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Abstract. We study the nonlinear magnetic Schrödinger equation, −(∇ − iλA)2u = f (x, |u|2)u on RN ,
where N ≥ 2 and the nonlinearity is super-linear and subcritical. The vector potential A and the associated magnetic
field are assumed to vanish on a common bounded open set Ω . It is shown that the equation above has more and
more solutions which are localized near Ω as λ → ∞.

1. Introduction and results

In this paper, we study the nonlinear Schrödinger equation with magnetic field,

−(∇ − iλA(x))2u(x) = f (x, |u(x)|2)u(x) (1.1)

on RN , where λ > 0 is a large parameter and N ≥ 2. We are concerned with the existence
of multiple solutions which are localized near the interior of the zero set of the magnetic
potential as λ → ∞.

This kind of the “steep-potential-well” problem for equations of the form −Δu +
(λV (x) + W(x))u = f (x, u) as λ → ∞, where the interior of the zero set V −1(0) is as-
sumed to be nonempty, has been studied by many authors under various conditions on the
potentials and the nonlinearity (See, e.g., [Ba-Wa], [Ba-Wa2], [Ba-Pa-Wa], [Si], [De-Di],
[Cl-Di], [Di-Ta], [Al], [Al-So], [Al-Mo-So], and the references therein). In [Ta1], [Ta2],
and [Ta3], Tang considers the corresponding problem for the equation with magnetic field,
−(∇ − iA(x))2u + (λV (x) + W(x))u = f (u).

Our result gives a magnetic analog of these works, replaced the steep scalar potential
well by the steep magnetic well. The proof is based on the argument used in [Ba-Pa-Wa] and
[Ba-Wa2].

We fix some notation. By “A + B =: C + D”, we mean that C and D are defined by
A and B, respectively. We denote by | · | the standard Euclidean norm. For any metric space
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M , we set Br(x) = {y ∈ M|dist(x, y) ≤ r}. For any subset S of M , we set dist(x, S) =
infy∈S dist(x, y) and set S+

δ = {x ∈ M|dist(x, S) ≤ δ} for δ > 0.
For any subset Ω of a topological space X, we denote the closure, the complement, the

interior, and the boundary of Ω by Ω , Ωc (or X \ Ω), int(Ω), and ∂Ω , respectively.
We denote by F(M,M ′) the space of all M ′-valued F -functions on M , and we denote

F(RN, C) by F(RN). We denote by C∞
0 (RN) the space of all (complex-valued) smooth

functions on RN with compact support. We say that un → u in L
q

loc(R
N) if un → u in

Lq(K) for each compact subset K of RN .
The symbol 2∗ stands for 2N/(N − 2) if N ≥ 3 and for ∞ if N = 2. For any sequence

{un}n and an element u in a Banach space X, we write “un ⇀ u” if the sequence {un}n
converges weakly to u in X as n → ∞. The notation X′ 〈·, ·〉X stands for the coupling between
the dual X′ and X.

By abuse of notation, we write, e.g., f (x, |u|2) to indicate either the function f (·, |u|2(·))
or the value f (x, |u(x)|2) if there is no fear of confusion.

For a magnetic vector potential A = (A1, . . . , AN), we define the magnetic field B =
dA = (Bjk)

N
j,k=1, where Bjk = ∂jAk − ∂kAj . Define

|B(x)| =
( ∑

j<k

|Bjk(x)|2
)1/2

(1.2)

and

γB(x) =
( ∑

j<k

∣∣∣∣∇
(

Bjk(x)

|B(x)|
)∣∣∣∣

2 )1/2

. (1.3)

To formulate the main results, we make the following assumptions.

(A.1) The magnetic vector potential A belongs to C2(RN, RN).
(A.2) lim inf|x|→∞ |B(x)| > 0. In particular, B−1(0) is bounded.
(A.3) lim sup|x|→∞ γB(x) < ∞.

(A.4) The set Ω = int
(
B−1(0)

)
is non-empty and has smooth boundary.

(A.5) Ω ⊂ A−1(0) and Meas(B−1(0)\Ω) = 0. Here, Meas(·) stands for the Lebesgue
measure.

For the nonlinearity, we make the following assumptions.
(f.1) The function f belongs to C(RN × [0,∞), R).

(f.2) There exists p ∈ (2, 2∗) and C > 0 such that supx∈RN |f (x, t2)| ≤ C(1 + tp−2)

for any t > 0. Moreover, limt→+0 supx∈RN |f (x, t)| = 0.

(f.3) There exists θ > 2 such that 0 < θF(x, t) ≤ f (x, t)t for all x ∈ RN and t > 0,

where F(x, t) = 1
2

∫ t

0 f (x, τ )dτ .

(f.4) There exists t0 > 0 such that infx∈RN F (x, t2
0 ) > 0.
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(f.5) The function f (x, ·) is strictly increasing for a.e. x ∈ RN .
(f.6) There exists C > 0 such that supx∈RN |f (x, |u + v|2)(u + v) − f (x, |u|2)u| ≤

C(1 + |u|p−2 + |v|p−2)|v| holds for all u, v ∈ C. Here, the constant p is as in
(f.2).

Throughout this paper, we denote by ∇λA the distributional covariant derivative ∇−iλA.
For any λ > 0, we introduce the Banach space

Eλ = {u ∈ L2(RN) | ∇λAu ∈ L2(RN, CN)} (1.4)

with norm ‖u‖λ = ‖∇λAu‖L2(RN,CN) = (
∑N

j=1 ‖(∂j − iλAj)u‖2
L2(RN)

)1/2. We define the

functional

Jλ(u) = 1

2
‖(∇ − iλA)u‖2

L2(RN,CN)
−

∫
RN

F (x, |u|2)dx (1.5)

on Eλ. It is standard that any critical point u of Jλ is a weak solution to the equation (1.1),

i.e., u satisfies (∇λAu,∇λAv)L2(RN,CN) = ∫
RN f (x, |u|2)uv̄dx for any v ∈ Eλ.

The main results of this paper are the following three theorems.

THEOREM 1.1. Assume (A.1)–(A.5) and (f.1)–(f.4). For any integer m ≥ 1, there
exists Λm > 0 such that the equation (1.1) has at least m weak solutions {vλ

j }mj=1 in Eλ for

any λ ≥ Λm.
Moreover, for any j = 1, 2, . . . ,m, there exist λ-independent constants aj , bj , and cj

such that 0 < aj ≤ ‖vλ
j ‖Lp(RN) ≤ bj < aj+1 and ‖vλ

j ‖λ ≤ cj for all λ ≥ Λm. Here, the

constant p is as in (f.2).

Define IΩ(u) = 1
2‖∇u‖2

L2(Ω)
−∫

Ω F(x, |u|2)dx for u ∈ H 1
0 (Ω). Throughout this paper,

we regard the space H 1
0 (Ω) as a closed subspace of H 1(RN) by zero extension.

THEOREM 1.2. Assume (A.1)–(A.5) and (f.1)–(f.4). Let {λn}∞n=1 be a sequence such
that λn → ∞ as n → ∞. Assume that, for every n, the equation (1.1) with λ = λn has
a weak solution un in Eλn satisfying: supn ‖un‖λn < ∞ and infn ‖un‖Lp(RN) > 0. Then

there exist a subsequence {un(k)}k of {un}n and v ∈ H 1
0 (Ω) such that ‖un(k) − v‖λn(k)

→ 0;

un(k) → v in Lq(RN) for every q ∈ [2, 2∗); Jλn(k)
(un(k)) → IΩ(v); and v is a nontrivial

weak solution to

−Δv = f (x, |v|2)v . (1.6)

Define Nλ = {u ∈ Eλ \{0}| E′
λ
〈J ′

λ(u), u〉Eλ = 0} and cλ = infNλ
Jλ. Define NΩ = {u ∈

H 1
0 (Ω) \ {0}| H 1

0 (Ω)′ 〈I ′
Ω(u), u〉H 1

0 (Ω) = 0} and c(Ω) = infNΩ
IΩ .

