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Weak-type Estimates in Morrey Spaces for Maximal Commutator and
Commutator of Maximal Function
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Abstract. In this paper it is shown that the Hardy-Littlewood maximal operator M is not bounded on
Zygmund-Morrey space M (1og1),2, 0 < 2 < n, but M is still bounded on M og L), for radially decreas-

ing functions. The boundedness of the iterated maximal operator M 2 from M L(log L), to weak Zygmund-Morrey
space WM (log L), is proved. The class of functions for which the maximal commutator Cp is bounded from
MULgog L),» © WM (log L),5. are characterized. Itis proved that the commutator of the Hardy-Littlewood maximal

operator M with function > € BMO(R") such that b~ € Loo(R") is bounded from M (1og L), 10 WM (10gL),2-
New pointwise characterizations of My M by means of norm of Hardy-Littlewood maximal function in classical
Morrey spaces are given.

1. Introduction

Given a locally integrable function f on R"” and 0 < « < n, the fractional maximal
function My, f of f is defined by

Mo f(x) = sup|Q|“n;"f fO)dy.  (xeRY.
0sx 0

where the supremum is taken over all cubes Q containing x. The operator My, : f — M, f is
called the fractional maximal operator. M := M) is the classical Hardy-Littlewood maximal
operator.

The study of maximal operators is one of the most important topics in harmonic analysis.
These significant non-linear operators, whose behavior are very informative in particular in
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differentiation theory, provided the understanding and the inspiration for the development of
the general class of singular and potential operators (see, for instance, [8, 12—14, 31-33]).
Let f € L11°C(R"). Then f is said to be in BMO(R") if the seminorm given by

ILfllx = Sup@/lf(y) foldy

is finite.

DEFINITION 1.1. Given a measurable function b the maximal commutator is defined
by

Co(f)(x) := Sup—/ |b(x) = bWIIf (nIdy
sx 1@l /o

for all x € R".

This operator plays an important role in the study of commutators of singular integral
operators with BMO symbols (see, for instance, [9, 22, 28, 29]). The maximal operator Cj,
has been studied intensively and there exist plenty of results about it. Garcia-Cuerva et al. [9]
proved the following statement.

THEOREM 1.2. Let 1 < p < oo. Cp is bounded on L,(R") if and only if b €
BMO(R").

DEFINITION 1.3. Given a measurable function b the commutator of the Hardy-
Littlewood maximal operator M and b is defined by

(M, D]f(x) :=MDf)(x) —bx)Mf(x)
for all x € R".

The operator [M, b] was studied by Milman et al. in [23] and [2]. This operator arises,
for example, when one tries to give a meaning to the product of a functionin H' and a function
in BMO (which may not be a locally integrable function, see, for instance, [5]). Using real
interpolation techniques, in [23], Milman and Schonbek proved the L ,-boundedness of the
operator [M, b]. Bastero, Milman and Ruiz proved the next theorem in [2].

THEOREM 1.4. Let1 < p < oo. Then the following assertions are equivalent:
(1) [M, b] is bounded on L ,(R");

(ii) b € BMO(R") and b~ € Loo(R"). !

The operators C;, and [M, b] enjoy weak-type L(1 + log™ L) estimate.

THEOREM 1.5 ([1, Theorem 1.5], see also [15] and [16]). The following assertions
are equivalent:

'Denote by bT (x) = max{b(x), 0} and b~ (x) = — min{b(x), 0}, consequently b = b+ —b~ and |b| = b +b~.
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(i) There exists a positive constant ¢ such that for each ) > 0, inequality

(1.1) [{x e R" : Cp(f)(x) > A}| < c/ |f (0l (1 +logt <|fiX)|>>dx
Rn

A
holds for all f € L(1 +1log™ L)(R™).
(i) b € BMO(R").
THEOREM 1.6 ([1, Theorem 1.6]). Letb € BMO(R") such thatb~ € Loo(R"). Then
there exists a positive constant ¢ such that

(1.2)

o et | e (L2

forall f € L (1+1log" L) (R") and ) > 0, where co = |[b™ ||« + 167 [loo-

Operators Cp, and [M, D] essentially differ from each other. For example, Cj, is a positive
and sublinear operator, but [M, b] is neither positive nor sublinear. However, if b satisfies
some additional conditions, then operator C, controls [M, b].

LEMMA 1.7 ([1,Lemma 3.1 and 3.2]). Let b be any non-negative locally integrable
function. Then

(1.3) M, b1f(x)| < Cp(f)(x) (x €R")
holds for all f € L'*°(R™).
If b is any locally integrable function on R", then
(1.4) [[M, D] f(x)| < Cp(f)(x) +2b~ (x)Mf(x) (x €R")
holds for all f € L*(R").
We recall the following statement from [1].

THEOREM 1.8 ([1, Theorem 1.13]). Let b € BMO(R"). Suppose that X is a Banach
space of measurable functions defined on R". Moreover, assume that X satisfies the lattice
property, that is,

O0<g=f = lglx < Iflx.
Assume that M is bounded on X. Then the operator Cy, is bounded on X, and the inequality

ICo fllx = cllbllll flix

holds with constant c independent of f.
Moreover, if b~ € Loo(R"), then the operator [M, b] is bounded on X, and the inequal-

ity
M, b1 fllx < c(lb™ x4+ 1167 llo) 1 £llx
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holds with constant c independent of f.
The proof of previous theorem is based on the following inequalities.

THEOREM 1.9 ([1, Corollary 1.11 and 1.12]). Let b € BMO(R"). Then, there exists
a positive constant ¢ such that the inequality

(1.5) Cp(f)(x) < cllbllM? f(x) (x e R")
holds for all f € L'°°(R™).

Moreover, if b~ € Loo(R™), then, there exists a positive constant ¢ such that the inequal-
ity
(1.6) M, b1 < c (1671 + 157 lloo) M?f (x) (x eR")

holds for all f € L'*°(R™).

The classical Morrey spaces M, ; = M, »(R"), were introduced by C. Morrey in [24]
in order to study regularity questions which appear in the Calculus of Variations, and defined
as follows: for0 <A <nand 1 < p < oo,

Mp = {f € Ll,?C(Rn) S, == sup rk]_)n“f“Lp(B(x,r)) < OO} ;
xeR?, r>0
where B(x, r) is the open ball centered at x of radius r.

Note that M, o(R") = Loo(R") and M, ,(R") = L,(R").

These spaces describe local regularity more precisely than Lebesgue spaces and appeared
to be quite useful in the study of the local behavior of solutions to partial differential equations,
a priori estimates and other topics in PDE (cf. [10]).

The boundedness of the Hardy-Littlewood maximal operator M in Morrey spaces M »
was proved by F. Chiarenza and M. Frasca in [7]: It was shown that M f is a.e. finite if
f € M., and an estimate

(1.7) IMFlm,, <clflim,,

holdsif 1 < p < oo and 0 < A < n, and a weak type estimate (1.7) replaces for p = 1, that
is, the inequality

(1.8) t{Mf >ty N B, )| < " flmy,

holds with constant ¢ independent of x, r, ¢ and f.
In [11], it is proved that the Hardy-Littlewood maximal operator M is bounded on M ,
0 < A < n, for radially decreasing functions, that is, the inequality

(1.9) IMF Iy, SUFIa,. f €Mt

holds with constant independent of f, and an example which shows that M is not bounded on
M, 0 <A <nisgiven.
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Combining Theorem 1.9 with inequalities (1.7) and (1.9), it is easy to generalize Theo-
rems 1.2 and 1.4 to Morrey spaces (see Theorems 3.1 and 3.3).

In this paper the Zygmund-Morrey and the weak Zygmund-Morrey spaces are defined.
In order to investigate the boundedness of the maximal commutator Cp and the commutator of
maximal function [M, b] on Zygmund-Morrey spaces we start to study the boundedness prop-
erties of the Hardy-Littlewood maximal operator on these spaces. It is shown that the Hardy-
Littlewood maximal operator M is not bounded on Zygmund-Morrey spaces M (jog 1),5., but
M is still bounded on M (10 1),5. for radially decreasing functions. The boundedness of the
iterated maximal operator M 2 from Zygmund-Morrey spaces M (1og 1,5 to Weak Zygmund-
Morrey spaces WM (1o 1,5 is proved.

Our main results about weak-type estimates for maximal commutator and commutator
of maximal function in Zygmund-Morrey spaces are following.

THEOREM 1.10. Let0 < A < n. The following assertions are equivalent:
(i) b e BMO(R");
(ii) The operator Cp is bounded from M (| 1100+ 1), 10 WM (1 1106+ 1) -

THEOREM 1.11. Let0 < A < n. Assume that b € BMO(R"). Then the operator Cp
is bounded on M | 4105+ 1,5 for radially decreasing functions.

THEOREM 1.12. Let0 < A < n and b is in BMO(R") such that b~ € Lo (R"). Then
the operator [M, b is bounded from M (| 1100+ 1)1 10 WM (1 1106+ 1)1 and the inequality

MM, DLWy e g1y = € QBT 4 167 1) 1 My e
holds with positive constant c independent of f.

THEOREM 1.13. Let0 < A < n and b is in BMO(R") such that b~ € Lo (R"). Then
the operator [M, b] is bounded on M | y10¢+ 1) 5, for radially decreasing functions, and the
inequality

M D1 F 1My g 1y = € (DT T A 1D NLoe) 1F Iy g g 1y 0 S € DR

holds with positive constant ¢ independent of f.

The paper is organized as follows. In Section 2 notations and preliminary results are
given. Boundedness of maximal commutator and commutator of maximal function in Morrey
spaces are investigated in Section 3. New characterizations of M, M are obtained in Sec-
tion 4. In Section 5 it is shown that the Hardy-Littlewood maximal operator M is not bounded
on Zygmund-Morrey spaces M (og1),., but M is still bounded on M og 1), for radially
decreasing functions. The boundedness of the iterated maximal operator from M (og1),5. to
WM L (og L), is proved in Section 6. In Section 7 we give proofs of Theorems 1.10-1.13.
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2. Notations and Preliminaries

Now we make some conventions. Throughout the paper, we always denote by ¢ a positive
constant, which is independent of main parameters, but it may vary from line to line. However
a constant with subscript such as ¢; does not change in different occurrences. By A < B
we mean that A < ¢B with some positive constant ¢ independent of appropriate quantities
involved in A and B. For a measurable set E, xr denotes the characteristic function of E.
Throughout this paper cubes will be assumed to have their sides parallel to the coordinate
axes. Given A > 0 and a cube Q, AQ denotes the cube with the same center as Q and whose
side is A times that of Q. For a fixed p with p € [1, c0), p’ denotes the dual exponent of p,
namely, p" = p/(p — 1). For any measurable set E and any integrable function f on E, we
denote by fr the mean value of f over E, thatis, fr = (1/|E]) fE f(x)dx. Unless a special
remark is made, the differential element dx is omitted when the integrals under consideration
are the Lebesgue integrals.

For the sake of completeness we recall the definitions and some properties of the spaces
we are going to use.

Let £2 be any measurable subset of R”, n > 1. Let 91(£2) denote the set of all measurable
functions on £2 and 21y (£2) the class of functions in T(§2) that are finite a.e.

For p € (0, oo], we define the functional || - ||, 2 on 901(§2) by

1/
(f_QIf(x)V’dx) " it p<oo,
esssupg | f(x)] if p=oco.

I fllp.2 =

The Lebesgue space L, (£2) is given by

Ly(2):={f €M) : Iflpe < oo}

and it is equipped with the quasi-norm || - ||, 2.
Denote by tadd = 9irad-d (R”) the set of all measurable, radially decreasing functions
on R”, that is,

Mmadd = f e MR f(x) = p(x]), x € R"withg € M (0, 00)}

where OV (0, 00) is the subset of those functions from 9t(0, co) which are non-increasing on
(0, 00).
Recall that Mf ~ Hf, f € M2V where

1
H = d
f@) B, [xD| JB,1x)) 7O dy

is n-dimensional Hardy operator. Obviously, Hf € 9™} when f e 9rad-+,
The non-increasing rearrangement (see, e.g., [4, p. 39]) of a function f € Mp(R") is
defined by

FA@) =inf{A>0:[{x eR": |f(x)| >} <t} (O<r<o00).
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Then f** will denote the maximal function of f* defined by

1 t
@) = - f fH(s)ds, (t >0).
0
The Zygmund class L(log™ L)(£2) is the set of all f € 9(§2) such that

/9 | f()]og* | f)) dx < oo,

where log™ ¢t = max{logt, 0}, ¢ > 0. Generally, this is not a linear set. Nevertheless, consid-
ering the class

L(14+1log" L)(£2)
= {f € M) = 1 flLati0gt Ly2) = /Q |f Ol (1 +1og™ | f(x)]) dx < OO} ,
we obtain a linear set, the Zygmund space.

The size of M? is given by the following inequality.

LEMMA 2.1 ([25, Lemma 1.6]). There exists a positive constant ¢ such that for any
function f and for all ). > 0,

2.1 Hx e R" : M%f(x) > A} < C/ @ <1 +log" <|f;)C)|)) dx.
RVl

The following important result regarding BMO is true.

LEMMA 2.2 ([18] and [3]). For p € (0, 00), BMO,(R") = BMO(R"), with equiva-
lent norms, where

1
1 »
I.fIBMO,, (R?) := sup <—/ lf()— lepd)’) .
o \0QlJo

A continuously increasing function on [0, oo], say ¥ : [0, 00] — [0, oo] such that
v(0) =0,¥(1) =1 and ¥ (oc0) = o0, will be referred to as an Orlicz function. If ¥ is an
Orlicz function, then

@ (t) = sup{ts — ¥ (s); s € [0, co]}

is the complementary Orlicz function to ¥.
The Orlicz space denoted by L¥ = LY (R") consists of all measurable functions ¢ :

R"” — R such that
/ W(lg(x)l)dx<oo
n o

for some o > 0.
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When ¥ is a Young function, i.e. a convex Orlicz function, the quantity

1 flle :inf{a >0:/nl1’<|f((xy)|>dy§ 1}

is well known Luxemburg norm in the space LY (see [26]).
A Young function ¥ is said to satisfy the V,-condition, denoted ¥ € V, if for some
K>1

1

It should be noted that ¥ (¢) = ¢ fails the V;,-condition.

THEOREM 2.3 ([19]). The Hardy-Littlewood maximal operator is bounded on LY,
provided that ¥ € V.

Combining Theorem 2.3 and 1.8, we obtain the following statement.
THEOREM 2.4. Letb € BMOR") and ¥ € V.
Then the operator Cy, is bounded on LY , and the inequality

ICs fllpe < clbll«llfll e

holds with constant ¢ independent of f.
Moreover, if b~ € Loo(R"), then the operator [M, b] is bounded on LY, and the in-
equality

1M, Bl fll e < bl + 107 lo) | £l v

holds with constant ¢ independent of f.

Let us define the ¥ -average of g over a cube Q of R” by

lgllw. 0 =inf{a >0: ééw('gg)|)dx < 1} )

The generalized Holder’s inequality
1
10|

where ¥ is the complementary Young function associated to @, holds.
If f € LY (R"), the Orlicz maximal function of f with respect to ¥ is defined by setting

2.2) /Q LfDMgWldy <211 flle.ollglleo .

My f(x)=sup | fllyo,
xeQ

where the supremum is taken over all cubes Q of R” containing x.
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The main example that we are going to use is ¥ (t) = t(1 + log™ ) with maximal
function defined by M (1 144+ 1)- The complementary Young function is given by @ (1) = e
with the corresponding maximal function denoted by Mexp 1.

We define the weak L(1 + log™ L)-average of g over a cube Q of R analogously by

. I {x e Q:1gx)| > at}|
llgll + =inf{a > 0:sup— <1
WL(1+logt L),Q =0 10| 1 (1 +log* %)

Let 0 < A < n. The Zygmund-Morrey spaces M og1),1(R") = ML(1+10g+ ). (R
and the weak Zygmund-Morrey spaces WM (10g 1), (R") = WM L(1+log" L), ;, (R™) are de-
fined as follows:

ML(1+log+ L),A(Rn)
=L EMRY) N FIM, e 1), = SZPIQI“ 1A 1z ti0gt 1.0 < OO}’

WM (1+log™ L),A(Rn)

~

2
=1L €M N FIWM, g 1), = sup Q1" f llwLat10g* 1.0 < OO} ’

respectively. Note that M ;4 100+ 1) ; 1S @ special case of Orlicz-Morrey spaces L% (with

@(t) =t(1+1logT¢t) and ¢ (1) = t*,t > 0) defined in [27, Definitions 2.3]. As we know, a
weak version has not been defined yet in such form.

3. Boundedness of maximal commutator and commutator of maximal function in
Morrey spaces

In this section we investigate boundedness of maximal commutator and commutator of
maximal function in Morrey spaces.

THEOREM 3.1. Letl < p < 00,0 < A < n. The following assertions are equivalent:
(i) b € BMO(R");
(ii) The operator Cy is bounded on M ;..

PROOF. (i) = (ii). Suppose that > € BMO(R"). By Theorem 1.9 and inequality (1.7)
it follows that C}, is bounded in Morrey space M, ; and the following inequality holds:

ICo (M, S Bl fllnm,,, -
(i1) = (i). Assume that there exists ¢ > 0 such that

ICs (M, < cllflim,,

forall f € M.
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Obviously,

1
1, ~ sup (|Q’|*n” / |f<y>|f’dy>” .
o’ o’

Let Q be a fixed cube. We consider f = y. It is easy to compute that

1 1
A—n P , A—n\ p
Ix0lm, , ~ sup (IQ’IT/ XQ(y)dy> = sup(lQ N QIIQ1F)’
(3'1) Q/ Q/ Q/

A % L
= suwp (1011017)" =101 .
<o

On the other hand, since

1
Cpr(x0)(x) 2 —/ |b(y) — bgldy forall xe Q,
101 Jo
then
1
I1Cs (X IM,, R sup <IQ’|A"n/,ICb(XQ)(y)|pdy)I
3.2) 0 0]
ro 1
> np b —boldy.
> 10| |Q|/Q' () — boldy

Since by assumption

1Co (XD In, < Ixolm,, -
by (3.1) and (3.2), we get that

1
— | () =boldy <c.
|Q|/Ql(y) oldy S ¢

Combining Theorem 1.9 with inequality (1.9), we get the following statement.

THEOREM 3.2. Let0 < A < n. Assume that b € BMO(R"). Then the operator Cp is
bounded on M , for radially decreasing functions.

The following theorem was proved in [34].

THEOREM 3.3. Letl < p < 00,0 < A < n. Suppose that b is a real valued, locally
integrable function in R". The following assertions are equivalent:

(i) b € BMOR") such that b~ € L (R™);

(ii) The commutator [M, b] is bounded in M ;.
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REMARK 3.4. (i) = (ii). Assume that b € BMO(R") such that b~ € Ly (R"). By
Theorem 1.9 and inequality (1.7) it follows that [M, b] is bounded in Morrey space M, ; and
the following inequality holds:

1M, DY flim,, S (0T 1+ 167 lloc) 1M, -
Combining Theorem 1.9 with inequality (1.9), we obtain the following statement.

THEOREM 3.5. Let0 < A < n. Suppose that b € BMO(R") such that b~ € Loo(R").
Then [M, b] is bounded on M ;. for radially decreasing functions.

4. Some auxiliary results

To prove the theorems in the next sections we need the following results.

THEOREM 4.1. LetO <« < n. Then

/ MF % S0 1011 Nt 1.0
zsup|Q|¥f Ifl<l+1 +'—f'>
P 1o

The statement of Theorem 4.1 follows by the following lemmas.

My(Mf)(x) = Zup 1015

holds for all f € L*(R").

LEMMA 4.2. The inequality

1
@.1) L / MEGYdy S sup 1 FllLsog* 1.0
101 Jo 0co

holds for all f € L11°°(R”) and all Q.
PROOF. Let Q beacubeinR" and f = f1 + f2, where fi = fx30. Then

1 1 1
(42) = [ Mroay = — [ Mpmay+
101 Jo 101 Jo 10|
We recall a simple geometric observation: for a fixed point x € Q, if a cube Q’ satisfies
Q' sxand Q' N (BQY) # @, then Q C 3Q’. Hence

1 1
Mfs(x) = / 1 dy < sup / 1f )] dy
0sx 191 Jor oc3o 19l Jor

Consequently, we have that

4.3 M d
(43) o1 [, oy £ s o [ 1ol

/ My dy.
0
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Since for any cube Q’

/ Oy < 1l tstog 1.0+

0
we get
(4.4) = / MY S S0 1 st 1.0
On the other hand
= / MEGYdy S 1 lLosiog 1.0

for all f such that supp f C QO (see [25, p. 174]). Thus

4.5 dy < ——
@5) |Q|f MAMdY S 5o

From (4. 2) (4.4) and (4.5), it follows that

/ MAGY Y S 1F gt 130

/ MI0Ydy S 500 1 iqtsig .0+ W Lasios* .30
we 10

< sup ||f||L(1+log+L),Q/'
ocy’

O
We recall the following statement (see, for instance, [17, p. 175]). For the completeness
we give the proof.

LEMMA 4.3. Note that the estimation

+ [f]
M(f ~ f 1-|-1 -
/Q ( XQ) ,/ | |< |f|Q>

holds for all f € L11°°(R”) and all Q.

PROOF. Let Q be acubein R". We are going to use weak type estimates (see [30], for
instance): there exist positive constants ¢; < 1 and ¢ > 1 such that for every f € L11°°(R")

and for every ¢ > l/IQIfQ [f]

c1/ WO <weo: M(fo)(x>>t}|<c2/ Ot
(xeQ:f)|>ty ! (xeQ:f@)>t/2) 1

holds.
We have that

/Q M(fxo) = /0 € Q: M(fxo)x) > A)ldA
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[flo
- / x € 0 M(fxo)(x) > A)ldh
0

+/f {x € Q: M(fxo)(x) > A}ldA
Q

=10lflo +/ Hx € Q:M(fxo)(x) > A}ldx

[flo

> dx
Z|Q||f|Q+CI/ </ If(X)Idx) .
Iflo \ixeQ:l f@)1>4)

IOl gy,
=|Q||f|Q+C1/ f =) @i
{xeQ:| f(x)[>|flo} [flo

|f(x)] log (M) dx

=|Q||f|Q+C1/ o

{xeQ:lf ()I>1flo}

5/ |f|<1~|—10g+—|f| >
0 [flo
On the other hand,

/Q M(fxo) = fo x € 0 M(fro)(x) > A)ldh
~ fo X € 01 M(fxo)(x) > 21 Idh
[flo
_ fo X € 0 M(fxo)(x) > 24)|dA

+/|f X € 0 - M(fx0)(x) > 24)|dA
Q

o di
<101flo +c2 [ (/ | If(x)ldx) %
Iflo {xeQ:[f(x) >}

£ (o)l
1 d
/ol °g< IfIQ) '

=|Q||f|Q+C2/
{xeQ:| f()>Iflo}

|f|>
< logt —— | .
NfQIfI<l+og o

LEMMA 4.4. [Inequalities

1 [f]
0l /Q [f] <1 + log* %> ~ N fllLasiogt ). 0
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hold for all f € L11°°(R") and all Q.

L[l < . |f|>
l l 1 I b
=701 Jo1rTe U T8 10,

[flo = 1flzc1410g* 1), 0 -

PROOF. Since

then

Using the inequality log* (ab) < log™ a + log™ b, a, b € RT, we have that

. Ifl)
IQI/ 'f'< i1
1 | f] I F N Li+10et 1), 0
= — 1 +loe™t
|Q|/Q'f'< Floe (ilfumﬂogm,g flo ))

1 [f1
_ I +logt — I
0] /Q 'f'< o T ocsme 1), Q)

||f||L(1+1og+ L),0
IQI ./ /1o [flo

+ I laiogt 1.0

[flo

IA

= 1 fla+iogt 1), 0 + 1 /1o log

. . o Il ast0g
In view of inequalities %Qﬁu,g > landlogt <t,t > 1, we get that

1 |f1
0l /Q [f1 <1 +log* %> =20 fllLci410g" 1), 0 -

On the other hand, since

1 [f1
Lf1 - =—/|f| I +logh ————— | |
Litoem 1.0 = 19) [, 1L 1410g* 1), 0

onusing |flg < ||f||L(1+1og+ L), 0> We arrive at

1 |/
120t 12,0 < |—Q|/Q /] (1 +log” %) '

PROOF OF THEOREM 4.1. By Lemma 4.2, we get that

sup [Q1F | Mf(y)dy < sup |Q|n SUP ||f||L(1+1og+ L),0 = sup Tellg 1A Li410gt 1), 0 -
O3x 0 O>x QcC
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The equivalence

Il
sup 1011 1114106100 ~ S0P 1017 /|f| (1+log+
o L(1+logt 1),0 ™ 0 o

is obvious in view of Lemma 4.4.
By Lemma 4.3, we have that

an [f1
0 1+ log™ <
Zusngl ./Qm( o [flo ) lesl;)c'Q' /Mf

The following corollaries follow from Theorem 4.1.
COROLLARY 4.5. Inequalities

|f]
4.7 M?f(x) = M (1 410g+ 1) f (X) = susg @ Vi <1 +log" %>

holds for all x € R" and f € L11°°(R").

COROLLARY 4.6. Let0 < A < n. The equivalencies

N 5 s o IS
M5 Ut = 15101, 58P 1) /Qm <1+log —mg)

hold.

Note that M2 f ~ M (1 110g+ 1) S Was proved in [25] (see, also [13, p. 159]). For the sec-
ond part of (4.7) see [6], [20], [21] and [25]. The equivalence ||Mf||ML~A = ||f||ML(l+log+ D

is a special case of [27, Lemma 3.5].

5. A note on the boundedness of the maximal function on Zygmund-Morrey
spaces

In this section we prove that the Hardy-Littlewood maximal operator M is bounded on
M 410gt 1), 0 < A < n, for radially decreasing functions, and we give an example which
shows that M is not bounded on M (| o0+ ) 2: 0 <2 <n.

In order to prove the main result of this section we need the following auxiliary lemmas.

LEMMA 5.1. Assume that 0 < A < n. Let f € MGV (RY) with f(z) = ¢(|z]),
z € R". The equivalency

Y L B _
IIfIIML(Hh,g“H “Supxl "/ —/ lp(0)p" " dp dt
' x>0 o tJo

holds.
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PROOF. Recall that

r—n
110, g 1y SR 1B /B Mf = |My(Mf)llsor f € DMR").

. 1 . . ~ > d,
Since My, (/)Y 2 o= [,y 1/ (@)1 dz, inview of Mf ~ Hf, f e M .
switching to polar coordinates, we have that

My (Mf)(y) 2 Mf(z)dz

ey
|BQO, [yDI"=*/" S0,y

e
N— |Hf(2)|dz
|BQO, [yDI"=*/" Jp0,1y)

1 / 1
= _ |f(w)|dwdz
|BO, [yDI'=*/" Jp,1yp 1B, 12D J,12p

1 / |z 1
N Izl_"/ lp(p)|p" " dpdz
|BQO, [yDI'=*/" Jp0, 1y 0

N Il pt |
~ |yl _"/0 /0 lp(p)|p" " dpdt.

3
Consequently,

Il rt
> A—n - n—1
10ty 15 2 055500 1 /0 t /0 I9(0) 10"~ dp dr

Y B _
= supx” / —/ lp(p)|p" " dpdt
o IJo

x>0

where f(-) = ¢(] - |).
On the other hand,

A=n |BI
£ty sy, S SUPIBIS /O M)y dr
! B

smn (1B
~sup |B| n @ de
B 0

A—n |B‘ 1 !
:suplBlT/ —/ f*(s)ds dt
B o tJo

1Bl

—n !
:sup|3|*7f —/ (s ™) ds di
B o tJo

- 1Bl 1 i
~ A—n n—1
~ sup |B| f —/ lp(p)|p" ™" dpdt
B o tJo
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N |B\% 1 X
~ AR n—1
~ sup |B| f —/ lp(p)|p" " dpdx
B 0 X Jo

Y B _
= supx’ "/ —/ lp(p) 0" dpat,
o Jo

x>0

where f(-) = ¢(| - . 0

COROLLARY 5.2. Assume that0 < A < n. Let f € 924V (R") with f(2) = ¢(|z]),
z € R". The equivalency

L
IS UMy g1y ™ SO /0 S /0 - /0 w(p)p" " dpdt dy

holds.

PROOF. Let f € MMV with f(z) = ¢(|z]), z € R". Since Mf ~ Hf and Hf €
gpprad. by Lemma 5.1, switching to polar coordinates, we have that

| y 1
M7 ~ sup x* " / ! / (— If(y)ldy)t"_ldtdy
Muavoera = S0 J0 5 )0 \TB0. 01 Js0

A 1 71 ! 1
A sup x _"/ —/ —/ @(p)p" " dpdtdy.
x>0 o YJo tJo
O

LEMMA 5.3. Assume that0 < A < n. Let f € 92 with f(z) = ¢(|z]), z € R™
The inequality

< rad, |
IMFIAM, gt 1 S UM arogt 0 £ €O

holds if and only if the inequality

X 1 y 1 t
supxk‘"/ —/ —/ p(p)p" "dpdtdy
x>0 o yJo tJo

X 1 t
< supx* " fo ” /O o(p)p" Ndpdt, ¢ € M0, 00)

x>0
holds true.

PROOF. The statement immediately follows from Lemma 5.1 and Corollary 5.2. O

LEMMA 5.4. Let0 < A < n. Then inequality

X 1 y 1 t X 1 t
(5.1) supx*™" / - / - / 9(p)p" ' dpdtdy < supx*" f - / o(p)p" M dpdt
o yJo tJo o I Jo

x>0 x>0

holds for all ¢ € MT+(0, 00).
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PROOF. Indeed:

t
sup x* / / / o(p)p" " dpdtdy
x>0 0
= supx _"/ Yy "/ / o(p)p" ' dpdtdy
x>0
<supy"” / /w(p)p” Ydpdt - <supxk‘”/ y”‘de>
y>0 x>0 0

P A B _
~ sup y* "/ —/ p(p)p" 'dpdt.
y>0 o Jo

(]
THEOREM 5.5. Assume that 0 < A < n. The inequality
IMFNM, 0t 15 S TP IM gt 1)
holds for all f € M,
PROOF. The statement follows by Lemmas 5.3 and 5.4. O

EXAMPLE 5.6. We give an example which shows that M is not bounded on
M a4iogt 1y2 0 < A < n. For simplicity let n = 1 and A = 1/2. Consider even func-
tion f defined as follows:

e¢]

fx) = ZX[kz 02 (ko) k2 1n (k-+¢)+ 11X x=0.
k=0

It is easy to see that M f and M f are even functions. Obviously,

o0
Mf(x) ~ Z X[k2 102 (kte) k2 In (kt-e)+1] (XD
k=0

+ Z —k2 m2(k + )X[k2 102 (ke)+1,K2 02 (k-+e)+1+-my ] X)

o0

1
+ Z G+ D2 I (k+14e) + 1 — xX[k2lnz(k+e)+1+mk,(k+l)2lnz(k+1+e)](x)’ x=0,
k=0

where

k+ 1)2In2k + 1 — k2 1In%(k -1
my = K D77k + +§) ekt =l o2
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Then

~ —1/2
17 1My st 1120 1M Iy pcR) = sp | / fl Mf
< sup |I|_1/2 Mf + sup |I|_1/2/Mf.
I:I1<1 1 I:|I|>1 1

It is clear that

sup |I|‘1/2/Mf§ sup |[I1'?<1.
I:11<1 I I:]11<1

Since

(+D21In?(j+e+1)

/ Mf(x)dx~(1+2In(1+mj)), j=0,1,2,...,
jAIn%(j+e)

we have that

sup |1|—1/2/Mf(x)dx =sup  sup |1|—1/2/Mf(x)dx
1 1

1:]1|>1 m=>21:m—1<|I|<m

m
< supm_l/Z/ Mf(x)dx
0

m=>2
G+1)2 102 (j4e+1)
< sup m~1/? Z Mf(x)dx
m=2 J2n?(j+e)

i21n%(j+e)<m

sup m~1/? Z (1+21In(1 +m))

m=>2

&

2102 (j+e)<m

sup m~1/? Z In(j +e)

m=>2

A

i21n%(j+e)<m

A

sup m 12,2 = ,
m>2

therefore
“f“ML<1+1og+ L),1/2(R) 5 I+1=2.
On the other hand, it is easy to see that
1 x dt

x — (K212 (k 4+ e) + 1) S22 (k+e)+1 m

In(x — k2 In?(k + e))
T —KInlk+o+ D)
In(x — k2 In*(k + ¢))

x — k2In%(k +¢)

M2 f(x) >

211
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for any x € [k2In’(k + €) + e, k2 In>(k + e) + my].
Thus

o0

In(x — k% In?(k + e))

2

M) 2 ) ey AWk 2 ey ] )
k=0

Finally,

~ 2
||Mf||ML(l+log+ L).l/Z(R) ~ “M f”./\/llyl/z(R)

LV

k2 1n? (k+e)
sup(k In(k + e))™! / M? f(x)dx
k 0

k=1 o2 (j+e)+m;

sup(k In(k + e))~" Z/ M? f(x)dx
k =i

2In?(j+e)te

v

v

k=122 (j+e)+m; I — 212k
sup(k In(k + €)™ Z/ nx . k¥,
k oo e x — kZIn“(k + e)

lk_l mj p x
sup(k In(k + €)™ Zf —dx
k j=1 e X

k—1

sup(k In(k + ¢)) ™! Zlnzm i
k .
j=1

LV

k=1
sup(k In(k + ¢)) ™! Z In?(j + e)
k .
j=1

> sup(k In(k + ¢)) "'k In?(k + ¢)
k

LV

=supln(k +e) = c0.
k

6. Weak-type estimates in Morrey spaces for the iterated maximal function

In this section the boundedness of the iterated maximal operator M? from Zygmund-
Morrey spaces M (1 4100+ 1), t0 Weak Zygmund-Morrey spaces WM (4100t 1), 1S proved.

THEOREM 6.1. Let 0 < A < n. Then the operator M? is bounded from
ML asiogt £y 10 WM (1 4106+ 1), and the inequality

2
(6.1) | M f”WML(H]Og+ L) = C||f||ML(]+log+L).)»

holds with positive constant c independent of f.
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PROOF. Let Q be any cube in R" and let f = fi 4+ f2, where fi = fxs0. By
subadditivity of M? we get
M2 f < M*fi + M* f,.

Since for any cube Q’ conditions z € 20 N Q" and Q' N {R"\4Q} # @ imply Q C 4Q’,
we have

(6.2) Mfa(z) = M(f xrm\a0)(2) < IfI

oc4g’ IQ |
for any z € 2Q. Thus for any z € R"

63) / 1+ xR0 M)

ocao 19l
Applying the operator M to both sides of the inequality (6.3), we get that

(6.4) M?fr(y) <

- / Lf1+ M(xrm20Mf)(y)
ocao 191 Jor

forany y € Q.
Since M (x20)(y) = 1,y € Q, by inequality (6.2), we arrive at

1
|f1+ Mf S sup — | Mf.

65 M ()<
ocso 191 Jor oc20 19" Jor oco 101 Jg

Consequently, for y € Q

(6.6) M*f(y) S M*(f xa0)(y) Mf.

IQI

Since
6.7) 1 +log*(ab) < (1 +1log™ a)(1 +log™ b),

by Lemma 2.1, for any « > 0 and r > 0, we have
[re0: M2 (fru0)@) > a]

< Hx ER": M2(fya0)(x) > atH

< C/ |(f xa@) ()] (1 +log <|(fX4Q)(.X)|>>d
n ot ot
<et <1+10g+ l>f el (1+1 ('f(x”))
o o 40 t
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Therefore
. 2
l{x € 0 : M*(fxa0)(x) > ar}] SC/ | f () <l+log+<|f(x)|))dx
5(1 +log* é) 40 t

Consequently,
p 1€M@ > ]| L0 <l+log+<|f(x)|))d
=0 Q] é(1+10g+ é) T 401 Jag 8 t

Thus

. 2
infd7>0:sup— 1 |{x € 0: M*(fxa)(x) > atl|
a0 19| $<1+10g+ é)

. L[ ™) |f @)l
51nft>0.|4Q| » ; <1+1 ( >> xgl}

. b cl f(x)l c| f(x)l
< inf t>0.|4QI M <1+1 ( >> xSl}

2
(6.8) IM(f x40 lwrsiogt 1y,0 = leflLasiogt £y.40 = N L1410t L).40 -

<1

that is,

For the second summand on the right hand side of inequality (6.6), applying the inequal-
ity (4.6) we obtain

S Mf
/ 4 ~ / /
(6.9) oce' €] wLasogt .o 0c0 1910
< sup ”f”L(]J,—]()g L),0+
0co
By inequalities (6.6), (6.8) and (6.9) we get
2
(6.10) IM* fllwrtiogt 1),0 =€ SUP I fllLa4iogt 1), 0" -
Qc4Q’

Therefore

SUP|Q| ||M f||WL(1+log+L) o0=¢ SUP|Q|" Sup ||f||L(1+1og L),0’'
Qc40

. 2 .
<c {sup|Qlx sup [Q'I7% ) sup Q" | fllL(1410e* 1), 0
0 Qc4Q’ 0

2
~ sgpIQI” If Il 1410gt £), 0 -
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that is,

2
M f||WML(1+1Ug+L);A = C||f”ML(|+1og+L>,A'

7. Proofs of main results

In this section we prove main results.
PROOF OF THEOREM 1.10. (i) = (ii). Assume that b € BMO(R"). By Theorems 1.9
and 6.1 operator Cj, is bounded from M ;146 1) 5 10 WM (1 4106+ 1), and the inequality

(7.1) ||Cb(f)||WML(1+1Ug+ L) = c”b”*|l‘f|lML(l+lug+ L

holds with positive constant ¢ independent of f.
(i1) = (i). Assume that the inequality

(7.2) ICHCIWM, s 15 = NNy

holds with positive constant ¢ independent of f. Let Q¢ be any cube in R"” and let f = xo,.
By Theorem 4.1,

A—n X0o
Ix00 A x~sup| Q) /x (Hlog*—)
Qo L(1+logt L),x 0 0 Qo (XQO)Q

A|Q0Q0|< 0l )
= n——— 1 4+1log——— ] .
oo O o Utleegagg

Obviously,

> A
1X0 M, gt 1,5 2 1Q017 -
Let e € (0, 1 —A/n). Since the function (1 4+1log#)/¢¢ is bounded on the interval [1, 00),
we get

1x00 i < sup |Q|%'Q0Q°'( 9] )
O D 8 00 0| 1O N Qol

Ao _
= sup Q" oNQolE
0: 0NQo#Y

Ao _ A
= sup [QI"T71Q N Qo' = Qo] .
Q<0

Thus

A
(7.3) 1X 0ol M, g 15 = 1Q017 -
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On the other hand

A
||Ch(XQ0)||WML(H10g+ D SZP 117 1Ch (X @) lwL(1410g™ L), 0

A
= 1Qol" ICs (X o) lwL(1+10g" 1), 00 -
Note that

1Co (X @) lwL(1410g+ ). 00

1 : A
=inf{k -0 sup l{x € Qo1 |Cb(XQ0)(1x)| > M| - 1}
>0 1 Qol ;(1+10g+ 7)

> inf{x >0 @Hx € 00 1Ch (x| > 24 < 1.

Since for any x € Qg

1
Cp(x00)(x) = 100l Ib(X) b(y)ldy = 2|—Q| Ib(y) —bgldy,

then

{x € Qo: Cp(xoy)(x) >2—— Ib(y) - bQOIdYH =

2
100l 4IQ I

Thus

1
1Co(xon)l . z—/ b(y) — bo|dy .
Qo) lwL(1+log™ L), Qo 4100] 00 y Qplay

Consequently,

A
(7.4) 1o Gto WAty iy 2 1Q01 /Q () — boydy.
0

| Qol
By (7.2), (7.3) and (7.4) we arrive at

— | b)) = bo,ldy S c.
100l Jo, %

O

PROOF OF THEOREM 1.11. Combining Theorems 1.9 and 5.5, we get the proof of
Theorem 1.11. O

PROOF OF THEOREM 1.12. The statement of Theorem 1.12 follows by Theorems 1.9
and 6.1. O

PROOF OF THEOREM 1.13. The proof of Theorem 1.13 follows by Theorems 1.9 and
5.5. O
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