∂y−iTa−Tb)ω, (B.49) and Lemmas A.7 and A.8, we

find that

T1+α∂yω=T√1+α(iTaω+Tbω+M0[h, u]+C′)+(T1+α−T 2√
1+α)∂yω

=T√1+α(Tb+iTa)ω+M0[h, u]+C′′,
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where C′′ satisties P>−6C′′∈ε3
1O3,3/2. Therefore, with V =∇u−∂yu∇h,

(1+|∇h|2)∂yu−∇h·∇u=T√1+α(Tb+iTa)ω+M0[h, u]+C′′

−T∇h∇ω−div(TV h)+C1+C2−H(∇h,∇u),
(B.55)

with cubic terms C1 and C2 given explicitly by

C1 = (T∂yuα−2T∇hT∂yu∇h)+H(α, ∂yu),

C2 = (Tdiv V +T1+αT∂2
yu
−T∇hT∇∂yu)h+(T∇hT∂yu−T∂yu∇h)∇h.

Notice that div V +(1+α)∂2
yu−∇h∇∂yu=0, as a consequence of (B.13). Using also

Lemma A.8, it follows that C1, C2∈ε3
1O3,3/2.

Moreover, using formulas (B.36) and (B.38), Lemmas A.5 and A.8, we see that

T√1+αTbω=Tb
√

1+αω+ 1
2 iT{

√
1+α,b}ω+E(

√
1+α−1, b)ω

=Tλ(1)ω+Tb(0)
√

1+αω+ 1
2 iT{

√
1+α,b(1)}ω+ε3

1O3,3/2,

where λ(1) is the principal symbol in (B.5). Similarly, using (B.35)and (B.37),

iT√1+αTaω−T∇h∇ω

=Tiζ·∇hω−T∇h∇ω+iTa(0)
√

1+αω− 1
2T{
√

1+α,a}ω+iE(
√

1+α−1, a)ω

= 1
2T∆hω+iTa(0)

√
1+αω− 1

2T{
√

1+α,a(1)}ω+ε3
1O3,3/2.

Summing these last two identities and using (B.35)–(B.38), we see that

T√1+αTbω+iT√1+αTaω−T∇h∇ω=Tλ(1)ω+Tmω+ε3
1O3,3/2, (B.56)

where

m : = b(0)
√

1+α− 1

2
{
√

1+α, a(1)}+ 1

2
∆h

=
(1+α)3/2

2λ(1)

{
λ(1)

√
1+α

,
ζ ·∇h
1+α

}
ϕ>0(ζ)− 1

2

{√
1+α,

ζ ·∇h√
1+α

}
+

1

2
∆h

=λ(0)− 1

2

{√
1+α,

ζ ·∇h√
1+α

}
ϕ6−1(ζ)+

∆h

2
ϕ6−1(ζ).

(B.57)

We conclude from (B.55) and (B.56) that

P>7((1+|∇h|2)∂yu−∇h∇u)

=P>7(TλDNω−div(TV h)+M0[h, u]−H(∇h,∇u)+ε3
1Õ3,3/2).

Moreover, the symbol of the bilinear operator M0[h, u]−H(∇h,∇u) is

q0(ξ, η)

|ξ|+|η|
+

(
1−χ

(
|ξ−η|
|ξ+η|

)
−χ
(
|η|
|2ξ−η|

))
(ξ−η)·η,

where q0 is defined in (B.42). The symbol bounds (B.7) follow. Combining this with

(B.54), we finish the proof.
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Appendix C. Taylor expansion of the Dirichlet–Neumann operator

C.1. A simple expansion

We start with a simple expansion the Dirichlet–Neumann operator, using only the Om,p

hierarchy, which suffices in many cases.

Corollary C.1. (i) Assume that ‖〈∇〉h‖O1,0
+
∥∥|∇|1/2ψ∥∥O1,0

.ε1 and ea=eb=0,

and define u as in Lemma B.4. Then, we have an expansion

∂yu= |∇|u+∇h·∇u+N2[h, u]+E(3), ‖E(3)‖L2
yO3,0∩L∞y O3,−1/2

. ε3
1〈t〉−11δ2

, (C.1)

where

F{N2[h, φ]}(ξ) =
1

4π2

∫
R2

n2(ξ, η)ĥ(ξ−η)φ̂(η) dη, n2(ξ, η) := ξ ·η−|ξ| |η|. (C.2)