It is well-known that c(Ω) is positive and attained by some critical point of IΩ .

THEOREM 1.3. Assume (A.1)–(A.5) and (f.1)–(f.6). Then there exists Λ > 0 such
that for any λ ≥ Λ, the value cλ is attained by some critical point uλ ∈ Eλ of Jλ. Moreover,
limλ→∞ cλ = c(Ω).
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REMARK 1.4. (i) We give examples of A which satisfy all the conditions (A.1)–
(A.5) with A−1(0) = B−1(0) = B1(0). Fix χ ∈ C∞([0,∞)) satisfying: 0 ≤ χ ≤ 1 and
0 ≤ χ ′ ≤ 1 on [0,∞); χ(r) = 0 if and only if 0 ≤ r ≤ 1; χ(r) = 1 if r ≥ 4; χ is increasing.

Then the examples are given by A(x) = χ(|x|2)(−x2, x1)/2, where x = (x1, x2) ∈ R2 for

N = 2, and A(x) = χ(|x|2)(−x2, x1, 0)/2 + (0, 0, χ(x3)) for N = 3. Similar examples can
be constructed in higher dimensions.

(ii) The power-type nonlinearity f (t) = t(p−2)/2, where 2 < p < 2∗, satisfies all the
conditions (f.1)–(f.6).

(iii) Let {vλ
j } be the solutions obtained in Theorem 1.1. Let λn → ∞ as n → ∞. Then

for each j , the sequence {un}n = {vλn

j }n satisfies the assumption as in Theorem 1.2.

(iv) All of the statements of the theorems above remain valid for the equation −(∇ −
iλA)2u + μu = f (x, |u|2)u for any μ < μ1, where μ1 is the first eigenvalue of the Dirichlét
Laplacian on Ω . Proofs are similar.

The organization of this paper is as follows. In Section 2, we formulate the Avron-

Herbst-Simon type formulae for the quadratic form ‖u‖2
λ. In Section 3, we give preliminary

results; some basic properties of the functional Jλ, a spectral concentration of −(∇ − iλA)2

as λ → ∞, and a variation of fountain theorem. In Sections 4, 5, and 6, we give proofs of
Theorems 1.1, 1.2, and 1.3, respectively.

2. Lower estimates of quadratic forms

We assume (A.1)–(A.5) in the following. Let Eλ be as in (1.4). Let H(λ) be the unique

self-adjoint operator associated with the form ‖∇λAu‖2
L2(RN,CN)

on C∞
0 (RN). Then H(λ) is

essentially self-adjoint on C∞
0 (Ω), and Eλ is the form domain of H(λ) (e.g., [Le-Si]).

The proof of the next lemma is elementary.

LEMMA 2.1. Let K be an open subset of RN and let ζ ∈ C1
0 (K). Then we have the

following assertions for any u ∈ Eλ :
(i) ∇λA(u|K) = (∇λAu)|K in the sense of distribution.

(ii) If K is bounded, then ζu belongs to H 1
0 (K) and satisfies ‖ζu‖H 1(K) ≤ Cλ(‖u‖λ +

‖u‖L2(RN)). Here, Cλ is independent of u.

Define βij (x) = Bij (x)/|B(x)| for x ∈ RN \ B−1(0) and 1 ≤ i, j ≤ N . We note that

γB(x) = (∑
i<j |∇βij (x)|2)1/2.

LEMMA 2.2 ([He-Na], Lemma B.3). Let ξ = (ξij )i,j be a (constant) real anti-

symmetric matrix with
∑

i<j |ξij |2 = 1. We have the inequality

H(λ) ≥
∑
l<m

λξlmBlm
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in the sense of the sesqui-linear form.

PROPOSITION 2.3. Assume that F is a closed subset of RN and B−1(0) ⊂ F . Assume
that 0 < s < δ and 0 < s < 1/ sup(F+

δ−s )
c γB . Then

H(λ) ≥ λ|B|
(

1 − s

[
sup

(F+
δ−s )

c

γB

])
1(F+

δ+s )
c − c0/s

2 ,

where

c0 = inf{‖∇μ‖2
L2(RN,RN)

/‖μ‖2
L2(RN)

|μ ∈ C∞
0 (int B1(0), R) \ {0}},

and 1S stands for the characteristic function on S.

PROOF. The proof is essentially the same as that of Proposition B.1 in [He-Na]; how-
ever, we give a proof for the sake of completeness.

Take μ ∈ C∞
0 (intB1(0), R) with ‖μ‖L2 = 1. For any x0 ∈ RN and s > 0, we define

μs,x0(x) = s−N/2μ((x − x0)/s). Then supp(μs,x0) ⊂ Bs(x0),
∫

RN |μs,x0(x)|2dx0 = 1 and∫
RN |∇xμs,x0(x)|2dx0 = s−2‖∇μ‖2

L2(RN,RN)
for all x ∈ RN .

Let 0 < s < δ and x0 ∈ (F+
δ )c. By Lemma 2.2 with ξij = βij (x0), we have

H(λ) ≥
∑
l<m

λβlm(x0)Blm(x)

= λ

(
|B(x)| +

∑
l<m

(βlm(x0) − βlm(x))Blm(x)

)

≥ λ|B(x)|
(

1 −
[ ∑

l<m

|βlm(x) − βlm(x0)|2
]1/2)

. (2.1)

By the mean-value theorem, for any x ∈ Bs(x0),

|βlm(x) − βlm(x0)| ≤ |x − x0|
∫ 1

0
|∇βlm(tx + (1 − t)x0)|dt

≤ |x − x0|
(∫ 1

0
|∇βlm(tx + (1 − t)x0)|2dt

)1/2

.

Therefore, it follows from the definition of γB that

[ ∑
l<m

|βlm(x) − βlm(x0)|2
]1/2

≤ s sup
Bs(x0)

γB (2.2)

for all x ∈ Bs(x0).
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On the other hand, using the IMS type formula, which can be verified by direct compu-
tation, we have

1

2

(
(μs,x0)

2H(λ) + H(λ)(μs,x0)
2) = μs,x0H(λ)μs,x0 − |∇xμs,x0|2

as a sesqui-linear form on C∞
0 (RN) × C∞

0 (RN). Integrating this with respect to x0 over RN ,
we have, from (2.1) and (2.2),

H(λ) =
∫

RN

μs,x0H(λ)μs,x0dx0 − s−2‖∇μ‖2
L2(RN,RN)

≥
∫

(F+
δ )c

μs,x0H(λ)μs,x0dx0 − s−2‖∇μ‖2
L2(RN,RN)

≥ λ|B|
∫

(F+
δ )c

(
1 − s[ sup

Bs(x0)

γB]
)
|μs,x0|2dx0 − s−2‖∇μ‖2

L2(RN,RN)

≥ λ|B|
(

1 − s[ sup
(F+

δ−s )
c

γB]
)∫

(F+
δ )c

|μs,x0|2dx0 − s−2‖∇μ‖2
L2(RN,RN)

= λ|B|
(

1 − s[ sup
(F+

δ−s )
c

γB]
)(

1 −
∫

F+
δ

|μs,x0|2dx0

)
− s−2‖∇μ‖2

L2(RN,RN)

≥ λ|B|
(

1 − s[ sup
(F+

δ−s )
c

γB]
)

1(F+
δ+s)

c − s−2‖∇μ‖2
L2(RN,RN)

. (2.3)

Here, the last inequality follows from the contraposition of the inclusion (supp(μs,x0) ⊂)

Bs(x0) ⊂ F+
δ+s for x0 ∈ F+

δ .

Finally, taking the infimum over μ on both sides of (2.3), we have the conclusion.

LEMMA 2.4. Let R > 0 satisfy B−1(0) ⊂ int(BR(0)). There exist ΛR > 0 and

CR > 0 such that ‖u‖2
L2(BR(0))

≤ CR‖u‖2
λ and λ‖u‖2

L2(BR(0)c)
≤ CR‖u‖2

λ for any u ∈ Eλ and

any λ ≥ ΛR .
In particular, there exist Λ > 0 and C > 0 such that ‖u‖L2(RN) ≤ C‖u‖λ for any

u ∈ Eλ and any λ ≥ Λ.

PROOF. Let r > 0 satisfy that B−1(0) ⊂ int(Br(0)), and let ε > 0 small enough. Set

δ = εdist(B−1(0), ∂Br(0)) and s = min{δ, 1/ supBr−δ(0)c γB}/3, which are positive by (A.2)

and (A.3). By Proposition 2.3 with F = Br(0), we have

‖u‖2
λ ≥ λ( inf

(F+
δ+s )

c
|B|)(1 − s sup

(F+
δ−s )

c

γB)‖u‖2
L2((F+

δ+s)
c)

− (c0/s
2)‖u‖2

L2(RN)

=: λC‖u‖2
L2((F+

δ+s )
c)

− c‖u‖2
L2(RN)
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= (λC − c)‖u‖2
L2((F+

δ+s )
c)

− c‖u‖2
L2(F+

δ+s )

for any u ∈ Eλ. Hence,

‖u‖2
L2((F+

δ+s )
c)

≤ (λC − c)−1(c‖u‖2
L2(F+

δ+s )
+ ‖u‖2

λ) . (2.4)

Take and fix ζr ∈ C∞
0 (RN) such that 0 ≤ ζr ≤ 1 on RN , ζr = 1 on Br+2δ , and

supp(ζr) ⊂ int[B2r (0)]. Since |ζru| ∈ H 1
0 (int[B2r (0)]) for any u ∈ Eλ by Lemma 2.1 (ii), it

follows from the Poincaré and the dia-magnetic inequalities that

‖u‖2
L2(F+

δ+s )
≤ ‖ζru‖2

L2(B2r (0))
≤ C‖∇|ζru|‖2

L2(B2r (0),RN)

≤ C‖∇λA(ζru)‖2
L2(B2r (0),CN)

≤ C′′(‖u‖2
L2(B2r (0)\F+

δ+s)
+ ‖u‖2

λ)

≤ C′′(‖u‖2
L2((F+

δ+s)
c)

+ ‖u‖2
λ)

≤ C′′c(λC − c)−1‖u‖2
L2(F+

δ+s )
+ C′′(1 + (λC − c)−1)‖u‖2

λ,

where we used (2.4) in the last inequality. Hence,

(λC − c − C′′c)‖u‖2
L2(F+

δ+s )
≤ C′′(λC − c + 1)‖u‖2

λ . (2.5)

Since r and ε are arbitrary under the restrictions described above and F+
δ+s = Br+δ+s(0),

we deduce the lemma from (2.4) and (2.5).

COROLLARY 2.5. Let r > 0 be fixed. Let {yn}n be a sequence in RN such that λn →
∞ as n → ∞. There exist Λ′ > 0, N ′ > 0, and C′ > 0 such that

‖u‖2
λ ≥ λC′‖u‖2

L2(Br (yn))

for any λ ≥ Λ′, any u ∈ Eλ, and any n ≥ N ′.

COROLLARY 2.6. Let δ > 0 and F = [B−1(0)]+δ . There exists Cδ > 0, independent

of large λ, such that λ‖u‖2
L2(F c)

≤ Cδ‖u‖2
λ for any u ∈ Eλ.

PROOF. Let δ > 0 and F = B−1(0). Fix R > 0 so large that [B−1(0)]+δ ⊂ int (BR(0)).
By (A.2), (A.3) and Proposition 2.3, for any small s > 0, we have

‖u‖2
λ ≥ λ( inf

(F+
δ+s )

c
|B|)(1 − s sup

(F+
δ−s )

c

γB)‖u‖2
L2((F+

δ+s )
c)

− (c0/s
2)‖u‖2

L2(RN)

= (λC − c)‖u‖2
L2((F+

δ+s )
c)

− c‖u‖2
L2(F+

δ+s )

≥ (λC − c)‖u‖2
L2((F+

δ+s )
c)

− c‖u‖2
L2(BR(0))

≥ (λC − c)‖u‖2
L2((F+

δ+s )
c)

− cCR‖u‖2
λ
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for any u ∈ Eλ, where we used Lemma 2.4 in the last inequality. The arbitrariness of δ (and
small s) shows the lemma.

LEMMA 2.7. For any λ ≥ Λ, where Λ is as in Lemma 2.4, we have the following
assertions:

(i) The Banach space Eλ is continuously embedded into Lq(RN) for any q ∈ [2, 2∗]
if N ≥ 3 and for any q ≥ 2 if N = 2.

(ii) For any bounded measurable subset K of RN , the restriction map Eλ → Lq(K) is
compact for any q ∈ [2, 2∗) if N ≥ 3 and for any q ≥ 2 if N = 2.

PROOF. Let q be as above. It follows from the Sobolev and the dia-magnetic inequali-
ties, and Lemma 2.4 that

‖u‖Lq(RN) ≤ CN,q‖|u|‖H 1(RN) ≤ CN,q(‖∇λAu‖2
L2(RN,CN)

+ ‖u‖2
L2(RN)

)1/2

≤ CN,q(1 + C2)1/2‖u‖λ (2.6)

for any u ∈ Eλ and any λ ≥ Λ. Here, CN,q and C are independent of λ. This shows (i).
Next, we show (ii). Let K and q be as in (ii) above. Choose R > 0 such that K ⊂ BR(0),

and take and fix ζK ∈ C∞
0 (RN) such that 0 ≤ ζK ≤ 1 on RN , ζK = 1 on K , and supp(ζK) ⊂

int[B2R(0)].
The map T1 : Eλ � u �→ ζRu ∈ H 1

0 (int[B2R(0)]) is continuous by Lemmata 2.1 and 2.4,

the embedding T2 : H 1
0 (int[B2R(0)]) → Lq(B2R(0)) is compact by the Rellich-Kondrashov

theorem, and the restriction T3 : Lq(B2R(0)) → Lq(K) is continuous. Thus, the composition
T3 ◦ T2 ◦ T1 : Eλ � u �→ u|K ∈ Lq(K) is compact for each λ ≥ Λ. This completes the
proof.

In the rest of this paper, we always assume the condition λ ≥ Λ, where Λ be as in
Lemma 2.4, in the place where Eλ is under consideration.

To apply the standard variational calculus, except for Subsection 3.2, we shall regard Eλ

as a real Hilbert space equipped with the inner product (u, v)λ = Re (∇λAu,∇λAv)L2(RN,CN).
It follows from (A.5) that ∇λAu = ∇u and (u, v)λ = Re (∇u,∇v)L2(Ω,CN) hold for

any u, v ∈ H 1
0 (Ω). Therefore, we may regard the space H 1

0 (Ω) as a closed subspace of the
Hilbert space Eλ by zero extension.

