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Abstract. For a closed 4-manifold X, any knot K in the boundary of punctured X bounds a non-orientable

and null-homologous embedded surface in punctured X. Thus we can define an invariant γ 0
X

(K) to be the smallest

first Betti number of such surfaces. Note that γ 0
S4 is equal to the non-orientable 4-ball genus. While it is very likely

that for a given X, γ 0
X has no upper bound, it is difficult to show it. Recently, Batson showed that γ 0

S4 has no upper

bound. In this paper we show that for any positive integer n, γ 0
nCP 2 has no upper bound.

1. Introduction

Throughout this paper, we assume that all manifolds and embedding dealt in this paper
are smooth. Moreover, we assume that all 4-manifolds are orientable, oriented and simply-
connected, and all surfaces are compact. If X is a closed 4-manifold, punc X denotes X with
an open 4-ball deleted.

Let X be a closed 4-manifold and K a knot in ∂(punc X). We say that K bounds F in
∂(punc X) if F is a surface embedded in punc X with boundary K . For a given 4-manifold X

and a second homology class of punc X, the set which consists of the diffeomorphism types
of embedding surfaces representing the class and that K bounds, is a significant invariant of

the isotopy type of K . In the simplest case that X = S4 and the embedded surfaces are all
restricted to orientable surfaces, such an invariant has been studied as 4-ball genus g4 by many

topologists. For a knot K in ∂(punc X) ∼= S3, it is natural to ask which kinds of surfaces K

can bound.
In this paper, we focus on non-orientable surfaces embedded in punc X with boundary

K . It is known that for any homology class ξ ∈ H2(punc X, ∂(punc X); Z2) and any knot K

in ∂(punc X), K bounds a non-orientable surface which represents ξ . Hence we can define
γX(K, ξ) to be the smallest first Betti number of any non-orientable surface embedded in
punc X with boundary K which represents ξ . In particular, we investigate the smallest number

γX(K) := min{γX(K, ξ)|ξ ∈ H2(punc X, ∂(punc X); Z2)}
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and γ 0(K) := γX(K, 0) in this paper, since they can be defined for any 4-manifold X and

characterize X from the viewpoint of knot theory. Moreover, both γS4(K) and γ 0
S4(K) are

equal to the non-orientable 4-ball genus γ4(K), which is the smallest first Betti number of

any non-orientable surface embedded in B4 with boundary K . Hence γX(K) and γ 0
X(K) are

generalizations of γ4(K).
While γ4 has been investigated since 1975 [9], it is still a difficult problem to evaluate

γ4. In fact, it had been unknown whether or not γ4 has an upper bound until recently. An
excellent reference for related studies is [2]. In 2012, Batson proved that γ4 has no upper
bound by establishing the following inequality.

THEOREM 1 ([1]). Let K ⊂ S3 be a knot. Then

γ4(K) ≥ −σ(K)

2
+ d(S3

1 (K)) ,

where σ(K) denotes the signature of K and d(S3
1 (K)) the Heegaard-Floer d-invariant of the

1-surgery along K .

The definition of the (p/q)-surgery S3
p/q(K) along K will be given at the last of this

section.
In particular, Batson showed that γ4(T2k,2k−1) = γ4(T−2k,2k−1) = k − 1 for any positive

integer k, where Tp,q denotes the right handed (p, q)-torus knot.
On the other hand, we can see that T−2k,2k−1 bounds a null-homologous embedded

Möbius band in punc CP 2 as follows. We first consider a Möbius band properly embed-

ded in B4 with boundary the unknot. Then the boundary of this surface can be deformed to
T2k,1 by an isotopy. After attaching the (+1)-framed 2-handle and handle sliding as in Figure

1, we have the desired surface in punc CP 2. Note that T2k,2k−1 bounds a null-homologous

embedded Möbius band in punc CP 2. This fact implies that γX and γ 0
X largely depend on the

choice of X.
In this paper, we consider the existence problem of upper bounds of non-orientable X-

genera for a general 4-manifold X.

FIGURE 1. T−2k,2k−1 bounds a null-homologous embedded Möbius band in punc CP 2.
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PROBLEM 1. For a given 4-manifold X, do γX and γ 0
X have upper bounds?