In particular, ∥∥G(h)ψ−|∇|ψ−N2[h, ψ]
∥∥
O3,−1/2

. ε3
1〈t〉−11δ2

. (C.3)

Moreover,

‖nk,k1,k2

2 ‖S∞Ω . 2min{k,k1}2k2 , (Ωξ+Ωη)n2≡ 0. (C.4)

(ii) As in Proposition 2.2, assume that (h, φ)∈C([0, T ]:HN0+1×ḢN0+1/2,1/2) is a

solution of the system (2.1) with g=1 and σ=1, t∈[0, T ] is fixed, and (B.2) holds. Then,∥∥∂t(G(h)φ)−|∇|∂tφ
∥∥
O2,−2

. ε2
1. (C.5)

Proof. (i) Let u(1) :=ey|∇|ψ, Q
(1)
a :=∇u(1) ·∇h, and Q

(1)
b :=R(∂yu

(1)∇h). It follows

from (B.18)–(B.19) and Lemma B.4 (more precisely, from (B.22), (B.24), and (B.27))

that ∥∥|∇|1/2(u−u(1))
∥∥
L∞y O2,0

+
∥∥|∇|(u−u(1))

∥∥
L2
yO2,0

+‖∂y(u−u(1))‖L∞y O2,−1/2
+‖∂y(u−u(1))‖L2

yO2,0
. ε2

1.
(C.6)

Therefore, using Lemma A.2, for d∈{a, b},

‖Qd−Q(1)
d ‖L∞y O3,−1/2

+‖Qd−Q(1)
d ‖L2

yO3,0
. ε3

1〈t〉−12δ2

. (C.7)

Therefore, using (B.18)–(B.19) and (B.26),∥∥∥∥∂yu−|∇|u−∇h·∇u−∫ y

−∞
|∇|e−|s−y| |∇|(Q(1)

b (s)−Q(1)
a (s)) ds

∥∥∥∥
L2
yO3,0∩L∞y O3,−1/2

. ε3
1〈t〉−11δ2

.
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Since

F{Q(1)
b (s)−Q(1)

a (s)}(ξ) =
1

4π2

∫
R2

(
η ·(ξ−η)− ξ ·(ξ−η)

|ξ|
|η|
)
ĥ(ξ−η)es|η|ψ̂(η) dη,

we have

F
{∫ y

−∞
|∇|e−|s−y| |∇|(Q(1)

b (s)−Q(1)
a (s)) ds

}
(ξ)

=
1

4π2

∫
R2

(
η ·(ξ−η)− ξ ·(ξ−η)

|ξ|
|η|
)
|ξ|
|ξ|+|η|

ĥ(ξ−η)ey|η|ψ̂(η) dη=F{N2[h, u(1)]}(ξ).

Moreover, using the assumption ‖〈∇〉h‖O1,0
.ε1 and the bounds (C.6), we have

‖N2[h, u−u(1)]‖L2
yO3,0∩L∞y O3,−1/2

. ε3
1〈t〉−11δ2

,

as a consequence of Lemma A.2. The desired identity (C.1) follows. The bound (C.3)

follows using also identity (B.12).

(ii) We define u=u(x, y, t) as in (B.11), let v=∂tu, differentiate (B.13) with respect

to t, and find that v satisfies (B.14) with

ea =∇xu·∇x∂th−2∂yu∇xh·∇x∂th and eb =R(∂yu∇x∂th).

In view of (C.3),

‖∂th‖O1,−1/2
+‖∂tφ‖O1,−1 . ε1.

Therefore, the triplet (∂tφ, ea, eb) satisfies (B.23) with p=− 3
2 . Therefore, using (B.24),∥∥∂yv−|∇|v∥∥L∞y O2,−2

. ε2
1,

and the desired bound (C.5) follows using also (B.12).

C.2. Proof of Proposition 2.3

We now show that Proposition 2.3 follows from Proposition 7.1. The starting point

is the system (2.1). We need to verify that it can be rewritten in the form stated in

Proposition 7.1. For this, we need to expand the Dirichlet–Neumann operator

G(h)φ= |∇|φ+N2[h, φ]+N3[h, h, φ]+quartic remainder,

and then prove the required claims. To justify this rigorously and estimate the remainder,

the main issue is to prove space localization. We prefer not to work with the Z norm
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itself, which is too complicated, but define instead certain auxiliary spaces which are

used only in this section.

