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Introduction: The Frobenius-Perron Operator and Its 
Discretization

We consider an m-dimensional; not necessary compact; C1-
manifold Mm, endowed with a Lebesgue measure µ determined on 
the σ-algebra of Borel subsets of M m andϕ: M m→M m being an almost 
everywhere smooth mapping. The related [1-5] Frobenius-Perron 
operator

1, 1.: ( ; ) ( ; )n n
loc locL M L Mϕ →  			                  (1)

is defined by means of the integral relationship

1( )
:=

A A
hd hdϕ ϕ

µ µ−∫ ∫ 				                 (2)

for any 1, ( ; )n
loch L M∈   and all µ-measurable subsets A⊂Mm 

Equivalently it can be defined as a mapping on the measure space (Mm)
1( ) := ( ( ))A Aϕ ν ν ϕ−   				                  (3)

for any measure v∈(Mm)and all µ-measurable subsets A⊂Mm In 
particular; if a measure v∈(Mm) is absolutely continuous with respect 
to the measure µ on Mm then definitions (3) and (2) are equivalent. 
In the infinitesimal form the Frobenius-Perron operator (1) action is 
representable as

1

1 1( ) ( ) ( ) ( ) = ( )

( ( )) ( ( ))( ) = ( ( )) = ( ( ))
( ) ( )y x x y x x y y x

d y x d yh x h y x h y x
d x d yϕ

ϕ ϕ

µ µ ϕ
µ µ

−

− −∈ ∈

∑ ∑     (4)

for any , = 1, ,m
iB M i N⊂  and x∈Mm, where dµ(ϕ(y))/dµ(y) means the 

usual Radon-Nikodym derivative [1,3] of the shifted measure µ.ϕ with 
respect to the Lebesgue measure µ on Mm As we are mainly interested 
in studying the ergodic properties of the mapping ϕ:Mm→Mm by means 
of the finite dimensional tools; we now proceed to a discretization 
approach [6-8] to the Frobenius-Perron operator (1) preliminarily 
choosing a partition N of the manifold Mm as N∈ℤ+ boxes (or sells) 

, = 1, ,m
iB M i N⊂  and introducing the space N of the step-functions on 

Mm with respect to the partition N which can be constructed using the 
projection operator 

1, 1,: ( ; ) ( ; ) :n N n
N loc locL M L MΠ → ⊂ 

( )
( )( ) :=

( )
Bi

N Bii

x
h x hd

B

χ
µ

µ
Π ∫ 				                     (5)

for any 1, ( ; )n
loch L M∈   and all x∈Mm Then; by definition; one can 

define the Frobenius-Perron operator discretization as

, := | .N N Nϕ ϕΠ


  				                  (6)

As a consequence of the definitions above one obtains that the 

discretized Frobenius-Perron operator (6) can be represented with 
respect to the canonical basis in the finite-dimensional space N by 
means of the (N×N) matrix

1 1
, ,= { := ( ( ) ) ( ) : , = 1, },ij
N N i j jB B B i j Nϕ ϕ µ ϕ µ− −∩  	              (7)

which is exactly a discretization of the infinitesimal expression (4). The 
matrix component , , , = 1, ,ij

N i j Nϕ  can be; obviously; interpreted as a 
transition probability matrix for a point in Bj, being randomly chosen 
with respect to the measure µ to be mapped into the set Bi by the mapping 
ϕ:Mm→Mm. Thus; the obtained stochastic matrix , : N N

Nϕ →    defines 
naturally a finite homogeneous Markov chain; and particularly a linear 
discrete dynamical system in the Euclidean space .N N 

The described approach to study the dynamical properties of the 
mapping ϕ:Mm→Mm by means of the discretized Frobenius-Perron 
operator (6) is widely used in the literature [6,8-11]. It was also effectively 
used S. Ulam for finding the approximation of the invariant measures 
for the mapping ϕ:Mm→Mm which are related with nonnegative fixed 
points of the discretized Frobenius-Perron operator (6). In addition; 
the discretized Frobenius-Perron operator (6) appears to be very useful 
for analyzing the ergodicity and mixing properties

[2,4,5,7,8] of the mapping ϕ:Mm→Mm. Namely; the ergodicity of it 
with respect to the partition N is defined as the irreducibility of the 
discretized Frobenius-Perron operator (6); and the mixing with respect 
to the partition N is defined as its primitivity and ergodicity.

Discrete Ergodicity Analysis

As ergodicity of the mapping ϕ:Mm→Mm is deeply connected with 
the suitably determined ergodic measure v on Mm, which is a special 
invariant measure on Mm such that any ϕ-quasi-invariant function 
ϕ:Mm→Mm is almost everywhere constant on Mm we will be mainly 
interested below in the invariant measure v absolutely continuous 
with respect to the Lebesgue measure µ on Mm which is a fixed point 
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c) the whole spectrum of the matrix ϕ,N is invariant under the 
rotation about the angle 2π /q.

The Classical Boole Mapping and Its Ergodicity
The classical Boole transformation [14] ϕ: ℝ→ℝ is defined as the 

almost everywhere smooth mapping

( ) := 1/ ,x x xϕ − 					                   (12)

defined for all x∈ℝ\{0} It was proved to be ergodic [1,15] with 
respect to the standard invariant infinite Lebesgue measure on ℝ. The 
corresponding fixed point equation for the Frobenius-Perron operator 
action (4) can be easily presented as

(0) (0) (0)( )( ) = ( ( )) ( ) = ( ),'h x h y x y x h xϕ ± ±
±
∑ 		                (13)

where; by construction; ( ( )) = ,y x xϕ ±  ( ) > 0,'y x±  and (0) ( ) 0h x ≥  for 
almost all x∈ℝ Having assumed that there exists an meromorphic 
continuation (0) :h →   of the mapping (0) : ,h +→   such that

(0) (0) 2| ( ) |= (1/ | |)h z k O z− for |z|→∞ and some (0) 0,k ≥  the equality (13) 
can be rewritten as

(0) (0)

(0) (0)

(0) (0)

{ = , } ( }

2 (0) (0)

(0}

[ ( ( )) ] ( ) =

1= [ln( ( )][ ( ) ]lim 2

1 [ln ( ( )][ ( ) ] =
2

1= [ ln( 1)][ ( ) ]lim 2

'

r
r

b a a O b

r Or

h y x k y x

d z y x h z k dz
i dx

d z y x h z k dz
i dx

d z zx h z k dz
i dx

ε

π

π

π

± ±
±

±
→∞ ± ∂

± ±
∂

→∞ ∂

−

− − − +

+ − −

− − − − +

∑

∑

∑



                           (14)

(0) (0) (0) (0)

2 2
{ } { }( } ( }

(0)(0) (0)

2 2 2
(0) { = , } =

(0) (0)

2
(0)1/

[ ( ) ] [ ( ) ] =
( 1) ( 1)

( 2 )1 [ ( ) ]= =lim 2 ( 1) ( 1)

1 [ (1 / ) ]
lim 2 (1 )

a aO a O a

b

r O b a ar z b

r O r

z h z k dz z h z k dz
z zx z zx

k x zz h z k dz
i z zx z xz

h s k ds
i s xs s

ε ε

π

π

∂ ∂

→∞ ∂

→∞ ∂

− −
+ +

− − − −

−−
+

− − − −

−
+ +

− −

∑ ∑

∑

(0)

2 2
{ = , } =

(0)

2 2
{ = , } =

( 2 ) =
( 1)

( 2 )= ,
( 1)

b

b a a z b

b

b a a z b

k x z
z xz

k x z
z xz

−
− −

−
− −

∑

∑

where ( ) := {| |< , ,rO b z b r b− ∈  > 0}r  and (0) (0) (0)= , 0,a a ak k Rek ≥  are 
the corresponding residuum constants; related with the assumed 
finite second order pole set { , \a a ∈ � of the function (0) : ,h → 
satisfying some finite system of algebraic constraints; ensuring the 
positivity of the reduced function (0) : .h →  Based on simple enough 
yet cumbersome calculations one can get convinced that this system 
of constraints is compatible iff the constants (0) = 0bk  for all { , }.b a a∈  
Then from (5) one easily derives that

(0) (0) (0)

(0) (0)
2

( ) ( )( ) = ( ) = [ ] =
2 ( ) 2 ( )

4 ( ) ( ) [ ( ) ( )]= = ,
4 ( ) ( ) 2 [ ( ) ( )]

' y x y xh x k y x k
y x x y x x

y x y x x y x y xk k
y x y x x x y x y x

+ −
±

± + −

+ − + −

+ − + −

+
− −

− +
+ − +

∑
	               (15)

where we made use of the obvious identities ( ) ( ) = 1y x y x+ − − and 

of the Frobenius-Perron operator (1); defined by the mapping (3). In what 
follows there is accepted the next [12] definition of the discrete ergodicity.

Definition 2.1: A measurable mapping ϕ:Mm→Mm is called ergodic 
with respect to the partition N if the following discrete ergodic theorem 
holds:

there exists a non-negative definite and normalized vector 
(0) (0) (0)

1, 0,|| || = 1,NH H H∈ ≥  such that
1

(0)
,

=0

1 =lim
n

k
N

n k
H H

n ϕ

−

→∞
∑ 				                  (8)

for any 1, 0,|| || = 1.NH H H∈ ≥

It is naturally to assume that the discrete ergodicity with respect 
to the partition N can happen to be persisting for almost all possible 
partitions of Mm and for arbitrary dimensions N∈ℤ+. In this case one 
can determine a set of functions (0){ : : },m

Nh M N+ +→ ∈   where

(0) (0)

=1
( ) := ( )

N

N j B j
j

h x H xχ∑ 				                  (9)

for any x∈Mm and next proceed to studying the existence of the 
pointwise limiting function

(0) (0)( ) := ( )lim N
N

h x h x
→∞

				                 (10)

defining the corresponding absolutely continuous with respect to the 
measure µ on Mm and invariant with respect to the transformation 
ϕ:Mm→Mm measure

(0)( ) :=
A

A h dν µ∫ 					                 (11)

for any measurable subset A⊂Mm. If the constructed measure (11) 
proves to be finite; that is (0) < ,mM

h dµ ∞∫  then this invariant measure v 
can be easily made probabilistic.

Taking into account the fact that the Frobenius-Perron matrix (7) 
is stochastic; one can recall the well known Frobenius-Perron theory 
[13] of non-negative stochastic matrices; in particular the following 
useful proposition.

Proposition 2.2: The mapping ϕ:Mm→Mm is with respect to the 
partition N :

ergodic iff the matrix ϕ,N is irreducible; that is for every pair of states 
(i,j) it is possible to move from i to j and back again; in other words ϕ,N 
is irreducible; if it is not block upper-triangular; up to reordering rows 
and columns;

mixing iff the matrix ϕ,N is primitive; that is all its eigenvalues not 
equal to the unity have modulus less than unity;

ergodic; but not mixing; iff the matrix ϕ,N is q-cycling with maximal 
q>0

Moreover; it is worthy of mentioning that the irreducibility and 
primitivity depend only on the structure of the directed graph G,N, 
naturally associated with the matrix ϕ,N. Concerning the effective 
studying of the sole ergodicity of the mapping ϕ: M 

m→M 
m the following 

famous Frobenius-Perron theorem proves strongly important.

Proposition 2.3: An irreducible stochastic matrix ϕ,N is -cyclic with 
q∈ℤ+ maximal iff one of the following equivalent conditions holds:

a) There are q different eigenvalues of the matrix ϕ,N of modulus one;

b) There are q symmetrically distributed and algebraically simple 
eigenvalues (2 / ), = 0, 1,exp ik q k qπ −  of the matrix ϕ,N;
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( ) ( ) =y x y x x+ −+  for all x∈ℝ Thus; the invariant infinitesimal measure 
with respect to the Boole mapping (12) equals

(0)( ) = ,d x k dxν 					                    (16)

being absolutely continuous subject to the standard Lebesgue measure 
dx on ℝ Thus; one can formulate the following theorem.

Theorem 3.1: Being unique; modulo the constant multiplier; the 
invariant with respect to the Boole mapping (12) measure expression 
(16) is ergodic on axis ℝ

Having now constructed the uniformly discretized Frobenius-
Perron operator matrix (7); one can check that the matrix ϕ,N is 
reducible with respect to any partition N == [ / , ( 1) / ]N

j N j N j N+
− −

∪ + ⊂   
for any its dimension := ( ) .N N N− ++ →∞  Then; based on Proposition 
2.2; one can claim that the Boole mapping (12) is ergodic with respect 
to any partition N,N→∞ One can also verify that the positive definite 
vector (0) = (1 / ,1 / ,...,1 / ) NH N N N ∈  solves the limiting condition (8); 
being its eigenvector for the unity eigenvalue:

(0) (0)
, =N H Hϕ 					                   (17)

for any dimension N→∞ As a corollary of the claim above and the 
cycling properties of the Frobenius-perron matrix ϕ,N one derives the 
next theorem; generalizing the one proved in [15] by means of different 
mostly qualitive tools.

Theorem 3.2: The Boole transformation (12) is ergodic; yet not 
mixing.

As it can be checked by means of direct computations; the Boole 
transformation (12) is ergodic yet not mixing; as the matrix ϕ,N is qN-
cycling with maximal qN >0 for any dimension N→∞

The generalized Boole Type Mapping and Its Ergodicity
In the present section; we will study the invariant measures and 

ergodicity properties for the generalized Boole type transformations of 
plane ℝ2

1 1 2 1 2 2 1 2 1 2 1 2 2 1( , ) := ( 1 / , 1 / ), ( , ) := ( 1 / , 1 / ),x x x x x x x x x x x xϕ ϕ− + + −   (18)

where 2
1 2( , ) \{(0,0)}.x x ∈  The corresponding to the mapping 

2 2
1 :ϕ →   local Frobenius-Perron operator ϕ acts on a non-negative 

definite function (0) 2:h +→   as
(0) (0) 2 2

1 2 1, 2, 1, 2,( )( , ) = ( , )[1 ],h x x h y y y yϕ
− −

± ± ± ±
±

+∑ 		               (19)

where; by definition; 1, 1, 1 2 2, 2, 1 2 1 1, 2, 1 2:= ( , ), := ( , ), ( , ) := ( , ),y y x x y y x x y y x xϕ± ± ± ± ± ±  
2
1, 1 1, 1 2/ = 0,y x y x x± ±− +  2, 1, 2 1= /y y x x± ±  for any 2

1 2( , ) \{(0,0)}.x x ∈  It is 
easy to check by means of direct and simple enough calculations that 
a positive constant function (0) (0)

1 2( , ) =h x x k +∈  is an eigenfunction of 
the mapping (19) with the unity eigenvalue:

(0) (0)= .k kϕ 					                  (20)

This; in particular; means that the infinitesimal measure 
(0)

1 2 1 2( , )) :=d x x k dx dxν  on the plane ℝ2 is invariant with respect to 
the mapping ϕ1:ℝ2→ℝ2. If to state now that this invariant measure 
is unique on the plane ℝ2 this will mean [2-5] that the mapping 
ϕ1:ℝ2→ℝ2 is ergodic. To show this; we will make use of the uniform 
discretization of the Frobenius-Perron operator (19) and find by means 
of usual numerical calculations that the corresponding N-dimensional 
Frobenius-Perron matrix ϕ,N : 𝔼N→𝔼N is irreducible for any dimension 
N→∞ This fact; owing to Proposition 2.2; makes it possible to formulate 
the following theorem.

Theorem 4.1: The Boole type transformation ϕ1:ℝ2→ℝ2 of (18) is 
ergodic.

Concerning the mixing property of the mapping ϕ2: ℝ2→ℝ2 

additional calculations still are needed to show; owing to Proposition 
2.3; that the N-dimensional Frobenius-Perron matrix ϕ,N: 𝔼N→𝔼N is 
qN-maximal cycling for any dimension N→∞.

Remark 4.2: Taking into account that the mapping ϕ2: ℝ2→ℝ2 is 
simply conjugated with the mapping ϕ1:ℝ2→ℝ2 all statements above 
concerning its ergodicity also hold for the mapping ϕ2:ℝ2→ℝ2

The Boole type mappings (18) can be generalized on the three-
dimensional space ℝ3:

1 1 2 3 1 2 2 3 3 1( , , ) := ( 1 / , 1 / , 1 / ),x x x x x x x x xϕ − − − 		               (21)

2 1 2 3 1 3 2 1 3 2( , , ) := ( 1 / , 1 / , 1 / ),x x x x x x x x xϕ − − −

defined for any (x1, x2, x3)∈ ℝ3 
\ {(0,0,0)} It was already proved in ref. 

[16] that these mapping are invariant with respect to the standard 
Lebesgue measure dv(x1, x2, x3)=dx1 dx2 dx3 on ℝ3 yet their ergodicity is 
still under investigation.
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