In the case of γX, it is known that there exist infinitely many 4-manifolds which give
the affirmative answer of Problem 1. In fact, Suzuki [8] and Norman [3] proved that if X is

diffeomorphic to S2 ×S2 or CP 2#CP 2, then any knot bounds an embedded disk D in punc X.
Moreover, by taking the connected sum of (punc X,D), (S4, RP 2) and the pair (N,∅) of any
closed 4-manifold N and the empty set, we see that any knot which bounds an embedded disk
in punc X also bounds an embedded Möbius band in punc(X#N). This implies that if X is

diffeomorphic to (S2 × S2)#N or CP 2#CP 2#N for a closed 4-manifold N , then the value of
γX is always 1. We note that these results have been restricted to indefinite 4-manifolds (i.e.,
4-manifolds with indefinite intersection forms).

Now, if X is a definite 4-manifold, then do γX and γ 0
X have upper bounds? In this paper,

we give the negative answer for Problem 1 in the case of γ 0
nCP 2 .

THEOREM 2. For any n, k ∈ N, there exists a knot K such that γ 0
nCP 2(K) = k.

We prove Theorem 2 by extending Batson’s inequality to the case of γ 0
nCP 2 as follows.

THEOREM 3. Let K ⊂ S3 be a knot and n ∈ N. Then we have

γ 0
nCP 2(K) ≥ −σ(K)

2
+ d(S3

1 (K)) − n .

Moreover, since −σ(T2k,2k−1) = σ(T−2k,2k−1) = 2k2 − 2, d(S3
1 (T2k,2k−1)) = −k2 + k and

d(S3
1 (T−2k,2k−1)) = 0, it follows that

γ 0
CP 2(T2k,2k−1) ≥ k − 2 and γ 0

CP 2(T−2k,2k−1) = 1 .

On the other hand, one should compare these conditions with the equalities

γ4(T2k,2k−1) = γ4(T−2k,2k−1) = k − 1 .

Here we define (Dehn) (p/q)-surgery along a knot K in S3. Let ν(A) denote the tubular

neighborhood of a submanifold A. We define the p/q-surgery along a knot K in S3 to be the
following 3-manifold

S3
p/q(K) := [S3 − ν(K)] ∪ (D2 × S1)

which is obtained by removing the neighborhood of K and by gluing one solid torus along
the both boundaries. The gluing map is defined to be

∂D2 × {pt} → q · λ + p · μ ,

where μ and λ are the meridian and longitude of K . The notation q · λ + p · μ stands for a
simple closed curve on the torus whose homology class is q[λ] + p[μ].
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2. A short review of the Heegaard Floer theory

In this section we give a brief review of the definition of Heegaard-Floer d-invariant, and
some results which are employed in the present paper.

Let (Y, s) be an oriented closed 3-manifold associated with a Spinc structure s. We
call such a pair (Y, s) a Spinc 3-manifold. Ozsváth and Szabó in [4] defined the Heegaard
Floer homologies HF ∗(Y, s) (∗ = +,−,∞) for any Spinc 3-manifold (Y, s). If the 1st
Chern class of s is a torsion element, then the Heegaard Floer homologies become absolutely
Q-graded F[U ] ⊗ (H1(Y )/Tors)-modules, where U is the action decreasing the grading by
2. Throughout this paper, we consider the coefficient field F of all homologies as the field
with char(F) = 2. These homology groups are related to one another by the following exact
sequence:

· · · → HF−(Y, s) → HF∞(Y, s)
π→ HF+(Y, s) → HF−(Y, s) → · · ·

Let Y be a rational homology 3-sphere. The (Heegaard-Floer) d-invariant d(Y, s) is defined
to be the minimal grading of the image of the map π and the value is a rational number. The

one component of the map π is isomorphic to F[U,U−1]/(U ·F[U ]) and we denote it by T +
(d),

where d is the minimal grading of the component. If Y is an integer homology 3-sphere, then
Y has a unique Spinc structure. In such a case, we denote the d-invariant simply by d(Y ) and
the value of the invariant becomes an even integer.

Let (Y, s) be a Spinc 3-manifold with a torsion Spinc structure. Let db(Y, s) denote the
bottom-most d-invariant, i.e., the minimal grading of the image of π in the kernel of the
(H1(Y )/Tors)-action. Then, the following theorem follows. Here βi is the i-th Betti number
and β+

2 (X) (or β−
2 (X)) is the number of positive (or negative respectively) eigenvalues of the

intersection form on H2(X). A Spinc 3-manifold (Y, s) with a torsion Spinc structure is said

to have standard HF∞ if HF∞(Y, s) is isomorphic to T ∞ := (Λ∗H 1(Y, Z)) ⊗ F[U,U−1].
THEOREM 4 ([4]). Let (Y, t) be a Spinc 3-manifold (not necessarily connected) with a

torsion Spinc structure which has standard HF∞. If X is a negative semi-definite 4-manifold
with boundary Y such that the restriction map H 1(X; Z) → H 1(Y ; Z) is trivial, and s is a
Spinc structure on X restricting to t on Y , then

c1(s)
2 + β−

2 (X) ≤ 4db(Y, t) + 2β1(Y ) .

Let K be a knot in S3. In [5] the double complex (CFK∞(S3,K), ∂∞) with coordinates
i, j is defined to be a filtered chain complex of CF∞(S3) associated with K in S3. It is
called knot Floer chain complex, and its homology group is called knot Floer homology. In

this paper, we often omit S3 in CFK∞(S3,K). The filtered chain homotopy type is a knot
isotopy invariant. For the knot Floer homology, we use the same notations as the ones in [5].
We also use the notation ∂∞ for the differentials even for restricted or quotient complexes of
CFK∞.

We introduce the following proposition and formula for a sufficiently large integer p:
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PROPOSITION 1 ([5]). For a sufficiently large integer p, we have the following iso-
morphism

HF+
� (S3

p(K), [0]) ∼= Hk(CFK∞{i ≥ 0 or j ≥ 0}) ,

where � = k + (p − 1)/4.

In particular, we have

d(S3
1 (K)) = d̃(S3

p(K), [0]), (1)

where d̃ is the unshifted d-invariant, i.e., d̃(S3
p(K), [0]) = d(S3

p(K), [0]) − (p − 1)/4.

3. Extension of Batson’s inequality

In order to prove Theorem 3, we first prove the following proposition.

PROPOSITION 2. Let K ⊂ ∂(punc(nCP 2)) be a knot and F ⊂ punc(nCP 2) a non-
orientable embedded surface with boundary K . Then

β1(F ) ≥ e(F )

2
− 2d(S3

−1(K)) .

Batson showed in [1, Theorem 4] that this inequality holds for the case where n = 0;

that is, F ⊂ B4. Hence this proposition is an extension of [1, Theorem 4].
In Proposition 2, e(F ) is the normal Euler number of F defined as follows. Let X be

a closed 4-manifold and F a properly embedded surface in punc X with ∂F ∼= S1. Take an

orientation of ∂F and a section F̃ of the normal bundle of F that does not intersect F . Let
e(F ) = − lk(∂F, ∂F̃ ), where the orientation of ∂F̃ is induced from ∂F . Note that e(F ) does
not depend on the choice of the orientation for ∂F . We call e(F ) the normal Euler number of
F (see [10]). We also note that if F is orientable, then e(F ) is equal to the self-intersection
number of F .

In order to prove Proposition 2, we need the following lemma. Let X be a closed

4-manifold and K ⊂ ∂(punc X) a knot. We identify H2(X; Z) ⊕ H2(S
2 × S2; Z) with

H2(punc(X#(S2 × S2)), ∂(punc(X#(S2 × S2))); Z).

LEMMA 1. For any non-orientable embedded surface F ⊂ punc X with boundary K

and odd β1, there exists an orientable embedded surface F ′ ⊂ punc(X#(S2 × S2)) with
boundary K which satisfies

1. β1(F
′) = β1(F ) − 1,

2. e(F ′) = e(F ) + 2, and
3. [F ′, ∂F ′] = v ⊕ (2α + bβ) for some v ∈ H2(X; Z) and b ∈ Z.

Here α and β are standard generators of H2(S
2 × S2; Z) such that α · α = β · β = 0, and

α · β = 1.
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FIGURE 2. Our link L.

PROOF. Since β1(F ) is odd, there exists a simple closed curve C in F whose tubular
neighborhood in F is diffeomorphic to the Möbius band and F \C is orientable. Since punc X

is simply-connected, C is null-homotopic in X. Moreover, every homotopy may be replaced
with an isotopy in these dimensions, and hence C is isotopic to a trivial circle. This implies
that C bounds an embedded disk D in punc X. We can assume that D is transverse to F in
the interior of D. Then F ∩ D consists of C and finitely many points {pi} (i = 1, 2, . . . , l).

Moreover, ν(D) is diffeomorphic to D×D2, and F ∩ν(D) consists of a Möbius band properly

embedded in ∂D × D2 and l 2-disks pi × D2. This implies that L := ∂(F ∩ ν(D)) ⊂ ∂ν(D)

is a link as in Figure 2. In the same way as Step 3 and Step 4 in the proof of [1, Proposition

1.4], we can verify that L bounds l + 1 embedded disks E in punc(S2 × S2) which satisfy
e(E) = e(F ∩ν(D))+2. Finally, by removing ν(D) from punc X and gluing (punc(S2 ×S2),

E) along (∂ν(D), L), we obtain a new orientable embedded surface F ′ in punc(X#(S2 ×S2)).
It is easy to check that F ′ satisfies the above conditions from (1) to (3). �

We next prove the following lemma, which is a generalization of a discussion in [1,
Section 4].

LEMMA 2. Let M be an integer homology 3-sphere, X a simply-connected 4-manifold

such that ∂X = M and β+
2 (X) = 1 and Σ an orientable closed surface embedded in X

with genus g and self-intersection m. Then for any Spinc structure s on X which satisfies
〈c1(s), [Σ]〉 = m − 2g > 0, the following inequality holds:

c1(s)
2 + β−

2 (X) ≤ 1 + 4d(M) .

PROOF. Let X′ be the complement X \ ν(Σ). Then X′ is a negative semi-definite 4-
manifold with disconnected boundaries Yg,−m � M , where Yg,−m denotes the Euler number
−m circle bundle over Σ .

We prove that X′ is negative semi-definite. Let n(X′) denote the number of zero eigen-
vectors in the intersection form QX′ . We can verify from elementary homology theory that
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β2(X
′) = β2(X) + 2g − 1 = β−

2 (X) + 2g . Furthermore, by Novikov’s additivity for-

mula, σ(X′) = σ(X) − σ(ν(Σ)) = −β−
2 (X). Thus we have 2β+

2 (X′) + n(X′) = 2g ,

and β+
2 (X′) ≤ 0 is equivalent to n(X′) ≥ 2g . The homology exact sequence of the pair

(X′, Yg,−m) shows the following exact sequence:

H2(X
′; Q) → H2(X

′, Yg,−m; Q)
surj.→ H1(Yg,−m; Q) ∼= Q2g

and it implies n(X′) ≥ 2g .
We apply Theorem 4 to the tuple (X′, Yg,−m�M, s|X′). The standard-ness of Yg,−m�M

is described in the proof of [1, Theorem 1.5]. Moreover, we can verify in the same way as

[1, Section 4] that H 1(X′; Z) = 0 and the image of the restriction map H 2(ν(Σ); Z) →
H 2(Yg,−m; Z) is a torsion group. This implies that for any Spinc structure on X, the re-
stricted Spinc structure on Yg,−m is a torsion Spinc structure. Thus, it follows that the tuple
(X′, Yg,−m � M, s|X′) satisfies all conditions of Theorem 4.

By Theorem 4, we have

c1(s|X′)2 + β−
2 (X′) ≤ 4db(Yg,−m, s|Yg,−m) + 4d(M) + 2β1(Yg,−m) . (2)

Let us compute each term in the inequality (2). In order to compute c1(s|X′)2, we decompose
the intersection form of X in terms of the Q-valued intersection forms on ν(Σ) and X′; if
c ∈ H 2(X), then

QX(c) = Qν(Σ)(c|ν(Σ)) + QX′(c|X′) .

This gives c1(s)
2 = c1(s|ν(Σ))

2 + c1(s|X′)2. Hence we have

c1(s|X′)2 = c1(s)
2 − c1(s|ν(Σ))

2 = c1(s)
2 − (m − 2g)2

m
.

For the above Spinc structure s|Yg,−m , the d-invariant of Yg,−m is computed in [4, Section 9].
If 〈c1(s), [Σ]〉 = m − 2g > 0, then

db(Yg,−m, s|Yg,−m) = 1

4
− g2

m
− m

4
.

The substitution of all the values computed above reduces (2) to

c1(s)
2 − (m − 2g)2

m
+ β−

2 (X′) ≤ 4

(
1

4
− g2

m
− m

4

)
+ 4d(M) + 2(2g) . (3)

Since β−
2 (X′) = β−

2 (X), (3) gives the inequality

c1(s)
2 + β−

2 (X) ≤ 1 + 4d(M) .

�
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PROOF OF PROPOSITION 2. Note that for any knot K , d(S3
−1(K)) ≥ 0. Hence in the

case that e(F ) ≤ β1(F ), it is clear that this proposition holds. Therefore we assume that
e(F ) > β1(F ).

We first give the proof for the case where β1(F ) is odd. By applying Lemma 1 to F ⊂
punc(nCP 2), we obtain an orientable embedded surface F ′ ⊂ punc(nCP 2 # (S2 × S2)) with
boundary K whose homology class is

[F ′, ∂F ′] =
j∑

i=1

2aiγ i +
n∑

i=j+1

(2ai + 1)γ i + 2α + bβ (ai, j ∈ Z, 0 ≤ j ≤ n) ,

where γ i (i = 1, ..., n) are standard generators of H2(nCP 2; Z) such that γ i · γ j = −δij

(Kronecker’s delta). Without loss of generality, we may permutate the order of γ i .
Since F ′ is orientable, we have

e(F ′) = [F ′, ∂F ′] · [F ′, ∂F ′] = −
j∑

i=1

4a2
i −

n∑
i=j+1

(2ai + 1)2 + 4b .

Attaching a (−1)-framed 2-handle along K , we have a 4-manifold W with boundary

S3−1(K) and the intersection form

QW =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 . . . 0 0 0
0 −1 O 0 0
...

. . .
...

...

0 O −1 0 0
0 0 . . . 0 0 1
0 0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We may cap off F ′ with the core of the 2-handle to form a closed surface Σ embedded in W

with genus g = (b1(F ) − 1)/2, homology class γ 0 + ∑j
i=1 2aiγ i + ∑n

i=j+1(2ai + 1)γ i +
2α + bβ, and the self-intersection number

m = −1 −
j∑

i=1

4a2
i −

n∑
i=j+1

(2ai + 1)2 + 4b = e(F ) + 1 > 0 .

We next choose a Spinc structure on W . Since H 2(W ; Z) ∼= Zn+3 has no 2-torsion,

Spinc structures on W are distinguished by their first Chern classes. Fix a Spinc structure st

on W satisfying

PD(c1(st )) = εγ 0 +
n∑

i=1

(2ai + 1)γ i + 2α + 2xβ ,
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where

x =
∑j

i=1 2ai + 2(b − g) − 1 + ε

4

and ε ∈ {1,−1} is chosen so as to make x an integer. Since the given vector is characteristic
for QW , it corresponds to a Spinc structure. Furthermore, 〈c1(st ), [Σ]〉 = m − 2g = e(F ) −
β1(F ) + 2 > 0. Applying Lemma 2 to the pair (W, S3−1(K)), we have

c1(st )
2 + β−

2 (W) ≤ 1 + 4d(S3
−1(K)) . (4)

Since c1(st )
2 = −1 − ∑n

i=1(2ai + 1)2 + 8x = e(F ) − j − 1 + 2ε − 4g , the inequality (4)
implies

(e(F ) − j − 1 + 2ε − 4g) + (n + 2) ≤ 1 + 4d(S3−1(K)) . (5)

By using −1 ≤ ε, j ≤ n, and 2g = β1(F ) − 1, the inequality (5) reduces to the following
inequality

e(F )

2
− 2d(S3

−1(K)) ≤ β1(F ) . (6)

Finally, we consider the case where β1(F ) is even. Taking the connected sum of F ⊂
punc(nCP 2) and the standard embedding of RP 2 ⊂ S4 whose normal Euler number is +2,

we have a non-orientable embedded surface F̂ ⊂ punc(nCP 2) with boundary K such that

β1(F̂ ) = β1(F ) + 1 and e(F̂ ) = e(F ) + 2. Since β1(F̂ ) is odd, F̂ satisfies the inequality (6).
Hence we have

(e(F ) + 2)

2
− 2d(S3−1(K)) ≤ β1(F ) + 1 , (7)

and this inequality (7) is equivalent to the inequality claimed in Proposition 2.
This completes the proof of Proposition 2. �

4. Proof of Theorem 3

In this section, we prove Theorem 3 by using Proposition 2 and the following theorem.

THEOREM 5 ([10]). Let X be a closed 4-manifold and K ⊂ ∂(punc X) a knot.
If K bounds a non-orientable embedded surface F in punc X that represents zero in
H2(punc X, ∂(punc X); Z2), then∣∣∣∣σ(K) + σ(X) − e(F )

2

∣∣∣∣ ≤ β2(X) + β1(F ) ,

where σ(X) is the signature of X.
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By reversing the orientation of X, we obtain the following lemma. We also use this
lemma to prove Theorem 3.

LEMMA 3. For any 4-manifold X and any knot K , the following equality holds:
γ 0
X(K) = γ 0−X(K∗) ,

where K∗ denotes the mirror image of K .

Let us prove Theorem 3.

PROOF OF THEOREM 3. Let F ⊂ punc(nCP 2) be a non-orientable surface with

boundary K which represents zero in H2(punc(nCP 2), ∂(punc(nCP 2)); Z2). It follows from
Theorem 5 that ∣∣∣∣σ(K) + (−n) − e(F )

2

∣∣∣∣ ≤ n + β1(F ) .

Hence we have

β1(F ) ≥ σ(K) − e(F )

2
− 2n .

Combining this inequality with Proposition 2, we have

γ 0
nCP 2

(K) ≥ σ(K)

2
− d(S3−1(K)) − n .

By using this inequality and Lemma 3, it follows that for any knot K ⊂ ∂(punc(nCP 2)),

γ 0
nCP 2(K) = γ 0

nCP 2
(K∗) ≥ σ(K∗)

2
− d(S3

−1(K
∗)) − n = −σ(K)

2
+ d(S3

1 (K)) − n .

This proves Theorem 3. �

5. Proof of Theorem 2

To prove the existence of K with γ 0
nCP 2(K) = k, we take the connected sum of n + k

copies of 942 for any positive integer k, where 942 is the knot defined in the Rolfsen knot table

[7]. Notice that d(S3
1 (·)) is a knot concordance invariant but not a homomorphism from the

knot concordance group to integers as mentioned in [6].

PROPOSITION 3. We have d(S3
1 (

m

#942)) = 0 for any positive integer m.

PROOF. Let p be a sufficiently large integer. From the formula (1) and Proposition 1,

we obtain the d-invariant d(S3
1 (

m

#942)) by calculating the homology of CFK∞(
m

#942){i ≥
0 or j ≥ 0}.

First, we consider the m = 1 case. For the generators {xi}1≤i≤9 of CFK∞(942), we use
the same generators as those in Fig.14 in [5] (see Figure 3). Let S1 denote {xi | 1 ≤ i ≤ 9}. Let
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FIGURE 3. The differential maps of G in CFK∞(942). See Fig. 14 in [5].

G be the differential F-module generated by S1, namely, F〈x|x ∈ S1〉 with gr(x5) = 0, where
gr is the absolute grading on the chain complex CFK∞. The chain complex CFK∞(942)

consists of a differential F[U ]-module G[U,U−1] := G ⊗F F[U,U−1]. The generators of
H∗(CFK∞(942)) are {U−i · α}i∈Z, where α = x1 + x5 + x9. The homology of the quotient
complex CFK∞(942){i ≥ 0 or j ≥ 0} is as follows:

H∗(CFK∞(942){i ≥ 0 or j ≥ 0}) ∼= F〈U−iα|i ≥ 0〉 ∼= T +
(0) .

In fact, it follows from the grading of α that the minimal grading of this homology is zero.

Hence, in particular, d(S3
1 (942)) = d̃(S3

p(942, [0])) = 0.

Next, we compute d(S3
1 (

m

#942)). From the Künneth type formula of the Heegaard Floer

homology we have CFK∞(
m

#942) ∼= ⊗m
CFK∞(942). We denote the set of generators

by Sm = {xi1 ⊗ xi2 ⊗ · · · ⊗ xim | 1 ≤ ik ≤ 9} and the vector space generated by Sm by

Gm = F〈x | x ∈ Sm〉, where gr(x⊗m
5 ) = 0. Here let y⊗m denote the m-th tensor product

y ⊗ · · · ⊗ y.

The chain complex CFK∞(
m

#942) is the summation
⊕
i∈Z

(U−i · Gm) = F[U,U−1] ⊗F Gm =: Gm[U,U−1] .

Hence, we may consider each homology H∗(U−i · Gm{i ≥ 0 or j ≥ 0}).
The differential ∂∞ in

⊗m CFK∞(942) is computed as follows:

∂∞(z1 ⊗ · · · ⊗ zm) =
m∑

k=1

z1 ⊗ · · · ⊗ ∂∞zk ⊗ · · · ⊗ zm.

By using this definition, we have ∂∞(U−l · α⊗m) = 0. Since U−l · α⊗m has the unique top

grading in U−l · Gm, we have α⊗m �∈ Im(∂∞). Hence the generator of H∗(U−l · Gm) is
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FIGURE 4. The chain complex G2{i ≥ 0 or j ≥ 0} and the homological generator

(x5 + x9)⊗2 + (x5 + x1)⊗2 + x⊗2
5 .

U−l · α⊗m. �

For the case where l < 0, since the generators in U−l · Gm are in CFK∞(
m

#942){i <

0 and j < 0}, the minimal degree of T +-component in CFK∞(
m

#942){i ≥ 0 or j ≥ 0} is
non-negative.

We consider the component of l = 0. Let ϕ denote the natural isomorphism:

ϕ : Gm/(Gm{i < 0 and j < 0}) ∼= Gm{i ≥ 0 or j ≥ 0}.
LEMMA 4. The map ϕ satisfies the following:

ϕ(α⊗m) = (x5 + x9)
⊗m + (x5 + x1)

⊗m + x⊗m
5 .

PROOF OF LEMMA 4. Expanding α⊗m, we have

α⊗m =
∑

ij ∈{1,5,9}
xi1 ⊗ · · · ⊗ xim .

If the set {i1, . . . , im} of the suffixes of each term in the summation above contains {1, 9}, then
the (i, j)-coordinate must have i < 0 and j < 0. Conversely, if the (i, j)-coordinate of xi1 ⊗
· · ·⊗xim has i < 0 and j < 0, then the set {i1, . . . , im} must contain {1, 9}. The whole sum of

the terms xi1 ⊗ . . .⊗xim satisfying {1, 9} �⊂ {i1, . . . , im} is (x5 +x9)
⊗m + (x5 +x1)

⊗m +x⊗m
5 .

Therefore, the assertion claimed in Lemma 4 follows. �

Here, as an example, we describe the boundary maps in G2{i ≥ 0 or j ≥ 0} in Figure 4.
The term ϕ(α⊗m) is a generator in H∗(Gm{i ≥ 0 or j ≥ 0}), because ∂∞(ϕ(α⊗m)) =

ϕ(∂∞(α⊗m)) = 0 and the element ϕ(α⊗m) has the top grading in Gm{i ≥ 0 or j ≥ 0}.
The image ϕ(α⊗m) is in the T +-component with the minimal grading, because the whole



NON-ORIENTABLE GENUS OF A KNOT IN PUNCTURED CP 2 573

FIGURE 5. The knot 942 bounds an embedded Möbius band in B4.

FIGURE 6. The knot 942 bounds an embedded disk in punc CP 2.

chain complex CFK∞(
m

#942) is generated by {U−l · α⊗m|l ∈ Z}. The minimal degree of
Gm{i ≥ 0 or j ≥ 0} is gr(ϕ(α⊗m)) = gr(α⊗m) = 0. This means

d(S3
1 (

m

#942)) = d̃(S3
p(

m

#942, [0])) = 0 .

Actually, (x5 + x9)
⊗m + (x5 + x1)

⊗m + x⊗m
5 is the unique generator in H∗(Gm{i ≥

0 and j ≥ 0}). This fact is not needed here, and we skip the proof.

PROOF OF THEOREM 2. Since σ(942) = −2 and the knot signature is additive, we

have σ(
n+k

# 942) = −2(n + k). Thus, by using Theorem 3 and Proposition 3, we have

γ 0
nCP 2(

n+k

# 942) ≥ −(−2(n + k))

2
+ 0 − n = k .

We next construct a non-orientable embedded surface Fn,k ⊂ punc(nCP 2) satisfying the
following:

1. ∂Fn,k = n+k

# 942,
2. β1(Fn,k) = k, and

3. Fn,k represents zero in H2(punc(nCP 2), ∂(punc(nCP 2)); Z2).

The cobordisms in Figure 5 and 6 give a properly embedded Möbius band M in B4 with
boundary 942, and a properly embedded disk D in punc CP 2 with boundary 942 which rep-

resents zero in H2(punc CP 2, ∂(punc CP 2); Z2). Taking the boundary connected sum of n
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copies of (punc CP 2,D) and k copies of (B4,M), we have a new non-orientable embedded
surface Fn,k satisfying the above properties from (1) to (3). This completes the proof. �
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