Step 1. We assume that the bootstrap assumption (2.6) holds. Notice first that

sup
2a+|α|6N1+N4

a6N1/2+20

∑
(k,j)∈J

2θj2−θ|k|/2‖QjkDαΩaU(t)‖L2 . ε1(1+t)θ+6δ2

, (C.8)

sup
2a+|α|6N1+N4

a6N1/2+20

∑
(k,j)∈J

2θj2−θ|k|/2‖QjkDαΩaU(t)‖L∞ . ε1(1+t)−5/6+θ+6δ2

, (C.9)

for θ∈
[
0, 1

3

]
, where the operators Qjk are defined as in (2.10). Indeed, let

f = eitΛΩaDαU(t),

and assume that t∈[2m−1, 2m+1], m>0. We have

‖f‖
HN
′
0∩HN

′
1

Ω

+‖f‖Z1
. ε12δ

2m, (C.10)

as a consequence of (2.6), where, as in (8.27),

N ′1 :=
N1−N4

2
=

1

2δ
and N ′0 :=

N0−N3

2
−N4 =

1

δ
.

To prove (C.8), we need to show that∑
(k,j)∈J

2θj2−θ|k|/2‖Qjke−itΛf‖L2 . ε12θm+6δ2m. (C.11)

The sum over j6m+δ2m+ 1
2 |k| or over j6|k|+D is easy to control. On the other hand, if

j>max
(
m+δ2m+ 1

2 |k|, |k|+D
)
, then we decompose f=

∑
(k′,j′)∈J fj′,k′ as in (7.33). We

may assume that |k′−k|610; the contribution of j′6j−δ2j is negligible, using integration

by parts, while for j′>j−δ2j−10 we have

‖Qjke−itΛfj′,k′‖L2 . ε12δ
2m min(2−2j′/5, 2−N

′
0k

+

).

The desired bound (C.11) follows, which completes the proof of (C.8). The proof of

(C.9) is similar, using also the decay bound (7.44). As a consequence, it follows that∑
(k,j)∈J

2θj2−θ|k|/2‖Qjkg(t)‖L2 . ε12θm+6δ2m,

∑
(k,j)∈J

2θj2−θ|k|/2‖Qjkg(t)‖L∞ . ε12−5m/6+θm+6δ2m,
(C.12)

for g∈
{
DαΩa〈∇〉h,DαΩa|∇|1/2φ:2a+|α|6N1+N4, a6 1

2N1+20
}

and θ∈
[
0, 1

3

]
.

Step 2. We now need to define certain norms that allow us to extend our estimates

to the region {y60}; compare with the analysis in §B.1.
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Lemma C.2. For q>0, θ∈[0, 1], and p, r∈[1,∞], define the norms

‖f‖Y pθ,q(R2) : =
∑

(k,j)∈J

2θj2qk
+

‖Qjkf‖Lp ,

‖f‖LryY pθ,q(R2×(−∞,0]) : =
∑

(k,j)∈J

2θj2qk
+

‖Qjkf‖LryLpx .

(i) Then, for any p∈[2,∞] and θ∈[0, 1],

‖ey|∇|f‖L∞y Y pθ,q+
∥∥|∇|1/2ey|∇|f∥∥

L2
yY

p
θ,q

. ‖f‖Y pθ,q (C.13)

and ∥∥∥∥∫ 0

−∞
|∇|1/2e−|s−y| |∇|1±(y−s)f(s) ds

∥∥∥∥
L∞y Y

2
θ,q

+

∥∥∥∥∫ 0

−∞
|∇|e−|s−y| |∇|1±(y−s)f(s) ds

∥∥∥∥
L2
yY

2
θ,q

. ‖f‖L2
yY

2
θ,q
.

(C.14)

(ii) If p1, p2, p, r1, r2, r∈{2,∞}, 1/p=1/p1+1/p2, 1/r=1/r1+1/r2, then

‖fg‖LryY pθ1+θ2−δ2,q−δ2
. ‖f‖Lr1y Y p1

θ1,q
‖g‖Lr2y Y p2

θ2,q
, (C.15)

provided that θ1, θ2∈[0, 1], θ1+θ2∈[δ2, 1], and q>δ2. Moreover,

‖fg‖L2
yY

2
θ1−δ2,q−δ2

. ‖f‖L∞y Y∞θ1,q ‖g‖L2
yH

q
x
. (C.16)

Proof. The linear bounds in part (i) follow by parabolic estimates, once we notice

that the kernel of the operator ey|∇|Pk is essentially localized in a ball of radius .2−k

and is bounded by C22k(1+2k|y|)−4.

The bilinear estimates in part (ii) follow by unfolding the definitions. The im-

plicit factors 2−δ
2j2−δ

2k+

in the left-hand side allow one to prove the estimate for (k, j)

fixed. Then, one can decompose f=
∑
fj1,k1 and g=

∑
gj2,k2 as in (7.33) and estimate

‖Qjk(fj1,k1gj2,k2)‖LryLpx using simple product estimates. The case j=−k�min(j1, j2)

requires some additional attention; in this case, one can use first Sobolev imbedding and

the hypothesis θ1+θ261.

Step 3. Recall now formula (B.21):

u= ey|∇|φ+L(u),

L(u) : =−1

2
ey|∇|

∫ 0

−∞
es|∇|(Qa(s)−Qb(s)) ds

+
1

2

∫ 0

−∞
e−|y−s| |∇|(sgn(y−s)Qa(s)−Qb(s)) ds,
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where Qa[u]=∇u·∇h−|∇h|2∂yu and Qb[u]=R(∂yu∇h). Let, as in Corollary C.1,

u(1) = ey|∇|φ and u(n+1) = ey|∇|φ+L(u(n)), n> 1. (C.17)

We can now prove a precise asymptotic expansion on the Dirichlet–Neumann oper-

ator.

Lemma C.3. We have

G(h)φ= |∇|φ+N2[h, φ]+N3[h, φ]+|∇|1/2N4[h, φ], (C.18)

where N2 is as in (C.2),

F{N3[h, φ]}(ξ) =
1

(4π2)2

∫
(R2)2

n3(ξ, η, σ)ĥ(ξ−η)ĥ(η−σ)φ̂(σ) dη dσ,

n3(ξ, η, σ) : =
|ξ| |σ|
|ξ|+|σ|

((|ξ|−|η|)(|η|−|σ|)−(ξ−η)·(η−σ)),

(C.19)

and, for θ∈
[
δ2, 1

3

]
and V ∈

{
DαΩa :a6 1

2N1+20 and 2a+|α|6N1+N4−2
}

,

‖V N4[h, φ]‖Y 2
3θ−3δ2,1−3δ2

. ε4
123θm−5m/2+24δ2m. (C.20)

Proof. Recall that h is constant in y. In view of (C.12) we have, for t∈[2m−1, 2m+1],∥∥|∇|1/6〈∇〉5/6V h(t)
∥∥
L∞y Y

2
θ,1

. ε12θm+6δ2m, θ∈
[
0, 1

3

]
, (C.21)

and ∥∥|∇|1/6〈∇〉5/6V h(t)
∥∥
L∞y Y

∞
θ,1

. ε12θm−5m/6+6δ2m, θ∈
[
0, 1

3

]
, (C.22)

for V ∈
{
DαΩa :a6 1

2N1+20 and 2a+|α|6N1+N4−2
}

. Moreover, using also (B.22),∥∥|∇|V u(t)
∥∥
L2
yH

1
x
+‖(∂yV u)(t)‖L2

yH
1
x
. ε126δ2m (C.23)

for operators V as before. Therefore, using (C.16),

‖V [Q[u]]‖L2
yY

2
θ−δ2,1−δ2

. ε2
12θm−5m/6+12δ2m

for Q∈{Qa, Qb} and θ∈
[
δ2, 1

3

]
. Therefore,∥∥|∇|V L(u)

∥∥
L2
yY

2
θ−δ2,1−δ2

+‖∂yV L(u)‖L2
yY

2
θ−δ2,1−δ2

. ε2
12θm−5m/6+12δ2m, (C.24)

using (C.13)–(C.14). Thus, using the definition,∥∥|∇|V [u−u(1)]
∥∥
L2
yY

2
θ−δ2,1−δ2

+‖∂yV [u−u(1)]‖L2
yY

2
θ−δ2,1−δ2

. ε2
12θm−5m/6+12δ2m. (C.25)
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Since u−u(2)=L(u−u(1)), we can repeat this argument to prove that, for θ∈
[
δ2, 1

3

]
and V ∈{DαΩa :a6 1

2N1+20 and 2a+|α|6N1+N4−2},

∥∥|∇|V [u−u(2)]
∥∥
L2
yY

2
2θ−2δ2,1−2δ2

+‖∂yV [u−u(2)]‖L2
yY

2
2θ−2δ2,1−2δ2

. ε3
122θm−5m/3+18δ2m.

(C.26)

To prove the decomposition (C.18), we start from the identities (B.26) and (B.12),

which gives G(h)φ=∂yu−Qa. Letting Q
(n)
a =Qa[u(n)] and Q

(n)
b =Qb[u

(n)], n∈{1, 2}, it

follows that

G(h)φ= |∇|φ+

∫ 0

−∞
|∇|e−|s| |∇|(Q(2)

b (s)−Q(2)
a (s)) ds+N4,1,

N4,1 : =

∫ 0

−∞
|∇|e−|s| |∇|((Qb−Q(2)

b )(s)−(Qa−Q(2)
a )(s)) ds.

(C.27)

In view of (C.26), (C.22), and the algebra rule (C.16), we have

‖V (Q−Q(2))‖L2
yY

2
3θ−3δ2,1−3δ2

. ε4
123θm−5m/2+24δ2m

for Q∈{Qa, Qb}. Therefore, using (C.14), |∇|−1/2N4,1 satisfies the desired bound (C.20).

It remains to calculate the integral in the first line of (C.27). Letting α=|∇h|2, we

have

F{u(1)}(ξ, y) = ey|ξ|φ̂(ξ),

F{Q(1)
a }(ξ, y) =− 1

4π2

∫
R2

(ξ−η)·ηey|η|ĥ(ξ−η)φ̂(η) dη− 1

4π2

∫
R2

|η|ey|η|α̂(ξ−η)φ̂(η) dη,

F{Q(1)
b }(ξ, y) =− 1

4π2

∫
R2

(ξ−η)·ξ
|ξ|

|η|ey|η|ĥ(ξ−η)φ̂(η) dη.

(C.28)

Therefore,

F{L(u(1))}(ξ, y)

=
1

8π2

∫
R2

(ey|ξ|−ey|η|)
(

(ξ−η)·η
|ξ|+|η|

− |η|(ξ−η)·ξ
|ξ|(|ξ|+|η|)

)
ĥ(ξ−η)φ̂(η) dη

+
1

8π2

∫
R2

(ey|ξ|−ey|η|)
(

(ξ−η)·η
−|ξ|+|η|

+
|η|(ξ−η)·ξ
|ξ|(−|ξ|+|η|)

)
ĥ(ξ−η)φ̂(η) dη+Ê1(ξ, y),

where

∥∥|∇|V E1

∥∥
L2
yY

2
2θ−2δ2,1−2δ2

+‖∂yV E1‖L2
yY

2
2θ−2δ2,1−2δ2

. ε3
122θm−5m/3+18δ2m.
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After algebraic simplifications, this gives

F{L(u(1))}(ξ, y) =− 1

4π2

∫
R2

(ey|ξ|−ey|η|)|η|ĥ(ξ−η)φ̂(η) dη+Ê1(ξ, y).

Since u(2)−u(1)=L(u(1)), we calculate

F{Q(2)
a −Q(1)

a }(ξ, y)

=
1

16π4

∫
(R2)2

|σ|(ξ−η)·η(ey|η|−ey|σ|)ĥ(ξ−η)ĥ(η−σ)φ̂(σ) dη dσ+Ê2(ξ, y)
(C.29)

and

F{Q(2)
b −Q

(1)
b }(ξ, y)

=
1

16π4

∫
(R2)2

|σ| (ξ−η)·ξ
|ξ|

(|η|ey|η|−|σ|ey|σ|)ĥ(ξ−η)ĥ(η−σ)φ̂(σ) dη dσ+Ê3(ξ, y),

(C.30)

where

‖V E2‖L2
yY

2
3θ−3δ2,1−3δ2

+‖V E3‖L2
yY

2
3θ−3δ2,1−3δ2

. ε4
123θm−5m/2+24δ2m.

We now examine the formula in the first line of (C.27). The contributions of E2

and E3 can be estimated as part of the quartic error term, using also (C.14). The main

contributions can be divided into quadratic terms (coming from Q
(1)
a and Q

(1)
b in (C.28)),

and cubic terms coming from (C.29)–(C.30) and the cubic term in Q
(1)
a . The conclusion

of the lemma follows.

Step 4. Finally, we can prove the desired expansion of the water-wave system.

Lemma C.4. Assume that (h, φ) satisfy (2.1) and (2.6). Then,

(∂t+iΛ)U =N2+N3+N>4, (C.31)

where U=〈∇〉h+i|∇|1/2φ and N2, N3, N>4 are as in §7.1.

Proof. We rewrite (2.1) in the form

∂tU = 〈∇〉G(h)φ+i|∇|1/2
(
−h+div

(
∇h

(1+|∇h|2)1/2

)
− 1

2
|∇φ|2+

(G(h)φ+∇h·∇φ)2

2(1+|∇h|2)

)
.

(C.32)

We now use formula (C.18) to extract the linear, the quadratic, and the cubic terms in

the right-hand side of this formula. More precisely, we set

N1 : = 〈∇〉|∇|φ+i|∇|1/2(−h+∆h) =−iΛU ,

N2 : = 〈∇〉N2[h, φ]+i|∇|1/2
(
− 1

2 |∇φ|
2
+ 1

2 (|∇|φ)2
)
,

N3 : = 〈∇〉N3[h, h, φ]+i|∇|1/2
(
− 1

2 div(∇h|∇h|2)+|∇|φ·(N2[h, φ]+∇h·∇φ)
)
.

(C.33)
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Then, we substitute

h= 〈∇〉−1U+	U
2

and |∇|1/2φ=
U−	U

2i
.

The symbols that define the quadratic component N2 are linear combinations of the

symbols

n2,1(ξ, η) =
√

1+|ξ|2 ξ ·η−|ξ| |η|
|η|1/2

√
1+|ξ−η|2

and n2,2(ξ, η) = |ξ|1/2 (ξ−η)·η+|ξ−η| |η|
|ξ−η|1/2|η|1/2

.

It is easy to see that these symbols verify the properties (7.11). A slightly non-trivial

argument is needed for n2,1 in the case k1=min(k, k1, k2)�k.

The cubic terms in N3 in (C.33) are defined by finite linear combinations of the

symbols

n3,1(ξ, η, σ) =

√
1+|ξ|2

(1+|ξ−η|2)(1+|η−σ|2)

|ξ| |σ|1/2

|ξ|+|σ|
((|ξ|−|η|)(|η|−|σ|)−(ξ−η)·(η−σ)),

n3,2(ξ, η, σ) = |ξ|1/2 (ξ ·(ξ−η))((η−σ)·σ)√
(1+|ξ−η|2)(1+|η−σ|2)(1+|σ|2)

,

n3,3(ξ, η, σ) = |ξ|1/2|ξ−η|1/2|σ|1/2 |σ−η|√
1+|η−σ|2

.

It is easy to verify the properties (7.12) for these explicit symbols.

The higher-order remainder in the right-hand side of (C.32) can be written in the

form

N>4 = |∇|1/2N ′4, sup
a6N1/2+20

2a+|α|6N1+N4−4

‖DαΩaN ′4‖Y 2
1−δ,1−δ

. ε4
12−3m/2+δm, (C.34)

using (C.20), (C.12), and the algebra property (C.15). Moreover, using only the O
hierarchy as in the proof of Corollary C.1, we have ‖N>4‖O4,−4

.ε4
1, i.e.

‖N>4‖HN0−4 +‖N>4‖HN1,N3−4 . ε4
12−5m/2+δm. (C.35)

These two bounds suffice to prove the desired claims on N>4 in (7.15). Indeed, the L2

bound follows directly from (C.35). For the Z norm bound, it suffices to prove that, for

any (k, j)∈J ,

sup
a6N1/2+20

2a+|α|6N1+N4

2j(1−50δ)‖QjkeitΛDαΩaN>4‖L2 . ε4
12−m−δm. (C.36)
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This follows easily from (C.35) and (C.34), unless

j> 3
2m+ 1

4N0k
++D and j> 3

2m−
1
2k+D.

On the other hand, if these inequalities hold, then let

f =DαΩaN>4, a6 1
2N1+20, 2a+|α|6N1+N4,

and decompose

f =
∑

(k′,j′)∈J

fj′,k′

as in (7.33). The bound (C.34) shows that∑
(k′,j′)∈J

2−4 max(k′,0)2j
′(1−δ)‖fj′,k′‖L2 . ε4

12−3m/2+δm. (C.37)

The desired bound (C.35) follows by the usual approximate-finite-speed-of-propagation

argument: we may assume that |k′−k|64, and consider the cases j′6j−δj (which gives

negligible contributions) and j′>j−δj (in which case (C.37) suffices). This completes

the proof.
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