3. Preliminaries

3.1. Variational structure of Jλ. In this subsection, we recall some (well-known)
variational properties of Jλ. Assume (A.1)–(A.5) and (f.1)–(f.4). Let p ∈ (2, 2∗) and θ > 2
be as in (f.2) and (f.3).

LEMMA 3.1. (i) There exist C > 0 and C′ > 0 such that infx∈RN F (x, t2) ≥ Ctθ −
C′t2 for any t ≥ 0.
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(ii) For any ε > 0, there exists Cε > 0 such that

0 < θF(x, t2) ≤ f (x, t2)t2 ≤ εt2 + Cεt
p

for any t > 0 and any x ∈ RN .
(iii) For any ε > 0, there exists Cε > 0 such that∫

RN

f (x, |u|2)|v||w|dx ≤ ε‖v‖L2(RN)‖w‖L2(RN)

+Cε‖u‖p−2
Lp(RN)

‖v‖Lp(RN)‖w‖Lp(RN),∫
RN

f (x, |u|2)|u|2dx +
∫

RN

F (x, |u|2)dx ≤ ε‖u‖2
L2(RN)

+ Cε‖u‖p

Lp(RN)
,

∫
RN

f (x, |u|2)|u|2dx +
∫

RN

F (x, |u|2)dx ≤ ε‖u‖2
λ + Cε‖u‖p

λ

for any u, v,w ∈ Eλ. Here, Cε is independent of large λ.

(iv) If u converges to v in L2(RN) and in Lp(RN), then
∫

RN F (x, |u|2)dx tends to∫
RN F (x, |v|2)dx.

PROOF. First, we show (ii). By (f.2), for any ε > 0 there exists tε > 0 such that

f (x, t2)t2 ≤ εt2 for all t ∈ (0, tε] and all x ∈ RN , and f (x, t2)t2 ≤ C(t2 + tp) ≤
C(t

−(p−2)
ε + 1)tp =: Cεt

p for all t ≥ tε and all x ∈ RN . The rest of the assertion fol-
lows from (f.3).

Second, we show (i). Let t0 > 0 be as in (f.4). For t ≥ t0, we have F(x, t) ≥ Ctθ/2 by
integrating the inequality in (f.3). For t < t0, the assertion follows from (ii).

Third, the assertion (iii) follows from (ii), the Hölder inequality, and (2.6).

Finally, we show (iv). For any ε > 0 there exists Cε > 0 such that ||u|2 − |v|2| ≤
|u − v|(|u| + |v|) ≤ Cε

−1|u − v|2 + ε(|u|2 + |v|2). Then it follows from the mean-value

theorem and (ii) with ε = 1 that 2|F(x, |u|2)−F(x, |v|2)| ≤ |(|u|2 −|v|2) ∫ 1
0 f (t|u|2 + (1 −

t)|v|2)dt| ≤ Cp(Cε|u − v|2 + ε(|u|2 + |v|2))(1 + |u|p−2 + |v|p−2) for any ε > 0. Then the

assertion follows from the Hölder inequality
∫ |u|2|v|p−2 ≤ ‖u‖2

Lp‖v‖p−2
Lp .

The next lemma is well-known (e.g., the proof of Theorem 1.22 in [Zo-Sc]).

LEMMA 3.2. (i) If un ⇀ v in Eλ as n → ∞, then

lim
n→∞

∫
RN

f (x, |un|2)unwdx =
∫

RN

f (x, |v|2)vwdx

for each w ∈ Eλ.
(ii) If un → v in Eλ as n → ∞, then

lim
n→∞ sup

w∈Eλ\{0}

∣∣∣∣
∫

RN

f (x, |un|2)unwdx −
∫

RN

f (x, |v|2)vwdx

∣∣∣∣ /‖w‖λ = 0 .
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The next lemma follows from a simple calculation.

LEMMA 3.3. Let p > 2, a > 0, and b > 0. The function f (x) = ax2/2 − bxp/p on

[0,∞) takes the maximum f ((a/b)1/(p−2)) = p−2
2p

(ap/b2)1/(p−2). Moreover, f (x) > 0 if

0 < x < (a/b)1/(p−2).

The next lemma follows from the Hölder inequality.

LEMMA 3.4. Let 1 < s < q < r < ∞. Let K be a measurable subset of RN . We have

‖u‖Lq(K) ≤ ‖u‖a
Ls(K)‖u‖1−a

Lr(K) for any u ∈ Ls(K)∩Lr(K), where a = s(r −q)/[q(r−s)] ∈
(0, 1).

Let Jλ be the functional on the real Banach space Eλ defined by (1.5). It follows from
Lemma 3.2 that Jλ ∈ C1(Eλ, R) and the Fréchet derivative is given by the dual coupling

E′
λ
〈J ′

λ(u), v〉Eλ = Re

(
(u, v)λ −

∫
RN

f (x, |u|2)uv̄dx

)

for any u, v ∈ Eλ.

LEMMA 3.5. There exist r > 0 and b > 0, both of which are independent of λ, such
that Jλ(u) ≥ b if ‖u‖λ = r .

PROOF. By Lemma 3.1 (iii) with ε = 1/2, we have

Jλ(u) = 1

2
‖u‖2

λ −
∫

RN

F (x, |u|2)dx ≥ 1

4
‖u‖2

λ − C1/2‖u‖p
λ (3.1)

for any u ∈ Eλ. By Lemma 3.3, the rightmost of (3.1) takes the maximum
p−2
2p

[(1/2)p/(pC1/2)
2]1/(p−2) =: b if ‖u‖λ = [1/(2pC1/2)]1/(p−2) =: r . This proves the

lemma.
For given c ∈ R, we say that a sequence {un}n ⊂ Eλ is a (PS)c-sequence for Jλ if

Jλ(un) → c and ‖J ′
λ(un)‖E′

λ
→ 0 as n → ∞. A functional is said to satisfy the (PS)c-

condition if any (PS)c-sequence has a convergent subsequence.

LEMMA 3.6. For any (PS)c-sequence {un}n ⊂ Eλ for Jλ, we have:
(i) lim supn→∞ ‖un‖2

λ ≤ [2θ/(θ − 2)]c. In particular, {un}n is bounded in Eλ and
c ≥ 0. Here, θ is as in (f.3).

(ii) For any q ∈ [2, 2∗] for N ≥ 3 and for any q ≥ 2 for N = 2, there exists Cq > 0

such that lim supn→∞ ‖un‖2
Lq(RN)

≤ C2
q [2θ/(θ − 2)]c.

(iii) There exists c1 > 0 such that if c < c1 then c = 0.
(iv) There exists α > 0 such that lim infn→∞ ‖un‖p

Lp(RN)
≥ αc.

Here, all the constants Cq , c1, and α above are independent of λ, c, and of the choice of
the (PS)c-sequence.
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PROOF. We give a proof of these standard results for the sake of completeness. Let
{un}n be a (PS)c-sequence for Jλ. Then it follows from (f.3) that

c + o(1) + o(1)‖un‖λ = Jλ(un) − 1

θ
E′

λ
〈J ′

λ(un), un〉Eλ

= (1/2 − 1/θ)‖un‖2
λ +

∫
RN

(
1

θ
f (x, |un|2)|un|2 − F(x, |un|2)

)
dx

≥ [(θ − 2)/(2θ)]‖un‖2
λ

as n → ∞, which implies (i) because o(1)‖un‖λ ≤ ε‖un‖2
λ + o(1) for any ε > 0. Then,

applying (2.6) to (i) above, we have (ii). Note that the constant Cq from (2.6) depends only
on N and q .

It follows from Lemma 3.1 (iii) with ε = 1/2 that

o(1)‖un‖λ = E′
λ
〈J ′

λ(un), un〉Eλ ≥ ‖un‖2
λ −

(
1

2
‖un‖2

λ + C1/2‖un‖p
λ

)

= 1

4
‖un‖2

λ +
(

1

4
‖un‖2

λ − C1/2‖un‖p
λ

)
(3.2)

as n → ∞. Thus, by Lemma 3.3 with a = 1/2 and b = pC1/2, we have

‖un‖2
λ ≤ o(1)‖un‖λ (3.3)

if ‖un‖λ ≤ (2pC1/2)
−1/(p−2).

We now assume that c < [(θ − 2)/(2θ)](2pC1/2)
−2/(p−2) =: c1. Then it follows

from (i) that lim supn→∞ ‖un‖λ ≤ ([2θ/(θ − 2)]c)1/2 < (2pC1/2)
−1/(p−2), and hence

limn→∞ ‖un‖λ = 0 by (3.3). Then Jλ(un) → Jλ(0) = 0 = c. This shows (iii).
Finally, we show (iv). By Lemma 3.1, (i), (ii), and (2.6), for any ε > 0 there exists

Cε > 0 such that, as n → ∞,

c + o(1) + o(1)‖un‖λ = Jλ(un) − 1

2 E′
λ
〈J ′

λ(un), un〉Eλ

=
∫

RN

(
1

2
f (x, |un|2)|un|2 − F(x, |un|2)

)
dx

≤ ε‖un‖2
L2(RN)

+ Cε‖un‖p

Lp(RN)

≤ εC2
2‖un‖2

λ + Cε‖un‖p

Lp(RN)
. (3.4)

Using (i), we deduce from (3.4) that

lim inf
n→∞ ‖un‖p

Lp(RN)
≥ C−1

ε (1 − C2
2 [2θ/(θ − 2)]ε)c .

Choose ε > 0 so that C2
2 [2θ/(θ − 2)]ε = 1/2 and set α = C−1

ε /2. This completes the

proof.
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LEMMA 3.7. Let {un}n be a (PS)c-sequence for Jλ. There exist a renamed subse-
quence {un}n and v ∈ Eλ satisfying: (i) un ⇀ v in Eλ; (ii) un → v in L

q
loc(R

N) for any

q ∈ [2, 2∗); (iii) un(x) → v(x) for a.e. x ∈ RN ; (iv) J ′
λ(v) = 0; (v) For any R > 0,

αc − lim sup
n→∞

‖un‖p

Lp(BR(0)c) ≤ ‖v‖p

Lp(RN)
≤ {C2

p[2θ/(θ − 2)]c}p/2 .

Here, the constants Cp and α are as in Lemma 3.6 (ii) and (iv).

PROOF. By a standard argument, we have (i)–(iii) since {un}n is bounded in Eλ. The
assertion (iv) follows from (i) and Lemma 3.2.

We show (v). Let {un}n be a renamed subsequence satisfying (i)–(iv). It follows from
(i), Fatou’s lemma, and Lemma 3.6 (i) that

‖v‖2
Lp(RN)

≤ lim inf
n→∞ ‖un‖2

Lp(RN)
≤ C2

p[2θ/(θ − 2)]c .

On the other hand, it follow from (ii) and Lemma 3.6 (iv) that, for any R > 0,

‖v‖p

Lp(RN)
≥ ‖v‖p

Lp(BR(0)) = lim
n→∞ ‖un‖p

Lp(BR(0))

≥ lim inf
n→∞ ‖un‖p

Lp(RN)
− lim sup

n→∞
‖un‖p

Lp(BR(0)c)

≥ αc − lim sup
n→∞

‖un‖p

Lp(BR(0)c) .

These complete the proof.

3.2. Convergence of spectrum. In this subsection, we give a spectral property which
follows from the norm resolvent convergence of the self-adjoint operator H(λ) as λ → ∞.

Let {μj }∞j=1 be the strictly increasing sequence of all distinct eigenvalues of the Dirichlet

Laplacian −ΔΩ acting on the complex Hilbert space L2(Ω) with Dom(−ΔΩ) = H 2(Ω) ∩
H 1

0 (Ω). We denote by mult(μj ) the multiplicity of the eigenvalue μj .

LEMMA 3.8. For any integer k ≥ 1 and any ε > 0, there exists Λk,ε > 0 such that,
for any λ ≥ Λk,ε,

(i) H(λ) has at least
∑k

j=1 mult(μj ) eigenvalues (counted multiplicities):

Ek :=
k⋃

j=1

mult(μj )⋃
l=1

{μλ
j,l} .

(ii)
∑k

j=1
∑mult(μj )

l=1 |μλ
j,l − μj | < ε.

(iii) Spec(H(λ)) ∩ (−∞, μk + ε] = Ek .

PROOF. This is a consequence of the results obtained by [He-Na] (See also [He-He]).

In fact, since Ω is compact by (A.2), it follows from Theorem 2.2 in [He-Na] that H(λ)

converges to a self-adjoint operator K(λ) as λ → ∞ in the norm resolvent sense. On the
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other hand, since A = 0 on Ω by (A.5), it follows from Theorem 3.3 in [He-Na] that K(λ) is
unitarily equivalent to −ΔΩ , therefore Spec(K(λ)) = Spec(−ΔΩ). Once we have the norm
resolvent convergence, the spectral concentration follows from the standard argument as in
the proof of Theorems VIII.23 and VIII.24 in [Re-Si] (or as in Appendix A in [He-Na]).

3.3. Fountain theorem. In this subsection, we formulate a variant of Theorem 3.5 of
Willem’s monograph [Wi]. The theorem will be used to produce (PS)c-sequences for Jλ for
certain c’s.

Let X be a real Banach space. Assume that X has a direct product decomposition X =
⊕j≥1Xj , where each Xj is a finite-dimensional subspace. For any k ≥ 1, set Yk = ⊕1≤j≤kXj

and Zk = ⊕j≥kXj . Clearly, X = Yk + Zk and Yk ∩ Zk = Xk .
Let G be a compact group which acts linearly and isometrically on X. Assume that every

Xj are G-invariant. Assume further that for any bounded, G-invariant, open neighbourhood
U of the origin of Yk+1, every continuous G-equivariant map f from ∂U to Yk has a zero for
every k ≥ 1.

Then we have the following version of a fountain theorem:

THEOREM 3.9. Let k ≥ 1. Assume that ϕ ∈ C1(X, R) and ϕ is G-invariant. Let
0 < rk < ρk and set

ck = inf
γ∈Γk

max
u∈Bρk

(0)∩Yk

ϕ(γ (u)) ,

where Γk = {γ ∈ C(Bρk (0) ∩ Yk,X)| γ is G-equivariant, γ |∂(Bρk
(0)∩Yk) = id}. Assume that

bk := inf
∂Brk

(0)∩Zk

ϕ > ak := max
∂Bρk

(0)∩Yk

ϕ . (3.5)

Then we have the following assertions:
(i) ck ≥ bk , and

(ii) For any ε ∈ (0, (ck − ak)/2) and any δ > 0, if γ ∈ Γk satisfies
supu∈Bρk

(0)∩Yk
ϕ(γ (u)) ≤ ck + ε, then there exists u ∈ X such that |ϕ(u) − ck| ≤ 2ε;

dist (u, γ (Bρk (0) ∩ Yk)) ≤ 2δ; and ‖ϕ′(u)‖X′ ≤ 8ε/δ.

In Theorem 3.5 of [Wi], it is assumed that dim Xj is independent of j . However, its proof
applies to Theorem 3.9 above if we use the following intersection lemma instead of Lemma
3.4 in [Wi].

LEMMA 3.10. Let 0 < r < ρ. Assume that γ ∈ C(Bρ(0) ∩ Yk,X) is G-equivariant
and γ |∂Bρ(0)∩Yk

= id . Then γ (0) = 0 and γ (Bρ(0) ∩ Yk) ∩ ∂Br(0) ∩ Zk �= ∅.

PROOF. Let γ be as above. The equivariance of γ implies that γ (0) ∈ YG
k := {u ∈

Yk|g(u) = u for all g ∈ G}. Note that g(0) = 0 for all g ∈ G because G acts linearly. Define

a constant map f : Yk+1 → YG
k (⊂ Yk) by f (u) = γ (0), and set U = int[B1(0)] ∩ Yk+1. By

the assumption on the action of G, ∂U ∩ f −1(0) �= ∅. Hence, γ (0) = 0.
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Set U = {u ∈ int[Bρ(0)] ∩ Yk|‖γ (u)‖X < r}, which is a bounded, G-invariant, open
neighbourhood of the origin of Yk . Let Pk−1 : X → Yk−1 be the continuous projection and

set f = Pk−1 ◦ γ : U → Yk−1, which is continuous G-equivariant. By the assumption again,

there exists u ∈ ∂U ∩ f −1(0). Since u ∈ ∂U , either (i) ‖u‖X = ρ; or (ii) ‖γ (u)‖X = r .
If (i) occurs, then γ (u) = u and then ρ = ‖u‖X = ‖γ (u)‖X ≤ r , which is a contradiction.
Thus, f (u) = 0, ‖u‖X < ρ and ‖γ (u)‖X = r , and then the element γ (u) assures the non-
emptiness.

In the next section we shall use the antipodal action of G = {±1} on Rn to apply the
fountain theorem. In this case, the assumption on the action of G is fulfilled because of the
Borsuk-Ulam theorem:

LEMMA 3.11. Let N > n ≥ 0. Let U be a bounded, symmetric (i.e., invariant under
the antipodal action of the group G = {±1}), open neighbourhood of the origin of RN . Every
continuous odd map f from ∂U to Rn has a zero.

PROOF. We may assume that N > n + 1 ≥ 2 because the lemma is trivial if n = 0 and
follows from the standard Borsuk-Ulam theorem (e.g., Theorem D.17 in [Wi]) if N = n + 1.
Define the inclusion ι : Rn → RN−1 = Rn×RN−n−1 by ι(x) = (x; 0). Then the composition

ι ◦ f : ∂U → RN−1 is continuous and odd. By the Borsuk-Ulam theorem, there exists

x ∈ ∂U ∩ (ι ◦ f )−1(0). This implies that x ∈ ∂U ∩ f −1(0).

4. Proof of Theorem 1.1

In this section, we show Theorem 1.1. The proof is an adaptation of that of Theorem 1.1
in [Ba-Pa-Wa].

Let Eλ be the (real) Hilbert space introduced at the end of Section 2, and let −ΔΩ , {μj }j ,

H(λ), and {μλ
j,l}j,l be as in Subsection 3.2.

Fix k ≥ 1 arbitrarily. Set

Yk =
k⊕

j=1

Ker(−ΔΩ − μj) =: ⊕k
j=1Xj

and

Yλ
k =

k⊕
j=1

mult(μj )⊕
l=1

Ker(H(λ) − μλ
j,l) .

Set (Y λ
k )⊥ = {u ∈ Eλ| (u, v)λ = 0 for any v ∈ Yλ

k }. For notational convenience, we set

Y0 = Yλ
0 = {0} and then (Y λ

0 )⊥ = Eλ. Set Zλ
k = Eλ � Yk−1.

In what follows, we assume that λ ≥ Λk+1,ε , where Λk+1,ε is as in Lemma 3.8 and we

set ε = min{μj+1 − μj }kj=1/100.
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LEMMA 4.1. There exist r and Rk , both of which are independent of λ, such that
0 < r < Rk and

(i)

bλ
k := inf

∂Br(0)∩Zλ
k

Jλ > 0 > −1 > aλ
k := max

∂BRk
(0)∩Yk

Jλ .

(ii) Jλ(u) ≤ 0 for any u ∈ BRk (0)c ∩ Yk .

PROOF. First, the estimate of bλ
k from below follows from Lemma 3.5 with the common

r .
Next, we estimate aλ

k from above. For any u ∈ Yk , we have

Jλ(u) = 1

2
‖u‖2

λ −
∫

Ω

F(x, |u|2)dx ≤ 1

2
‖u‖2

λ − C‖u‖θ
Lθ (Ω)

+ C′‖u‖2
L2(Ω)

≤
(

1

2
+ C′′

)
‖u‖2

λ − Ck‖∇u‖θ
L2(Ω,CN)

=
(

1

2
+ C′′

)
‖u‖2

λ − Ck‖u‖θ
λ , (4.1)

where we used Lemma 3.1 (i) in the first inequality and used Lemma 2.4 and the equivalence
of norms on the λ-independent finite-dimensional space Yk in the second inequality. Here, C′′
and Ck are independent of λ. Since θ > 2, we can take Rk > 0 so large that the rightmost of
(4.1) is less than −1 if ‖u‖λ ≥ Rk . This completes the proof.

Let Rk be the constant obtained in Lemma 4.1 above. Set

cλ
k = inf

γ∈Γ λ
k

max
u∈BRk

(0)∩Yk

Jλ(γ (u)) , (4.2)

where Γ λ
k = {γ ∈ C(BRk (0) ∩ Yk,Eλ)| γ is odd, γ |∂(BRk

(0)∩Yk) = id}.
LEMMA 4.2. Let cλ

k be as in (4.2). There exists a (PS)cλ
k
-sequence for Jλ for every

large λ.

PROOF. We take and fix an orthonormal basis {f̃m}∞m=k+1 of the subspace Zλ
k+1 =

Eλ � Yk of the Hilbert space Eλ.
We now apply Theorem 3.9 with X = Eλ; G = {±1} with the antipodal action; ϕ = Jλ;

Xj is the space defined at the beginning of this section if 1 ≤ j ≤ k, and set Xj = SpanC{f̃j }
if j ≥ k + 1; Yk is the space defined above; Zk = Zλ

k ; rk = r; ρk = Rk; ck = cλ
k ; ak = aλ

k ;

bk = bλ
k ; and Γk = Γ λ

k .

The assumption bk > ak in Theorem 3.9 follows from Lemma 4.1. Hence, cλ
k ≥ bλ

k , and

for any ε ∈ (0, (cλ
k − ak)/2) and any δ > 0 there exists uε ∈ Eλ such that |Jλ(uε) − cλ

k | ≤ 2ε

and ‖J ′
λ(uε)‖E′

λ
≤ 8ε/δ. Moreover, it follows from Lemma 4.1 that (cλ

k − ak)/2 ≥ (bλ
k −
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ak)/2 ≥ 1/2. Therefore, we can choose ε = 1/(4n) and δ = 8 so that |Jλ(u1/n) − cλ
k | ≤ 1/n

and ‖J ′
λ(u1/n)‖E′

λ
≤ 1/n. Then we have a (PS)cλ

k
-sequence {u1/n}n.

LEMMA 4.3. For any (PS)cλ
k
-sequence {un}n for Jλ, we have

lim sup
n→∞

‖un‖2
λ ≤ [2θ/(θ − 2)]cλ

k ,

and lim supλ→∞ cλ
k < ∞.

PROOF. The first inequality follows from Lemma 3.6 (i). Since id ∈ Γ λ
k , we have

cλ
k ≤ maxBRk

(0)∩Yk
Jλ = maxBRk

(0)∩Yk
IΩ , which is finite and independent of λ. This shows

the finiteness.

LEMMA 4.4. Let cλ
k be as in (4.2). Set

cλ
k = sup

ρ>0
inf{Jλ(u)|u ∈ (Y λ

k−1)
⊥ ∩ ∂Bρ(0)} .

We have: cλ
k ≥ cλ

k for any large λ.

PROOF. Let Rk be as in Lemma 4.1. If ρ > 0 satisfies (Y λ
k−1)

⊥ ∩ ∂Bρ(0) ∩ Yk ∩
[int(BRk (0))]c �= ∅, then we deduce from Lemma 4.1 (ii) that

inf{Jλ(u)| u ∈ (Y λ
k−1)

⊥ ∩ ∂Bρ(0)} ≤ 0 ≤ cλ
k . (4.3)

Next, we consider ρ > 0 satisfying (Y λ
k−1)

⊥∩∂Bρ(0)∩Yk ∩[int(BRk (0))]c = ∅. For any

γ ∈ Γ λ
k , we set Oγ = {u ∈ Yk ∩ int(BRk (0)) | ‖γ (u)‖λ < ρ}, which is a bounded, symmetric

open neighborhood of 0 ∈ Yk . Let Pλ
k−1 be the orthogonal projection from Eλ onto Yλ

k−1 for

any k ≥ 1. Since Pλ
k−1 ◦ γ is a continuous odd map from Oγ to Yλ

k−1, by the Borsuk-Ulam

theorem, there exists v ∈ ∂Oγ such that Pλ
k−1(γ (v)) = 0, i.e., γ (v) ∈ (Y λ

k−1)
⊥.

Since v ∈ ∂Oγ , either (i) ‖v‖λ = Rk; or (ii) ‖γ (v)‖λ = ρ. If (i) occurs, then γ (v) =
v since γ ∈ Γ λ

k . Since Rk = ‖v‖λ = ‖γ (v)‖λ ≤ ρ, the element (ρ/Rk)v belongs to

(Y λ
k−1)

⊥ ∩ ∂Bρ(0) ∩ Yk ∩ [int(BRk (0))]c = ∅. This contradiction shows that ‖v‖λ < Rk

and ‖γ (v)‖λ = ρ. Therefore, v ∈ BRk (0) ∩ Yk and γ (v) ∈ (Y λ
k−1)

⊥ ∩ ∂Bρ(0), and then

inf{Jλ(u)|u ∈ (Y λ
k−1)

⊥ ∩ ∂Bρ(0)} ≤ Jλ(γ (v)) ≤ maxu∈BRk
(0)∩Yk

Jλ(γ (u)). This implies that

inf{Jλ(u)|u ∈ (Y λ
k−1)

⊥ ∩ ∂Bρ(0)} ≤ cλ
k . (4.4)

The lemma follows from (4.3) and (4.4).

LEMMA 4.5. Let μk be as in Section 3. There exists Λ′
k > 0 such that

cλ
k ≥ C0(μk)

δ

for any λ ≥ Λ′
k . Here, both C0 > 0 and δ > 0 are independent of λ and k.
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PROOF. By the definition of (Y λ
k−1)

⊥ and Lemma 3.8, we have

‖u‖2
λ ≥ μk‖u‖2

L2(RN)
/2 (4.5)

for any u ∈ (Y λ
k−1)

⊥ if λ is large enough. For N ≥ 3, it follows from Lemma 3.4, (2.6) with

q = 2∗, and (4.5) that

‖u‖Lp(RN) ≤ ‖u‖a
L2(RN)

‖u‖1−a

L2∗
(RN)

≤ CN‖u‖a
L2(RN)

‖u‖1−a
λ

≤ C′
N‖u‖λ/(μk)

a/2 (4.6)

for any u ∈ (Y λ
k−1)

⊥. A similar argument replaced 2∗ by p + 1 yields (4.6) for N = 2. Here,

the exponent a depends only on p and N . Then, for any u ∈ (Y λ
k−1)

⊥ and for any ε > 0, we
have

Jλ(u) ≥ 1

2
‖u‖2

λ −
(
ε‖u‖2

L2(RN)
+ Cε‖u‖p

Lp(RN)

)

≥ 1

2
(1 − 4ε/μk) ‖u‖2

λ − Cε(C
′
N)p

(μk)ap/2 ‖u‖p
λ , (4.7)

where we used Lemma 3.1, (4.5), and (4.6) in the second inequality.
Setting ε = μ1/8, we have 1 − 4ε/μk = 1 − μ1/(2μk) ≥ 1/2. We deduce from (4.7)

and Lemma 3.3 that

cλ
k = sup

ρ>0
inf{Jλ(u)|u ∈ (Y λ

k−1)
⊥ ∩ ∂Bρ(0)}

≥ sup
ρ>0

(
1

4
ρ2 − 1

p

pCε(C
′
N)p

(μk)ap/2
ρp

)

= p − 2

2p

(
2−p

/[
pCε(C

′
N)p/(μk)

ap/2]2
)1/(p−2)

=: C0(μk)
δ .

This proves the lemma.

LEMMA 4.6. Assume that B−1(0) ⊂ BR−1(0). Then there exist Ck,R > 0 and a > 0,
both of which are independent of λ, such that any (PS)cλ

k
-sequence {un}n for Jλ satisfies

lim supn→∞ ‖un‖Lp(BR(0)c) ≤ Ck,Rλ−a .

PROOF. By Lemmata 2.4 and 4.3, there exists a constant Ck > 0 such that

λCR‖un‖2
L2(BR(0)c)

≤ ‖un‖2
λ ≤ Ck (4.8)

for all n and λ large enough. For N ≥ 3, it follows from Lemma 3.4, (2.6), and (4.8) that

‖un‖Lp(BR(0)c) ≤ ‖un‖a
L2(BR(0)c)

‖un‖1−a

L2∗
(BR(0)c)
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≤ C1−a
N ‖un‖a

L2(BR(0)c)
‖un‖1−a

λ

≤ C1−a
N (Ck)

1/2/(CRλ)a/2 , (4.9)

where a is from Lemma 3.4. This completes the proof for N ≥ 3. A similar argument yields
(4.9) for N = 2.

By Lemmata 4.2 and 3.7, we obtain a critical point vλ
k ∈ Eλ of Jλ. Fix R > 0 as in

Lemma 4.6. It follows from Lemma 3.7 (v) with v = vλ
k and Lemma 4.6 that

αcλ
k − Ck,Rλ−a ≤ ‖vλ

k ‖p

Lp(RN)
≤ C

p
pC

p/2
k =: βk .

Here, the constants α, Cp, and Ck are as in Lemma 3.6 (i), (ii), and (4.8), respectively. Thus,
by Lemmata 4.5 and 4.4, for each k ≥ 1,

αk := αC0(μk)
δ/2 ≤ αcλ

k/2 ≤ ‖vλ
k ‖p

Lp(RN)
≤ βk

for any λ ≥ [2Ck,R/C0(μk)
δ]1/a + Λ′

k =: Λ(k). Here, Λ′
k is as in Lemma 4.5.

Since 0 < μ1 < · · · < μk < · · · → ∞ as k → ∞, it follows from Lemma 4.5 that there
exists a sequence {kj }∞j=1 such that 2βkj < αkj+1 for any λ ≥ Λ(kj+1). (Clearly, we may

assume that {Λ(k)}k is increasing.)
Therefore, for each m ≥ 1, the weak solutions {vλ

kj
}mj=1 satisfy

(0 < α1 <) αkj ≤ ‖vλ
kj

‖p

Lp(RN)
≤ βkj < αkj+1 ≤ ‖vλ

kj+1
‖p

Lp(RN)

for any λ ≥ Λ(km) and for any j = 1, 2, . . . ,m − 1.

We now complete the proof of Theorem 1.1 by setting bj = (βkj )
1/p, aj = (αkj )

1/p, and

cj = supλ≥Λ(kj ) ‖vλ
kj

‖λ, which is finite by Lemma 4.3 and the weak lower-semicontinuity of
norms.

5. Proof of Theorem 1.2

In this section, we show Theorem 1.2. Our proof is essentially the same as that of Theo-
rem 1.2 in [Ba-Pa-Wa].

Before proceeding to the proof, we recall a standard result from the theory of Sobolev
spaces. The next result follows immediately from Corollary 5.3.5 in [Ca] for real-valued
functions.

LEMMA 5.1. Let Ω is a bounded, smooth open subset of RN . Assume that v ∈
H 1(Ω), w ∈ H 1

0 (Ω), and |v| ≤ |w| a.e. Then v ∈ H 1
0 (Ω).

Let {λn}∞n=1 be a diverging sequence and let {un}n be a set of critical points of Jλn satis-
fying: un ∈ Eλn , supn ‖un‖λn < ∞, and infn ‖un‖Lp(RN) > 0.

We remark that all the statements in Lemma 5.2 below remain valid if the condition
“J ′

λn
(un) = 0” is replaced by “ ‖J ′

λn
(un)‖E′

λn
→ 0 as n → ∞”.
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LEMMA 5.2. There exist v ∈ H 1
0 (Ω) and a subsequence of {un}n, still denoted by

{un}n, such that un|Ω ⇀ v in H 1(Ω), moreover,
(i) un → v in L

q

loc(R
N) for any q ∈ [2, 2∗), and un → v in L2(RN);

(ii) un(x) → v(x) for a.e. x ∈ RN ;
(iii) v is a weak solution to −Δv = f (x, |v|2)v on Ω .

PROOF. By (2.6), we have ‖ |un| ‖H 1(RN) ≤ C supn ‖un‖λn , where C is independent of

n. Thus, {|un|}n is bounded in H 1(RN), therefore we find a (renamed) subsequence such that

|un| ⇀ w ∈ H 1(RN); |un| → w in L
q

loc(R
N) for any q ∈ [2, 2∗); |un(x)| → w(x) for a.e.

x ∈ RN as n → ∞.
Let δ > 0. It follows from Corollary 2.6 that λn‖un‖2

L2(RN\[B−1(0)]+δ )
≤ Cδ supn ‖un‖2

λn
,

where Cδ is independent of n. Thus,

lim
n→∞ ‖un‖2

L2(RN\[B−1(0)]+δ )
= 0 (5.1)

since λn → ∞. Using a countable covering argument, we choose a (renamed) subsequence

such that un(x) → 0 for a.e. x ∈ [B−1(0)]c. Therefore, w(x) = 0 for a.e. x ∈ Ωc because of
(A.5). Since ∂Ω has zero measure, we conclude that w ∈ H 1

0 (Ω) (e.g., [Br], Theorem 9.18).
On the other hand, ‖∇un‖L2(Ω,CN) ≤ ‖∇λAun‖L2(RN,CN) ≤ supn ‖un‖λn by (A.5).

Thus, {un|Ω}n is bounded in H 1(Ω), and then we find a subsequence, still denoted by {un}n,
such that un|Ω ⇀ v ∈ H 1(Ω); un|Ω → v in Lq(Ω) for any q ∈ [2, 2∗); un(x) → v(x) for

a.e. x ∈ Ω . Hence, |v(x)| = w(x) for a.e. x ∈ Ω , and then v ∈ H 1
0 (Ω) by Lemma 5.1.

Let q ∈ [2, 2∗). For any bounded measurable set K , we have ‖un − v‖q

Lq(K) =
‖ |un| ‖q

Lq(K\Ω) + ‖un|Ω − v‖q

Lq(K∩Ω) → 0 as n → ∞ by the L
q

loc-convergences. More-

over, by (5.1) and the L2
loc-convergence, we have

‖un − v‖2
L2(RN)

= ‖un‖2
L2(RN\[B−1(0)]+δ )

+ ‖un − v‖2
L2([B−1(0)]+δ )

→ 0

as n → ∞. These imply (i) and (ii).

Finally, We show (iii). Every un satisfies E′
λn

〈J ′
λn

(un), ϕ〉Eλn
=0 for any ϕ ∈ H 1

0 (Ω).

Recall that ∇(un|Ω) = (∇un)|Ω ; un|Ω ⇀ v in H 1(Ω); and un|Ω → v in L
q

loc(Ω). Then we

can deduce from Lemma 3.2 that v is a weak solution to (1.6).

We recall a lemma due to Lions (Lemma I.1 in [Li]):

LEMMA 5.3. Let r > 0 and q ′ ∈ [2, 2∗). Assume that {gn}n is bounded in H 1(RN)

and satisfies limn→∞ supy∈RN

∫
Br(y) |gn(x)|q ′

dx = 0. Then {gn}n converges to 0 in Lq(RN)

for any q ∈ (2, 2∗).

LEMMA 5.4. Let {un}n and v be as in lemma 5.2. A renamed subsequence satisfies:
un → v as n → ∞ in Lq(RN) for any q ∈ (2, 2∗). Moreover, v �= 0.
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PROOF. Set gn = un −v (∈ Eλn). It follows from (2.6) that ‖ |gn| ‖H 1(RN) ≤ C‖gn‖λn ≤
C(supn ‖un‖λn + ‖v‖H 1(Ω)) < ∞. Thus, {|gn|}n is bounded in H 1(RN) and gn(x) → 0 for

a.e. x ∈ RN by Lemma 5.2 (ii).
We show that |gn| → 0 in Lq(RN) for any q ∈ (2, 2∗) by contradiction. Assume that

{|gn|}n does not converges to 0 in Lq(RN) for some q ∈ (2, 2∗). Then, by Lemma 5.3 with

r = 1, q ′ = 2, and gn = |gn|, there exist δ > 0, a sequence {yn}n ⊂ RN , and a (renamed)
subsequence {|gn|}n such that

inf
n

‖gn‖2
L2(B1(yn))

≥ δ . (5.2)

Moreover, we have |yn| → ∞ since gn → 0 in L2
loc(R

N) by Lemma 5.2 (i), and we have

gn = un − v = un on B1(yn) for any large n since v ∈ H 1
0 (Ω). Then it follows from (5.2)

and Corollary 2.5 that

λnδ ≤ λn‖gn‖2
L2(B1(yn))

= λn‖un‖2
L2(B1(yn))

≤ C′‖un‖2
λn

≤ C′ sup
n

‖un‖2
λn

< ∞ ,

where C′ is independent of n. Since λn → ∞, this is a contradiction.
Finally, we have ‖v‖Lp(RN) ≥ infn ‖un‖Lp(RN) − lim supn→∞ ‖un − v‖Lp(RN) =

infn ‖un‖Lp(RN) > 0 by assumption. This shows that v �= 0.

LEMMA 5.5. Let {un}n and v be as in lemma 5.4. A renamed subsequence satisfies:
(i) ‖un − v‖λn → 0, and (ii) