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A Diffusion Process with a Random Potential
Consisting of Two Contracted Self-Similar Processes
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Abstract. We study a limiting behavior of a one-dimensional diffusion process with a random potential. The
potential consists of two independent contracted self-similar processes with different indices for the right and the left
hand sides of the origin. Brox (1986) and Schumacher (1985) studied a diffusion process with a Brownian potential,
and showed, roughly speaking, after a long time with high probability the process is at the bottom of a valley. Their
result was extended to a diffusion process in an asymptotically self-similar random environment by Kawazu, Tamura
and Tanaka (1989). Our model is a variant of their models. But we show, roughly speaking, after a long time it is
possible that our process is not at the bottom of a valley. We also study asymptotic behaviors of the minimum process
and the maximum process of our process.

1. Model and results

Denote by W the set of R-valued functions w on R satisfying:

(1) w() =0,
(i1) w is right-continuous and has left limits on [0, c0),

(iii) w is left-continuous and has right limits on (—oo0, 0].
Let oy, a2 > 0, and Py, q, be the probability measure on W which satisfies:
(1) {w(=x),x >0, Py, 4} is an o —1_gelf-similar process with time parameter x,

(i) {w(x),x >0, Py, o} isan o>~ -self-similar process with time parameter x,

(iii) two processes above are independent.

In words, we have

d
{(Tzw, Py 0y} = {W, Poy,ap) forall &£ >0,
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where

[ 'w(EMx) for x <0,
(Tew) () = {é_lw(é‘xzx) for x > 0,

and 4 means the equality in distribution. Let ¢ € (0, min{1/(2a1), 1/(2a2)}) be fixed. For
w € Wand A > 0, define w; € W by

—cA

wy(x) =re “wkx), xeR.

Then for each A > 0 we also have
d
{Tzwy, Poy,ap} = {wa, Pyy,a,) forall £ >0.

Let £2 denote the set of R-valued continuous functions on [0, 00), and for w € £2 andt > 0
set X(t) = X (¢, w) = w(r). Forw € W and xo € R, let P;° be the probability measure on
£ such that {X(¢), ¢t > 0, P;} is a diffusion process with generator

1o d d
o= Lww 4 (w4
L R <e dx

whose starting point is x¢. Define P;°, a probability measure on W x £2, by
P (dwdw) = Py, g, (dw) Py (dw) .

For each A > 0, we regard {X(¢),t > O, Pf“} as a process defined on the probability space
(W x £2, 73;0), which we call a diffusion process with a random potential consisting of two
contracted self-similar processes. We investigate the behavior of the process { X (¢), t > 0, 73)(3 }
att = e* (A —> 00).

A diffusion process with a Brownian potential was studied by Brox ([1]) and Schumacher
([8]). Their result was extended to a diffusion process in an asymptotically self-similar ran-
dom environment by Kawazu, Tamura and Tanaka ([5], [6]). On the other hand, in [3] and
[4] a diffusion process with a one-sided Brownian potential was investigated. Moreover, in
[9] the results in [5] and [6] were extended to a diffusion process with a random potential
consisting of two self-similar processes with different indices. Namely, in [9] the limiting
behavior of the process {X (¢),¢ > 0, 7781,“2
is the probability measure on W x §2 defined by

} as time goes to infinity is studied, where Pgl @

Po(t)l,az (dwdw) = Py, o, (dw)Pg (dw) .

She shows that, roughly speaking, for large ¢ with high probability X (¢) is at the bottom of a
valley. This result corresponds to the results in [5] and [6], where the case o1 = a7 is studied.
Our present model is a variant of the model in [9], but our result concerning the behavior
of X (e*) is much different from the results in [1], [5], [6] and [9]. Roughly speaking, for
large A it is possible that X (¢*) is not at the bottom of a valley in the case a; # a». For the
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precise meaning of this, see Theorems 1.1 and 1.2 combined with Theorems 1.6, 1.10 and
Remark 1.2. We remark, in [10] she gets a similar result to ours for a diffusion process with a
Brownian potential including a zero potential part.

To state our results, we prepare some notation. Set &; = co; (< 1/2),i = 1,2, and for
w € Wand A > 0 define rw € W by

A w(e®*x) for x <0,
A w(e®*x) for x > 0.

(aw) (x) = {
Then it is easily seen that
{Taws. Payay} = (W, Py oy} forall 2> 0. (1.1)
Denote by W* the set of functions w € W satisfying

limsup{w(x) — inf w(y)} = limsup{w(x) — inf w(y)} =00,
O<y=<x x<y=<0

X—>00 X—>—00
and for w € W* set

&1 =a(w) = supfx <0:w(x) — inf w(y)=1- 2a1},

x<y<

O =o(w) =inf{x > 0: w*(x) — Oinf w(y) > 1 —2a,},
<y<x

where
w*(x) =whk=) Vwx+), wix)=wkx=)Awkx+), x eR.
We notice —oo < ¢{1(w) < 0and 0 < & (w) < oo forany w € W#. We also define some
functions of w € W* as follows (cf. [6], [9]):
Vi =Vi(w) =inf{w,(x) : {1 <x <0},
V2 = Va(w) = inflws(x) : 0 < x < {5},

{C1 <x <0:wex) =Vi} if w(@) =Vi,

b1 = bi(w) = {{cl <x=0:wx) = Vi) if w@) £ Vi,

0<x <:wx)=V2} if w() =V,
0<x <= :wilx)=Vo} if w()#Va,

by =b1(w) = minby(w), by = ba(w) = maxby(w),

by =ba(w) = {

sup{w*(x) : by <x <0} if by <O,

Mlel(w):{O i bl:o’

supfw*(x) : 0 < x < by} if bp >0,

Mz:MQ(LU):{O i bz:O’
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—ay(w) = b1 =x <0:w*(x) =M} if wb) <wbi+),
a1 =aiw) = (b <x <0:w*(x) =M} if wb)) > wb+),
— ay(w) = {0<x <by:w*(x) =M} if wby) <w(br—),
R=0W =0 <x <by:w*(x) = My} if wbn) > w(ba—),
at =a (w) = maxa;(w), a; =a; (w) =mina;(w), i=12,

Ki =Ki(w)=M;w)Vv (Vi(w)+1-20;), i=12.
Moreover, for w € W¥ and ¢ > 0 we set

b1(w) it wby) > w(bi+),
bi(w) —e if w(by) < wb1+),

by (w) if w(b2) > wbr—),
by(w) +¢ if w(by) <w(by—).

bl,s = bl,s(w) = {

b2,s = bZ,S(w) = {

We divide W* into two subsets (cf. [7], [9]):
A={weW' K +ad < K>+ @},
B={weW: K +a& > K»+a)},
and for A > 0 we set
Ay ={weW:nw, e A},
B, = {w € W* : rw; € B}.

By (1.1), we note Py, ¢, {Ar} = Py 0, {A} and Py, o, {Br} = Py, ,a,{B} forall A > 0.
Now we state our results on the behaviors of {e=¥* X (¢*), PV} and {e~%* X (e*), PV}
In the following theorems, Py, «,{:|-} denotes the conditional probability.

THEOREM 1.1.  Suppose Py, o, {(W#} = 1. Then for any ¢ > 0 and M > 0 the follow-
ing (1)—(iii) hold.
1) Alirrgo Pojar {E|; A} =1.

(i) lim Poyo(E], B} =1, if a1 > .

(iff) Hm Payo (B, poIBr} =1, if a1 <.

