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Harmonic Analysis on the Space
of p-adic Unitary Hermitian Matrices,

Mainly for Dyadic Case

Yumiko HIRONAKA

Waseda University

Abstract. We are interested in harmonic analysis on p-adic homogeneous spaces based on spherical functions.
In the present paper, we investigate the space X of unitary hermitian matrices of size m over a p-adic field k mainly
for dyadic case, and give the unified description with our previous papers for non-dyadic case. The space becomes
complicated for dyadic case, and the set of integral elements in X has plural Cartan orbits. We introduce a typical
spherical function ω(x; z) on X, study its functional equations, which depend on m and the ramification index e
of 2 in k, and give its explicit formula, where Hall-Littlewood polynomials of type Cn appear as a main term with
different specialization according as the parity m = 2n or 2n + 1, but independent of e. By spherical transform, we
show the Schwartz space S(K\X) is a free Hecke algebra H(G,K)-module of rank 2n, and give parametrization of
all the spherical functions on X and the explicit Plancherel formula on S(K\X). The Plancherel measure does not
depend on e, but the normalization of G-invariant measure on X depends.

0. Introduction

We have been interested in harmonic analysis on p-adic homogeneous spaces based
on spherical functions. We have studied on the space of p-adic unitary hermitian matrices,
mainly for odd residual case in [HK1] and [HK2], and in the present paper we study mainly
for dyadic case and give the unified description including odd and even residual case. All the
results for odd residual case have been proved in [HK1] (resp. [HK2]) for even (resp. odd)
size matrices. When the matrix size is even, the space has a natural close relation to the theory
of automorphic functions and classical theory of sesquilinear forms (e.g. [H3], [HS]), where
we need not to distinguish the dyadic case.

We fix an unramified quadratic extension k′ of p-adic field k, and consider hermitian and
unitary matrices with respect to k′/k, and for a ∈ Mmn(k

′) we denote by a∗ ∈ Mnm(k
′) its

conjugate transpose. Let π be a prime element of k and vπ ( ) the additive valuation on k and
k′. Denote by jm ∈ GLm(k) the matrix whose all anti-diagonal entries are 1 and others are 0,
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where and henceforthm is an integer such that m ≥ 2. Set

G = U(jm) = {g ∈ GLm(k′)
∣∣ g∗jmg = jm

}
,

X = {x ∈ G ∣∣ x∗ = x, �xjm(t) = �jm(t)
}
,

g · x = gxg∗, (g ∈ G, x ∈ X) ,
where �y(t) is the characteristic polynomial of matrix y. We note that X is a single G(k)-

orbit over the algebraic closure k of k. We fix K = G ∩ GLm(Ok′), which is a maximal
compact open subgroup of G satisfying the Iwasawa decomposition G = KB = BK with
Borel subgroup B of G consisting of all the upper triangular matrices in G.

For dyadic case, i.e. vπ(2) > 0, there areK-orbits in X which have no diagonal element
(cf. Theorem 1 below); while for the space of unramified hermitian matrices inGLm(k′), each
GLm(Ok′)-orbit has a diagonal representative ([Ja]). It is known in general that the spherical
functions on various p-adic groups � can be written in terms of the specialization of Hall-
Littlewood polynomials of the corresponding root structure of � (cf. [M2, §10], also [Car,
Theorem 4.4]). For the present space X, the main term of spherical functions can be written
by using Hall-Littlewood polynomials of type Cn with different specialization according to
the parity of m, independent of the residual characteristic (cf. Theorem 3 below). By using
spherical functions we study the Schwartz space S(K\X), and show its H(G,K)-module
structure, parametrization of all the spherical functions on X and Plancherel formula and
Inversion formula on S(K\X)(cf. Theorem 4 below).

We will explain the results in some more details. Set

n =
[m

2

]
, e = vπ (2) (≥ 0) (0.1)

and denote the corresponding groupsG, B, K and space X with subscript and superscript if

necessary, as G(ev)n , X
(ev)
n for m = 2n, and G(od)n , X

(od)
n for m = 2n+ 1, etc. According to

the parity of m, G has the root structure of type Cn for even m or type BCn for odd m. We

fix a unit ε ∈ k for which the set {1, 1+√
ε

2 } forms an Ok-basis for Ok′ , where vπ (1 − ε) = 2e
(cf. [Om, §64]). Set

�̃+
n = {λ ∈ Z

n
∣∣ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −e} , (0.2)

�+
n =
{
λ ∈ �̃+

n

∣∣∣ λn ≥ 0
}
,

where �+
n = �̃+

n if e = 0. For λ ∈ �̃+
n such that λr ≥ 0 > λr+1, define

x
(ev)
λ = Diag(πλ1, . . . , πλr , y

(ev)
λ , π−λr , . . . , π−λ1) ∈ X(ev)n ,
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y
(ev)
λ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if r = n⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

πλr+1(1 − ε) −√
ε

. . . . .
.

πλn(1 − ε) −√
ε√

ε π−λn

. .
. . . .√

ε π−λr+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
if r < n,

x
(od)
λ = Diag(πλ1, . . . , πλr , y

(od)
λ , π−λr , . . . , π−λ1) ∈ X(od)n ,

y
(od)
λ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if r = n⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

πλr+1(1 − ε) −√
ε

. . . . .
.

πλn(1 − ε) −√
ε

1√
ε π−λn

. .
. . . .√

ε π−λr+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
if r < n,

and understand xλ = yλ if r = 0, where and henceforth we write simply as xλ or yλ, if there
is no danger of confusion. Here empty entries in matrices should be understood as 0.

THEOREM 1. (1) The map �̃+
n −→ K\X, λ 
−→ K · xλ is surjective. Further, it is

bijective if m is even,m = 3, or e = 1.
(2) There are precisely two G-orbits in X represented by xλ with λ = 0 and (1, 0, . . . , 0).

Each xλ, λ ∈ �+
n , gives a differentK-orbit, since it gives a differentGLm(Ok′)-orbit in

the space of hermitian matrices in GLm(k′), where m = 2n or 2n + 1. Hence, when e = 0,
it is enough to show that any K-orbit has a representative of the shape xλ, λ ∈ �+

n , which
has been done in [HK1] for even m and [HK2] for odd m. For e > 0, we have to prove also
the non-redundancy within the above representatives, which will be done as a corollary of the
explicit formula of spherical functions on X for n ≥ 2, i.e., m ≥ 4 (cf. Theorem 3).

A spherical function onX is aK-invariant function onX which is a common eigenfunc-
tion with respect to the convolutive action of the Hecke algebra H(G,K), and a typical one
is constructed by Poisson transform from relative invariants of a parabolic subgroup. We take
the Borel subgroup B consisting of upper triangular matrices in G. For x ∈ X and s ∈ C

n,
we consider the following integral

ω(x; s) =
∫
K

n∏
i=1

|di(k · x)|si dk , (0.3)
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where | | is the absolute value on k normalized by |π | = q−1, q = 	 (Ok/(π)), di(y) is the
determinant of the lower right i by i block of y, 1 ≤ i ≤ n, and dk is the normalized Haar
measure onK . Then the right hand side of (0.3) is absolutely convergent for Re(si ) ≥ 0, 1 ≤
i ≤ n, and continued to a rational function of qs1, . . . , qsn , and we use the notation ω(x; s) in
such sense. Since di(x)’s are relative B-invariants on X such that

di(p · x) = ψi(p)di(x), ψi(p) = Nk′/k(di(p)) (p ∈ B, x ∈ X, 1 ≤ i ≤ n) ,

we see ω(x; s) is a spherical function on X which satisfies

f ∗ ω(x; s) = λs(f )ω(x; s), f ∈ H(G,K)

λs(f ) =
∫
B

f (p)

n∏
i=1

|ψi(p)|−si δ(p)dp ,

where dp is the normalized left invariant measure on B with modulus character δ. The Weyl
group W of G relative to B acts on rational characters of B, hence on s. It is convenient to
introduce the new variable z ∈ Cn related to s by

si = −zi + zi+1 − 1 + π
√−1

log q
, 1 ≤ i ≤ n− 1

sn =

⎧⎪⎪⎨⎪⎪⎩
−zn − 1

2
if m = 2n

−zn − 1 + π
√−1

2 log q
if m = 2n+ 1 ,

(0.4)

where, for the case m = 2n, we have slightly changed the relation between s and z from that
in [HK1] (cf. Remark 2.1). Then W = 〈Sn, τ 〉 acts on z by permutation of indices as for the
elements of Sn and τ (z1, . . . , zn) = (z1, . . . , zn−1,−zn). Keeping the above relation (0.4),
we denote ω(x; z) = ω(x; s) and λz = λs . Then λz gives the Satake isomorphism

λz : H(G,K) ∼−→ C
[
q±2z1, . . . , q±2zn

]W
(= R0, say) . (0.5)

We will give the functional equation of ω(x; z) with respect to W . We set


+ = 
+
s �
+

� ,


+
s = {ei + ej , ei − ej

∣∣ 1 ≤ i < j ≤ n
}
, 
+

� = {2ei | 1 ≤ i ≤ n} ,
where ei ∈ Z

n is the i-th unit vector, and define a pairing

〈 , 〉 : Zn × C
n −→ C, 〈α, z〉 =

n∑
i=1

αizi .

THEOREM 2. Assume e ≤ 1 if m is odd.
(1) For any σ ∈ W , one has

ω(x; z) = �(e)σ (z) · ω(x; σ(z)) .
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where

�(e)σ (z) =
∏
α

γ (e)α (z), γ (e)α (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 − q−1+〈α, z〉

q〈α, z〉 − q−1 α ∈ 
+
s

qe〈α, z〉 α ∈ 
+
� ,m = 2n

qe〈α, z〉 1 − q−1+〈α, z〉

q〈α, z〉 − q−1 α ∈ 
+
� ,m = 2n+ 1 ,

and α runs over the set
{
α ∈ 
+ ∣∣ − σ(α) ∈ 
+}.

(2) The function q−〈e, z〉G(z) · ω(x; z) is holomorphic and W -invariant, hence belongs to
C[q±z1, . . . , q±zn ]W . Here

〈e, z〉 = e(z1 + · · · + zn), G(z) =
∏
α

1 + q〈α, z〉

1 − q−1+〈α, z〉 ,

and α runs over the set 
+
s for m = 2n and 
+ for m = 2n+ 1.

As for the explicit formula of ω(x; s) it suffices to give for xλ by Theorem 1 (1).

THEOREM 3 (Explicit formula). Assume e ≤ 1 if m is odd. For each λ ∈ �̃+
n , one has

ω(xλ; z) = cn q
〈λ, z0〉 · q

〈e, z〉

G(z)
·Qλ+e(z; {t}) ,

where G(z) is given in Theorem 2, z0 is the value in z-variable corresponding to s = 0,

cn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − q−2)n

wm(−q−1)
if m = 2n

(1 + q−1)(1 − q−2)n

wm(−q−1)
if m = 2n+ 1,

wm(t) =
m∏
i=1

(1 − t i ) ,

Qμ(z; {t}) =
∑
σ∈W

σ
(
q−〈μ, z〉c(z, {t})

)
, c(z, {t}) =

∏
α∈
+

1 − tαq
〈α, z〉

1 − q〈α, z〉 ,

{t} = {tα} with tα =

⎧⎪⎪⎨⎪⎪⎩
−q−1 if α ∈ 
+

s

q−1 if α ∈ 
+
� , m = 2n

−q−2 if α ∈ 
+
� , m = 2n+ 1 .

We see the main part Qλ+e(z; {t}) of ω(xλ; z) belongs to R = C[q±z1, . . . , q±zn]W by
Theorem 2. It is known that Qμ(z; {t}) is a constant multiple of Hall-Littlewood polynomial

Pμ(z; {t}) and the set
{
Pμ(z; {t}) ∣∣ μ ∈ �+

n

}
forms a C-basis for R (for more details, see

Remark 3.2). Hence we see the non-redundancy for the representatives in Theorem 1-(1). The
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influence of the residual characteristic of the base field k in the explicit formula of ω(xλ; z)
appears as shifting λ+ e in Qλ or Pλ and the factor q〈e, z〉.

We modify the spherical function by using the value at x(−e), (−e) ∈ �̃+
n as

�(x; z) = ω(x; z)
ω(x(−e); z) ∈ C[q±z1, . . . , q±zn]W(= R) ,

and define the spherical Fourier transform on the Schwartz space S(K\X) by

̂: S(K\X) −→ R, ϕ 
−→ ϕ̂(z) =
∫
X

ϕ(x)�(x; z)dx

where dx is a G-invariant measure on X. Then it satisfies

(f ∗ ϕ)̂ = λz(f )ϕ̂, f ∈ H(G,K), ϕ ∈ S(K\X) ,
where λz is the Satake isomorphism given in (0.5).

THEOREM 4. Assume e ≤ 1 if m is odd.
(1) The above spherical Fourier transform is anH(G,K)-module isomorphism and S(K\X)
becomes a free H(G,K)-module of rank 2n.

(2) All the spherical functions on X are parametrized by z ∈
(
C
/2π

√−1
logq

)n /
W through λz,

and the set
{
�(x; z+ u)

∣∣∣ u ∈ {0, π
√−1

logq }n
}
forms a C-basis of spherical functions corre-

sponding to z.

(3) (Plancherel formula) Set a measure dμ(z) on a∗ =
{√−1

(
R
/ 2π

logqZ

)}n
by

dμ(z) = 1

2nn! · wn(−q
−1)wm′(−q−1)

(1 + q−1)m
′ · 1

|c(z, {t})|2 dz, m′ =
[
m+ 1

2

]
,

where dz is the Haar measure on a∗. By the normalized G-invariant measure dx on X (ex-
plicitly given in Lemma 4.3), one has∫

X

ϕ(x)ψ(x)dx =
∫
a∗
ϕ̂(z)ψ̂(z)dμ(z) (ϕ,ψ ∈ S(K\X)) .

(4) (Inversion formula) For any ϕ ∈ S(K\X), one has

ϕ(x) =
∫
a∗
ϕ̂(z)�(x; z)dμ(z), x ∈ X .

