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Abstract

The notion of color algebras is generalized to the class of F -ary algebras, and correspond-
ing decoloration theorems are established. This is used to give a construction of colored
structures by means of tensor products with Clifford-like algebras. It is, moreover, shown
that color algebras admit realizations as q = 0 quon algebras.
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1 Introduction

The problem of finding mass formulae for particles belonging to a representation of an interaction
group motivated, in the beginning sixties, the efforts to combine interactions with relativistic
invariance in a nontrivial way. The well-known obstructions to such a construction [11, 12, 13]
finally led to the supersymmetric schemes. In this sense, two different models unifying internal
and space-time symmetries, the conformal superalgebra su(2, 2;N) and the orthosymplectic al-
gebra osp(4;N), were proposed [18, 19]. The introduction of a grading was soon recognized to
be an indispensable requirement to introduce transformations relating states obeying different
quantum statistics types. However, a further generalization seemed necessary to clearly distin-
guish the color and flavor degrees of freedom, which were treated in the same way in the two
previous models. A first approach to this question was made in [26], where a color algebra based
on the nonassociative octonions was proposed. This scheme constituted a mathematical model
taking into account the unobservability of quarks and their associated massless color gauge
bosons. An alternative construction, preserving the associative framework, was given in [42, 43].
These structures motivated by themselves the study of several extensions of Lie algebras, keep-
ing in mind the main properties that made them interesting to describe symmetries of physical
phenomena. Among others, the generalizations that have been proven to be physically relevant
are color (or graded) Lie algebras [2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 28, 29, 30, 31, 32, 33, 42, 43, 49]
and, more recently, Lie algebras of order F [22, 23, 24, 34, 35, 36]. These two types of algebras
share some properties, and are based upon a grading by an Abelian group.

Tensor products constitute a natural tool to construct higher-dimensional algebraic objects
starting from two given ones, as well as to study their representation theory and the under-
lying Clebsch-Gordan problem. However, the tensor product of two algebras usually give rise
to nontrivial identities that must be satisfied, and often fail to preserve certain key properties
(as happens, e.g., for Lie algebras). In order to prevent this situation, generalized tensor prod-
ucts have been developed for various structures, such as groups or Lie (super)algebras. In a
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more general frame, there is no reason to believe that tensor products of algebras with different
structures cannot lead to further interesting structures, possibly preserving some of the main
properties of their components. Some attention has been devoted, in this direction, to tensor
products of the type C ⊗D, where C is a Clifford algebra C and D a Z2-graded ring of differ-
ential operators on a manifold, where the differential operators are interpreted, in some sense,
as “quantum mechanical,” the classical approximation of which is given by a Poisson bracket.
These products suggest a deep relation with the commutation-anticommutation formalism in
field theory [14].

In this paper, we show that color algebras and Lie algebras of order F can be unified leading
to some new algebras that we call color Lie (super)algebra of order F . Furthermore, we show that
many examples of these algebras can be seen as tensor products of given algebras. In Section 2, we
recall some results concerning the general theory of color algebras, focusing on the isomorphism
between color and graded algebras [1]. We also review the main features of a distinguished
class of F -ary algebra. Section 4 is devoted to giving a unification of both mentioned types of
structures, as well as an adapted decoloration theorem. It turns out that color algebras arise as
tensor products of ordinary noncolor algebras with algebras of Clifford type. In the last section,
we show that all considered types of algebras are strongly related to quon algebras for q = 0. In
particular, “differential” realizations in terms of quon algebras are obtained.

2 Color Lie algebras

Color Lie (super)algebras, originally introduced in [42, 43], can be seen as a direct generalization
of Lie (super)algebras. Indeed, the latter are defined through antisymmetric (commutator) or
symmetric (anticommutator) products, although for the former the product is neither symmetric
nor antisymmetric and is defined by means of a commutation factor. This commutation factor
is equal to ±1 for (super)Lie algebras and more general for arbitrary color Lie (super)algebras.

As happened for Lie superalgebras, the basic tool to define color Lie (super)algebras is a grad-
ing determined by an Abelian group. The latter, besides defining the underlying grading in the
structure, moreover, provides a new object known as commutation factor.

Definition 2.1. Let Γ be an Abelian group. A commutation factor N is a map N : Γ × Γ →
C \ {0} satisfying the following constraints:

(1) N(a, b)N(b, a) = 1 for all a, b ∈ Γ;
(2) N(a, b+ c) = N(a, b)N(a, c) for all a, b, c ∈ Γ;
(3) N(a+ b, c) = N(a, c)N(b, c) for all a, b, c ∈ Γ.

The definition above implies, in particular, the following relations:

N(0, a) = N(a, 0) = 1, N(a, b) = N(−b, a), N(a, a) = ±1 for all a, b ∈ Γ (2.1)

where 0 denotes the identity element of Γ. In particular, fixing one element of Γ, the induced
mapping Nx : Γ→ C \ {0} defines a homomorphism of groups.

Definition 2.2. Let Γ be an Abelian group and N a commutation factor. The (complex) graded
vector space g = ⊕a∈Γga is called a color Lie (super)algebra if the following hold:

(1) g0 is a (complex) Lie algebra.
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(2) For all a ∈ Γ \ {0}, ga is a representation of g0. If X ∈ g0, Y ∈ g1, then [|X,Y |]N = [X,Y ]
denotes the action of X on Y .

(3) For all a, b ∈ Γ, there exists a g0-equivariant map [| , |]Nga × gb → ga+b such that for all
X ∈ ga, Y ∈ gb the constraint [|X,Y |]N = −N(a, b)[|Y,X|]N is satisfied.

(4) For all X ∈ ga, Y ∈ gb, Z ∈ gc, the following Jacobi identities hold:

[|X, [|Y,Z|]N |]N = [|[|X,Y |]N , Z|]N +N(a, b)[|Y, [|X,Z|]N |]N

Remark 2.3. The Jacobi identity above can be rewritten in equivalent form as

N(c, a)[|X, [|Y,Z|]N |]N +N(a, b)[|Y, [|Z,X|]N |]N +N(c, a)[|Z, [|Y,X|]N |]N = 0

Further, property (1) in Definition 2.1 is a consequence of (3) in Definition 2.2, while property (2)
in Definition 2.1 is a consequence of the Jacobi identity (4) in Definition 2.2. For the particular
case Γ = {0}, g = g0 reduces to a Lie algebra. If Γ = Z2, we obtain the grading g = g0 ⊕ g1.
If, in addition, N(1, 1) = −1 holds, g is just a Lie superalgebra. Therefore, the latter condition
in Definition 2.2 points out to which extent color algebras extend ordinary Lie algebras and
superalgebras. Furthermore, if N(a, b) = 1 for all a, b ∈ Γ, g is a Lie algebra graded by the group
Γ. From now Lie algebras with this last property will be called Γ-graded Lie algebras.

The grading group Γ inherits naturally a Z2-grading: Γ = Γ0 ⊕ Γ1, where Γi = {a ∈ Γ |
N(a, a) = (−1)i} [49]. If Γ1 = 0 (Γ1 6= 0), g is called a color Lie algebra (resp., superalgebra).
Starting from a color Lie superalgebra, we define N+ by N+(a, b) = (−1)|a||b|N(a, b), where
|a| is the degree of a with respect to the Z2-grading. It is not difficult to check that N+ is also
a commutation factor. Furthermore, if we decompose g = g0⊕g1 with respect to this Z2-grading,
and introduce the Grassmann algebra Λ(Cm), the analogue of the Grassmann-hull in the case of
Lie superalgebras, we can endow the color Lie superalgebra with a color Lie algebra structure.
Indeed, if we set Λ(Cm) = Λ(Cm)0 ⊕ Λ(Cm)1, where Λ(Cm)i are of degree i, then

(Λ(Cm)⊗ g)0 = Λ(Cm)0 ⊗ g0 ⊕ Λ(Cm)1 ⊗ g1

is a color Lie algebra with commutation factor N+.

Remark 2.4. To any associative Γ-graded algebras A = ⊕a∈ΓAa with multiplication law µ, one
can associate a color Lie (super)algebra with commutation factor N denoted by AN by means of

[|X1, X2|]N = µ(X1, X2)−N(a, b)µ(X2, X1), ∀(X,Y ) ∈ Aa ×Ab

On can easily see that the Jacobi identities are a consequence of the associativity of the product µ.

Introducing a graded basis {T (a)
i , i = 1, . . . ,dim ga} of ga, a ∈ Γ, the commutator is

expressed as[∣∣T (a)
α , T

(b)
β

∣∣]
N

= C(a)(b)
αβ

γT (a+b)
γ (2.2)

The scalars C(a)(b)
αβ

γ are called the structure constants of g over the given basis.

Definition 2.5. A representation of a color Lie (super)algebra is a mapping ρ : g → End(V ),
where V = ⊕a∈ΓVa is a graded vector space such that

[|ρ(X), ρ(Y )|]N = ρ(X)ρ(Y )−N(a, b)ρ(Y )ρ(X)

for all X ∈ ga, Y ∈ gb.
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We observe that for all a, b ∈ Γ we have ρ(ga)Vb ⊆ Va+b, which implies that any Va has the
structure of a g0-module. Fixing an element v ∈ V and denoting by vi (i ∈ I) its components,
we can introduce the mapping gr : I → Γ defined by i 7→ gr(i), from which we conclude that
Va = {v = (vi, i ∈ I), gr(i) = a}. The mapping gr is called the grading map. Now, for a given
matrix representation ρ(T (a)

α) = M (a)
α, where T (a)

α ∈ ga, the nonvanishing indices of the
matrix M (a)

α are those (M (a)
α)ij satisfying the equality gr(i)− gr(j) = a.

Example 2.6. Let m = m1 + · · ·+mn, V = Cm, and Γ = {a1, . . . , an} be an Abelian group of
order n. Let gr be defined by

gr(i) = a1 i = 1, . . . ,m1

gr(i) = a2 i = m1 + 1, . . . ,m1 +m2
...

gr(i) = ak i = m1 + · · ·+mk−1 + 1, . . . ,m1 + · · ·+mk
...

gr(i) = an i = m1 + · · ·+mn−1 + 1, . . . ,mn

Consider a commutation factor N satisfying the previous relations (2.1). We construct the color
algebra (Green and Jarvis in [25]) gl({m}Γ,N ) = ⊕a∈Γga by means of its defining relations.
A basis of ga is given by the m × m complex matrices (Epq)ij = δpiδq

j , 1 ≤ p, q ≤ m, with
gr(q)− gr(p) = a. The space g is endowed with a color Lie (super)algebra structure:

[|Epq, Ers|]N = EpqE
r
s −N(gr(q)− gr(p), gr(s)− gr(r))ErsEpq

= δrqE
p
s −N(gr(q)− gr(p), gr(s)− gr(r))δpsErq

Several subalgebras of gl({m}Γ,N ) can also be defined using this procedure (see [25, 49]).
In particular, if g is a color Lie (super)algebra with basis {Xα, α = 1, . . . ,dim g} satisfying
[|Xα, Xβ|]N = Cαβ

γXγ , g can be embedded into some gl({m})Γ,N if we define Xa = Cab
cēbc,

where the ēbc satisfy [|ēab, ēcd|]N = δadē
c
b −N(gr(b)− gr(a), gr(d)− gr(c))δcbēad.

Example 2.7. Let g0 be an arbitrary Lie algebra and let {Tα, α = 1, . . . ,dim g0} be a basis
of g0 ([Tα, Tβ] = fαβ

γTγ). Consider C2
n, the complex algebra generated by e1, e2 such that

en1 = en2 = 1, e1e2 = qe2e1, q = exp
(

2iπ
n

)
This structure, called the generalised Clifford algebra, has been studied by several authors (see
[37, 38, 39, 40] and the references cited therein). Introduce ea,b = ea1e

b
2 a basis of C2

n. It is easy to
see that we have ea,bec,d = q−bcea+c,b+d, and thus g = C2

n⊗g0 is a color Lie algebra for which the
Abelian group is Γ = Zn × Zn and the commutation factor is N((a, b), (c, d)) = qad−bc. Indeed,
if we set ga,b = {T (a,b)

α = ea,b ⊗ Tα}, we have

[∣∣T (a,b)
α , T

(c,d)
β

∣∣]
N

= q−bcfαβ
γT (a+c,b+d)

γ

It is a matter of a simple calculation to check the Jacobi identities. Furthermore, it is known
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that C2
n admits a unique irreducible n× n faithful matrix representation:

ρ(e1) = σ1 =


0 1 . . . 0
0 0 1 . . . 0
...

. . .
...

0 . . . 0 . . . 1
1 . . . 0 . . . 0

 , ρ(e2) = σ2 =


1 0 . . . 0
0 q . . . 0
...

. . .
...

0 . . . 0 qn−1


If we introduce now the n2 × n2 matrices

ρ1 = σ1 ⊗ 1, ρ2 = σ2 ⊗ σ1

and define ρ(a,b) = ρa1ρ
b
2, together with a d-dimensional matrix representation of g0 given by

ρ(Tα) = Mα, we obtain an n2 d-dimensional representation of g : ρ(T (a,b)
α ) = ρ(a,b) ⊗Mα.

This construction can be extended for larger Abelian groups. Indeed, starting from the gen-
eralised Clifford algebra Cpn generated by e1, . . . , ep satisfying eni = 1, i = 1, . . . , p, eiej = qeje1,
1 ≤ i < j ≤ p, and defining ρa1,...,ap = ea1

1 · · · e
ap
p , we obtain in the same way a color Lie algebra

with Abelian group Zpn. Finally, let us mention that a similar construction can also be obtained
in straightforward way by starting from a Lie superalgebra.

A somewhat different ansatz, which turns out to be of wide interest in applications, refers to
the realization of color Lie (super)algebra in terms of differential operators [25]. Let g be a color
Lie (super)algebra with basis {Tα, α = 1, . . . ,dim g} and commutation relations [|Tα, Tβ|]N =
Cαβ

γTγ . Denote by N the commutation factor. Assume further that we have a d-dimensional
matrix representation ρ(Ta) = Ma, and introduce d variables θi together with their associated
differential operators ∂i. As before, we assume that the index i is of degree gr(i), θi is of degree
− gr(i), and ∂i of degree gr(i) subjected to the following commutation relations:

[|θi, θj |]N = θiθj + εN
(

gr(i), gr(j)
)
θjθi = 0

[|∂i, ∂j |]N = ∂i∂j + εN(gr(i), gr(j))∂j∂i = 0

[|∂i, θj |]N = ∂iθ
j + εN(gr(i),− gr(j))θj∂i = δi

j

(2.3)

with ε = ±1. A very elegant construction of θi and ∂i can be found in [27] in terms of usual
bosons (when ε = −1) or fermions (when ε = 1). If we set Ma = θi(Ma)ij∂j and suppose that
gr(a) = gr(j)− gr(i), a direct computation gives

[|Mα, θ
i|]N = θj(Mα)j i

[|Mα, ∂i|]N = −N(gr(j)− gr(i), gr(i))(Mα)ij∂j
[|Mα,Mβ|]N = Cαβ

γMγ

(2.4)

This means that the variables θi are in the fundamental representation of ga, while the variables
∂i belong to the corresponding dual representation. These two sets of variables, generalizing
the usual bosonic and fermionic algebras, play a central role in differential realizations of ga.
The next result shows that to a color Lie algebra we can associate a graded Lie algebra with
the same grading group Γ. For this reason, we call it decoloration theorem.

Theorem 2.8. There is an isomorphism between color Lie (super)algebras and graded Lie
(super)algebras.
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Proof. Consider a color Lie (super)algebra g = ⊕a∈Γga = ⊕a∈Γ〈T (a)
α , α = 1, . . . ,dim ga〉 with

commutation factor N and grading group Γ. We also introduce the commutation factor N+ as
defined previously. In the case where g is a color Lie algebra, we have N+ = N . Consider now a
graded algebra G = ⊕a∈ΓGa with Ga = Cea and multiplication law given by

eaeb = σ(a, b)ea+b (2.5)

such that the following constraint is satisfied [49]:

σ(a, b+ c)σ(b, c) = σ(a, b)σ(a+ b, c), ∀a, b, c ∈ Γ (2.6)

If we suppose that σ(a, b)σ−1(b, a) = N−1
+ (a, b) holds, then we have the equality e−ae−b −

N−1
+ (a, b)e−be−a = 0. This implies that G is a subalgebra of the associative algebra defined by

equations (2.3). As a consequence, condition (2.6) is equivalent to assume the associativity of the
product in G. If we further suppose that N+ is a commutation factor, the additional condition

σ(a, b+ c)σ−1(a, b)σ−1(a, c) = σ(b+ c, a)σ−1(b, a)σ−1(c, a), ∀a, b, c ∈ Γ (2.7)

is satisfied. We call σ a multiplier. In fact, it can be easily shown that equation (2.7) is a con-
sequence of (2.6). Let us define

g̃ = ⊕
a∈Γ

g̃a = ⊕
a∈Γ

e−a ⊗ ga

We observe that all elements in g̃a (for any a ∈ Γ) are of degree zero. For X ∈ ga, Y ∈ gb we set
X̃ = e−a ⊗X, Ỹ = e−b ⊗ Y ∈ g̃a, g̃b. From this, we derive the commutators

[X̃, Ỹ ]± = σ(−a,−b)e−a−b ⊗ [|X,Y |]N ∈ g̃a+b (2.8)

These new brackets (2.8) satisfy the Jacobi identity (for X̃ = e−a ⊗ X, Ỹ = e−b ⊗ Y , Z̃ =
e−c ⊗ Z ∈ g̃a, g̃b, g̃c)

(−1)|Z̃||X̃|[X̃, [Ỹ , Z̃]±]± + (−1)|X̃||Ỹ |[Ỹ , [Z̃, X̃]±]± + (−1)|Ỹ ||Z̃|[Z̃, [X̃, Ỹ ]±]± = 0

if σ satisfies the following condition [49]:

σ(a, b+ c)σ−1(a, b)σ−1(a, c) is invariant under cyclic permutation, ∀a, b, c ∈ Γ (2.9)

It turns out that (2.7) and (2.9) are equivalent to (2.6). This means that the algebra g̃ inherits
the structure of a Γ-graded Lie (super)algebra.

In [49], a more general result was established, and a close relationship between Γ-graded Lie
(super)algebras corresponding to different multiplication factors was established. In fact, we can
even (composing the Grassmann-hull and the results of Theorem 2.8) associate a Γ-graded-Lie
algebra to a color Lie (super)algebra. This decoloration theorem was established in [1]. Let us
briefly recall the main steps of its proof.

Consider g = ⊕a∈Γga a color Lie (super)algebra with commutation factor N . Introduce also
Λ = ⊕a∈ΓΛa a Γ-graded algebra, canonically generated by the variables θai , a ∈ Γ, i = 1, . . . ,ma

satisfying

θai θ
b
j −N−1(a, b)θbjθ

a
i = 0 (2.10)
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Then the zero-graded part of g(Λ) = Λ⊗ g,

g(Λ)0 = ⊕
a∈Γ

Λ−a ⊗ ga

is a Lie algebra. Indeed, for X,Y, Z ∈ ga, gb, gc and θ, ψ, η ∈ Λ−a,Λ−b,Λ−c, it is not difficult to
check that following relations are satisfied:

(1) [θ ⊗X,ψ ⊗ Y ] = θψ ⊗ [|X,Y |]N ∈ Λ−a−b ⊗ ga+b

(2) [θ ⊗X,ψ ⊗ Y ] = −[ψ ⊗ Y, θ ⊗X]
(3) [θ ⊗X, [ψ ⊗ Y, η ⊗ Z]] + [ψ ⊗ Y, [η ⊗ Z, θ ⊗X]] + [η ⊗ Z, [θ ⊗X,ψ ⊗ Y ]] = 0

(2.11)

This decoloration theorem has an interesting consequence. Specifically, it means that one can
associate a group to a color Lie (super)algebra and that the parameters of the transformation
are related to the algebra Λ above. This result was used in the papers of Wills-Toro et al. in
the trefoil symmetry frame [28, 29, 30, 31, 32, 33]. Finally, let us mention that this decoloration
theorem is in some sense the inverse procedure to the one given in Example 2.7.

3 Lie algebras of order F

Lie algebras of order F , introduced in [22, 23, 24], correspond to a different kind of extensions of
Lie (super)algebras, motivated by the implementation of nontrivial extensions of the Poincaré
algebra in QFT. This type of algebras is characterized by a hybrid multiplication law: part of
the algebra is realized by a binary multiplication, while another part of the algebra is realized
via an F -order product. More precisely, a Lie algebra of order F is graded by the Abelian group
Γ = ZF . The zero-graded part is a Lie algebra and an F -fold symmetric product (playing the
role of the anticommutator in the case F = 2) expresses the zero graded part in terms of the
nonzero graded part.

Definition 3.1. Let F ∈ N∗. A ZF -graded C-vector space g = g0⊕g1⊕g2⊕· · ·⊕gF−1 is called
a complex Lie algebra of order F if the following hold:

(1) g0 is a complex Lie algebra.
(2) For all i = 1, . . . , F − 1, gi is a representation of g0. If X ∈ g0, Y ∈ gi, then [X,Y ] denotes

the action of X on Y for any i = 1, . . . , F − 1.
(3) For all i = 1, . . . , F − 1, there exists an F -linear, g0-equivariant map {· · · } : SF (gi)→ g0,

where SF (gi) denotes the F -fold symmetric product of gi.
(4) For all Xi ∈ g0 and Yj ∈ gk, the following “Jacobi identities” hold:

[[X1, X2] , X3] + [[X2, X3] , X1] + [[X3, X1] , X2] = 0
[[X1, X2] , Y3] + [[X2, Y3] , X1] + [[Y3, X1] , X2] = 0
[X, {Y1, . . . , YF }] = {[X,Y1] , . . . , YF }+ · · ·+ {Y1, . . . , [X,YF ]}
F+1∑
i=1

[Yi, {Y1, . . . , Yi−1, Yi+1, . . . , YF+1}] = 0

(3.1)

Remark 3.2. If F = 1, by definition g = g0 and a Lie algebra of order 1 is a Lie algebra. If
F = 2, then g is a Lie superalgebra. Therefore, Lie algebras of order F appear as some kind of
generalizations of Lie algebras and superalgebras.



120 R. Campoamor-Stursberg and M. Rausch de Traubenberg

Proposition 3.3. Let g = g0 ⊕ g1 ⊕ · · · ⊕ gF−1 be a Lie algebra of order F , with F > 1. For
any i = 1, . . . , F − 1, the ZF -graded vector spaces g0 ⊕ gi is a Lie algebra of order F . We call
these type of algebras elementary Lie algebras of order F .

Remark 3.4. Let A = A0 ⊕ A1 ⊕ · · · ⊕ AF−1 be an associative ZF -graded algebra with mul-
tiplication µ. One can associate a Lie algebra of order F to A as follows. For any a0, a

′
0 ∈

A0, a1, a2, . . . , aF ∈ Ai, i = 1, . . . , F − 1, we have

[a0, a
′
0] = µ(a0, a

′
0)− µ(a′0, a0) ∈ A0

[a0, a1] = µ(a0, a1)− µ(a1, a0) ∈ Ai
{a1, a2, . . . , aF } = µ(a1, a2, . . . , aF ) + perm. ∈ A0

Furthermore, one can easily see that the Jacobi identities are a consequence of the associativity
of the product µ. Moreover, if A is an associative algebra and C1

F the commutative F -dimensional
algebra generated by a primitive element e such that eF = 1, the algebra C1

F ⊗ A = (1 ⊗ A) ⊕
(e⊗A)⊕ · · · ⊕ (eF−1 ⊗A) is ZF -graded and thus leads to a Lie algebra of order F .

Definition 3.5. A representation of an elementary Lie algebra of order F is a linear map
ρ : g = g0 ⊕ g1 → End(V ), such that for all Xi ∈ g0, Yj ∈ g1,

ρ ([X1, X2]) = ρ(X1)ρ(X2)− ρ(X2)ρ(X1)
ρ ([X1, Y2]) = ρ(X1)ρ(Y2)− ρ(Y2)ρ(X1)

ρ {Y1, . . . , YF } =
∑
σ∈SF

ρ
(
Yσ(1)

)
· · · ρ

(
Yσ(F )

) (3.2)

SF being the symmetric group of F elements.

By construction, the vector space V is graded V = V0 ⊕ · · · ⊕ VF−1, and for all a = {0, . . . ,
F − 1}, Va is a g0-module. Further, the condition ρ(g1)(Va) ⊆ Va+1 holds.

Theorem 3.6 (see [22, 23, 24]). Let g0 be a Lie algebra and g1 be a g0-module such that

(i) g = g0 ⊕ g1 is a Lie algebra of order F1 > 1;
(ii) g1 admits a g0-equivariant symmetric form of order F2 > 1.

Then g = g0 ⊕ g1 inherits the structure of a Lie algebra of order F1 + F2.

The theorem above can be generalized to include the case F1 = 1 [22, 23, 24].

Example 3.7 (this is a consequence of Theorem 3.6, modified to include F1 = 1). Let g0 be any
Lie algebra and let g1 be its adjoint representation. Introduce {Ja, a = 1, . . . ,dim g0} a basis of
g0, {Aa, a = 1, . . . ,dim g0} the corresponding basis of g1, and gab = Tr(AaAb) the Killing form.
Then one can endow g = g0 ⊕ g1 with a Lie algebra of order three structure given by

[Ja, Jb] = fab
cJc

[Ja, Ab] = fab
cAc

{Aa, Ab, Ac} = gabJc + gacJb + gbcJa
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Example 3.8. Let g0 = 〈Lµν = −Lνµ, Pµ, µ, ν = 0, . . . , D − 1〉 be the Poincaré algebra in
D-dimensions and let g1 = 〈Vµ, µ = 0, . . . , D − 1〉 be the D-dimensional vector representation
of g0. The brackets

[Lµν , Lρσ] = ηνσLρµ − ηµσLρν + ηνρLµσ − ηµρLνσ
[Lµν , Pρ] = ηνρPµ − ηµρPν , [Lµν , Vρ] = ηνρVµ − ηµρVν , [Pµ, Vν ] = 0

{Vµ, Vν , Vρ} = ηµνPρ + ηµρPν + ηρνPµ

with the metric ηµν = diag(1,−1, . . . ,−1) endow g = g0 ⊕ g1 with an elementary Lie algebra of
order three structure which is denoted by Iso3(1, D − 1).

Example 3.9. Let mat(m1,m2,m3) and matel(m1,m2,m3) be the set of (m1 + m2 + m3) ×
(m1 +m2 +m3) matrices of the form

matel(m1,m2,m3) =


a0 b1 0

0 a1 b2
b0 0 a2

 , mat(m1,m2,m3) =


a0 b1 c2

c0 a1 b2
b0 c1 a2

 (3.3)

with a0 ∈ gl(m1), a1 ∈ gl(m2), a3 ∈ gl(m3), b1 ∈ Mm1,m2(C), b2 ∈ Mm2,m3(C), b0 ∈
Mm3,m1(C), and c0 ∈ Mm2,m1(C), c1 ∈ Mm3,m2(C), c2 ∈ Mm1,m3(C). A basis of this set
of matrices can be constructed as follows. Consider the (m1 + m2 + m3)2 canonical matrices
eI
J , 1 ≤ I, J ≤ m1 + m2 + m3. With the following convention for the indices 1 ≤ i, j ≤ m1,

m1 + 1 ≤ i′, j′ ≤ m1 +m2, m1 +m2 + 1 ≤ i′′, j′′ ≤ m1 +m2 +m3, the generators are given by

ei
j for gl(m1), ei′

j′ for gl(m2), ei′′
j′′ for gl(m3)

ei
j′ for Mm1,m2(C), ei′

j′′ for Mm2,m3(C), ei′′
j for Mm3,m1(C)

ei′
j for Mm2,m1(C), ei′′

j′ for Mm3,m2(C), ei
j′′ for Mm1,m3(C)

Writing mat(m1,m2,m3) = mat(m1,m2,m3)0 ⊕ mat(m1,m2,m3)1 ⊕ mat(m1,m2,m3)2 and
matel(m1,m2,m3) = matel(m1,m2,m3)0 ⊕ matel(m1,m2,m3)1, we denote generically by XI

J

the canonical generators of degree zero, by YIJ those of degree one, and by ZIJ those of degree
two. With these conventions, the brackets read

[XI
J , XK

L] = δJKXI
L − δLIXK

J[
XI

J , YK
L
]

= δJKYI
L − δLIYKJ[

XI
J , ZK

L
]

= δJKZI
L − δLIZKJ{

YI
J , YK

L, YM
N
}

= δJKδ
L
MXI

N + δNIδ
J
KXM

L + δLMδ
N
IXK

J

+ δJMδ
N
KXI

L + δNKδ
L
IXM

J + δLIδ
J
MXK

N{
ZI

J , ZK
L, ZM

N
}

= δJKδ
L
MXI

N + δNIδ
J
KXM

L + δLMδ
N
IXK

J

+ δJMδ
N
KXI

L + δNKδ
L
IXM

J + δLIδ
J
MXK

N

(3.4)

This shows that mat(m1,m2,m3) (resp., matel(m1,m2,m3)) is endowed with the structure of
Lie algebra of order three (resp., a structure of an elementary Lie algebra of order three). In
particular, when m1 = m2 = m3, the algebra above can be rewritten as mat(m,m,m) =
C1

3 ⊗ gl(m), with e =
(

0 1 0
0 0 1
1 0 0

)
being a faithful matrix representation of the canonical generator

of C1
n.
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The question to find appropriate variables to represent Lie algebras of order F is much more
involved than for color algebras. However, in some specific cases, we were able to find appropriate
variables (see [34, 35, 36]), and it turns out that these variables are strongly related to Clifford
algebras of polynomials [44, 45, 46, 47, 48]. We will give another realization below.

4 Color Lie algebras of order F

Color Lie (super)algebras of order F can be seen as a synthesis of the two types of algebras intro-
duced previously. Indeed, for such algebras, we have simultaneously a binary product associated
with a commutation factor and an F -order product. The latter is no more fully symmetric, but is
also associated with the commutation factor. In this section, we focus on color Lie (super)algebra
of order three.

Definition 4.1. Let Γ be an Abelian group and let N be a commutation factor, g = g0 ⊕ g1 is
an elementary color Lie (super)algebra of order three if the following hold:

(1) g0 = ⊕a∈Γg0,a is a color Lie (super)algebra.
(2) g1 = ⊕a∈Γg1,a is a representation of g0. If X ∈ g0, Y ∈ g1 are homogeneous elements, then

[|X,Y |]N denotes the action of X on Y .
(3) There exists a g0-equivariant map {|·, ·, ·|}N : g1⊗ g1⊗ g1 → g0 such that for all Y1 ∈ g1,a,

Y2 ∈ g1,b, Y3 ∈ g1,c we have

{|Y1, Y2, Y3|}N = N(a, b){|Y2, Y1, Y3|}N = N(b, c){|Ya, Yc, Yb|}N

(4) The following “Jacobi identities” hold:

[|X1, [|X2, X3|]N |]N = [|[|X1, X2|]N , X3|]N +N(a, b)[|X2, [|X1, X3|]N |]N
∀(X1, X2, X3) ∈ g0,a × g0,b × g0,c

[|X1, [|X2, Y3|]N |]N = [|[|X1, X2|]N , Y3|]N +N(a, b)[|X2, [|X1, Y3|]N |]N
∀X1 ∈ g0,a, X2 ∈ g0,b, Y3 ∈ g1,c

[|X, {|Y1, Y2, Y3|}N |]N = {|[|X1, Y1|]N , Y2, Y3|}N
+N(a, b){|Y1, [|X1, Y2|]N , Y3|}N +N(a, b+ c){|Y1, Y2, [|X1, Y3|]N |}N
∀X ∈ g0,a, Y1 ∈ g1,b, Y2 ∈ g1,c, Y3 ∈ g1,d

0 = [|Y1, {|Y2, Y3, Y4|}N |]N +N(a, b+ c+ d)[|Y2, {|Y3, Y4, Y1|}N |]N
+N(a, b+ c+ d)N(b, a+ c+ d)[|Y3, {|Y4, Y1, Y2|}N |]N
+N(a, b+ c+ d)N(b, a+ c+ d)N(c, a+ b+ d)[|Y4, {|Y1, Y2, Y3|}N |]N
∀Y1 ∈ g1,a, Y2 ∈ g1,b, Y3 ∈ g1,c, Y4 ∈ g1,d

We observe that if Γ = Γ0 + Γ1 is a decomposition of Γ with respect to its Z2-grading, as
seen in Section 2, and such that Γ1 = 0 (resp., Γ1 6= 0), then g is called a color Lie algebra
(resp., superalgebra). Moreover, if Γ = Z2 and N(1, 1) = −1 hold, the algebra g is called a Lie
superalgebra of order three.
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Definition 4.2. A representation of an elementary color Lie (super)algebra of order three is
a linear map ρ : g→ End(V ) satisfying the conditions

ρ ([|X1, X2|]N ) = ρ(X1)ρ(X2)−N(a, b)ρ(X2)ρ(X1), ∀X1 ∈ g0,a, X2 ∈ g0,b

ρ ([|X1, Y2|]N ) = ρ(X1)ρ(Y2)−N(a, b)ρ(Y2)ρ(X1), ∀X1 ∈ g0,a, Y2 ∈ g1,b

ρ ({|Y1, Y2, Y3|}N ) = ρ(Y1)ρ(Y2)ρ(Y3) +N(a, b)N(a, c)ρ(Y2)ρ(Y3)ρ(Y1)
+N(b, c)N(a, c)ρ(Y3)ρ(Y1)ρ(Y2) +N(b, c)ρ(Y1)ρ(Y3)ρ(Y2)
+N(a, b)ρ(Y2)ρ(Y1)ρ(Y3) +N(a, b)N(a, c)N(b, c)ρ(Y3)ρ(Y2)ρ(Y1)
∀Y1 ∈ g1,a, Y2 ∈ g1,b, Y3 ∈ g1,c

By construction, the vector space V is graded and we have V = V0 ⊕ V1 ⊕ V2 with Vi =
⊕a∈ΓVi,a. Furthermore, each Vi,a is a g0,0-module and the inclusion relation ρ(gi,a)Vj,b ⊆ Vi+j,a+b

holds.

Remark 4.3. Let

A = A0 ⊕A1 ⊕A2 =
(
⊕
a∈Γ
A0,a

)
⊕
(
⊕
a∈Γ
A1,a

)
⊕
(
⊕
a∈Γ
A2,a

)
be an associative Z3 × Γ-graded algebra with multiplication µ. One can associate a color Lie
superalgebra of order three to A defining the products in a similar manner as in Remarks 2.4
and 3.4. In this case, the Jacobi identities are also a consequence of the associativity of the
product µ. Similarly, if A is an associative Γ-algebra and C1

3 the commutative three-dimensional
algebra generated by a primitive element e such that e3 = 1, the algebra C1

3 ⊗ A = (1 ⊗ A) ⊕
(e⊗A)⊕ (e2 ⊗A) is associative and Z3 × Γ-graded, and therefore leads to a color Lie algebra
of order three.

The examples of color Lie (super)algebras of order F are basically of two types: we can
construct a color Lie (super)algebra of order F from either a color Lie (super)algebra or a Lie
algebra of order F .

Example 4.4. Let gl({m}Γ,N ) = ⊕a∈Γga be the color Lie (super)algebra of Example 2.6 and
let C1

3 be the generalised Clifford algebra with canonical generator e, then

(1) C1
3 ⊗ g is a color Lie (super)algebra of order three;

(2) 〈1, e〉 ⊗ g is an elementary color Lie (super)algebra of order three.

For the second algebra, following the notations of Example 2.6, we denote by Epq a basis
of gl({m}Γ,N ), and Xp

q = 1 ⊗ Epq (resp., Y p
q = e ⊗ Epq) a basis of 1 ⊗ gl({m}Γ,N ) (resp.,

of e⊗ gl({m}Γ,N )). Then, the trilinear brackets read{∣∣Y p
q, Y

r
s, Y

t
u

∣∣}
N

= δq
rδs

tXp
u +N

(
gr(q)− gr(p), gr(s)− gr(r)

)
×N

(
gr(q)− gr(p), gr(u)− gr(t)

)
δs
tδu

pXr
q

+N
(

gr(q)− gr(p), gr(u)− gr(t)
)

×N
(

gr(s)− gr(r), gr(u)− gr(t)
)
δu
pδq

rXt
s

+N
(

gr(s)− gr(r), gr(u)− gr(t)
)
δq
tδu

rXp
s

+N
(

gr(q)− gr(p), gr(s)− gr(r)
)
δs
pδq

tXr
u

+N
(

gr(q)− gr(p), gr(s)− gr(r)
)
N
(

gr(q)− gr(p), gr(u)− gr(t)
)

×N
(

gr(s)− gr(r), gr(u)− gr(t)
)
δu
rδs

pXt
q
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Example 4.5. Let g be an arbitrary (elementary) Lie algebra of order three and let C2
n be the

generalized Clifford algebra with canonical generators e1, e2. Then C2
n⊗g is a color Lie algebra of

order three with Abelian group Zn×Zn and commutation factor N((a1, b1), (a2, b2)) = qa1b2−a2b1 .
Suppose that an elementary Lie algebra of order three g = g0 ⊕ g1 is given. Denote by {Xα,
α = 1, . . . ,dim(g0)} (resp., {Ym, m = 1, . . . ,dim(g1)}) a basis of g0 (resp., g1) such that

[Xα, Xβ] = fαβ
γXβ, [Xα, Ym] = Rαm

nYn, {Ym, Yn, Yp} = Qmnp
αXα

Define g0,(a,b) = {Xα
(a,b) = ρ(a,b)⊗Xα} and g1,(a,b) = {Y (a,b)

m = ρ(a,b)⊗Y m} (with ρ(a,b) = ea1e
b
2),

we thus have that⊕
(a,b)∈Zn×Zn

g0,(a,b)

⊕
(a,b)∈Zn×Zn

g1,(a,b)

is an elementary color Lie algebra of order three with brackets

[|X(a,b)
α , X

(c,d)
β |]N = q−bcfαβ

γX
(a+c,b+d)
β

[|X(a,b)
α , Y (c,d)

m |]N = q−bcRαm
nY (a+c,b+d)

n

{|Y (a,b)
m , Y (c,d)

n , Y (e,f)
p |}N = q−b(c+e)−deQmnp

αX(a+c+e,b+d+f)
α

As in Example 2.7, this can be extended for Γ = ZNn and for color Lie superalgebras of order
three.

Example 4.6. This example is a synthesis of Examples 2.6 and 3.9. Consider three Abelian
groups Γ1, Γ2, Γ3 and corresponding commutation factors N1, N2, N3. Then we define on the
group Γ = Γ1 × Γ2 × Γ3 the commutation factor N(~a,~b) = N1(a1, b1)N2(a2, b2)N3(a3, b3), with
~a = (a1, a2, a3) ∈ Γ etc. Let mi = mi,1 + · · · + mi,ni with i = 1, 2, 3 be three integers and let
gl({m1}Γ1,N1), gl({m2}Γ2,N2), gl({m3}Γ3,N3) be three color Lie (super)algebras as in Example 2.6.
Introduce now the matrices Mm1,m2(C) in the fundamental representation of gl({m1}Γ1,N1)
and in the dual of the fundamental representation of gl({m2}Γ2,N2). In a similar way as in
Example 3.9, we consider the set of matrices Mm2,m3(C) and Mm3,m1(C) and the algebra

g =

gl({m1}Γ1,N1
) Mm1,m2(C) 0

0 gl({m2}Γ2,N2
) Mm2,m3(C)

Mm3,m1(C) 0 gl({m3}Γ3,N3
)

 =

Xi
j Yi

j′ 0
0 Xi′

j′ Yi′
j′′

Yi′′
j 0 Xi′′

j′′


with the notations of Example 3.9. It is obviously a color Lie (super)algebra of order three. The
various brackets are similar to those of Example 3.9 and 2.6. We just give a few brackets for
completeness:

[|Xi
j , Yk

`′ |]N = δk
jYi

`′

[|Xi′
j′ , Yk

`′ |]N = −N2(gr(i′)− gr(j′),− gr(`′))δi′`
′
Yk

j′

{|Yij
′
, Yk′`

′′
, Ym′′n|}N = δj

′
k′δ`

′′
m′′Xi

n +N2(− gr(j′), gr(k′))

×N1(gr(i),− gr(n))δ`
′′
m′′δniXk′j

′

+N3(− gr(`′), gr(m′′))N1(gr(i),− gr(n))δniδj
′
k′Xm′′`

′′
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To conclude this section, we now show that there is an analogous of the decoloration theorem
established in Section 2. As done there, one can proceed in two different (but related) ways.
To set up the main result of this theorem, consider g = (⊕a∈Γg0,a) ⊕ (⊕a∈Γg1,a) a color Lie
superalgebra with grading Abelian group Γ and commutation factor N . In the second approach,
we directly associate to g a Lie algebra of order three, in the same manner as in Section 2
by considering the algebra Λ = ⊕a∈ΓΛa, where Λa is generated by the variables θai satisfying
equation (2.10). The algebra

g(Λ)0 =
(
⊕
a∈Γ

Λ−a ⊗ g0,a

)
⊕
(
⊕
a∈Γ

Λ−a ⊗ g1,a

)
is a Lie algebra of order three. This is proved in a similar way as in Section 2 and only the
trilinear brackets are slightly different. Let X ∈ ga, Y ∈ gb, Z ∈ gc and θ ∈ Λ−a, ψ ∈ Λ−b,
η ∈ Λ−c. It is not difficult to check that

{θ ⊗X,ψ ⊗ Y, η ⊗ Z} = θψη ⊗ {|X,Y, Z|}N ∈ Λ−a−b−c ⊗ g0,a+b+c

The Jacobi identities involving trilinear brackets are a consequence of the identity [θ1⊗Y1, {θ2⊗
Y2, θ3⊗Y3, θ4⊗Y4}] = θ1θ2θ3θ4[|Y1, {|Y2, Y3, Y4|}N |]N (for any Yi ∈ g1,ai , θi ∈ Λ−ai , i = 1, . . . , 4)
together with the associativity of the product in Λ and equation (2.10). This proves that g(Λ)0

is a Lie algebra of order three.
In the first correspondence, we introduce N+ as in Section 2 and the variables ea as in

Theorem 2.8 satisfying equations (2.5) and (2.6). Recall that the last property ensures that
the product is associative. Then the algebra g̃ = (⊕a∈Γe−a ⊗ g0,a) ⊕ (⊕a∈Γe−a ⊗ g1,a) is a Lie
(super)algebra of order three. The proof goes along the same lines as in Theorem 2.8. For the
bilinear part, the proof is the same as in Theorem 2.8. For the cubic bracket, if we take X ∈ ga,
Y ∈ gb, and Z ∈ ga, a simple calculation shows, using condition (2.6), the explicit structure of
the trilinear bracket:

{e−a ⊗X, e−b ⊗ Y, e−c ⊗ Z}± = (e−a ⊗X)(e−b ⊗ Y )(e−c ⊗ Z)

+ (−1)|X|(|Y |+|Z|)(e−b ⊗ Y )(e−c ⊗ Z)(e−a ⊗X)

+ (−1)|Z|(|X|+|Y |)(e−c ⊗ Z)(e−a ⊗X)(e−b ⊗ Y )

+ (−1)|Z||Y |(e−a ⊗X)(e−c ⊗ Z)(e−b ⊗ Y )

+ (−1)|Y ||X|(e−b ⊗ Y )(e−a ⊗X)(e−c ⊗ Z)

+ (−1)|X||Y |+|X||Z|+|Y ||Z|(e−c ⊗ Z)(e−b ⊗ Y )(e−a ⊗X)
= σ(−a,−b)σ(−a− b,−c)ea+b+c ⊗ {|X,Y,X|}N

∈ e−a−b−c ⊗ g0,a+b+c

where |X| denotes the degree of X with respect to the Z2 grading of Γ = Γ0 ⊕ Γ1 etc. Since we
have eaeb − N−1

+ (a, b)ebea = 0, and the algebra G is associative, there is no need to prove the
Jacobi identities involving trilinear brackets (the proof being the same as in previous cases). This
illustrates how we can associate a Lie (super)algebra of order three to a color Lie (super)algebra
of order three. These results, taken together, can be resumed in uniform manner in the following
decoloration theorem.

Theorem 4.7. There is an isomorphism between color Lie (super)algebras of order three and
Lie (super)algebras of order three.
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This theorem can be seen as a Grassmann-hull that replaces a Lie superalgebra by a Lie
algebra introducing Grassmann variables. It can further be seen as a kind of Jordan-Wigner
transformation in physical applications.

To finish this section, let us observe the following. The decoloration theorem above and that
of Section 2 seem to indicate that color Lie (super)algebras (resp., color Lie (super)algebras
of order three) do not really constitute new objects, since they are isomorphic to Lie algebras
(resp., Lie algebras of order three). In fact, as a consequence of these theorems, for any represen-
tation R of a color algebra g, we can construct, by means of the procedure above, an isomorphic
representation of the associated noncolor algebra. The converse of this procedure also holds. It
should, however, be taken into account that this property does not imply that all representa-
tions of color (resp., noncolor) algebras are obtained from representations of the corresponding
noncolor (resp., color) algebras.1

5 Quons and realization of color Lie (super)algebras
of order three

Quons were conceived in particle statistics as one of the alternatives to construct theories where
either the Bose or Fermi statistics are violated by a small amount [20]. Although observables
related to particles subjected to this type of intermediate statistics fail to have the usual locality
properties, their validity in nonrelativistic field theory and free field theories obeying the TCP
theorem has been shown. In this section, we prove that color Lie algebras of order three admitting
a finite-dimensional linear representation can be realized by means of quon algebras for the
important case q = 0. This result is a generalization of various properties that are well known
for the usual boson and fermion algebras.

Let −1 ≤ q ≤ 1 and consider the variables ai, ai, i = 1, . . . , n. We define the q-mutator or
quon algebra by means of

aia
j − qajai = δi

j (5.1)

where no relations between variables of the same type are postulated. The (complex) quon
algebra is denoted by Qn,q(C).2 For the two extreme values of q, we recover the well-known
statistics. If q = −1, together with the relations aiaj + ajai = 0 and aiaj + ajai = 0, the
quon algebra reduces to the fermion algebra. For q = 1, together with aiaj − ajai = 0 and
aiaj −ajai = 0, it reproduces the boson algebra. Therefore, the quon algebra can be interpreted
as an interpolation between Bose and Fermi statistics.3

Lemma 5.1. Let M1, . . . ,Mk be (n × n) complex matrices satisfying a polynomial relation
P (M1, . . . ,Mk) = 0. Then there exists k elements Mk ∈ Qn,0(C) (k = 1, . . . , n) such that
P (M1, . . . ,Mn) = 0.

Proof. Given two arbitrary generators ai, ai of Qn,0(C), by equation (5.1) we have aiaj = δi
j .

This means in particular that the n2 elements eij defined by eij = aiaj , 1 ≤ i, j ≤ n, of Qn,0
satisfy the relation eije

k
` = δj

kei`. Denoting by Eij the canonical generators of Mn(C) (the

1In particular, this way to construct representations does not preserve dimensions, as it follows at once from
the tensor products.

2The quon algebra originally introduced by Greenberg is real such that the Fock space is a Hilbert space.
3The relations aiaj − qajqi = 0 only hold when the additional constraint q2 = 1 is satisfied [15, 16, 17].
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(n × n) complex matrices), the mapping f :Mn(C) → Qn,o defined by f(Eij) = eij turns out
to be a injection. Therefore, since there is no kernel, the elements Mk = ai(Mk)ijaj ∈ Qn,0(C)
have to satisfy the same relations as the matrices Mk. Thus P (M1, . . . ,Mn) = 0.

The quon algebra with q = 0 has been studied in detail by Greenberg, and constitutes
an example of “infinite statistics” [20]. It was moreover shown there that the q = 0 operators
can be used as building blocks for representations in the general |q| 6= 1 case. We next show
that, under special circumstances, color Lie algebras of order three naturally embed into a q = 0
quon algebra.

Theorem 5.2. Let Γ be an Abelian group, N a commutation factor, and g a color Lie
(super)algebra of order three. If g admits a finite-dimensional matrix representation, then g

can be realized by a quon algebra with q = 0.

Proof. Suppose that the decomposition g = g0 ⊕ g1 = ⊕a∈Γg0,a ⊕a∈Γ g1,a with respect to the
Abelian group Γ is given. Let X(a)

α a basis of g0,a and Y
(a)
m be a basis of g1,a such that the

following relations hold:

[|Xα
(a), Xβ

(b)|]N = C(a,b)
αβ

γX(a+b)
γ ,

[|Xα
(a), Ym

(b)|]N = R(a,b)
αm

nY (a+b)
n

{|Y (a)
m , Y (b)

n , Y (c)
p |}N = Q(a,b,c)

mnp
αX(a+b+c)

α

(5.2)

Let ρ be an n-dimensional representation of g and let M (a)
α = ρ(Xα

(a)), N (a)
m = ρ(Ym(a)) denote

the corresponding transformed basic elements. Then the representation space V on which the
matrices M and N act satisfies the decomposition V = ⊕a∈ΓV0,a⊕a∈ΓV1,a⊕a∈ΓV2,a. Now, since
the inclusions M (a)

α Vi,b ⊆ Vi,a+b, N
(a)
m Vi,b ⊆ Vi+1,a+b are satisfied, we can find a basis of V such

that V = V0⊕V2⊕V1, i.e., with respect to the grading group Z3, the block Vi = dim⊕a∈ΓVi,a is
of degree i, for i = 0, 1, 2. With respect to this basis, the matrices M and N can be rewritten as

Mα
(a) =

M0α
(a) 0 0

0 M2α
(a) 0

0 0 M1α
(a)

 , Nm
(a) =

 0 M0−2m
(a) 0

0 0 M2−1α
(a)

M1−0α
(a) 0 0


Let ni = dimVi, i = 1, 2, 3, where obviously n0 + n1 + n2 = n. We denote by v = (vi0 , vi1 , vi2)T

the components of the vector v ∈ V (1 ≤ ia ≤ na, a = 1, 2, 3), and the matrix elements of M and
N : (M0α

(a))i0
j0 , (M1α

(a))i1
j1 , (M2α

(a))i2
j2 , (N0−2m

(a))i0
j2 , (N2−1m

(a))i2
j1 , (N1−0m

(a))i1
j0 . From

now on, we adopt the convention that an index in the form ia, a = 0, 1, 2 is of degree a with
respect to the grading group Z3. Furthermore, using the same notations as in Section 2 with
respect to the grading group Γ, via is of degree gr(ia). This in particular implies some relations for
the matrix elements of M and N . For instance, considering the matrix element (N2−1m

(a))i2
j1 ,

we have a = gr(i2)−gr(j1), and so forth. Consider now three series of quons Qn0,0(C) = 〈a0i, a0
i,

i = 1, . . . , n0〉, Qn1,0(C) = 〈a1i, a1
i, i = 1, . . . , n1〉, and Qn2,0(C) = 〈a2i, a2

i, i = 1, . . . , n2〉 such
that for any m 6= n, the relation amian

j = 0 holds. It follows from the grading group Z3 that
aa
ia (resp., aaia) is of degree a (resp., of degree −a), while, with respect to the group Γ, aaia
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(resp., aaia) is of degree gr(ia) (resp., − gr(ia)). We now define

Mα
(a) =

(
a0
i0 a2

i2 a1
i1
)
(
M0α

(a)
)
i0
j0 0 0

0
(
M2α

(a)
)
i2
j2 0

0 0
(
M1α

(a)
)
i1
j1


a0j0

a2j2

a1j1



Nm(a) =
(
a0
i0 a2

i2 a1
i1
) 0

(
M0−2m

(a)
)
i0
j2 0

0 0
(
M2−1m

(a)
)
i2
j1(

M1−0m
(a)
)
i1
j0 0 0


a0j0

a2j2

a1j1


By definition, the matrices Mα

(a) and Nm
(a) satisfy the relations (5.2). Now, applying

Lemma 5.1, the elements Mα
(a), Nm(a) ∈ Qn0,0(C) ⊕ Qn1,0(C) ⊕ Qn2,0(C) satisfy the same

relations. Furthermore, since the quon algebra is an associative algebra, the Jacobi identities
are automatically satisfied. Therefore, the color algebra g has been realized in the quon algebra
Qn0,0(C)⊕Qn1,0(C)⊕Qn2,0(C), finishing the proof.

It should be observed that certain types of Lie algebras of order three do not admit finite-
dimensional matrix representations. However, these can realized by means of Clifford algebras of
polynomials [34, 35, 36, 44, 45, 46, 47, 48]. Moreover, a similar argumentation allows to realize
any given type of algebra admitting finite-dimensional representations by an appropriate set of
quons with q = 0.
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