Here
Efe = (w e W' pi; () > 1 -,
El e =weWhepl, ) > 1—e},
Pra(w) = ng{e—&lxx(el) € Us(by(nwy)) N (by.¢(Tw;), 0)},
P e(w) =P {0 < eTX () <},

P W) = P) (e X () > M},
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and Ug(a) denotes the open e-neighborhood of the (generic) set a in R.

THEOREM 1.2. Suppose Py, o, (W#} = 1. Then for any ¢ > 0 and M > 0 the follow-
ing (1)—(iii) hold.
1) )\li)n;o Pal,az{Ez_,)hM,slA)»} =1, ifar>a.
(ii) Xli)ngo Pojar{Byy (A} =1, if a1 <.
(iif) lim_ Poyon{E7,; B} =1.
Here
Eyme=fwe W Py y(w) > 1 —¢},
Ezi,x,s = {w e W*: Pzi,x,g(w) >1-—¢},
Py ) = PO {e ™ X (e¥) < —M},
pixﬁg(w) = ng{—s < e_az)‘X(e)‘) < 0},
Py (w) = PO {e™* X (e") € Ue(ba(tws)) N (0, bo e (tawy))}

EXAMPLE 1.1 (cf. [9]). Letaj,a2 € (0,2), and Py, o, be the probability measure
on W such that {w(—x),x > 0, Py, «,} and {w(x),x > 0, Py, «,} are, respectively, sym-
metric o1-stable and symmetric ap-stable Lévy motions with time parameter x, and these
two processes are independent. Then Py, o, satisfies our conditions and Py, 4,{W#} =
Py, {AUB} = 1.

REMARK 1.1 (cf. [9]). Leta; = oo = o € (0,1), and Py, o, be the probability
measure on W such that {w(—x),x > 0, Py, e} and {w(x),x > 0, Py, «,} are indepen-
dent «-stable subordinators with time parameter x. Then Py, «, satisfies our conditions and
Pal,az{W#} = Py,,0n{K1 + 01 = K2 + @2} = 1. In this case by (w) = ba(w) = {0} for any
w € W# and the following holds for any & > 0 :

lim PY{e 14X (") € (—e,0)} = 1.
A—>00

The following corollaries are obtained from the proofs of Theorems 1.1 and 1.2.

COROLLARY 1.3. Suppose Pa,,az{W#} = 1. Then for any ¢ > 0 and M > O the
following (1)—(iii) hold.

() Hm Py, o (Es, |4 =1,

(if) lim Py o (3, B} =1, if &1 > .

(i) Hm Poy oo (B3 yyoIBa} =1, if o1 <2
Here

]Eim ={weW*: péc’)ha(w) >1—g¢},
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+ #. +
E?:,A,M,s ={weW .plLM’E(w) >1—¢},
A

e
p3; (W) = P&{e_A/ L, by ()N 1o () 0 (€ X ())ds > 1 — 8}7
0
EA ~
Py w) = pgk{ﬂ/ 1o.6)(e X (s))ds > 1 — e},
0

et

PLme(w) =P {ﬂ/ 1(M.00) (€O X (8))ds > 1 — e} ,
0

and 1, denotes the indicator function of the (generic) set a.

COROLLARY 1.4. Suppose P(x],az{w#} = 1. Then for any ¢ > 0 and M > O the
following (1)—(iii) hold.
(i) lim Poy o (B, oA} =1, if o > o
(i) Hm Pooy{By, Ax} =1, if 1 <on.
(iff) lim_ Py oy {Ef, 1B} =1.
Here
By ome={weW:pr \ (w)>1-¢},
By, ={weW:py, (w)>1—¢},
A

e ~
Pasmew) = ng{e%/o 1(_00,_M)(e_°‘2)‘X(s))ds >1— 8} ,

A

€ ~
Pyse(w) = ng{e_)‘/o 107" X (s))ds > 1 — 8} )

e)‘ ~
P, (W) = P&{e_k/ 10, (b (030N 0.ba e (rwz ) (€24 X (5))ds > 1 — 8}-
0

Next we study the minimum process and the maximum process of {X (¢),¢t > 0, 73)?}.
Forw € £2 and t > 0, we set X(¢) = X (¢, ®) = ming<s<; X (5, w) and X(t) = X (¢, w) =
maxo<s<; X (5, ). We investigate the behaviors of {X(¢),7 > 0, Pg} and {X (1), 1 > 0, PS}
att = ¢* (A > 00). In the following, we define some functions of w € W#. For y € R, we

set

21(y) = ¢1(y, w) = supfx < 0: w*(x) — infow(y) >1-2a; +y},

x<y<

0(y) = ooy, w) = inflx > 0: w*(x) —O<inlf<x w(y) > 1-26 +v}.

We are interested in ; (y), i = 1, 2, in the case |y | is sufficiently small. Note that ¢; (0) = ¢;,



A DIFFUSION PROCESS 27

i = 1, 2. Moreover, we set fore > 0

g1(e) if w(Zi(e)) = w(Gi(e)+),
si1(e) —e if w(Zi(e)) > w(gi(e)+),

2(8) if w(s2(e)) = w(2(e)—),
S2(e) +e if w(ga(e)) > w(fa(e)—).

L1, = C1e(w) = {

0 =0Ww) = {

We also set, for y € R
p1(y) = p1(y, w) =sup{x < 0:w(x) > Kr —a) +a& + v},
p2(y) = p2(y, w) = inf{x > 0: w(x) > Ky +a; —a2 +y}.
In the above (and also in the below) we understand sup ¥ = —oo and inf J = oo. In particular,
we set
p1 = p1(0) = p1(0, w),
p2 = p2(0) = p2(0, w),
v = v(w) = inf{w,(x) : py <x <0},
v = vp(w) = inflw,(x) : 0 < x < p2}.

Moreover, we set for ¢ > 0

—00 if p1(g) = —00,
oo = pro(w) = 171 if —oo < pi(e) # 0and w(p1(e)) = w(p1(e)+),
e e pi(e) —e if —oo < pi(e) and w(pi(e)) > w(pi(e)+),
—& if P1 (8) =0 s
00 if p2(e) = o0,
e = ps(w) = () if 0 # pa(e) < oo and w(p2(e)) = w(p2(e)—),
* * (&) +& if pa(e) < oo and w(p2(e)) > w(p2(e)—),
& if pa(e) =0.

PROPOSITION 1.5. (i) Ifw € A, then the following (1)—(3) hold.
M ;=8 <0< pp =< <00,
2 Ki—m<l—-a —a.
B) Vi—ar<vy—ay.
(i) If w € B, then the following (1)—(3) hold.
(1) —co<ti=p=0<=<p2.
2) Kr—vi<l—0a;—ar.
B) Vh—ar <v —ay.

PROOF. We let w € A and prove (i)(2) and (i)(3). In this case, we have either

0<m<ip<oo (1.2)
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or

O< =0 <00,
{K2=V2+1—2&2. (1.3)

In the case (1.2), we get (1)(2) by combining w (02) —v2 < 1 —2az and w(p2) > K| +d| — 3.
In the case (1.3), we get (i)(2) because of K| + @) —az < Ky = vy + 1 — 2a. Noticing
Vi + 1 —2a; < K, we obtain (1)(3) from (1)(2). O

REMARK 1.2. Forw € W¥, set
b} =bj(w) ={p1 <x <0: we(x) =01},
L =bh(w) ={0 <x < pr: we(x) =02} .
In the case @] > ap and w € A it is possible that V| > v, and ({1}, b5, {02}) is a valley of

w, and in the case oy < a2 and w € B it is possible that V2 > vy and ({p1}, b}, {{2}) is a
valley of w. (See [6] for the definition of a valley of w.)

To state our results on the minimum process and the maximum process, we divide each
of A and B into two subsets (cf. [10]):

Al={weA:Vi+1-2a > M},
A’={weA:Vi+1-2a <M},
B' ={weB:V,+1—2a > M},
B2={weB:Vi+1—2a < M)}.
Moreover, for A > Oandi = 1, 2, we set
Al ={we Ay :nw, e A},
Bl = {w e B, : uw;, € B'}.
By (1.1), we have Py, o, {A}} = Py, 0p{A'} and Py, 0, {Bi} = Pa, 0, (B} forall A > 0 and

i=1,2.
First we state our result on the behavior of {e‘a' * X (e), PS }.

THEOREM 1.6. Suppose Py, o, {W*} = 1. Then for any ¢ > 0 and e(1) > 0,1 > 0,
satisfying limy . €(A) = 0 and limy _, o, Ae(X) = 00, the following (1)—(iii) hold.
(1) )Llifgo Pal,az {ES,A,slAk} =1.

(i) Hm Py, o (EeseBl}=1.
A—00
(iii) 1im Py, o (E7,.6|B2} =1.
A—00
Here
Eire={weW": pipew) >1—¢), 5<i<T7,
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Psaew) = PY {L1e(maws) < e X (") < fi(—e(M), awa)}
Poe (W) = P {p1.e(mws) < e X (™) < p1(—e(L), awy)},

Prew) = PY {p1e(mw) < e *X (") < pr(—e, wy)} .

By Proposition 1.5 and the proof of Theorem 1.6, we obtain the following corollary.

COROLLARY 1.7. Suppose Py, o, (W#} = 1. Then for any s > 0
Alim ’P)? {61,g(r;\w;\) < e_a‘)‘g(e)‘) < li(—e, r;\w;\)} =1.
— 00
Here

(=&, w) = p1(=e, w) V {i1(=&, w), b1 (W) = p1e(w) V 1e(w).

Next we state our result concerning the behavior of { e~ AX (M), PS} .

THEOREM 1.8. Suppose Py, o, {(W#} = 1. Then for any ¢ > 0 and M > 0 the follow-
ing (1)-(ii) hold.
(1) Alim PS {O < e MY (M) < 8} =1, ifa;>a.
—> 00

(i) lim P @ X (M) > My =1, if a1 <.
—00

The following theorems are concerning the behaviors of {e—aﬂg (e)‘),P)?} and
{6_52)‘Y(e)‘), 73)(?} .

THEOREM 1.9. Suppose Py, ., {W#} = 1. Then for any M > 0 and & > O the follow-
ing (1)—(ii) hold.
(i) lim PlHe ™ X (") < —M} =1, ifa; > ar.
—00

(i) lim Po—g <e @ X(*) <0} =1, ifa; <.
A—00
THEOREM 1.10. Suppose Pa,,az{W#} = 1. Then for any ¢ > 0 and e(A) > 0, A > 0,

satisfying limy 0 €(A) = 0 and lim) _, 5, A&(X) = 00, the following (1)—(iii) hold.
() M Poy o {Eg s cldz} =1

(i) Hm Py, o (B clA2} =1.
A—00
(i) lim Py o, {E105.Br} =1.
A—00
Here

Eire=1{weW:p; (w)>1-¢), 8<i<I0,
Psa.e(w) = PO {p2(—e(h), Twy) < e 24X (") < pre(mwy)},

Pose(w) = PO {pa(—¢, tawy) < e P*X(e") < poe(mwy)},
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proc.ew) = PO {ea(—e(), mwy) < e X (") < e(mwi)) -

By Proposition 1.5 and the proof of Theorem 1.10, we obtain the following corollary.
COROLLARY 1.11. Suppose Py, o, (W*} = 1. Then for any ¢ > 0
Ali)n;o ’P)(? {62(—8, W) < e_az)‘Y(e)‘) < Kz,g(r)\w)\)} =1.
Here
(=&, w) = pa(—&, w) A 2(—€, w), £2e(W) = P2,6(W) A L2,6(w) .
To state more precise results than Theorem 1.6 (ii)—(iii) and Theorem 1.10 (i)—(ii) in
particular cases, we introduce two subsets of W :
AT={weA: Ki+a; —ay <0},
B ={weB:Ky—a; +a <0}.
We also define, for A > 0
A ={wel, nwwy e AT},
B, ={weBy:nnwyr B }.

In the case a1 > «p, we note p1(—e) = 0 for any w € B~ and ¢ > 0. Therefore, in this case,
we have, by Theorem 1.6 (ii)—(iii),

Jim Payar | PO, (p1e(mws) < e @ X () <0} > 1 —e[B; } = 1. (1.4)

In the case o] < ap, we note pa(—e) = 0 for any w € A~ and ¢ > 0. Therefore, in this case,
we have, by Theorem 1.10 (i)—(ii),

lim. Poyor [PO {0 < e™X (") < poe(mwn)) > 1 —e[A]} = 1. (1.5)

To state more precise estimates than (1.4) and (1.5), we prepare some notation. For w € W#
and ¢ > 0, we set

Hy = Hy(w) = sup{w*(x) : &1 < x <0},

Hy = Hy(w) = sup{w*(x) : 0 < x < &},

Hie = Hie(w) = sup{w*(x) : {1 < x <0},

Hy e = Hye(w) = sup{w™(x) : 0 <x < {0}
We note H; < K| < Hj ¢ and Hy < K> < Hy ¢, and therefore H| < &y —dj forw € A~ and

H, < a) — ay for w € B~. The following Theorems 1.12 and 1.13 are more precise results
than (1.4) and (1.5), respectively.
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THEOREM 1.12. Suppose o1 > on and Pal,az{W#} = 1. Then for any ¢ > 0 and
M=>0

lim Py o, {E11,0,m6B, ) =1.
A—00
Here

Eipome ={weW: prme(w) > 1—¢},
Priaaew) = Py {g1a(e, aws) < e X (eh) < i (M, e, Tawn)}
g, w) = pre(w) v (—eH e HEErte))

@ (M, e, w) = (_Me)»(az—aﬂ) A (_ek(Hz(w)+52—51—£)) )

THEOREM 1.13. Suppose o1 < an and Pal,az{W#} = 1. Then for any ¢ > 0 and
M=>0

Jim Poy e (Bromeldy) =1
Here
Eizame ={weW*: proj mew) >1—e},
P12, M e (W) = P,gk {BaM, e, awy) < e DX () < gaale, B},
Ba(M, e, w) = M@ =)\, HH(0)+E—Tr—6)

gan(8. w) = pa e (w) A HHe(IT=0Fe)

2. Preliminaries
For w € W and A > 0, we define G, w € W by

Aw(x) for x <0,
Aw(e@ =@y for x > 0,

(Giw)(x) = {

and consider the diffusion process {X (), > 0, Pé‘;w} for x9p € R. This process can be

constructed on a probability space (.5, 13) in the following way ([2], see also [4]). Let

{B(t),t > 0} be a one-dimensional Brownian motion starting from O defined on (ﬁ, ﬁ).
We set

X
SG,w(x) :/ OWWygy - x eR,
0

t
-1
AG,w(t) :/ e~ 2Gaw) (86w (BO)) 4
0

oo
= / e 2GWSGw T O L x)dx, 120, 2.1)
—00
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1 t
L(t,x) = lim—/ 1 x+6)(B(s))ds, t>0, x e R, (localtime)
el0 € Jo

X(t;0,Gaw) = S, {(B(Ag,w (1), >0, (22)

X (; x0, Gow) = x0+ X(#; 0, (Ghw)™), >0,
(Grw)™(x) = (Grw)(x +x0), x € R.
The process {X (¢; xo, Gpw), t > 0} is the one which we desired.

LEMMA 2.1. Foranyw € Wand A >0

[X(t),t >0, Pgmm} 4 [e‘a')‘X(eza‘)‘t),t >0, ng} . 2.3)

PrROOF. Using the equality
(Grmw))(x) = wi(e™x), xeR,
we get (2.3) in the same way as [6] (see also [1]). O
The following proposition is used to prove Theorems 1.1 and 1.2.
PROPOSITION 2.2. Suppose Pgy, q, {(W#} = 1. Then there exists a subset Wg of W#

with Py, o, {Wg} = 1 such that the following (1)—(i) hold.

() Ifw e ANWE, then for any e > 0

tim P, {X(@ (1) € U N (b1, O} =1
A—00

(i) Ifw e BNWE then foranye > 0

lim Pg {e@l—az)*X(e“l—”l)) € U:(b2) N (0, bz,e)} =1.

A—00

We use the following proposition to prove Theorems 1.6 and 1.9.

PROPOSITION 2.3.  Suppose Py, q, (W#} = 1. Then there exists a subset Wg of W#
with Py, o, {Wg} = 1 such that the following (1)—(iii) hold.

() Ifw e ANWE thenforanye > 0and e(1) > 0, A > 0, satisfying lim)_, o £(1) =
0 and limy_, 5o Ae(A) = 00

Tim PO e < X(@00) < qi—e0)| =1

() Ifw e B'n Wg, then for any ¢ > 0 and e(A) > 0, A > 0, satisfying
lim) o0 (X)) = 0 and lim; _, 5o Ae(A) = 00O

lim PG {pre < X(eHITH) < pr(—e(1)) = 1.
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(i) Ifw € B2 N'W}, then for any e > 0

lim PO {p1e < X172y < p(—e)} = 1.
A—00 »

We use the following proposition to show Theorems 1.8 and 1.10.

PROPOSITION 2.4. Suppose Pqy, q, {(W#} = 1. Then there exists a subset Wg of W#
with Py, o, {Wg} = 1 such that the following (1)—(iii) hold.

1) Ifwe AlﬂWg, then forany e > Oande(X) > 0, A > 0, satisfying limy .~ () =
0 and limy_, 5o Ae(A) = 00

Jim PG, (pa(—e(1) < @RI (M) < gy ) = 1.
— 00

() Ifwe AN Wg, then for any ¢ > 0
Jim PG, (pa(—e) < e@TRIX AT <y ) =1
(iti) Ifw € BANW?, thenforanye > 0ande()) > 0, A > 0, satisfying lim _, o0 £(A) =
0 and limy_, oo Ae(A) = 00

lim P§ ,{¢2(—e(h) < @K (A7) <1y j=1.
A—00

The following proposition, which is a more precise result than Proposition 2.3 (ii)—(iii)
for w € B™, is used to prove Theorems 1.9 and 1.12.

PROPOSITION 2.5. Suppose a1 > a2 and Py, o, {W#} = 1. Then there exists a subset
Wg of W# with Py, oy {Wg} = 1 such that the following holds: for any w € B~ N Wg, e>0
and M > 0

lim ngw{gl,x(& w) < X(ek(l_za‘)) <piM,e,w)} =1.
A—00

The following proposition, which is a more precise result than Proposition 2.4 (i)—(ii) for
w € A7, is used to prove Theorems 1.8 and 1.13.

PROPOSITION 2.6. Suppose a1 < o and Py, o, {W#} = 1. Then there exists a subset
Wg of W# with Poy oy {Wg} = 1 such that the following holds: for anyw € A~ NW# ¢ >0
and M > 0

dim PG (3.0 (M. e, w) < @TEIREHITE) < gy (e w)) =1

In Section 3 we prepare lemmas on hitting times of the diffusion process introduced in
Section 2. In Section 4 we prove Theorem 1.1 and in Section 5 we prove Theorems 1.6—1.13.
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3. Lemmas on hitting times

In this section we show lemmas on hitting times of the process {X (), > O, Pé(;w} by
using the methods in [1], [4], [9] and [10]. We set, for v € £2 and x € R

T(x) =t(x,w) =inf{t > 0: X(t, w) = x}.
LEMMA 3.1. (i) Letw € W and p < p, < 0 for all sufficiently large ). > 0. Suppose

w(p+) > w*(x) forall x € (p,0) and g = inf{x > 0: w(x) > w(p+) + & —az} < co.
Then for any q' > q and f (1) > 0, . > 0, satisfying lim, _, o Af (A) = 00,

lim PO {t(py) <Py =1, 3.1
A—00 A

where

J1(d) = max{J11(A), Ji2M)} + f(A),
Jii(d) = sup wx)— inf w(x),

pr.<x<0 pr.<x<0
Jio(A) = sup w(x)— inf w(x)— (o] —a2).
prL<x<0 O<x<q’

(ii) Let w € W and p < 0. Suppose w(p+) > w*(x) forall x € (p,0) and g = inf{x >
0:w(x) > w(p+) +a; —az} < 0o. Then forany e > 0and q' > g

lim P}, (t(p) <o) =1, (3.2)
A—00
where

J1 =max{Jy1, J1,2},

Jiit=wlp+) — inf wx), Ji2=wlp+)— inf wkx)— (@ —ar).
p<x<0 O<x<q’

PROOF. First we prove (i). On (ﬁ, ﬁ) we define hitting times:
T(x; x0, Gow) =inf{t > 0: X(t; x0, Gpw) =x}, xeR,
T(x)=inf{t >0: B(t)=x}, xeR.
Weletq’ > g, and f (1) > 0, A > 0, satisfy limy o Af (1) = 00, and show

lim P{t(py; 0, Gow) < P} =1, (3.3)
A—00
which is equivalent to (3.1). For A > 0, we set

E, = {t(py; 0, Gow) < 1@~ 0, G, w)}.

Noting supy_, s w(x) > w(p+) + a1 — ap, we have

Jim_ Pit(p; 0, Gow) < (@8 0, Guw)} = 1
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and therefore

lim P{E;} =1. (3.4)
A—00
Owing to (2.1) and (2.2), we have
o0
T(px; 0, Grw) = / e GO L (T (SG,w(P1))s SGyw(x))dx . (3.5)
P
On E;, t(px; 0, Gow) is equal to
e(&r&l)x ’
/ =GO LT (SG,0 (1) + S, ())dx
P
@Ay
S
L 156, ()] e—<GW><x>L<T(—1) , G**“”)dx
P 1SG,w(p)]

0 0
:/ eAw(y)dy/ e—)\w(z)L<T(_1)’ SG,w(2) )dz
)23 )23 |Ska(PA)|

0 ‘ @)
+/ O gy /q e—)\w(z)L<T(_l)’ SGuw(e @ z))e@_al)xdz
P 0 156w (Pl

Lo+ 11, . (3.6)

We can estimate each of I, and II, for all sufficiently large A > 0 as follows:

2K (T (—1))e11) P
{Ix = [pIPK(T(=1)e ; P-as., G.7)

I, < |plg’K (T (=1))e*12®) | pas,

where K (t) = sup,cg L(f,x),t > 0. Notice 0 < K(T(-1)) < oo (IN’-a.s.) and set Ei =
(K(T(=1)) < &*’®/2} % > 0. By the assumptions for f(1), A > 0, we have

lim P{E)}=1. (3.8)
A—>00
Using (3.8), we get
lim P{l, + I, <P} =1. (3.9)
A—00

By (3.4), (3.6) and (3.9), we obtain (3.3).
As to (ii), besides the assumptions in (i), let p) = p forall A > 0, and f(1),A > 0,
satisfy limy . f(A) = 0. Then we get (ii) from (i). O

The following three lemmas can be proved in the same way as Lemma 3.1.

LEMMA 3.2. (i) Let w € Wand p < p, < xo < 0 for all sufficiently large ). > 0.
Suppose w(p+) > w*(x) forall x € (p, xp) and g = inf{x > xp : wx) > w(p+)} < 0.
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Then for any q' € (q,0) and f(A) > 0, A > 0, satisfying lim) _ o0 Af (A) = 00,
Jim PG {r(py) < 2P} =1, (3.10)
where

hG)= sup wx)— inf w@) +fR).

Pr<X<Xo Pr<XxX<q

(ii) Let w € Wand p < xo < 0. Suppose w(p+) > w*(x) for all x € (p, xg) and
g =inf{x > x¢ : wx) > w(p+)} < 0. Then for any e > 0

lim P, (z(p) < Mtey — (3.11)
—00

where

Jr=w(p+) — inf wx).
p<x<q

LEMMA 3.3. (i) Let w € Wand 0 < g, < q for all sufficiently large A > 0. Suppose
w(g—) > w*(x) forallx € (0,q9) and p = sup{x < 0: w(x) > w(g—)— (& —ar)} > —o0.
Then for any p' < p and f(A) > 0, A > 0, satisfying lim)_, o Af (L) = 00,

lim PO Ar(@@ gy < 2y = 1 (3.12)
—00

where

J3(A) =max{J31(A), 320} + f(L),

J31(A) = sup wx)— inf w(x) — (a1 —oa),
O<x<gq; p'<x<0

J320(0) = sup w(x)— inf wx)—2(@ —ar).
0<x<q), O<x<gq;

(ii) Let w € W and 0 < q. Suppose w(qg—) > w*(x) forall x € (0, q) and p = sup{x <
0:w(x) > w(g—) — (@ —az)} > —o0. Then forany e > 0and p' < p

lim PO (T (e@ gy < Uty = (3.13)
where

J3s =max{J31, J32},

J3i1=w(@—)— inf wx)— (a1 —a@),
p'<x<0

J3p=w(@—)— inf w(x)— 2(a) — 7).
O<x<gq

LEMMA 3.4. (i) Let w € Wand 0 < xo < q). < q for all sufficiently large » > 0.
Suppose w(g—) > w*(x) for all x € (xg9,q) and p = sup{x < xp : w(x) > w(g—)} > 0.
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Then for any p’ € (0, p) and f (1) > 0, » > 0, satisfying lim) _ o0 Af (A) = 00,

(@ —a) ) ~
Alim Pé“i I e A e I N (3.14)
— 00

where

Ja) = sup w) — inf wx) - 20 — o) + f(A).

X0 <X <y P <Xx<q)

(ii) Let w € Wand 0 < xo < q. Suppose w(qg—) > w*(x) for all x € (xo,q) and
p =sup{x < xo: w(x) > w(g—)} > 0. Then for any ¢ > 0

. (@—ap)r
lim P’
A>oo  Gaw

Mofr(e@@hgy < Hlate)y — 1 (3.15)
where
Jy=w(g—)— inf w(x)—2(a; —ay).
pP<x<q
LEMMA 3.5. (i) Let w € Wand p < xg < 0. Suppose w(p+) > w*(x) for all
x € (p, x0) and w(p+) > w(xg). Then for any ¢ > 0

Jim PG {7 (p) > ATy =, (3.16)

where

Js=w(p+) — inf wx).
P<X<Xq

(i) Let w € W and p < xo < 0. Suppose w(p) > w*(x) for all x € (p, xg) and
w(p) > w(xg). Then for any ¢1 > 0 and e > 0

; X0 _ AJe—e)y —
Ali)n;o Pka{r(p g1) > eV =1, 3.17)
where
Jo= sup w(x)— inf w(x).
p—e1<x<p P<x<Xq

(iii) Ler w € Wand p < 0 < q. Suppose sup,, _, .o w(x) > w*(x) — (@) — @) for all
x €10, q). Then for any ¢ > 0

: 0 A(J7—e)y —
Ali)n;o PG wlt(p) > e }=1, (3.18)

where

J7= sup w(x)— inf w(x)— (@] —ay).
p<x<0 O<x<q
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PROOF. We prove (i) for xo = 0 and (iii). As in the proof of Lemma 3.1, we observe

Ska()C)
" 1SG,w ()l

To prove (i) for xo = 0, we estimate /1] in (3.19) as follows:

o0
t(p; 0, Gaw) < |SGw(p)|/ e_(G“”)(x)L<T(—1) )deIII)\. (3.19)
P

0 0
S,
111, 3/ e)‘w(y)dy/ e—*"f(X)L(T(—U, M)dx = IV, (3.20)
p p |Swa(P)|

By the assumptions in (i) for xo = 0, we note that Sg, ., (x)/[SG,w(p)| in IV} tends to O as
A — oo uniformly on any closed interval contained in (p, 0]. This yields

SGw(x)
1SG,w(P)]

as A — oo uniformly on any closed interval contained in (p, 0]. By (3.21) and the classical
Laplace method, we get

L(T(—l), ) — L(T(=1), 0)>0, P-as., (3.21)

1 ~
lim —log/V), = w(p+) — inf wkx)=Js, P-as,
r—00 A p<x<0
and therefore, for any ¢ > 0
lim P{IV; > 59} = 1. (3.22)
A—00

By (3.19), (3.20) and (3.22), we get (3.16) for xo = 0.
To prove (iii), we estimate //], in (3.19) as follows:

0 @—&)h o
I, 2/ AWy /q e—)\w(Z)L<T(_1), M)e(az—m))\dz
p 0 [SG;w(p)l

= V. (3.23)

By the assumptions in (iii), we note that SGW(e(aZ_a')*z)/lSka(p)| in V, tends to O as
A — oo uniformly on any closed interval contained in [0, ¢). From this, we get

1 ~
lim —logVy =J7, P-as.
Jm oV = r. Pas

in the same way as above. Therefore, for any ¢ > 0 we have

lim P{V, > 179} = 1. (3.24)
A—>00
By (3.19), (3.23) and (3.24), we obtain (3.18). O

The following lemma can be shown in the same way as Lemma 3.5.
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LEMMA 3.6. (i) Letw € Wand 0 < x9 < q. Suppose w(g—) > w*(x) for all
x € (x0,q) and w(qg—) > w(xp). Then for any ¢ > 0

@ - .
lim P @) s ) = (3.25)
where
Js=w(g—)— inf wx) -2 —a).
xXo<x<q

(i) Letw € Wand 0 < xo < ¢. Suppose w(q) > w*(x) for all x € (x9,q) and
w(q) > w(xo). Then for any e1 > 0 and e > 0

(@@ N
lim PG e (e® g o) > HPTI) = 1, (3.26)
A—00 Aw
where
Jo= sup w(x)— inf wkx)-—2@ —ar).
g<x<q+e X0<x<gq

(iii) Letw € Wand p <0 < q. Suppose supy_, ., w(x) > w*(x) + (ay — ) for all
x € (p,0]. Then forany ¢ > 0

lim PY {T(e@ kg 5 Mooy = (3.27)
—> 00

where

Jio= sup w(x)— inf wx)— (@ —a2).
O<x<q p<x<0

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1 by using Proposition 2.2. (We can prove Theorem
1.2 in a similar fashion.) First we prove Proposition 2.2 (i). Proposition 2.2 (ii) can be shown
in the same way as (i). To prove Proposition 2.2 (i), we prepare three lemmas. We show them
by using the methods in [3], [4] and [9] (see also [10]).

LEMMA 4.1. Suppose P(x],(xz{W#} = 1. Then there exists a subset Wg of W# with
Poy,ay {Wg} = 1 such that the following holds: for any w € A N Wg and sufficiently small
& > 0 there exists § > 0 such that

. 0 A(1=2a1—8)y __
Xli)n;o PG, p{t(bre) <e Y17 =11, 4.1)
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PROOF. In the case w(b1) < w(b1+), we show (4.1) for sufficiently small ¢ > 0
satisfying b; — & > ¢1. First we let w € A!. We define wy € W by

w(x) for x > b1 ¢,
wo(x) = Jw(bret) for x = by,
—x + w(b1,£+) +bl,£ for x < bl,s s

and take py < by ¢ satisfying
M, < wo(po) < Vi+1—-2a; =K.
We can apply Lemma 3.1 (ii) to w = wp and p = pyg, since go = inf{x > 0 : wo(x) >
wo(po) + @1 — &z} < pr < oo by Proposition 1.5 (i)(1). By the lemma and
Ki—vy— (a1 —0p) <1—2a; 4.2)
which is derived from Proposition 1.5 (i)(2), we have for some § > 0

Tim PG (e(p0) < 201779 = 1

Therefore we get (4.1) in this case.
Next we let w € AZ. We take pk < ug,k = 1,2,...,n, for some integer n > 2
satisfying 0 > w1 > -+ > uy—1 > up, = by ¢,

uy <a;,
wi(p1) = My, 4.3)
Ji=wi(p1) — inful<x<0 wi(x) <1-— 26;1 s

and fork > 2

My > wi(pr) > wi(x) forallx € (px, uk—1),
Je = wi(pr) — infy cx g wi(x) < 1 =207, 4.4)
gk = inf{x > ug—1 : wr(x) > wr(p)}(< 0).

Here wy € W, 1 < k < n, is defined by

w(x) for x > uy,
wi(x) = qw(ug+) for x = uy,
—x + w(ug+) +ur for x < uy.

We can apply Lemma 3.1 (ii) to w = wj and p = pj because g1 = inf{x > 0 : wi(x) >
wi(p1) + &1 — @2} = p2 < 0o. From the lemma, we have, for any &1 > 0 and g] > ¢1

Alin;o ngwl{t(pl) < eA(JI+€I)} =1,

where J; = max{J;, K| — inf0<x<q; w(x) — (o; — @2)}. Therefore we have

lim P2 {t(u)) <10} =1, (4.5)
A—00 A
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Taking ¢ (> ¢1) sufficiently close to g1, we have J; < 1 — 2a because of (4.2) and (4.3).
Moreover, for any k > 2 and ¢ > 0 we have, by (4.4) and Lemma 3.2 (ii),

Mty = 1

: U—1
lim PEE ((pe) < e

Therefore we have

Jim e () < eHUtEy = 1 (4.6)
By (4.5), (4.6) and the strong Markov property, we obtain (4.1) in this case, too. O

LEMMA 4.2. Suppose P(x],(xz{W#} = 1. Then there exists a subset Wg of W# with

Py oy {Wg} = 1 such that the following holds: for any w € A N Wg and ¢ > 0 there exists
8 > 0 such that

lim P§ ,{t(f1e) > 7200y = 1 (4.7)
A—00

PROOF. It is enough to show (4.7) for sufficiently small ¢ > O satisfying inf{w.(x) :
lle < x < &1} > Vi. (By [6], we note that the set of w € A for which there isno ¢ > 0
satisfying this is Py, «,-negligible.) First we let w € A'. In the case w(¢1(e)) < w(¢1(e)+),
we can apply Lemma 3.5 (i) to p = ¢;(¢) and xo = 0, and have Js > 1 — 2@ in the lemma.
Therefore we get (4.7) in this case. In the case w(¢1(g)) > w(Z(e)+), we can apply Lemma
3.5 (i) to p = ¢1(e) and x9 = 0, and have Jg > 1 — 2, for any &; > 0 in the lemma.
Therefore we obtain (4.7) in this case, too.

Next we let w € A2. In this case we have

lim PY . {t(u,y) < 720700y — 4.8)
A—o00  *
for some 89 > 0 by the proof of Lemma 4.1. In the case w(¢i(¢)) < w(¢1(e)+), we can

apply Lemma 3.5 (i) to p = ¢;1(¢) and x9 = u,—1, and have Js5 > 1 — 2a) in the lemma.
Therefore we get, for some §; > 0

Jim Pgr {T(@1(e)) > M2y — 4.9)
—00

Using (4.8), (4.9) and the strong Markov property, we obtain (4.7) in this case. In the case
w(¢1(e)) > w(&1(e)+), we can apply Lemma 3.5 (ii) to p = ¢;1(¢) and x9 = u,—1, and have
Jo > 1 — 2a; for any &1 > 0 in the lemma. Therefore we obtain, for some 8, > 0

Jim_ PEr{t(ti(e) —e) > 0720 Hy = 1 (4.10)
By (4.8) and (4.10), we get (4.7) in this case, too. O

LEMMA 4.3. Suppose P(x],(xz{W#} = 1. Then there exists a subset Wg of W# with
Pal,az{Wg} = 1 such that the following holds: for any w € Wg and ¢ > 0 satisfying
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p2(&) < o0 there exists 5 > 0 such that

lim P2 (r(e@ @y, ) 5 HU-20F0y — (4.11)
A—00 »

PROOEF. Since

sup wx) > Ky +a; —ar > w*(x)+a; —ap forallx € (¢1,0],
O<x<ppe
we can apply Lemma 3.6 (iii) to p = ¢; and ¢ = p2 ¢, and have J1g > K; — V] > 1 — 2] in
the lemma. Therefore we get (4.11). O

Let us prove Proposition 2.2 (i) by making use of the coupling method in [6] (see also

(9D.

PROOF OF PROPOSITION 2.2 (i). Let w € A. In the case w(b;) < w(b1+), it is enough
to show this proposition for sufficiently small ¢ > 0 satisfying by — ¢ > ¢;. We take 1 > 0
satisfying inf{lws(x) : C1¢, < x < &1} > V1. (By [6], the set of w € A for which there
is no g > O satisfying this is Py, «,-negligible.) Moreover, in the case K1 + &1 — o2 > 0
we take g7 > 0 satisfying pz(e2) < oo and inf{w,(x) : p2 < X < p2,} > v2. In the case
K1 +a; —ay < 0 we note pp = v, = 0 and therefore V| — @] + @2 < 0 by Proposition 1.5
(1)(3). In this case we take e7 > 0 satisfying

{K1+51—&2+82<0,

~ |~ 4.12
O>)inflw,(x):0<x <&} >V —oa;+oas. ( )

For A > 0, we set D; = [{] ¢, ¢@~@)% 5, | and define m;, a probability measure on D;,
JE1 ,€2 p y
by
o—(Gw () g

m; (dx) = m :

This is the invariant probability measure for the reflecting L, ,,-diffusion process on D;. We
have

hi(2)
R Q) + ha(A) +h3(3)

m;{Ug(b1) N (b1,e, 0)} = (4.13)

where

hi(A) = / e Mgy
Ue(b1)N(D1,£,0)

ha(L) = / e MW gy
(1,61 O\Ue(bDN(b1,¢.0))

~ ~ P2,e
h3(h) = e@=@* f " gy
0
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We can estimate the limiting behaviors of 41 (A) and hy(A) as A — oo as follows:

lim A~ ogh (1) = — Vi, (4.14)
A—00
lim 27 'logha(h) < —Vi. (4.15)
A—00

As to the limiting behavior of 23(1), in the case K| + a1 — @y > 0 we have
lim A~ Moghs(\) =G — &) —v2 < V] (4.16)
A—00
by Proposition 1.5 (i)(3). In the case K| + &) — &2 < 0 we note p2 ., = &2 and
lim A Moghs(h) = & — @) — inf{ws(x) : 0 < x < &2} < =V 4.17)
—00
by (4.12). Therefore, by (4.13)—(4.17), we get
Alim m{Ueg(b1) N (b1, 0} =1. (4.18)
— 00
Let {XiR) (t),t = 0} denote the reflecting Lg,,-diffusion process on D, with initial
distribution m;, defined on (£2, }N’). Since this is a stationary process, we have, for any ¢ > 0
lim PIxP ) € Usb1) N (bre, 0)) = 1 (4.19)
— 00
by (4.18). We couple {X(#;0, Gaw), 1 > 0} and {X®(r),# > 0} as follows ([6]): these
processes move independently until they first meet each other; after the first meeting time

they move together until they go out from (&, e@—aDk 02,¢,); after going out from the
interval they move independently again. We set

o, =inf{r > 0: X(t; 0, Gw) = X X (1)},
o) =inf{t > 05 : X(1; 0, Gw) & (L1,e,, €@ py )}
By virtue of (4.19), we have

lim P{oy < t(h1.6;0,Grw)} = 1. (4.20)
—00

Combining (4.20) with Lemma 4.1, we get, for some §p > 0

lim P{oy < *1-201—%0)) — 4.21)

A—00

Moreover, by Lemmas 4.2 and 4.3, we have for some §; > 0

lim Plo] > 172000y = 1| (4.22)
A—00

By (4.19), (4.21) and (4.22), we arrive at

lim P{X (2. 0, Gyw) € Us(by) N (b1, 0)} = 1
— 00



44 YUKI SUZUKI

in the same way as [6] (see also [9]), which is the desired result. O

Now we prove Theorem 1.1 by using Proposition 2.2 (cf. [1], [3], [9]).

PROOF OF THEOREM 1.1.  First we prove (i). By Lemma 2.1, we observe, for any
weW,e>0andi >0

Piae(w) =Py, (mwy) . (4.23)
where
Bre) = PS,, (X (@72 € Up(bi () N (b1,6(w), 0}
By (4.23) and (1.1), we have
P o (By ) NAL) = Palﬁaz{ﬁl_,x,s NA}, (4.24)
where
B, =weW p, (ws>1-¢.

By Proposition 2.2 (i), lim) _ ﬁlfk’s(w) = 1forany w € A N'W¥, where Wg is a subset of

WH satisfying Poy oy {W‘g} = 1. Therefore the right-hand side of (4.24) converges to Py, o, {A}
as L — oo and we obtain (i).
Next we prove (ii). In the same way as above, we have

Payar(ET, . N By} = Pay o, (B, NB), (4.25)
where

Ef,=weW 5, (w)>1-¢},

P w) = PO {0 < X (M172)) < ¢}
By Proposition 2.2 (ii), we have, in the case w € BNW for some subset W} of W* satisfying
Poy oy (W =1,

Jim PO (0 < X (MI720)) < @ T0p, y =1

and therefore lim; _, o0 ﬁl"’ A, .(w) = 1. From this, we observe that the right-hand side of (4.25)

converges to Py, o, {B} as A — oo and get (ii).
As to (iii), we have

Poon (B, yg.e B2} = Pyl NB). (4.26)
where
Efme=weW 5l w>1-¢,
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ﬁl—t_)‘qM(w) — ngw{X(ek(l—ZaD) > M}

By Proposition 2.2 (ii), we have, in the case w € B OW‘S for some subset Wg of W* satisfying
Pal,(xz{Wg} = 1,

lim PO (X (M%) 5 @@ gy =1,
A—00 *

where by, = minb; and ¢ € (0, b, ). Therefore, in this case, we get lim ﬁfrk ) =1.
Hence the right-hand side of (4.26) converges to Py, «,{B} as A — oo and we obtain (iii). [

5. Proofs of Theorems 1.6-1.13

We can show Theorems 1.6 and 1.10 by using, respectively, Propositions 2.3 and 2.4 in
the same way as proving Theorem 1.1 (i) by using Proposition 2.2 (i). We can also show
Theorems 1.12 and 1.13 by using, respectively, Propositions 2.5 and 2.6 in a similar fashion.
(For these, see also the proof of Theorem 1.8 in the end of this section.) Proposition 2.3
(i) is obtained from Lemma 4.2 and the following lemma. Note that, in Proposition 2.3 (i),
£1(—&(1)) = ¢ for all sufficiently large A > 0 in the case w(¢1+) < Vi +1—2a;. Proposition
2.4 (iii) can be shown in the same way as Proposition 2.3 (i).

LEMMA 5.1. Suppose P(x],(xz{W#} = 1. Then there exists a subset Wg of W# with
Po, oy {Wg} = 1 such that the following (1)—(ii) hold.
(1) Forany w € AN Wg satisfying w(¢1+) < Vi + 1 — 2a; there exists § > 0 such that

Alin;o ngw{f(fl) < 61(1—251—5)} =1.
(ii) For any w € AN Wg satisfying w(¢1+) = Vi + 1 — 2y and any e(A) > 0, A > 0,
satisfying limy . €(X) = 0 and lim _, 5, Ae(X) = 00

lim PY (T (@i(—e(0))) < FI72M=e0/2y = 1 (5.1)

PROOF. We can prove (i) in the same way as proving Lemma 4.1. To prove (ii), first
we let w € A' and w(¢;+) = Vi + 1 — 2@. In this case we can apply Lemma 3.1 (i) to
p =<1, pr = C1(—e(X)) and f(A) = e(1)/2 because ¢ = inf{x > 0 : w(x) > w(1+) +
a) — a2} = p2 < 00. We note Sup;, _g ) <x<o Wx) < Vi +1—20 —e(r) = Ky —e(A) for
all sufficiently large A > 0. Moreover, in the case K| + &) — &y > 0, by taking ¢’(> 02 > 0)
sufficiently close to p» we have info_, ., w(x) = v2. As to the case K| + &) — a2 < 0,
we notice pp = vy = 0 and V| — @1 + &> < 0. In this case, for sufficiently small g’ > 0
we have (0 >)info. ., w(x) > Vi — a1 + a2. Therefore in both cases we have (3.1) for
Ji(V) < 1= 28 — e(%)/2, which yields (5.1).

Next we let w € A2 and w({1+) = Vi +1-2a;. In this case we have (4.8) for some 8y >
0, and can apply Lemma 3.2 (i) to p = ¢1, px = ¢1(—€(X)), xo = up—1 and f(A) = e(1)/4
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because ¢ = inf{x > u,_1 : w(x) > w(¢1+)} < 0. Noting SUD;, (—e(1)) <x<ity_) wx) < Vi +
1 —2a; —e()) for all sufficiently large A > 0, we have (3.10) for J,(A) < 1—2a;—(3/4)e(X).
Combining this with (4.8), we get (5.1) in this case, too. O

We obtain Proposition 2.4 (i)—(ii) from Lemma 4.3 and the following lemma. Note that
p2(g) < oo for w € A and sufficiently small ¢ > 0. We can show Proposition 2.3 (ii)—(iii) in
the same way as Proposition 2.4 (i)—(ii).

LEMMA 5.2. Suppose Py, a, (W#} = 1. Then there exists a subset Wg of W# with
Pyy,ar {Wg} = 1 such that the following (1)—(ii) hold.

(i) Foranyw € Al N Wg and any e()) > 0, A > 0, satisfying lim)_, », () = 0 and
limy — 00 A8(X) = 00

im PO AT (@@ %oy (—e(h))) < MITH—EW/DY — (5.2)
— 00

(il) Foranyw € AZnN Wg and ¢ > 0 there exists § > 0 such that

im PO (@78 gy (—g)) < 1720y = (5.3)
— 00

PROOF. It is enough to show this lemma just in the case K| + & — & > 0. To prove
(i), we first let w € Al and w(p2—) = K| +a) — &>. In this case we can apply Lemma 3.3 (i)
to g, = p2(—e(A)), g = p2 and f(A) = &(1)/2, since p = sup{x < 0: w(x) > w(p2—) —
(@ — o)} =sup{x < 0:wkx) > Vi +1—2a;} > —oo. By taking p’(< p) sufficiently
close to p, we have inf /., .o w(x) = Vi. (By [6], we notice that the set of w € A for which
p = —oo or there is no p’ satisfying this property is Py, o,-negligible.) Moreover, we note
SUP) < < p (—e (o) W) < K1 + a1 — o — &(A) and infoy <, (—e(n)) W(x) > v2. Therefore
we have (3.12) for J3(1) < 1 — 2a&; — &())/2, which yields (5.2). In the case w € A' and
w(p2—) < K1 + d; — &, we can prove (5.2) by using the method of proving Lemma 4.1 for
we Al

To prove (ii), we let w € A2 Tt is enough to show (ii) for sufficiently small ¢ > 0
satisfying K1 +a; — oy — & > 0. In the case w(p2(—&)—) = K| +a; — &, — &, we can apply
Lemma 3.3 (ii) to g = p2(—¢), since p = sup{x < 0: w(x) > w(p(—&)—) — (@] —a2)} =
sup{x < 0 : w(x) > M; —¢&} > a > —oo. Noting M| —infyyow(x) < 1 — 28,
for p’(< p) sufficiently close to P, we obtain (5.3) in this case. In the case w(p2(—&)—) <

K| +a) — &> — €, we can show (5.3) by using the method of proving Lemma 4.1 for w € A
O

Next we show Proposition 2.6 and then prove Theorem 1.8 by using Propositions 2.4 and
2.6. We can prove Proposition 2.5 and Theorem 1.9 in a similar fashion. To prove Proposition
2.6, we prepare a lemma.

LEMMA 5.3. Letw e W, a1 <azand p < 0.
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(i) Suppose a < sup,_,-ow(x) A (o — a1). Then
lim P2 {t(p) > (M)} =1.
A—00 »
(i) Suppose sup,_,ow(x) <a < ar — ay. Then
lim PO {t(p) <t} =1.
A—o00  *

PROOF. First we prove (i). We observe

g(A)
Jy v dx + ()

P, AT(p) < T(e™)} = (5.4)

where
o Hatd) —d)
g = g0, w) = 7 f Wy .
0
Since, for any ¢ > 0, we notice Matdi=) — ¢ for all sufficiently large . > 0, we have
g(1) <exp{i(a+ sup w(y))} (5.5)
O<y<e

for all sufficiently large A > 0. By the classical Laplace method and (5.5), we have, for any
g >0

fo M x
L >exp A( sup w(x) —¢& —a— sup w(y)) (5.6)
g) p<x<0 O<y<e

for all sufficiently large A > 0. The right-hand side of (5.6) tends to oo as A — oo for
sufficiently small ¢ > 0 and ¢’ > 0. Therefore we obtain (i).
Next we show (ii). In the same way as above, we have, forany ¢ > 0 and ¢’ > 0

fO AW gy
L <exp A( sup w(x)+¢& —a— inf w(y)) (5.7)
g()\) p<x<0 O<y<e

for all sufficiently large A > 0. Choosing ¢ > 0 and ¢’ > 0 sufficiently small, we observe that
the right-hand side of (5.7) converges to 0 as A — oo and obtain (ii). O

PROOF OF PROPOSITION 2.6. We prove this proposition by using the method of proving
[3, Lemma 6.1]. First we let w € A~™. We note H; < K| < &y —a) and, for sufficiently small
e>0

sup wx) > Hy —¢/2> H| —¢.
C1(—€/2)<x<0
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Therefore, by Lemma 5.3 (i), we have
Jim PG, {r(@1(=6/2)) > 1) = 1. (5.8)
Combining (5.8) with Lemma 5.1, we have
)Lli)ngo ngw{f(e)h(Hl_E)) < ek(l—zal—a(k)/Z)} — 1’
where (1) > 0, A > 0, satisfies the assumptions in Lemma 5.1 (ii). Therefore we get
im PO (X (M7 5 M=y — (5.9)
From this, we notice, for any M > 0
lim PO (X720 > my=1. (5.10)
A—00 A
By (5.9) and (5.10), we obtain, for any ¢ > O and M > 0

im PO e @MY (AI72)) 5 g (M, e, w)) = 1. (5.11)
— 00

Next we let w € A~ satisfy Hy . + ¢ < a» — & for all sufficiently small & > 0. Then,
by Lemma 5.3 (ii), we have

Jim. P it (1) < Tty =1, (5.12)
Combining (5.12) with Lemma 4.2, we have
lim ngw{r(ex(ﬂl,ﬁe)) - ex(1—251+5)} -1
A—00
for some 6 > 0. Therefore we get
lim PO (X (M1720) < Pty = (5.13)
— 00
On the other hand, by Proposition 2.4 (i)—(ii), we have, forany w € A~ and ¢ > 0

Jim Py (X (M1720) < py M @8y = (5.14)
— 00

Therefore, by (5.13) and (5.14), we get, forany w € A~ and ¢ > 0

Jim PO @MY (A2 < gy (e, w)) = 1. (5.15)
Combining (5.11) and (5.15), we obtain the desired result. O

Now we prove Theorem 1.8 (cf. [1], [3]).
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PROOF OF THEOREM 1.8. First we prove (i). For any ¢ > 0 we observe, by Lemma
2.1 and (1.1),

”PS{O <e MY (M) <) = /Pl?]x 0 < e X () < e} Poy ap (dw)
- /POA(TAH)A){O < Y(e)\(l_2al)) < &} Py 0 (dw)
= / PG, 10 < X177 < £} Pyy 0, (dw) .

To prove (i), it is enough to show, for almost all w € W#* (with respect to Py ,ay)

lim P2 {0 < X172y <gy=1. (5.16)
A—>00 A

By Proposition 2.4 and noting, for sufficiently small & > 0, lim; _ oo e@—a Mpg,s/ = 0in
the case w € A and lim; _ eﬁr&lngﬁ/ = (0 in the case w € B, we get (5.16). Therefore
we obtain ().

Next we show (ii). In the same way as above we have, for any M > 0

PUe X (eh) > M} = / PO X (@ 1720) > MY Py, o (dw) .

To prove (ii), it is enough to show, for almost all w € W# (with respect to Poy,ay)

lim PO (X720 > my=1. (5.17)
A—00 A

In the case w € A\A™, we notice p(—¢e) > 0 for sufficiently small ¢ > 0. (The set of w € A
for which there is no ¢ > 0 satisfying this is Py, «,-negligible.) Therefore, in this case, by
Proposition 2.4 (i)—(ii) and noting lim) _, e(&z_&')}‘pg(—s) = 00, we get (5.17). In the case
w € A7, we have (5.17) by Proposition 2.6. In the case w € B, we get (5.17) by Proposition
2.4 (iii) and noting limy_ o0 e@ ¥4z, (—g) = oo for sufficiently small ¢ > 0. Hence we
obtain (ii). O
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