The spherical function �(x; z) and the G-invariant measure dx on X depend on m and e =
vπ (2), while the Plancherel measure dμ(z) depends only on m. A key point to establish
Theorems 2, 3 and 4 for e > 0 is the functional equation of ω(x; z) for n = 1, i.e.,m = 2 and
3 (cf. Proposition 2.3 and Proposition 2.4). If (2.14) in Proposition 2.4 is true for e > 0, then
Theorems 1, 2, 3 and 4 hold for the same e (cf. Remark 2.5).
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1. The space X

1.1. Let k′ be an unramified quadratic extension of a p-adic field k and consider
hermitian and unitary matrices with respect to k′/k, and for a ∈ Mmn(k

′) we denote by
a∗ ∈ Mnm(k

′) its conjugate transpose. Let π be a prime element of k and q the cardinality

of the residue class field Ok/(π), and we normalize the absolute value on k by |π | = q−1

and denote by vπ ( ) the additive valuation on k, and on k′ simultaneously. We set e = vπ (2).

We fix a unit ε ∈ O×
k for which the set {1, 1+√

ε

2 } forms an Ok-basis for Ok′ (cf. [Om, §64]).
Then vπ (1 − ε) = 2e. We denote by N the norm map Nk′/k, and set

jm =
⎛⎜⎝ 1

. .
.

1

⎞⎟⎠ ∈ Mm ,

where and henceforth empty entries in matrices should be understood as 0.

We consider the unitary group for m ≥ 2

G = G(jm) = {g ∈ GLm(k′)
∣∣ g∗jmg = jm

}
,

and the spaces of hermitian matrices in G

X̃ = {x ∈ G ∣∣ x∗ = x
}
, X = {x ∈ X̃ ∣∣ �xjm(t) = �jm(t)

}
, (1.1)

where �y(t) is the characteristic polynomial of a matrix y, and we see det(x) = 1 for any

x ∈ X. The groupG acts on X̃ and X by

g · x = gxg∗ = gxjmg
−1jm, g ∈ G, x ∈ X̃ . (1.2)

This action can be extended to the algebraic closure k of k, and the set X̃(k) is decomposed

into G(k)-orbits as follows (cf. [HK1, Appendix A]) :

X̃(k) =
m⊔
i=0

{
x ∈ X̃(k)

∣∣∣ �xjm(t) = (t − 1)i(t + 1)m−i} . (1.3)

Then X(k) is a single G(k)-orbit containing 1m and corresponding to i =
[
m+1

2

]
, and X =
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X(k) ∩G. It is easy to see the following:

If m = 2, then X̃ = {j2} � {−j2} �X .
If m = 3, then X̃ = {j3} � {−j3} �X � (−X) . (1.4)

We fix a maximal compact subgroupK of G by

K = G ∩Mm(Ok′) ,

(cf. [Sa, §9]), and take a Borel subgroupB ofG consisting of all the upper triangular matrices
in G. Then the groupG satisfies the Iwasawa decompositionG = BK = KB.

We are interested in Cartan decomposition of X, i.e., K-orbit decomposition of X. To
state the results we prepare some notation. We set

n =
[m

2

]
(1.5)

and denote the corresponding groupsG, B, K and the spaceX with subscript and superscript

if necessary, as G(ev)n , X
(ev)
n form = 2n, and G(od)n , X

(od)
n form = 2n+ 1, etc. We set

�̃+
n = {λ ∈ Z

n
∣∣ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −e} , (e = vπ(2))

�+
n =
{
λ ∈ �̃+

n

∣∣∣ λn ≥ 0
}(

= �̃+
n if e = 0

)
, (1.6)

and for each λ ∈ �̃+
n such that λr ≥ 0 > λr+1, define x(ev)λ ∈ X

(ev)
n for m = 2n and

x
(od)
λ ∈ X(od)n form = 2n+ 1 as follows

x
(ev)
λ = Diag(πλ1, . . . , πλr , y

(ev)
λ , π−λr , . . . , π−λ1), (1.7)

y
(ev)
λ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if r = n⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

πλr+1(1 − ε) −√
ε

. . . . .
.

πλn(1 − ε) −√
ε√

ε π−λn

. .
. . . .√

ε π−λr+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
if r < n,

x
(od)
λ = Diag(πλ1, . . . , πλr , y

(od)
λ , π−λr , . . . , π−λ1) , (1.8)
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y
(od)
λ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if r = n⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

πλr+1(1 − ε) −√
ε

. . . . .
.

πλn(1 − ε) −√
ε

1√
ε π−λn

. .
. . . .√

ε π−λr+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
if r < n,

and understand xλ = yλ if r = 0, where and henceforth we write simply as xλ or yλ, if there
is no danger of confusion.

THEOREM 1.1. (1) The map �̃+
n −→ Kn\Xn, λ 
−→ Kn · xλ is surjective.

(2) The above map is bijective if m = 2n, m = 3, or e = 1.
(3) There are precisely two Gn-orbits in Xn represented by x0 = 1m and x1 =
Diag(π, 1m−2, π

−1). For λ ∈ �̃+
n , xλ ∈ G · 1m if and only if |λ| =∑n

i=1 λi is even.

We recall some classical results on unramified hermitian forms (cf. [Ja]). The group
GLm(k

′) acts on the space Hm(k
′) = {x ∈ GLm(k′)

∣∣ x∗ = x
}

by g · x = gxg∗, and

Hm(k
′)=
⊔
μ∈�m

GLm(Ok′) · πμ = GLm(k
′) · 1m � GLm(k

′) · π(1,0,··· ,0) , (1.9)

where�m = {μ ∈ Z
m | μ1 ≥ · · · ≥ μm}, πμ = Diag(πμ1 , . . . , πμm), and πμ ∈ GLm(k′) ·

1m if and only if |μ| =∑m
i=1 μi is even.

REMARK 1.2. As for (1), we have shown for even m in [HK1, §1] and for odd m
with e = 0 in [HK2, §1]. In §1.2 (resp. §1.3), we will show the statement (1) for m = 3
(resp. general odd m). The non-redundancy of the representatives for e = 0 follows from
(1.9). For e > 0, we see there are K-orbits without any diagonal element by Proposition 1.3
below, and non-redundancy form = 2, 3 follows from this and the value �(x− jm) (cf. (1.11)
below). We will see the non-redundancy for general m as a corollary of the explicit formula
of spherical functions in §3 (See Remark 3.3). The property (3) is independent of the residual
characteristic and we may prove in a similar way as in [HK1] and [HK2], so we omit the proof.

We note here the stabilizer ofG(k) at x = 1m is isomorphic to U(1n)(k)×U(1m′)(k), m′ =[
m+1

2

]
, and explicitly given as follows ([HK1, (1.5)], [HK2, Proof of Theorem 1.1]):{(
a b

jbj jaj

)
∈ GL2n(k)

∣∣∣∣ a + bj, a − bj ∈ U(1n)(k)
}
, or (1.10)⎧⎨⎩

⎛⎝ A b C

d f dj

jCj jb jAj

⎞⎠ ∈ GL2n+1(k)

∣∣∣∣∣∣ A− Cj ∈ U(1n)(k),
(
A+ Cj νb

ν∗d f

)
∈ U(1n+1)(k)

⎫⎬⎭ ,
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where j = jn and ν ∈ k such that νν∗ = 2. Here, we may take ν within k′ if e = 0, while for

e > 0, we understand ∗ as an extended automorphism of k.

PROPOSITION 1.3. If x ∈ X ∩ Mm(Ok′) satisfies x ≡ jm (mod (π)), then the orbit
K · x has no diagonal element.

PROOF. If K · x contains a diagonal element, it must contain 1m. On the other hand,
since any k ∈ K fixes jm, we have 1m ≡ jm (mod (π)), which is a contradiction. �

For a = (aij ) ∈ Mm(k
′), a �= 0, we set

−�(a) = min
{
vπ (aij )

∣∣ 1 ≤ i, j ≤ m
}
, (1.11)

and say an entry of a to be minimal if its vπ -value is −�(a).
LEMMA 1.4. (1) Let a ∈ Mm(Ok′) and b ∈ Mm(k

′) such that ab �= 0 and ba �= 0.
Then, one has

�(ab) ≤ �(b), �(ba) ≤ �(b) ,

and the equalities hold if a ∈ GLm(Ok′).
(2) For any g ∈ G, one has �(g) ≥ 0, and the equality holds if and only if g ∈ K .

PROOF. (1) Let a = (aij ) ∈ Mm(Ok′) and b = (bij ) ∈ Mm(k
′). Then, we have

−�(ab)= min

{
vπ (
∑
k

aikbkj )

∣∣∣∣∣ 1 ≤ i, j ≤ m

}
≥ min

{
vπ(aikbkj )

∣∣ 1 ≤ i, j, k ≤ m
}

≥ min
{
vπ (bkj )

∣∣ 1 ≤ j, k ≤ m
} = −�(b) ,

hence �(ab) ≤ �(b), and similarly we have �(ba) ≤ �(b). If a ∈ GLm(Ok′), we have the
opposite inequalities and then �(ab) = �(b) = �(ba).

The statement (2) follows from the fact det(g) ∈ O×
k′ and K = Mm(Ok′) ∩G. �

1.2. In this subsection we consider the casem = 3 and prove the following proposition.

PROPOSITION 1.5. The set R+
1 � R−

1 is a set of complete representatives of K1\X1,
where

R+
1 =
⎧⎨⎩x� =

⎛⎝π� 1
π−�

⎞⎠ ∣∣∣∣∣∣ � ≥ 0

⎫⎬⎭ ,
R−

1 =
⎧⎨⎩x−r =

⎛⎝π−r (1 − ε) −√
ε

1√
ε πr

⎞⎠ ∣∣∣∣∣∣ 1 ≤ r ≤ e

⎫⎬⎭ .
The set R−

1 is non-empty only if e > 0. In that case, for x ∈ X1, K1 · x has a representative

in R−
1 if and only if x ≡ j3 (mod (π)).
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We write down the groupK1 = K
(od)
1 explicitly for convenience.

LEMMA 1.6.

K1 = K1,1 �K1,2 ,

K1,1 :=
{
g ∈ B1j3B1 ∩K1

∣∣∣ g31 ∈ O×
k′
}

=
{
g ∈ K1

∣∣∣ g31 ∈ O×
k′
}

=
⎧⎨⎩
⎛⎝α u

α∗−1

⎞⎠⎛⎝1 −d∗ f

1 d

1

⎞⎠⎛⎝ 1
1 −b∗

1 b c

⎞⎠ ∣∣∣∣∣∣
α ∈ O×

k′ , u ∈ O1
k′

b, c, d, f ∈ Ok′
N(b) + c + c∗ = N(d)+ f + f ∗ = 0

⎫⎬⎭ ,
K1,2 := {g ∈ K1 | g31 ∈ (π)}

=
⎧⎨⎩
⎛⎝α u

α∗−1

⎞⎠⎛⎝1
b 1
c −b∗ 1

⎞⎠⎛⎝1 d f

1 −d∗
1

⎞⎠ ∣∣∣∣∣∣
α ∈ O×

k′ , u ∈ O1
k′

b, c ∈ πOk′ , d, f ∈ Ok′
N(b) + c + c∗ = N(d)+ f + f ∗ = 0

⎫⎬⎭ .
PROOF OF PROPOSITION 1.5. The strategy is similar to [HK2, §1.2]. We take an ele-

ment x ∈ X1, write it as

x =
⎛⎝ a b c

b∗ d f

c∗ f ∗ g

⎞⎠ , a, d, g ∈ k, b, c, f ∈ k′ , (1.12)

and show that the orbit K1 · x has an element x� with � ≥ −e as in the statement.

By the fact x ∈ G and �xj3(t) = (t2 − 1)(t − 1), we obtain the following equations

ag + bf + c2 = 1 , (1.13a)

af ∗ + b(c+ d) = 0 , (1.13b)

a(c+ c∗)+ bb∗ = 0 , (1.13c)

b∗g + (c + d)f = 0 , (1.13d)

bf + b∗f ∗ + d2 = 1 , (1.13e)

(c + c∗)g + ff ∗ = 0 , (1.13f)

and

(t2 − 1)(t − 1) (1.14)

= (t − c)(t − c∗)(t − d)− (t − c)b∗f ∗ − (t − c∗)bf − (t − d)ag − aff ∗ − bb∗g .

We recall that N(O×
k′ ) = O×

k and T r(Ok′) = Ok .

[Case 1] a �= 0 and vπ(a) ≤ vπ (b), or g �= 0 and vπ (g) ≤ vπ (f ).
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By the action of j3, it suffices to consider the case a �= 0. By the action of an element of K1

of type⎛⎝1 0 0
λ 1 0
μ −λ∗ 1

⎞⎠ ∈ K1, λ, μ ∈ k′ such that aλ+ b∗ = 0, N(λ)+ μ+ μ∗ = 0 , (1.15)

we may assume b = 0 in (1.12). Then, by (1.13) and (1.14), we have

f = 0, ag + c2 = 1, c + c∗ = 0, d = 1 .

Thus, we may assume

x =
⎛⎝ a 0 −c1

√
ε

0 1 0
c1

√
ε 0 g

⎞⎠ , a, g, c1 ∈ k, ag + c2
1ε = 1 ,

ag �= 0, vπ (a) ≥ vπ (g) ,
(1.16)

where g �= 0 follows from ε /∈ k×2. We consider two cases according to vπ (g).

(i) If vπ(g) ≤ 0, we may assume g = π−�, � ≥ 0. Then (π�c1)
2 = π2� − ag−1 ∈ Ok , and

K1 · x �
⎛⎝1 0 π�c1

√
ε

0 1 0
0 0 1

⎞⎠ ·
⎛⎝ a 0 −c1

√
ε

0 1 0
c1

√
ε 0 π−�

⎞⎠

=
⎛⎝π� 0 0

0 1 0
0 0 π−�

⎞⎠ .
(ii) Assume that vπ (g) > 0. Since an element of k square modulo 4πOk is a square in k, the

relation c2
1ε ≡ 1(πvπ (ag)Ok) yields e > 0 and vπ (g) ≤ e. Further c1 ≡ 1 (mod (π)), since

ε ∈ 1 + 4Ok. Thus we see

K1 · x � x ′ =
⎛⎝ a 0 −(1 + b)

√
ε

0 1 0
(1 + b)

√
ε 0 πr

⎞⎠ , 1 ≤ r ≤ e ,

a, b ∈ Ok, vπ (a) ≥ r ,

vπ (b) < r or b = 0,
(1.17)

By the equation

(t − 1)(t2 − 1) = �x ′j3(t)= (t − 1)
{
t2 − (1 + b)2ε − πra

}
and ε ∈ 1 + 4Ok = 1 + (π2e), we have

2b + b2 + πra ∈ π2eOk ,
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which yields b = 0 and a = π−r (1 − ε). Hence

x ′ =
⎛⎝π−r (1 − ε) 0 −√

ε

0 1 0√
ε 0 πr

⎞⎠ (=: x−r ), 1 ≤ r ≤ e . (1.18)

We note x−r appears only if e > 0 and cannot be diagonalized by Proposition 1.3.

[Case 2] ag = 0. We may assume a = 0.
By (1.13) and (1.14), we see b = 0, c = 1, d = −1, and 2g + ff ∗ = 0. Hence we see

K1 · x � x ′ =
⎛⎝0 0 1

0 −1 h

1 h − 1
2h

2

⎞⎠ , h = 0 or π�, (� ∈ Z) . (1.19)

If vπ(h) ≤ e, then x ′ satisfies the assumption of Case1, and we have done. If h �= 0 and

vπ (h) > e, then 1
2h ∈ Ok . Taking c ∈ Ok′ such that h

2

4 + c + c∗ = 0, one has

K1 · x �
⎛⎝ 1 0 0

−h
2 1 0
c h

2 1

⎞⎠ · x ′ =
⎛⎝0 0 1

0 −1 0
1 0 0

⎞⎠ .
Hence we have only to consider h = 0 in (1.19). i.e.

x ′ =
⎛⎝ 1

−1
1

⎞⎠ = j3 − 2yy∗, y =
⎛⎝0

1
0

⎞⎠ . (1.20)

For an element k in K1 given by

k =
⎛⎜⎝1 −1 −1+√

ε
2

1 1
1

⎞⎟⎠
⎛⎜⎝ 1

1 1

1 −1 −1+√
ε

2

⎞⎟⎠

=
⎛⎜⎝

−1+√
ε

2
−1−√

ε

2
(−1+√

ε)2

4

1 0 1+√
ε

2

1 −1 −1+√
ε

2

⎞⎟⎠ ,
one has

k · x ′ = j3 − k · (2yy∗) = j3 − 2(ky)(ky)∗

= j3 − 2

⎛⎜⎝−1−√
ε

2
0

−1

⎞⎟⎠(−1+√
ε

2 0 −1
)
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=
⎛⎝ ε−1

2 0 −√
ε

0 1 0√
ε 0 −2

⎞⎠ ,
which is K1-equivalent to

x−e =
⎛⎝π−e(1 − ε) 0 −√

ε

0 1 0√
ε 0 πe

⎞⎠ .
If e > 0, the above x−e cannot be diagonalized by Proposition 1.3 and one of the required
representatives. If e = 0, x−0 reduces to Case 1-(i), and actually one has

K1 · x−0 �
⎛⎝1 0

√
ε

0 1 0
0 0 1

⎞⎠ ·
⎛⎝(1 − ε) 0 −√

ε

0 1 0√
ε 0 1

⎞⎠ = 13 .

[Case 3] ag �= 0, vπ (a) > vπ (b) and vπ (g) > vπ (f ). We may assume

vπ (a) ≥ vπ (g) . (1.21)

By (1.13b) and (1.13d), we have aN(f ) = N(b)g , which implies

vπ(a)− vπ (g) = 2(vπ (b)− vπ (f )) ≥ 0 . (1.22)

We show vπ(c) ≥ 0. If it was not, by (1.13a) and the assumption of Case 3, we had

vπ (bf ) = 2vπ (c) ≤ −2, hence vπ(f ) < 0 .

Then

(cf−1)2 = f−2 − (af−1)(gf−1)− bf−1 ∈ Ok′ (by (1.13a)) ,

hence cf−1, c∗f−1 ∈ Ok′ and so

(π) � (cf−1 + c∗f−1)gf ∗−1 = (c + c∗)gN(f )−1 = −1 (by (1.13f)) ,

which is a contradiction. Hence vπ (c) ≥ 0, and again by (1.13f) and the assumption of Case
3, we have

vπ(f ) < vπ(g) ≤ 2vπ(f ), hence vπ (f ) > 0 .

Then, by (1.13e), d ∈ O×
k and x ∈ M2n+1(Ok′) ∩ X, hence �(x) = 0. Set r = vπ(f ) > 0.

Then

c + c∗ + d = 1, (by (1.14))

c + d = c∗ + d ≡ 0 (mod (πr+1)), (by (1.13d))
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hence

c ≡ c∗ ≡ 1 (mod (πr+1)), c + c∗ ≡ 2 (mod (πr+1)) .

Then by (1.13f)

2r = vπ (c + c∗)+ vπ (g) ≥ min{e, r + 1} + r + 1 ,

hence we see

r > e, vπ (c + c∗) = e, vπ (g) = 2r − e > r .

Setting vπ (b) = m(≥ r), one has vπ(a) = 2m− e by (1.13c). We may take the unit part of a
off, and assume x becomes

x =
⎛⎝π2m−e πmu c

πmu∗ d πrv

c∗ πrv∗ π2r−ew

⎞⎠ ,
m ≥ r > e

c, u, v ∈ O×
k′ , d,w ∈ O×

k

c ≡ c∗ ≡ 1 mod (πr+1), d ≡ −1 mod (πr+1),

c + c∗ + d = 1,

(1.23)

and the set of equations (1.13) becomes

π2(m+r−e)w + πm+ruv + c2 = 1 ,

c + d = −πm+r−eu−1v∗ ,
c + c∗ = −πeuu∗ ,
c + d = −πm+r−eu∗v−1w ,

πm+r (uv + u∗v∗)+ d2 = 1 ,

c + c∗ = −πevv∗w−1 .

Then together with (1.23), we have

w = (uu∗)−1vv∗, c + c∗ = −πeuu∗ ,
d = 1 − (c + c∗) = 1 + πeuu∗ ,
c = 1 − (c∗ + d) = 1 + πm+r−eu∗−1v .

Now we have

x ′ :=
⎛⎝u−1

1
u∗

⎞⎠ · x =
⎛⎝π2m−e(uu∗)−1 πm c

πm d πruv

c∗ πru∗v∗ π2r−evv∗

⎞⎠

= j3 + πe

uu∗

⎛⎝ π2(m−e) πm−euu∗ πm+r−2euv

πm−euu∗ (uu∗)2 πr−eu2u∗v
πm+r−2eu∗v∗ πr−euu∗2v∗ π2(r−e)uu∗vv∗

⎞⎠
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= j3 + πe

uu∗ yy
∗, y =

⎛⎝ πm−e
uu∗

πr−eu∗v∗

⎞⎠ .
We will show there exists some k ∈ K1 for which the second entry (ky)2 of ky is 0. Then

k · x ′ has the shape

⎛⎝ · 0 ·
0 1 0
· 0 ·

⎞⎠, which reduces to Case 1 or Case 2 (if e > 0, x is equivalent

to some x−�, 1 ≤ � ≤ e, by Proposition 1.3). Set

k =
⎛⎝1 −α∗ β

0 1 α

0 0 1

⎞⎠⎛⎝0 0 1
0 1 −γ ∗
1 γ δ

⎞⎠ =
⎛⎝ · · ·
α 1 + αγ αδ − γ ∗
· · ·

⎞⎠ , (1.24)

and solve (
(ky)2 = )απm−e + (1 + αγ )uu∗ + (αδ − γ ∗)πr−eu∗v∗ = 0 (1.25)

under the condition α, β, γ, δ ∈ Ok′ and N(α) + β + β∗ = N(γ ) + δ + δ∗ = 0, which is
equivalent that k of (1.24) becomes an element in K1.

If (1.25) is satisfied, we see 1 + αγ ∈ (πr−e) ⊂ (π), and α, γ ∈ O×
k′ . Writing 1 + αγ =

πr−eλ with λ ∈ Ok′ , we have δ = α−1γ ∗ − πm−r (u∗v∗)−1 − α−1λuv∗−1 by (1.25). Then,
since α �= 0, the conditionN(γ )+ δ + δ∗ = 0 is equivalent to

N(α)N(γ ) + αγ + α∗γ ∗ − πm−rN(α)((uv)−1 + (u∗v∗)−1)− α∗λuv∗−1 − αλu∗v−1 = 0 ,

then, since 1 + αγ = πr−eλ, it becomes

π2(r−e)N(λ)− πm−rN(α)((uv)−1 + (u∗v∗)−1)− α∗λuv∗−1 − αλ∗u∗v−1 = 1 . (1.26)

Setting λ = αu−1v∗μ with μ ∈ Ok′ , (1.26) is equivalent to

N(α)
(
π2(r−e)N(u)−1N(v)N(μ) − πm−r ((uv)−1 + (u∗v∗)−1)− (μ+ μ∗)

)
= 1 . (1.27)

Since r > e, we may choose μ ∈ Ok for which the latter factor in the left hand side of (1.27)

becomes a unit in Ok , then for suitable α ∈ O×
k′ we establish the identity (1.27). Finally taking

β such as N(α) + β + β∗ = 0, we obtain k ∈ K1 for which (ky)2 = 0, which establishes
(1.25).

Thus we have shown that any K1-orbit in X1 has a representative in R+
1 � R−

1 and K1 · x ∩
R−

1 �= ∅ if and only if e > 0 and x ≡ j3 (mod (π)). It is known that each x�, � ≥ 0

gives a different GL3(Ok′)-orbit in
{
x ∈ GL3(k

′)
∣∣ x∗ = x

}
, hence it gives a different K1-

orbit in X1. For x−r , 1 ≤ r ≤ e, −r = �(x−r − j3) is an invariant of K1 · x−r , since
h · (x−r − j3) = h · x−r − j3 for any h ∈ K1 (cf. Lemma 1.4 (1)). Hence R+

1 � R−
1 forms a

set of complete representatives of K1\X1. �
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1.3. In this subsection we will show Theorem 1.1-(1) for the case m = 2n + 1 with
n ≥ 2. Our strategy is similar to [HK2] (we have to be careful for e > 0.)

LEMMA 1.7. Let n ≥ 2. Then every x ∈ Xn has a minimal entry except the (n+1, n+
1)-entry.

PROOF. Assume x had unique minimal entry π−�u, u ∈ O×
k at (n + 1, n + 1) and

denote by E′ the (n+ 1, n+ 1)-matrix unit in M2n+1(k
′). Then π�x ∈ M2n+1(Ok′) and

π2�12n+1 = (π�x)j2n+1(π
�x)j2n+1 ≡ u2E′ mod (π) ,

which is impossible. �

The following lemmas can be shown in the same way as in [HK2], so we omit the details
of proofs.

LEMMA 1.8. Let n ≥ 2 and assume that
(A1, n) : x ∈ Xn has a minimal entry in the diagonal except the (n+ 1, n+ 1)-entry.

Then K · x contains a hermitian matrix of the type⎛⎝ π� 0 0
0 y 0
0 0 π−�

⎞⎠ , y ∈ Xn−1, � = �(x) ≥ �(y) .

OUTLINE OF A PROOF. By the action ofW , we may assume that the (2n+ 1, 2n+ 1)-
entry of x is minimal, and then we may arrange it into the above shape by a suitable K-
action. �

LEMMA 1.9. Let n ≥ 2 and assume one of the following conditions hold:
(A2, n) : x ∈ Xn has a minimal entry outside of the diagonal, the anti-diagonal, the

(n+ 1)th row, and the (n+ 1)th column.
(A3, n) : x has a minimal entry and a non-minimal entry in the anti-diagonal except the

(n+ 1, n+ 1)-entry.

Then K · x contains a hermitian matrix of type⎛⎜⎜⎜⎜⎜⎝
π� 0
0 π�

0 0

0 y 0

0 0
π−� 0

0 π−�

⎞⎟⎟⎟⎟⎟⎠ ,
y ∈ Xn−2, � = �(x) ≥ �(y) if n ≥ 3,
y = 1 if n = 2.

OUTLINE OF A PROOF. Write � = �(x). Under the condition (A2, n), such minimal
entries appear in pair, since x is hermitian. Then, through the action of W and GL2(Ok′), we

may assume that the lower right 2 by 2 block of x is

(
π−� 0

0 π−�
)

, then we may arrange it
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into the above shape by the suitable K-action. As for y, it is clear that y = y∗ and �(y) ≤ �.
Considering the characteristic function of xj2n+1, we see y ∈ Xn−2 if n ≥ 3 and y = 1 if
n = 2.

As for the condition (A3, n), together with the action of W , we may assume the upper

right 2 by 2 block of x is

(
a ξ

b c

)
such that vπ(ξ) = −� and a, b, c ∈ π−�+1Ok′ . Then, by

the action of

h =

⎛⎜⎜⎜⎜⎜⎝
1 1
0 1

0 0

0 12n−3 0

0 0
1 −1
0 1

⎞⎟⎟⎟⎟⎟⎠ ,

the (1, 2n)-entry becomes a + b − c− ξ , and its vπ -value is � = �(x). Thus it reduces to the
case (A2, n). �

We have to consider the remaining case, which is the assumption (A4, n) below. The
statement for the non-dyadic case is a refinement of [HK2, Lemma 1.9].

LEMMA 1.10. Let x ∈ Xn with n ≥ 2. Assume that
(A4, n) : any minimal entry of x ∈ Xn stands in the anti-diagonal, the (n+ 1)th row, or

the (n+ 1)th column, and that all the anti-diagonal entries except (n+ 1, n+ 1) are minimal.
Then �(x) = 0, and
(i) if k is non-dyadic, then K · x contains 12n+1;
(ii) if k is dyadic, then K · x contains⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

πμ1(1 − ε) −√
ε

. . . . .
.

πμn(1 − ε) −√
ε

1√
ε π−μn

. .
. . . .√

ε π−μ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.28)

where 0 > μ1 ≥ μ2 ≥ · · · ≥ μn ≥ −e.
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PROOF. By the action of W and suitable K-action, we may assume x has the shape

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α ξ1

∗ 0 ∗ . .
.

... . .
. ∗

0 ξn

α∗ 0 · · · 0 u 0 · · · 0 κ∗
ξ∗
n 0

∗ . .
. ...

. .
. ∗ 0 ∗

ξ∗
1 κ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1.29)

where α = 0 or vπ (α) ≤ vπ (κ). Write � = �(x). Since xj2n+1xj2n+1 = 12n+1, by its
(1, 2n+ 1)-entry and (2n+ 1, 1)-entry, we have

αα∗ ≡ κκ∗ ≡ 0 (mod (π−2�+1)) ,

hence α nor κ is not minimal, which means any entry outside of the anti-diagonal is non-
minimal. Setting ui = π�ξi ∈ O×

k′ , 1 ≤ i ≤ n, and u0 = π�u ∈ Ok , we have

π2�12n+1 = π2�xj2n+1xj2n+1 = (π�x)j2n+1(π
�x)j2n+1

≡Diag(u2
1, . . . , u

2
n, u

2
0, u

∗2
n , . . . , u

∗2
1 ) (mod (π)) ,

hence

� = 0, ξ2
i ≡ ξ∗2

i ≡ u2 ≡ 1 (mod (π)) ,

and

x ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1

. .
.

ξn

u

ξn

. .
.

ξ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(mod (π)) ,

ξi ≡ ξ∗
i ≡ ±1 (mod (π)), u ≡ ±1 (mod (π)) .

First we consider the non-dyadic case, where 1 �≡ −1 (mod (π)). By the characteristic
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polynomial, we have

(t2 − 1)n(t + 1) ≡ (t − u)

n∏
i=1

(t − ξi)
2 (mod (π)), n ≥ 2 ,

hence we may assume ξ1 �≡ ξ2 (mod (π)), after suitable W -action if necessary. For

h =

⎛⎜⎜⎜⎜⎜⎝
1

1
12n−3

1 1
−1 1

⎞⎟⎟⎟⎟⎟⎠ ∈ K ,

we have

h · x ≡

⎛⎜⎜⎜⎜⎜⎝
ξ1

ξ2

C

ξ2 ξ1 − ξ2

ξ1 ξ1 − ξ2

⎞⎟⎟⎟⎟⎟⎠ (mod (π)) ,

where Cj2n−3 = Diag(ξ3, . . . , ξn, u, ξn, . . . , ξ3) and ξ1 − ξ2 �≡ 0 (mod (π)). Since h · x
satisfies (A2, n) with � = 0, we see

K · x �
⎛⎝ 12 0 0

0 y 0
0 0 12

⎞⎠ , y ∈ Xn−2, �(y) = 0, or y = 1 .

Then, we see inductivelyK · x contains 12n+1.

Now we assume k is dyadic. Then x ≡ j2n+1 ( mod (π)) and x is not diagonalizable,
by Proposition 1.3.

[Case 1] We assume that there is a non-zero entry of x outside of the anti-diagonal, (n+ 1)-th
row and (n + 1)-th column, i.e. within ∗-places of (1.29). Let � be the minimal vπ -value
within those entries. Then, after suitableK-action, we may assume the (2n+ 1, 2n+ 1)-entry
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of x is π�. Further, after suitable K-action, we may assume

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c α ξ1

∗ 0 ∗ . .
.

0
... . .

. ∗ ...

0 ξn 0
α∗ 0 · · · 0 u 0 · · · 0 κ∗

ξ∗
n 0 0

∗ . .
. ...

...

. .
. ∗ 0 ∗ 0

ξ∗
1 0 · · · 0 κ 0 · · · 0 π�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where vπ(c) ≤ �, “α = 0 or vπ (α) ≤ vπ (κ)", and “κ = 0 or vπ (κ) < �". Looking at the
(i, 1)-entry with i �= n+ 1 of xj2n+1xj2n+1 = 12n+1, since x is hermitian, we have

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c 0 · · · 0 α 0 · · · 0 ξ1

0 0 ∗ . .
.

0
... ∗ ... . .

. ∗ ...

0 0 ξn 0
α∗ 0 · · · 0 u 0 · · · 0 κ∗
0 ξ∗

n 0 0
... ∗ . .

. ... ∗ ...

0 . .
. ∗ 0 0

ξ∗
1 0 · · · 0 κ 0 · · · 0 π�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From the above x, we set

z =
⎛⎝ c α ξ1

α∗ u κ∗
ξ∗

1 κ π�,

⎞⎠ (1.30)

and see z or −z is an element of X1 with �(z) = 0 (cf. (1.4)). By the action of K1 =
U(j3)(Ok′) through the embedding

K1 −→ K = Kn,

h = (hij ) 
−→ h̃ =

⎛⎜⎜⎜⎜⎜⎝
h11 h12 h13

1n−1

h21 h22 h23

1n−1

h31 h32 h33

⎞⎟⎟⎟⎟⎟⎠
,
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we may change z in x of (1.30) into ±x(1)−r for some r with 1 ≤ r ≤ e, where the superscript

(1) indicates the size (m, n) = (3, 1). When −x(1)−r appears as z, by the action of K0 :=
U(j2)(Ok′) (tentative naming) through the embedding

K0 −→ K = Kn,

h = (hij ) 
−→ h̃ =
⎛⎝h11 h12

12n−1

h21 h22

⎞⎠ ,

we may change z = −x(−1)
−r of x into⎛⎝π−r1(1 − ε) −√

ε

−1√
ε πr1

⎞⎠ ,
where r1 might be changed from r but still 1 ≤ r1 ≤ e. Anyway, we see

K · x �
⎛⎝π−r (1 − ε) −√

ε

y√
ε πr

⎞⎠ , 1 ≤ r ≤ e,

y = y∗ ∈ M2n−1(Ok′), y ≡ j2n−1 (mod (π)).

Since �xj2n+1(t) = (t2 − 1)�yj2n−1(t), we see y ∈ Xn−1, and y satisfies (A4, n− 1). By an
inductive procedure, we see the K-orbit of x contains a matrix of type (1.28).

[Case 2] We consider the remaining situation of Case 1, i.e. any entry of ∗-places of x in
(1.29) is 0. Then α = κ = 0 follows from xj2n+1xj2n+1 = 12n+1, and we have

z1 =
⎛⎝ ξ1

u

ξ1

⎞⎠ , ξ1 = ξ∗
1 = ±1, u = ±1 ,

in stead of z of (1.30). By the same procedure as Case 1, we seeK ·x contain a matrix of type
(1.28). �

By Proposition 1.5, Lemma 1.8, Lemma 1.9 and Lemma 1.10, we see for every x ∈ X,

K · x has a representative of shape xλ for some λ ∈ �̃+
n , which completes the proof of

Theorem 1.1-(1). �

2. Spherical function on X

2.1. We considerm = 2n or 2n+ 1, and write X = Xn, G = Gn, B = Bn, K = Kn.
For g ∈ G, we denote by di(g) the determinant of the lower right i by i block of g . Then
di(x), 1 ≤ i ≤ n, are relative B-invariants on X associated with rational character ψi of B,
where

di(p · x) = ψi(p)di(x), ψi(p) = N(di(p)), (x ∈ X, p ∈ B) .
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We set

Xop = {x ∈ X | di(x) �= 0, 1 ≤ i ≤ n} ,
then Xop(k) is a Zarisky open B(k)-orbit. For x ∈ X and s ∈ Cn, we consider the integral

ω(x; s) =
∫
K

|d(k · x)|s dk, |d(y)|s =
{ ∏n

i=1 |di(y)|si if y ∈ Xop
0 otherwise

(2.1)

where | | is the absolute value on k normalized by |π | = q−1, dk is the normalized Haar
measure on K . The integral in (2.1) is absolutely convergent if Re(si ) ≥ 0, 1 ≤ i ≤ n,
and continued to a rational function of qs1, . . . , qsn , and we use the notation ω(x; s) in such
sense. We call ω(x; s) a spherical function on X, since it becomes an H(G,K)-common
eigenfunction on X (cf. [H1, §1], [H2, §1]). Indeed, H(G,K) is a commutative C-algebra
spanned by all the characteristic functions of double cosets KgK, g ∈ G, by definition, and
we see

(f ∗ ω(x; s))(x)
(

=
∫
G

f (g)ω(g−1 · x; s)dg
)

= λs(f )ω(x; s), (f ∈ H(G,K)) , (2.2)

where dg is the Haar measure on G normalized by
∫
K dg = 1, and λs is the C-algebra

homomorphism (Satake transform) defined by

λs : H(G,K) −→ C(qs1, . . . , qsn),

f 
−→
∫
B

f (p) |ψ(p)|−s δ(p)dp. (2.3)

Here |ψ(p)|−s =∏ni=1 |ψi(p)|−si , dp is the left-invariant measure onB such that
∫
B∩K dp =

1, and δ(p) is the modulus character of dp (d(pq) = δ(q)−1dp).
It is convenient to introduce a new variable z = (zi) ∈ Cn which is related to s by

si = −zi + zi+1 − 1 + π
√−1

log q
1 ≤ i ≤ n− 1

sn =

⎧⎪⎨⎪⎩
−zn − 1

2
if m = 2n

−zn − 1 + π
√−1

2 log q
if m = 2n+ 1 ,

(2.4)

and denote ω(x; z) = ω(x; s) and λz = λs .

REMARK 2.1. For the case m = 2n, we have slightly changed the relation between

s and z from that in [HK1], where we set sn = −zn − 1
2 + π

√−1
logq . By the explicit formula

of ω(x; z) (Theorem 3.1), we will see the present ω(x; z) takes the same value as before on
G · x0 and the multiple by (−1) on G · x1, and we will explain the reason of this change in
Remark 3.4.
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Keeping the relation (2.4), we see

|ψ(p)|s = δ
1
2 (p)

n∏
i=1

|N(pi)|zi ×
(

1 if m = 2n
(−1)vπ (p1···pn) if m = 2n+ 1

)
,

λz : H(G,K) ∼−→ C[q±2z1, . . . , q±2zn]W , (2.5)

where pi is the i-th diagonal entry of p ∈ B, 1 ≤ i ≤ n, and W is the Weyl group of
G with respect to the maximal k-split torus in B. Then W ∼= Sn � (±1)n acts on s and
z through rational characters of B, where W is generated by Sn and τ , Sn acts on z by the
permutation of indices and τ (z) = (z1, . . . , zn−1,−zn). The functional equation with respect
to Sn is reduced to the case of unramified hermitian forms as follows. Define an embedding
K0 = GLn(Ok′) −→ K = Kn by

K0 � h 
−→ h̃ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
jnh

∗−1jn

h

)
if m = 2n⎛⎝jnh∗−1jn

1
h

⎞⎠ if m = 2n+ 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
∈ K .

Then, as is considered in [HK1] and [HK2], we have

ω(x; s)=
∫
K0

dh

∫
K

|d(k · x)|s dk

=
∫
K0

∫
K

∣∣d(̃hk · x)∣∣s dkdh
=
∫
K

ζ (h)∗ (D(k · x); s)dk ,

where D(k · x) is the lower n by n block of k · x, and ζ (h)∗ (y; s) is a spherical function on

hermitian matrices Hn(k
′). Since the behaviour of ζ (h)∗ (y; s) is independent of the residual

characteristic (cf. [H1]), we may quote the the following from [HK1, Theorem 2.1] and [HK2,
Theorem 2.1].

PROPOSITION 2.2. The functionG1(z) ·ω(x; z) is invariant under the action of Sn on
z, where

G1(z) =
∏

1≤i<j≤n

1 + qzi+zj
1 − qzi−zj−1 .

2.2. In this subsection we study ω(x; s) for the case (m, n) = (2, 1) and show the

following. As a result, we see again the set Xev1 =
{
xλ

∣∣∣ λ ∈ �̃+
1

}
forms a set of complete

representatives of K1\X1, since ω(xλ; z) takes different value for each λ for generic z.
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PROPOSITION 2.3. For xλ ∈ Xev1 , one has

ω(xλ; z) = q− λ
2 qez

1 + q−1

(
q−(λ+e)z(1 − q2z−1)

1 − q2z + q(λ+e)z(1 − q−2z−1)

1 − q−2z

)
.

In particular, for any x ∈ X(ev)1 ,

q−ezω(x; z) ∈ C[qz + q−z], ω(x; z) = q2ez ω(x; −z) . (2.6)

We have proved for e = 0 in [HK1, Proposition 2.4], but we give a unified proof for
e ≥ 0 here. It is easy to see

K1 = K1,1 �K1,2 ,

K1,1 =
{(

α 0
0 α∗−1

)(
1 v/

√
ε

u
√
ε 1 + uv

) ∣∣∣∣ α ∈ O×
k′ , u, v ∈ Ok

}
,

K1,2 =
{(

α 0
0 α∗−1

)(
πu

√
ε 1 + πuv

1 v/
√
ε

) ∣∣∣∣ α ∈ O×
k′ , u, v ∈ Ok

}
,

and vol(K1,1) = 1
1+q−1 and vol(K1,2) = q−1

1+q−1 with respect to the measure onK1 normalized

by vol(K1) = 1.

(1) The case xλ = Diag(πλ, π−λ) with λ ≥ 0.

For h =
(

1 v/
√
ε

u
√
ε 1 + uv

)
∈ K1,1, we have

d1(h · xλ)= −πλu2ε + π−λ(1 + uv)2 = π−λN(1 + uv − πλu
√
ε)

= π−λN
(

1 + uv + πλu− 2πλu
1 + √

ε

2

)
.

If u ∈ πOk , then 1 + uv + πλu ∈ O×
k . For u ∈ O×

k and r > 0, we have

vol
({
v ∈ Ok

∣∣ 1 + uv + πλu ≡ 0(πr)
}) = vol

({
v ∈ Ok

∣∣∣ v + πλ ≡ −u−1(πr)
})

= q−r ,

and for r ≥ 0

vol
({
(u, v) ∈ O×

k × Ok

∣∣ vπ (1 + uv + πλu) = r
}) = (1 − q−1)2q−r .
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Hence we see∫
K1,1

|d1(h · xλ)|s dh

= qλs

1 + q−1

⎛⎝q−1 +
e+λ−1∑
r=0

(1 − q−1)2q−r−2rs +
∑
r≥e+λ

(1 − q−1)2q−r−2(e+λ)s
⎞⎠

= qλs

1 + q−1

(
q−1 + (1 − q−1)2(1 − q−(e+λ)−2(e+λ)s)

1 − q−1−2s + (1 − q−1)q−(e+λ)(1+2s)

)
. (2.7)

On the other hand, for h =
(
πu

√
ε 1 + πuv

1 v/
√
ε

)
∈ K1,2, we have

d1(h · xλ)= πλ − π−λv2

ε
= −π

−λ

ε
·N(v + πλ

√
ε)

= −π
−λ

ε
·N
(
v − πλ + 2πλ

1 + √
ε

2

)
.

Hence we see∫
K1,2

|d1(h · xλ)|s dh

= q−1+λs

1 + q−1

⎛⎝e+λ−1∑
r=0

(1 − q−1)q−r−2rs +
∑
r≥e+λ

(1 − q−1)q−r−2(e+λ)s
⎞⎠

= q−1+λs

1 + q−1

(
(1 − q−1)(1 − q−(e+λ)−2(e+λ)s)

1 − q−1−2s + q−(e+λ)−2(e+λ)s
)
. (2.8)

By (2.7) and (2.8), we obtain for s = −z− 1
2 ∈ C

ω(xλ; s)= q−λz− λ
2

(1 + q−1)(1 − q2z)

(
1 − q2z−1 + q2(e+λ)z−1 − q2(e+λ+1)z

)
= q− λ

2

(1 + q−1)

(
q−λz(1 − q2z−1)

1 − q2z
+ q(2e+λ)z−1 − q(2e+λ+2)z

1 − q2z

)

= q− λ
2 qez

1 + q−1

(
q−(λ+e)z(1 − q2z−1)

1 − q2z
+ q(λ+e)z(1 − q(−2z−1)

1 − q−2z

)
. (2.9)

(2) The case xλ =
(
πλ(1 − ε) −√

ε√
ε π−λ

)
with −e ≤ λ < 0, only when e > 0.
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Set r = −λ, then 1 ≤ r ≤ e. For h =
(

1 v/
√
ε

u
√
ε 1 + uv

)
∈ K1,1, we have

d1(h · xλ)=
(
π−ru(1 − ε)

√
ε + (1 + uv)

√
ε
)
(−u√ε)+ (−uε + πr(1 + uv)

)
(1 + uv)

= π−r(π2r (1 + uv)2 − 2πr(1 + uv)uε + u2(ε − 1)ε
)

= π−r · N(πr(1 + uv)− uε − u
√
ε)

= π−r · N
(
πr(1 + uv)+ u(1 − ε)− 2u

1 + √
ε

2

)
.

Since e > 0 and vπ (1 − ε) = 2e, we see

vπ

(
N
(
πr(1 + uv)+ u(1 − ε)− 2u

1 + √
ε

2

))
= 2 min{r + vπ (1 + uv), e + vπ (u)} .

We have

vol
({
(u, v) ∈ O2

k

∣∣∣ vπ(1 + uv) = 0
}

= vol
({
(u, v) ∈ O2

k

∣∣∣ uv ∈ (π)
})

+ vol
({
(u, v) ∈ O×2

k

∣∣∣ v �≡ − u−1(π)
})

= 2q−1 − q−2 + (1 − q−1)(1 − 2q−1) = 1 − q−1 + q−2 ,

and, for j > 0,

vol
({
(u, v) ∈ O2

k

∣∣∣ vπ(1 + uv) = j
})

= vol
({
(u, v) ∈ O×2

k

∣∣∣ vπ(1 + uv) = j
})

= (1 − q−1)2q−j .
Hence, for λ = −r < 0,∫
K1,1

|d1(h · xλ)|s dh

= qrs

1 + q−1

⎛⎝(1 − q−1 + q−2)q−2rs +
e−r−1∑
j=1

(1 − q−1)2q−j−2(r+j)s +
∑
j≥e−r

(1 − q−1)2q−j−2es

⎞⎠
= qrs

1 + q−1

(
(1 − q−1 + q−2)q−2rs + (1 − q−1)2(q−1−2(r+1)s − q−(e−r)−2es )

1 − q−1−2s
+ (1 − q−1)q−(e−r)−2es

)
.

(2.10)

On the other hand, for h =
(
πu

√
ε 1 + πuv

1 v/
√
ε

)
∈ K1,2, we have

d1(h · xλ)= (π−r (1 − ε)+ v)− (−√
ε + πrv/

√
ε)v/

√
ε

= −π
−r

ε

(
π2rv2 − 2πrvε + ε(ε − 1)

)
= −π

−r

ε
·N(πrv − ε − √

ε) = −π
−r

ε
·N
(
πrv + 1 − ε − 2

1 + √
ε

2

)
,
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vπ (d1(h · xλ))= −r + 2 min{vπ (v)+ r, e} .
Hence we obtain∫

K1,2

|d1(h · xλ)|s dh

= q−1+rs

1 + q−1

⎛⎝e−r−1∑
j=0

(1 − q−1)q−j−2(r+j)s + q−(e−r)−2es

⎞⎠
= q−1+rs

1 + q−1

(
(1 − q−1)(q−2rs − q−(e−r)−2es)

1 − q−1−2s + q−(e−r)−2es

)
. (2.11)

By (2.10) and (2.11), we obtain for λ = −r with 1 ≤ r ≤ e and s = −z− 1
2 ∈ C,

ω(xλ; s)= q−rz− r
2

(1 + q−1)(1 − q2z)

(
q2rz+r − q2(r+1)z+r−1 + q2ez+r−1 − q2(e+1)z+r)

= qez+ r
2

(1 + q−1)(1 − q2z)

(
q(r−e)z − q(r−e+2)z−1 + q(−r+e)z−1 − q(−r+e+2)z)

= q− λ
2 qez

1 + q−1

(
q−(λ+e)z(1 − q2z−1)

1 − q2z
+ q(λ+e)z(1 − q−2z−1)

1 − q−2z

)
. (2.12)

We have established the explicit formula of ω(x; s) by (2.9) and (2.12), from which the
property (2.6) follows. �

2.3. In this subsection we study ω(x; s) for (m, n) = (3, 1) under the assumption
e ≤ 1 and show the following. The odd residual case (e = 0) has been proved in [HK2,

Proposition 2.3]. As a result, we see again the set Xod1 =
{
xλ

∣∣∣ λ ∈ �̃+
1

}
forms a set of

complete representatives ofK1\X1, since ω(xλ; z) takes different value for each λ for generic
z.

PROPOSITION 2.4. Assume e ≤ 1. Then, for xλ ∈ Xod1 , one has

ω(xλ; z) =
√−1

λ
q−λqez(1 − q−1+2z)

(1 + q−3)(1 + q2z)
×
(
q−(λ+e)z(1 + q−2+2z)

1 − q2z
+ q(λ+e)z(1 + q−2−2z)

1 − q−2z

)
.

(2.13)

In particular, for any x ∈ X(od)1 ,

q−ez(1 + q2z)

1 − q−1+2z
· ω(x; z) ∈ C[qz + q−z], ω(x; z) = q2ez 1 − q−1+2z

q2z − q−1
· ω(x; −z) . (2.14)
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REMARK 2.5. We expect Proposition 2.4 holds for every e ≥ 0. If the property (2.14)
holds for e > 0, then all the statements in this paper hold for the same e. At the moment,
since the calculation of (2.13) is troublesome, we have established only for e = 0, 1.

Recall the expression of K1 given in Lemma 1.6. We see

the condition “b, c ∈ Ok′ with N(b)+ c + c∗ = 0" is equivalent to

“b ∈ Ok′, c1 ∈ Ok withN(b)+c1 ∈ 2Ok", where c = −N(b)+c1
2 +c1

1+√
ε

2 .
(#)

LEMMA 2.6. We normalize the Haar measures on k′ by vol(Ok′) = 1.
(1) For r ∈ N and c1 ∈ Ok with vπ (c1) < r , one has

vol
({
b ∈ Ok′

∣∣ N(b)+ c1 ∈ πrOk

}) = { 0 if vπ (c1) is odd
(1 + q−1)q−r if vπ (c1) is even.

(2) For any c1 ∈ Ok , one has

vol({b ∈ Ok′ | vπ (N(b)+ c1) = r})

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 for odd r < vπ (c1) and odd vπ (c1) < r

q−r for even r < vπ (c1)

q−(r+1) for odd r = vπ (c1)

(1 − q−1 − q−2)q−r for even r = vπ (c1)

(1 − q−2)q−r for even vπ (c1) < r .

PROOF. (1) Set S(c1, r) = {b ∈ Ok′ | N(b)+ c1 = r}. When vπ (c1) is odd,
S(c1, r) = ∅ and its volume is 0. When c1 ∈ O×

k , S(c1, r) ⊂ O×
k′ . Since the norm map

induces the surjective group homomorphism

O×
k′/(πr) −→ O×

k /(π
r) ,

which is ((1 + q−1)qr : 1)-map, we see vol(S(c1, r)) = (1 + q−1)qrq−2r = (1 + q−1)q−r .
When vπ (c1) = 2t > 0, we see

vol(S(c1, r))= vol
({
πt ξ ∈ πtO×

k′
∣∣∣ N(ξ)+ π−2t c1 ∈ πr−2tOk

})
= q−2t · (1 + q−1)q−(r−2t ) = (1 + q−1)q−r .

As for (2), the result is clear except for the case r = vπ (c1) is even. We see

vol({b ∈ Ok′ | vπ (N(b)+ c1) = r})
= vol(πr/2+1Ok′)+ vol

({
πr/2ξ ∈ πr/2O×

k′
∣∣∣ N(ξ)− π−r c1 /∈ πOk

})
= q−r−2 + q−r (1 − q−2 − q−1(1 + q−1))

= (1 − q−1 − q−2)q−r .
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�

LEMMA 2.7. By the Haar measures on k and k′ normalized by vol(Ok) = vol(Ok′) =
1, one has

vol({ (b, c1) ∈ Ok′ × Ok | N(b)+ c1 ∈ 2Ok}) = q−e ,
vol({ (b, c1) ∈ πOk′ × πOk | N(b)+ c1 ∈ 2πOk}) = q−(3+e) ,

and by the Haar measure on G1 normalized by vol(K1) = 1, one has

vol(K1,1) = 1

1 + q−3
, vol(K1,2) = q−3

1 + q−3
.

PROOF. By Lemma 2.6, we obtain

vol(
{
(b, c1) ∈ Ok′ × Ok

∣∣ N(b) + c1 ∈ πeOk
}
)

= (1 − q−1)(1 + q−1)q−e +
[ e−1

2 ]∑
t=1

(1 − q−1)q−2t (1 + q−1)q−e + q−e ×
{
q−e if 2 | e
q−(e+1) if 2 � |e

}

= (1 − q−2)q−e + q−e ×
{
q−2 − q−e if 2 | e
q−2 − q−(e+1) if 2 � |e

}
+ q−e ×

{
q−e if 2 | e
q−(e+1) if 2 � |e

}
= q−e,

vol
({
(b, c1) ∈ πOk′ × πOk

∣∣∣ N(b) + c1 ∈ πe+1Ok
})

=
[ e2 ]∑
t=1

(1 − q−1)q−2t (1 + q−1)q−(e+1) + q−(e+1) ×
{
q−(e+2) if 2 | e
q−(e+1) if 2 � |e

}

= q−(e+1) ×
{
q−2 − q−(e+2) if 2 | e
q−2 − q−(e+1) if 2 � |e

}
+ q−(e+1) ×

{
q−(e+2) if 2 | e
q−(e+1) if 2 � |e

}
= q−(e+3) .

Now we see the volume of K1,1 and K1,2 as above, by the explicit description of K1 in
Lemma 1.6. �

In the rest of this subsection we assume e = 1, i.e., 2 is a prime element in k. As for the
calculation of |d1(h · xλ)| , λ ≥ −1 , only the third row of h ∈ K1 is concerned.

(1) The case λ ≥ 0.
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For h =
⎛⎝1
b 1
c −b∗ 1

⎞⎠⎛⎝1 d f

1 −d∗
1

⎞⎠ ∈ K1,2, we have

d1(h · xλ)= πλN(c)+N(cd − b∗)+ π−λN(1 + cf + b∗d∗)

= π−λ (π2λN(c)+ πλN(cd − b∗)+N(1 + cf + b∗d∗)
)

∈ π−λO×
k ,

hence we obtain ∫
K1,2

|d1(h · xλ)|s dh = q−3+λs

1 + q−3
. (2.15)

For h =
⎛⎝ 1

1 −b∗
1 b c

⎞⎠ ∈ K1,1, we have

d1(h · xλ)= πλ + bb∗ + π−λcc∗ = π−λ(π2λ + πλN(b)+N(c)) .

Here, since we have by (#)

c = c0 + c1
1 + √

ε

2
= −N(b)

2
+ c1

2

√
ε (c0, c1 ∈ Ok) ,

N(c) = 1

4
(N(b)2 − c2

1ε) , (2.16)

we see

d1(h · xλ)= π−λ
(
(πλ + N(b)

2
)2 − c2

1ε

4

)

= π−λ ·N
(
πλ + N(b)

2
− c1

√
ε

2

)
= π−λ ·N

(
πλ + N(b)+ c1

2
− c1

1 + √
ε

2

)
.

By Lemma 2.7, we have∫
K1,1

|d1(h · xλ)|s dh = q1+λs

1 + q−3

∑
r≥0

μ(λ, r)q−2rs ,

where

μ(λ, r) = vol({ (b, c1) ∈ Ok′ × Ok | N(b)+ c1 ∈ 2Ok, vπ (yλ) = r}) ,
yλ = πλ + N(b)+ c1

2
− c1

1 + √
ε

2
.
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For simplicity of notation, we set t = q−1 and X = q−s . We calculate the value μ(λ, r) case
by case by using Lemma 2.6.
The case even r with 0 ≤ r ≤ λ− 1:

μ(λ, r) = vol({ (b, c1) | vπ (c1) = r, vπ (N(b)+ c1) ≥ r + 1})
+ vol({ (b, c1) | vπ (c1) = vπ (N(b)+ c1) = r + 1})

= (1 − t)tr · (1 + t)tr+1 + (1 − t)tr+1tr+2 = (1 − t3)t2r+1 .

The case odd r with 0 ≤ r ≤ λ− 1:

μ(λ, r) = vol({ (b, c1) | vπ (c1) = vπ (N(b)+ c1) = r + 1})
+ vol({ (b, c1) | vπ (c1) ≥ r + 2, vπ (N(b)+ c1) = r + 1})
= (1 − t)tr+1(1 − t − t2)tr+1 + (1 − t2)t2r+3 = (1 − t)t2r+2 .

The case r = λ is even:

μ(λ, λ) = vol({(b, c1) | vπ (c1) = λ, vπ (N(b)+ c1) ≥ λ+ 1})
+ vol(

{
(b, c1)

∣∣ vπ (c1) = vπ (N(b)+ 2πλ + c1) = λ+ 1
}
)

+ vol(
{
(b, c1)

∣∣ vπ (c1) ≥ λ+ 2, vπ (N(b)+ 2πλ) = λ+ 1
}
)

= (1 − t2)t2λ+1 + (1 − 2t)tλ+1tλ+2 + tλ+2tλ+2 = (1 − t3)t2λ+1 .

The case r = λ is odd:

μ(λ, λ) = vol(
{
(b, c1)

∣∣ vπ (c1) = vπ (N(b)+ 2πλ + c1) = λ+ 1
}
)

+ vol(
{
(b, c1)

∣∣ vπ (c1) ≥ λ+ 2, vπ (N(b)+ 2πλ) = λ+ 1
}
)

= (1 − 2t)tλ+1(1 − t − t2)tλ+1 + tλ+2(1 − t2)tλ+1 + tλ+2(1 − t − t2)tλ+1

= (1 − t)t2λ+2 .

The case r = λ+ 1 and λ is even:

μ(λ, r) = vol(
{
(b, c1)

∣∣ vπ(c1) = λ+ 1, vπ (N(b)+ 2πλ + c1) ≥ λ+ 2
}
)

+ vol(
{
(b, c1)

∣∣ vπ(c1) ≥ λ+ 2, vπ (N(b)+ 2πλ + c1) = λ+ 2
}
)

= tλ+2tλ+2 + 0 = t2λ+4 .

The case r = λ+ 1 and λ is odd:

μ(λ, r) = vol(
{
(b, c1)

∣∣ vπ(c1) = λ+ 1, vπ (N(b)+ 2πλ + c1) ≥ λ+ 2
}
)

+ vol(
{
(b, c1)

∣∣ vπ(c1) ≥ λ+ 2, vπ (N(b)+ 2πλ + c1) = λ+ 2
}
)

= (tλ+2tλ+3 + (1 − 2t)tλ+1(1 + t)tλ+2)+ tλ+2(1 − t2)tλ+2

= (1 − t2 − t3)t2λ+3 .

The case r ≥ λ+ 2 and λ is even: μ(λ, r) = 0.
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The case r ≥ λ+ 2 and λ is odd:

μ(λ, r) = vol(
{
(b, c1)

∣∣ vπ (c1) = r, vπ (N(b)+ 2πλ + c1) ≥ r + 1
}
)

+ vol(
{
(b, c1)

∣∣ vπ (c1) ≥ r + 1, vπ (N(b)+ 2πλ + c1) = r + 1
}
)

= (1 − t)tr (1 + t)tr+1 + tr+1(1 − t2)tr+1

= (1 + t)(1 − t2)t2r+1 .

By these data, we obtain the value
∫
K1,1

|d1(h · x)|s dh as follows:

If λ is even,

X−λ

1 + t3

(
(1 − t3)(1 − t2λ+4X2λ+4)

1 − t4X4
+ (1 − t)(t3X2 − t2λ+3X2λ+2)

1 − t4X4
+ t2λ+3X2λ+2

)
;

if λ is odd,

X−λ

1 + t3

(
(1 − t3)(1 − t2λ+2X2λ+2)

1 − t4X4
+ (1 − t)(t3X2 − t2λ+5X2λ+4)

1 − t4X4

+(1 − t2 − t3)t2λ+2X2λ+2 + (1 + t)(1 − t2)t2λ+4X2λ+4)

1 − t2X2

)
.

Together with (2.15), we continue the calculation, where we recall the relation s = −z− 1 +
π

√−1
2 logq , t = q−1 and X = q−s . If λ is even,

ω(xλ; s)= (1 + t3X2)X−λ

(1 + t3)(1 − t4X4)

{
1 − t4X2 + t2λ+4X2λ+2(1 −X2)

}
= (1 − q−1+2z)(

√−1)λq−λ−λz

(1 + q−3)(1 − q4z)

{
1 + q−2+2z − q−2+(2λ+2)z(1 + q2+2z)

}
(2.17)

= (
√−1)λq−λqz(1 − q−1+2z)

(1 + q−3)(1 + q2z)

{
q−(λ+1)z(1 + q−2+2z)

1 − q2z
+ q(λ+1)z(1 + q−2−2z)

1 − q−2z

}
.

(2.18)

If λ is odd,

ω(xλ; s)= (1 + t3X2)X−λ

(1 + t3)(1 − t4X4)

{
1 − t4X2 − t2λ+4X2λ+2(1 −X2)

}
= (1 − q−1+2z)(

√−1)λq−λ−λz

(1 + q−3)(1 − q4z))

{
1 + q−2+2z − q−2+(2λ+2)z(1 + q2+2z)

}
,

which is the same with (2.17), and we obtain the same expression (2.18) for odd λ. Thus we
have proved the formula (2.13) for e = 1 and λ ≥ 0.
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(2) We consider the remaining case for e = 1, i.e. λ = −1, π = 2, and

x−1 =
⎛⎝ 1−ε

2 −√
ε

1√
ε 2

⎞⎠ .

For h =
⎛⎝1
b 1
c −b∗ 1

⎞⎠⎛⎝1 d f

1 −d∗
1

⎞⎠ ∈ K1,2, we have

d1(h · x−1)= 1 − ε

2
N(c)+ (1 + b∗d∗ + cf )c∗

√
ε +N(b − c∗d∗)

+(−√
εc + 2(1 + b∗d∗ + cf ))(1 + bd + c∗f ∗)

= 1 − ε

2
N(c)+ N(b − c∗d∗)+ (c∗ − c)

√
ε + (b∗c∗d∗ − bcd)

√
ε

+N(c)(f√
ε − f ∗√ε)+ 2N(1 + bd + c∗f ∗) .

Since b, c ∈ πOk′ satisfying N(b)+ c + c∗ = 0, we see vπ (c − c∗) ≥ 2 and vπ (h · x−1) =
vπ (2N(1 + bd + c∗f ∗)) = 1. Hence∫

K1,2

|d1(h · xλ)|s dh = q−3−s

1 + q−3 . (2.19)

For h =
⎛⎝ 1

1 −b∗
1 b c

⎞⎠ ∈ K1,1, we have

d1(h · x−1)= 1 − ε

2
+ (c − c∗)

√
ε +N(b)+ 2N(c) .

Here, since we have (2.16) and

(c − c∗)
√
ε = c1ε ,

we see

d1(h · x−1)= 1

2

{
(N(b)+ 1)2 − (c1 − 1)2ε

}
= 1

2
N(N(b)+ 1 − (c1 − 1)

√
ε)

= 1

2
N
(
N(b)+ c1 − 2(c1 − 1)

1 + √
ε

2

)
.

By Lemma 2.7, we have∫
K1,1

|d1(h · x−1)|s dh = q

1 + q−3

∑
r≥1

μ(r)q−(2r−1)s ,
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where

μ(r) = vol({ (b, c1) ∈ Ok′ × Ok | N(b)+ c1 ∈ 2Ok, vπ (y) = r}) ,
y = N(b)+ c1 − 2(c1 − 1)

1 + √
ε

2
.

Then we have

μ(1)= vol
({
(b, c1)

∣∣ c1 ∈ O×
k , c1 /∈ 1 + πOk, vπ (N(b)+ c1) ≥ 1

})
+vol({ (b, c1) | c1 ∈ 1 + πOk, vπ (N(b)+ c1) = 1})
+vol({ (b, c1) | c1 ∈ πOk, b ∈ πOk′ })

= (1 − 2t)(1 + t)t + t (1 − t2)t + t t2

= (1 − t2 − t3)t;
and for r ≥ 2,

μ(r)= vol
({
(b, c1)

∣∣∣ c1 ∈ 1 + πr−1O×
k , vπ (N(b)+ c1) ≥ r

})
+vol({ (b, c1)

∣∣ c1 ∈ 1 + πrOk, vπ (N(b)+ c1) = r
})

= (1 − t)tr−1(1 + t)t2 + tr (1 − t2)tr

= (1 + t)(1 − t2)t2r−1 .

Hence we have∫
K1,1

|d1(h · x)|s dh= 1

1 + t3

{
(1 − t2 − t3)X + (1 + t)(1 − t2)t2X3

1 − t2X2

}
,

and together with (2.19), we obtain

ω(x−1; s)= (1 − t2)(1 + t3X2)X

(1 + t3)(1 − t2X2)

= (1 − q−2)(
√−1)−1q1+z(1 − q−1+2z)

(1 + q−3)(1 + q2z)
, (2.20)

which coincides with (2.13) for e = 1 and λ = −1. Thus we have established the explicit
formula of ω(x; s) by (2.18) and (2.20), from which the property (2.14) follows. �

2.4. In this subsection we give the functional equation with respect to τ for general n.

THEOREM 2.8. Assume e ≤ 1 if m is odd. For general size n, the spherical function
satisfies the functional equation

ω(x; z) = q2ezn

⎛⎜⎝ 1 if m = 2n

1 − q−1+2zn

q2zn − q−1 if m = 2n+ 1

⎞⎟⎠× ω(x; τ (z)) ,
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where τ (z) = (z1, . . . , zn−1,−zn).
For n = 1 the statement has been shown in Proposition 2.2 and Proposition 2.3. Hereafter

we assume n ≥ 2, i.e., m ≥ 4, and set

wτ =
⎛⎝1n−1

jr

1n−1

⎞⎠ ∈ K, r = m− 2(n− 1) ∈ {2, 3} .

Then the standard parabolic subgroup P of G attached to τ is given as follows, keeping r as
above,

P = B ∪ BwτB

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎛⎝A h

jn−1A
∗−1jn−1

⎞⎠⎛⎝1n−1 αjr Bjn−1

1r −α∗jn−1

1n−1

⎞⎠
∣∣∣∣∣∣∣∣∣∣

A ∈ Bn−1(k
′)

h ∈ G1 = U(jr)

α ∈ Mn−1,r (k
′)

B ∈ Mn−1(k
′)

B + B∗ + αjrα
∗ = 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

(2.21)

where Bn−1(k
′) is the Borel subgroup of GLn−1(k

′) consisting of all the upper triangular
matrices. Here di(x) is a relative P -invariant for 1 ≤ i ≤ n− 1, but dn(x) is not. We enlarge
the group and the space and consider the action of P ′ = P ×GL1(k

′) on X′ = X × V with
V = Mr1(k

′):

(p, t) � (x, v) = (p · x, ρ(p)vt−1), (p, t) ∈ P ′, (x, v) ∈ X′ ,

where ρ(p) = h ∈ U(jr) for the decomposition of p as in (2.21). Set

g(x, v) = det

[(
v∗jr

1n−1

)
· x(n−1+r)

]
,

where x(n−1+r) is the lower (n − 1 + r) × (n − 1 + r)-block of x, and the matrix inside of
[ ] is of size n. Though we have slightly changed the definition of g(x, v) when m = 2n, we
have the following similar results as in [HK1] and [HK2].

LEMMA 2.9. (1) The function g(x, v) is a relative P ′-invariant on X′ associated by
the character

P ′ � (p, t) 
−→ N(dn−1(p))N(t)
−1 = ψn−1(p)N(t)

−1 ,

and satisfies g(x, v0) = dn(x) where v0 = t (1, 0) or t (1, 0, 0), according to the parity of m.
(2) For x ∈ Xop, there is D1(x) ∈ X1 satisfying

g(x, v) = (dn−1(x)D1(x))[v] .
Here, for diagonal x, D1(x) = Diag(x−1

n , xn) orDiag(x−1
n , x0, xn), according to the parity

of m, where xn is the n-th diagonal entry and x0 is the (n+ 1)-th diagonal entry for oddm.
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By the embedding fromK1 to K = Kn defined by

K1 � h 
−→ h̃ =
⎛⎝1n−1

h

1n−1

⎞⎠ ,
we see

ω(x; s)=
∫
K1

dh

∫
K

|d(k · x)|s dk

=
∫
K1

∫
K

∣∣d(̃hk · x)∣∣s dkdh
=
∫
K

∏
i<n

|di(k · x)|si
∫
K1

∣∣dn(̃hk · x)∣∣sn dhdk .
Since we obtain, for y ∈ Xop

dn(̃h · y) = g((̃h, 1) � (y, h−1v0)) = g(y, h−1v0) = dn−1(y)D1(y)[h−1v0]
= dn−1(y)h

∗−1D1(y)[v0] = dn−1(y)d1(jrh
∗−1 ·D1(y)) = dn−1(y)d1(hjr ·D1(y)) ,

we have

ω(x; s)=
∫
K

∏
i≤n−2

|di(k · x)|si · |dn−1(k · x)|sn−1+sn ω(1)(D1(k · x); sn)dk .

Hence we obtain, form = 2n, by the property (2.6), where q−ezω(1)(y, z) is holomorphic and
τ -invariant,

ω(x; s)= q2eznω(x; s1, . . . , sn−2, sn−1 + 2sn + 1,−sn − 1)

= q2eznω(x; τ (z)) ;
and form = 2n+ 1, by the property (2.14), where q−ez(1+q2z)

1−q−1+2z ·ω(1)(y; z) is holomorphic and

τ -invariant,

1 + q2zn

1 − q−1+2zn
× ω(x; s)

= q2ezn 1 + q−2zn

1 − q−1−2zn
× ω
(
x; s1, . . . , sn−2, sn−1 + 2sn + 2 + π

√−1

log q
,−sn − 2 − π

√−1

log q

)
,

thus

ω(x; s)= q2ezn(1 − q−1+2zn)

q2zn − q−1 ω(x; τ (z)) ,

which completes the proof of Theorem 2.8. �
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2.5. To describe the functional equation with respect to W , we prepare some notation.
Set


 = {±ei ± ej , 2ei
∣∣ 1 ≤ i, j ≤ n, i �= j

}
, 
+ = 
+

s ∪
+
� ,


+
s = {ei + ej , ei − ej

∣∣ 1 ≤ i < j ≤ n
}
, 
+

� = {2ei | 1 ≤ i ≤ n} ,
where ei is the i-th unit vector in Zn, 1 ≤ i ≤ n. We note here that 
 is the set of roots of

G
(ev)
n and 
 ∪ {ei | 1 ≤ i ≤ n} is the set of roots of G(od)n . We consider the pairing

Z
n × C

n � (t, z) 
−→ 〈t, z〉 =
n∑
i=1

tizi ∈ C ,

which satisfies

〈α, z〉 = 〈σ(α), σ (z)〉 , (α ∈ 
, z ∈ C
n, σ ∈ W) .

THEOREM 2.10. Assume e ≤ 1 if m is odd. The spherical function ω(x; z) satisfies
the following functional equation

ω(x; z) = �(e)σ (z) · ω(x; σ(z)), (σ ∈ W) ,
where

�(e)σ (z) =
∏

α∈
+(σ )
γ (e)α (z), 
+(σ ) = {α ∈ 
+ ∣∣ − σ(α) ∈ 
+} ,

γ (e)α (z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 − q−1+〈α, z〉

q〈α, z〉 − q−1 if α ∈ 
+
s ,

qe〈α, z〉 if α ∈ 
+
� , m = 2n ,

qe〈α, z〉(1 − q−1+〈α, z〉)
q〈α, z〉 − q−1

if α ∈ 
+
� , m = 2n+ 1 .

OUTLINE OF A PROOF. The Weyl group W is generated by {σi = (i i + 1) ∈ Sn |
1 ≤ i ≤ n− 1} and τ . As for the gamma factor, we have �(e)σi (z) = γ

(e)
ei−ei+1

(z) by Propo-

sition 2.2, which is independent of e, and �(e)τ (z) = γ
(e)
2en
(z) by Theorem 2.8. Then, by the

cocycle relation of gamma factors, we obtain the results. (Of course �(0)σ (z) is the same as
�σ (z) in [HK1] or [HK2], according to the parity of m.) �

The following theorem can be proved in the same way as in [HK1, Theorem 2.7] based
on Theorem 2.10, where the functionG(z) below is the same as in [HK1] or [HK2], according
to the parity of m.

THEOREM 2.11. Assume e ≤ 1 if m is odd. The function q−〈e, z〉G(z) · ω(x; z) is
holomorphic on Cn and W -invariant, in particular it is an element in C[q±z1, . . . , q±zn]W .
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Here 〈e, z〉 = e(z1 + · · · + zn) and

G(z) =
∏
α

1 + q〈α, z〉

1 − q−1+〈α, z〉 ,

where α runs over the set
+
s form = 2n and
+ form = 2n+1. In particular, each Gamma

factor in Theorem 2.10 is given as

�(e)σ (z) = q〈e, z〉

G(z)
· G(σ(z))
q〈e, σ (z)〉 , σ ∈ W . (2.22)

3. The explicit formula for ω(x; z)
As for the explicit formula of ω(x; z), it suffices to determine at a representative of each

K-orbit, hence at xλ, λ ∈ �̃+
n by Theorem 1.1-(1).

THEOREM 3.1. Assume e ≤ 1 if m is odd. For each λ ∈ �̃+
n , one has the explicit

formula

ω(xλ; z)= cn q
〈λ, z0〉 · q

〈e, z〉

G(z)
·Qλ+e(z; {t}) ,

where λ+ e = (λ1 + e, . . . , λn + e) ∈ �+
n , G(z) is given in Theorem 2.11 (depending on the

parity of m), z0 ∈ Cn is the value in z-variable corresponding to 0 ∈ Cn in s-variable,

z0,i =
⎧⎨⎩ −(n− i + 1

2 )+ (n− i) π
√−1

logq if m = 2n

−(n− i + 1)+ (n− i + 1
2 )
π

√−1
logq if m = 2n+ 1,

(1 ≤ i ≤ n) ,

cn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − q−2)n

wm(−q−1)
if m = 2n

(1 + q−1)(1 − q−2)n

wm(−q−1)
if m = 2n+ 1,

wm(t) =
m∏
i=1

(1 − t i ) ,

Qμ(z; {t}) =
∑
σ∈W

σ
(
q−〈μ, z〉c(z; {t})

)
, c(z; {t}) =

∏
α∈
+

1 − tαq
〈α, z〉

1 − q〈α, z〉 ,

{t} = {tα} with tα =

⎧⎪⎪⎨⎪⎪⎩
−q−1 if α ∈ 
+

s

q−1 if α ∈ 
+
� , m = 2n

−q−2 if α ∈ 
+
� , m = 2n+ 1 .

(3.1)

REMARK 3.2. We see the main part Qλ+e(z; {t}) of ω(xλ; z) is contained in
R = C[q±z1, . . . , q±zn ]W by Theorem 2.11, and related to Hall-Littlewood polynomial
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Pλ+e(z; {t}) of type Cn as follows (cf. [M2], in general):

Pμ(z; {t}) = 1

Wμ({t}) ·Qμ(z; {t}), μ ∈ �+
n , (3.2)

whereWμ({t}) is the Poincaré polynomial of the stabilizerWμ ofW atμ, and with the present
choice of tα , it is given precisely as follows

Wμ({t}) = w̃μ(−q−1)

(1 + q−1)m
′ , m′ =

[
m+ 1

2

]
,

w̃μ(t) =

⎧⎪⎪⎨⎪⎪⎩
wn0(t)

2∏
�≥1wn�(t) if n = 2m

wn0+1(t)wn0(t)
∏
�≥1wn�(t) if n = 2m+ 1, n0 > 0∏

�≥1wn�(t) if n = 2m+ 1, n0 = 0 ,

(3.3)

with n� = n�(μ) = 	 { i | μi = �}. It is known (cf. [M2], [HK1, Proposition B.3]) that the
set
{
Pμ(z; {t}) ∣∣ μ ∈ �+

n

}
forms an orthogonal C-basis for R for each tα ∈ R, |tα| < 1, and

P0(z; {t}) = 1; and we will use this property in §4. The explicit formula can be rewritten by
using Pμ(z; {t}) as

ω(xλ; z) = (1 − q−1)n

wm(−q−1)
· q

〈e, z〉

G(z)
· q〈λ, z0〉 w̃λ+e(−q−1) · Pλ+e(z; {t}), (λ ∈ �̃+

n ) . (3.4)

REMARK 3.3. The influence of the residual characteristic of the base field k in the
explicit formula of ω(xλ; z) appears as shifting λ+ e in Qλ or Pλ and the factor q〈e, z〉.

Since ω(xλ; z) takes a different value at each λ ∈ �̃+
n for generic z, we see each xλ

represents a different K-orbit in X, which completes the Cartan decomposition of X (i.e.
Theorem 1.1-(2)). As we noted in Remark 2.5, if (2.14) in Proposition 2.4 holds for e(> 0),
one has the explicit formula for odd size m for the same e, and the Cartan decomposition
follows also.

REMARK 3.4. The vector z0 in Theorem 3.1 can be regarded as a generalization of
the dual Weyl vector as follows, and this is the reason we changed the relation between s and
z for m = 2n from that in [HK1](cf. Remark 2.1). We remarked about this interpretation
already in [HK2, Remark3.3]. For v ∈ Zn, set

{t}ht(v) =
∏
β∈
+

t
〈v, β∨〉/2
β , β∨ = 2β

〈β, β〉 . (3.5)

This is the generalization of the height of roots when v ∈ 
 ([M1]), while it can be rewritten
by using z0 as

{t}ht(v) = q〈v, z0〉 .
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We prove Theorem 3.1 in the same way as in the case e = 0 ([HK1], [HK2]) by using a
general expression formula given in [H2] (or in [H1]) of spherical functions on homogeneous
spaces, which is based on functional equations of finer spherical functions corresponding toB-
orbits in X and some data depending only on the groupG. We have to check the assumptions
there, but it has no problem since it is independent of the residual characteristic, and we omit
it.

Recall Xop = {x ∈ X | di(x) �= 0, 1 ≤ i ≤ n} and the Borel subgroup B of G consist-
ing of the upper triangular matrices in G. According to the B-orbit decomposition

Xop =
⊔
u∈U

Xu, U = (Z/2Z)n ,

Xu = {x ∈ Xop ∣∣ vπ (di(x)) ≡ u1 + · · · + ui (mod 2), 1 ≤ i ≤ n
}
,

we define finer spherical functions

ωu(x; s) =
∫
K

|d(k · x)|su dk, |d(y)|su =
{ ∏n

i=1 |di(y)|si if y ∈ Xu ,
0 otherwise .

Then, for each λ ∈ �̃+
n and generic z, we have the following identity:

(ωu(xλ; s))u∈U = c−1
∑
σ∈W

γ (σ(z))B(e)(σ, z) (δu(xλ; σ(z)))u∈U , (3.6)

where

c := 
w∈W [UσU : U ] (U is the Iwahori subgroup of K associated with B),

γ (z) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∏
α∈
+

s

1 − q−2+2〈α, z〉

1 − q2〈α, z〉 ·
∏
α∈
+

�

1 − q−1+〈α, z〉

1 − q〈α, z〉 if m = 2n

∏
α∈
+

s

1 − q−2+2〈α, z〉

1 − q2〈α, z〉 ·
∏
α∈
+

�

(1 + q−2+〈α, z〉)(1 − q−1+〈α, z〉)
1 − q2〈α, z〉 if m = 2n+ 1 ,

δu(xλ; z) :=
∫
U

|d(ν · xλ)|su dν = |d(xλ)|su =
{
q〈λ, z0〉q−〈λ, z〉 if xλ ∈ Xu
0 otherwise ,

(3.7)

and B(e)(σ, z) is a matrix of size 2n determined by the functional equation

(ωu(xλ; z))u∈U = B(e)(σ, z) (ωu(xλ; σ(z)))u∈U .

We note here c and γ (z) are determined by the group G = U(jm) ([Car, Theorem 4.4])

and γ (z) coincides with c(λ) there for the character λ(p) = (−1)vπ (p1···pn)∏n
i=1 |N(pi)|zi ,

where pi is the i-th diagonal entry of p ∈ B. We don’t need to calculate the constant c in
advance, since it is determined by the property ω(x; s) |s=0 = P0(z) = 1. We have to be
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careful the second equality in (3.7) especially when λ /∈ �+
n , where we should consider the

integral associated with the decomposition

U = (U ∩ B)UN, UN = {u ∈ U ∣∣ tu ∈ B, u ≡ 1m (mod (π))
}
.

We explain how B(e)(σ, z) is obtained by Theorem 2.10. A character χ = (χ1, . . . , χn) of U
can be regarded as a character of

(
k×/N(k′×)

)n
, which is isomorphic to U via vπ( ), and we

may consider the following integral for any χ ∈ Û∫
K

n∏
i=1

χi(di(k · x)) |di(k · x)|si dk .

Then we see the above integral is equal to∑
u∈U

χ(u)ωu(x; s) =
∑
u∈U

χ(u)ωu(x; z) = ω(x; zχ ) ,

where zχ,i = zi or zi + π
√−1

logq suitably, and the following functional equation holds by Theo-

rem 2.10

ω(x; zχ )= �(e)σ (zχ) ω(x; σ(zχ )), (σ ∈ W) .
We may take σχ ∈ Û such that ω(x; σ(zχ)) = ω(x; σ(z)σχ), where (σχ)(u) =
χ(σ−1(u)), u ∈ U . Thus we obtain(

χ(u)
)
χ,u

(
ωu(x; z)

)
u∈U = �̃(e)(σ, z)

(
(σχ)(u)

)
χ,u

(
ωu(x; σ(z))

)
u∈U , (3.8)

where �̃(e)(σ, z) is the diagonal matrix with �(e)σ (zχ ) as the χ-diagonal entry, and

B(e)(σ, z) = (χ(u))
χ,u

−1
�̃(e)(σ, z)

(
(σχ)(u)

)
χ,u

. (3.9)

We set the first row for (χ, u) ∈ Û ×U as the trivial character 1. Then the first entry in the left
hand side of (3.8) is equal to ω(x; z), and we note z1 = z and (σ1)(u) = 1, u ∈ U . Hence
we have by (3.6), (3.8), and (3.9),

ω(x; z)= c−1
∑
σ∈W

γ (σ(z))�(e)σ (z)q
〈λ, z0〉q−〈λ, σ (z)〉

= q〈λ, z0〉

c
· q

〈e, z〉

G(z)

∑
σ∈W

σ
(
γ (z)G(z)q−〈λ+e, z〉) (by (2.22))

= q〈λ, z0〉

c
· q

〈e, z〉

G(z)

∑
σ∈W

σ

⎛⎝q−〈λ+e, z〉 ∏
α∈
+

1 − tαq
〈α, z〉

1 − q〈α, z〉

⎞⎠ , (3.10)
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where tα is given as in (3.1). By (3.10), we have, taking λ = (−e) and z = z0,

c= 1

G(z0)

∑
σ∈W

σ

(∏
α

1 − tαq
〈α, z0〉

1 − q〈α, z0〉

)
,

which is the same as in case e = 0, and c−1 = cn in (3.1). �

4. The structure of the Schwartz space

We keep the assumption that e ≤ 1 if m is odd. We define the Schwartz space

S(K\X) = {ϕ : X −→ C | left K-invariant, compactly supported} ,
and study H(G,K)-module structure and Plancherel formula about it. Based on the explicit
formula in §3, we modify the spherical function by using the value at x(−e) as

�(x; z) = ω(x; z)/ω(x(−e); z) ∈ R = C
[
q±z1, . . . , q±zn]W . (4.1)

Then, we have (cf. (2.5) and (3.4))

f ∗�(x; z) = λz(f )�(x; z), (f ∈ H(G,K)), (4.2)

λz : H(G,K) ∼−→ R0 = C
[
q±2z1, . . . , q±2zn

]W
,

�(xλ; z) = q〈λ+e, z0〉 w̃λ+e(−q−1)

w̃0(−q−1)
· Pλ+e(z; {t}), (λ ∈ �̃+

n ) . (4.3)

Here the value �(xλ; z) for dyadic case, i.e., the case e = vπ (2) > 0, coincides with the
value�(xλ+e; z) for odd residual case. Hence all the results of this section are parallel to odd
residual case ([HK1, §4] or [HK2, §4]).

We define the spherical Fourier transform on S(K\X) by

F : S(K\X) −→ R
ϕ 
−→ F(ϕ)(z) = ∫

X
ϕ(x)�(x; z)dx , (4.4)

where dx is aG-invariant measure on X, and we fix the normalization of dx later. The Hecke
algebra H(G,K) acts on S(K\X) by convolution product

f ∗ ϕ(x) =
∫
G

f (g)ϕ(g−1 · x)dg, (f ∈ H(G,K), ϕ ∈ S(K\X)) ,

where dg is the Haar measure onG, and on R through Satake isomorphism λz. Then the map
F is compatible with H(G,K)-action as follows

F(f ∗ ϕ)(z) = λz(f )ϕ(z), (f ∈ H(G,K), ϕ ∈ S(K\X)) . (4.5)
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The space S(K\X) is spanned by
{
chλ

∣∣∣ λ ∈ �̃+
n

}
, where chλ is the characteristic function

of K · xλ, and we have by (4.3)

F(chλ)(z) = q〈λ+e, z0〉 w̃λ+e(−q−1)

w̃0(−q−1)
· v(K · xλ) · Pλ+e(z; {t}) , (4.6)

where v(K ·xλ) the volume ofK ·xλ with respect to dx. Since the set
{
Pμ(z; {t}) ∣∣ μ ∈ �+

n

}
forms a C-basis for R, the map F is an H(G,K)-module isomorphism. Thus we see the
following.

THEOREM 4.1. Assume e ≤ 1 if m is odd. The spherical Fourier transform F gives
anH(G,K)-module isomorphism

S(K\X) ∼−→ C
[
q±z1, . . . , q±zn]W(= R) ,

where R is regarded as H(G,K)-module via λz. In particular S(K\X) is a free H(G,K)-
module of rank 2n.

Each spherical functions on X is associated with some λz like as (4.2), and it is deter-

mined by the class of z in
(
C
/ 2π

√−1
logq Z

)n /
W . The dimension of spherical functions associ-

ated with the same λz is at most 2n by Theorem 4.1, and we can give a basis as below.

COROLLARY 4.2. Assume e ≤ 1 if m is odd. All the spherical functions on X are

parametrized by eigenvalues z ∈
(
C
/ 2π

√−1
logq Z

)n /
W through Satake isomorphism λz. The

set
{
�(x; z+ u)

∣∣∣ u ∈ {0, π√−1
logq

}n}
forms a basis of spherical functions onX corresponding

to z.

We will give the Plancherel formula on S(K\X). Recall the notation c(z; {t}), Pμ(z; {t})
and w̃μ(−q−1) given in Theorem 3.1 and Remark 3.2. We define an inner product on R by

〈P, Q〉R =
∫
a∗
P(z)Q(z)dμ(z), (P,Q ∈ R) , (4.7)

where

a∗ =
{√−1

(
R

/ 2π

log q
Z

)}n
,

dμ(z) = 1

n!2n · w̃0(−q−1)

(1 + q−1)m
′ · 1

|c(z; {t})|2 dz, m′ =
[
m+ 1

2

]
, (4.8)

and dz is the Haar measure on a∗. In the following, for simplicity we write

Pλ+e = Pλ+e(z; {t}) ∈ R, w̃λ = w̃λ(−q−1) ∈ R, (λ ∈ �̃+
n ) .
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Then, by [HK1, Proposition B.3], we have〈
Pλ+e, Pμ+e

〉
R = δλ,μ

w̃0

w̃λ+e
, (λ, μ ∈ �̃+

n ) , (4.9)

and by using (4.6),

〈F(chλ), F (chλ)〉R = δλ,μ q
2〈λ+e,Re(z0)〉 w̃λ+e

w̃0
· v(K · xλ)2 . (4.10)

Since there are precisely two G-orbits in X represented by x0 and x1 (Theorem 1.1-(3)), we
may normalize the G-invariant measure dx on each orbit by fixing the volume of K · x0 and
K · x1, where x0 = 1m and x1 = x〈1〉 with 〈1〉 = (1, 0, . . . , 0) ∈ �+

n .

LEMMA 4.3. By the normalization of the G-invariant measure dx on X given as

v(K · x0) = q−2〈e,Re(z0)〉 w̃0(−q−1)

w̃e(−q−1)
, v(K · x1) = q−2〈〈1〉+e,Re(z0)〉 w̃0(−q−1)

w̃〈1〉+e(−q−1)
, (4.11)

one has

v(K · xλ) = q−2〈λ+e,Re(z0)〉 w̃0(−q−1)

w̃λ+e(−q−1)
, λ ∈ �̃+

n .

PROOF. For any f ∈ H(G,K) and μ ∈ �̃+
n , we may write

f ∗ chμ =
∑
ν∈�̃+

n

aμν (f ) chν, (aμν (f ) ∈ C) . (4.12)

For f ∈ H(G,K) and λ ∈ �̃+
n , we have

(f ∗�( ; z))(xλ)=
∑
μ∈�̃+

n

�(xμ; z)(f ∗ chμ)(xλ) =
∑
μ∈�̃+

n

�(xμ; z)aμλ (f )

=
∑
μ∈�̃+

n

q〈μ+e, z0〉 w̃μ+e
w̃0

a
μ
λ (f ) · Pμ+e , (4.13)

where we used (4.3) and the summation over �̃+
n is essentially a finite sum, since the support

of f is compact. On the other hand, by (4.2) and (4.3), we have

(f ∗�( ; z))(xλ)= λz(f )�(xλ; z)
= q〈λ+e, z0〉 w̃λ+e

w̃0
· λz(f )Pλ+e . (4.14)

Taking the inner product of (4.13) and (4.14) with Pμ+e , we have by (4.9)

q〈μ+e, z0〉aμλ (f ) = q〈λ+e, z0〉 w̃λ+e
w̃0

〈
λz(f )Pλ+e, Pμ+e

〉
R , (f ∈ H(G,K), λ,μ ∈ �̃+

n ) . (4.15)
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Applying the spherical transform F to each side of (4.12), we have

v(K · xμ)q〈μ+e, z0〉 w̃μ+e
w̃0

λz(f )Pμ+e =
∑
ν∈�̃+

n

aμν (f )v(K · xν)q〈ν+e, z0〉 w̃ν+e
w̃0

Pν+e ,

taking the inner product of each side of the above identity with Pλ+e, we obtain

v(K · xμ)q〈μ+e, z0〉 w̃μ+e
w̃0

〈
λz(f )Pμ+e, Pλ+e

〉
R = a

μ
λ (f )v(K · xλ)q〈λ+e, z0〉 ,

(f ∈ H(G,K), λ,μ ∈ �̃+
n ) . (4.16)

Now assume |λ| ≡ |μ| (mod 2) and take f1 ∈ H(G,K) to be the characteristic function of
Kg1K such that xλ = g1 · xμ. Then

a
μ
λ (f1) �= 0,

〈
λz(f1)Pλ+e, Pμ+e

〉
R = 〈λz(f1)Pμ+e, Pλ+e

〉
R , (4.17)

Hence we obtain by (4.15) and (4.16)

v(K · xλ)
v(K · xμ) = q2〈μ−λ, z0〉 w̃μ+e

w̃λ+e
= q2〈μ−λ,Re(z0)〉 w̃μ+e

w̃λ+e
, if |λ| ≡ |μ| (mod 2) . (4.18)

Since xλ ∈ G · x0 if and only if |λ| ≡ 0 (mod 2) for λ ∈ �̃+
n , under the normalization of dx

as in (4.11), we obtain the volume v(K · xλ) by (4.18), which completes the proof. �

We take the normalization as in Lemma 4.3. Then by (4.10), we see∫
X

chλ(x)chμ(x)dx = δλ,μv(K · xλ) =
∫
a∗
F(chλ)(z)F (chμ)(z)dμ(z), (λ, μ ∈ λ̃+

n ) .

Since S(K\X) is spanned by the set
{
chλ

∣∣∣ λ ∈ �̃+
n

}
, we obtain the following theorem.

THEOREM 4.4 (Plancherel formula on S(K\X)). Assume e ≤ 1 if m is odd. For any
ϕ,ψ ∈ S(K\X), one has∫

X

ϕ(x)ψ(x)dx =
∫
a∗
F(ϕ)(z)F (ψ)(z)dμ(z) ,

where dx is normalized as in Lemma 4.3, and a∗ and dμ(z) are given in (4.8).

COROLLARY 4.5 (Inversion formula). Assume e ≤ 1 if m is odd. For any ϕ ∈
S(K\X) and x ∈ X, one has

ϕ(x) =
∫
a∗
F(ϕ)(z)�(x; z)dμ(z) .
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PROOF. For any ϕ ∈ S(K\X) and x ∈ X, we have by Theorem 4.4

ϕ(x)= 1

v(K · x)
∫
X

ϕ(y)chK ·x(y)dx

= 1

v(K · x)
∫
a∗
F(ϕ)(z)F (chK ·x)(z)dμ(z)

=
∫
a∗
F(ϕ)(z)�(x; z)dμ(z)

=
∫
a∗
F(ϕ)(z)�(x; z)dμ(z) .

�

References

[Bo] A. BOREL, Linear Algebraic Groups, Second enlarged edition, Graduate Texts in Mathematics 126, Springer,
1991.

[Car] P. CARTIER, Representations of p-adic groups — A survey, Proc. Symp. Pure Math. 33-1 (1979), 111–155.
[H1] Y. HIRONAKA, Spherical functions and local densities on hermitian forms, J. Math. Soc. Japan 51 (1999),

553–581.
[H2] Y. HIRONAKA, Spherical functions on p-adic homogeneous spaces, “Algebraic and Analytic Aspects of

Zeta Functions and L-functions” – Lectures at the French-Japanese Winter School (Miura, 2008)–, MSJ
Memoirs 21 (2010), 50–72.

[H3] Y. HIRONAKA, Spherical functions on U(2n)/(U(n) × U(n)) and hermitian Siegel series, “Geometry and
Analysis of Automorphic Forms of Several Variables”, Series on Number Theory and Its Applications 7,
World Scientific, 2011, 120–159.

[HK1] Y. HIRONAKA and Y. KOMORI, Spherical functions on the space of p-adic unitary hermitian matrices,
Int. J. Number Theory 10 (2014), 513–558; Math arXiv:1207.6189

[HK2] Y. HIRONAKA and Y. KOMORI, Spherical functions on the space of p-adic unitary hermitian matrices II,
the case of odd size, Commentarii Math. Univ. Sancti Pauli 63 (2014); Math arXiv:1403.3748

[HS] Y. HIRONAKA and F. SATO, The Siegel series and spherical functions on O(2n)/(O(n)×O(n)), “Automor-
phic forms and zeta functions” – Proceedings of the conference in memory of Tsuneo Arakawa –, World
Scientific, 2006, 150–169.

[Ja] R. JACOBOWITZ, Hermitian forms over local fields, Amer. J. Math. 84 (1962), 441–465.
[M1] I. G. MACDONALD, The Poincaré series of a Coxeter group, Math. Ann. 199 (1972), 161–174.
[M2] I. G. MACDONALD, Orthogonal polynomials associated with root systems, Séminaire Lotharingien de Com-

binatoire 45 (2000), Article B45a.
[Om] O. T. O’MEARA, Introduction to quadratic forms, Grund. Math. Wiss. 117, Springer-Verlag, 1973.
[Sa] I. SATAKE, Theory of spherical functions on reductive algebraic groups over p-adic fields,

Publ. Math. I.H.E.S. 18 (1963), 5–69.
[Se] J. P. SERRE, Galois cohomology, Springer-Verlag, 1997, (English translation of “Cohomologie galoisienne”,

1964).



564 YUMIKO HIRONAKA

Present Address:
DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION AND INTEGRATED SCIENCES,
WASEDA UNIVERSITY,
NISHI-WASEDA, TOKYO 169–8050, JAPAN.
e-mail: hironaka@waseda.jp



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Japan Color 2001 Coated)
  /PDFXOutputConditionIdentifier (JC200103)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (Japan Color 2001 Coated)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive true
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


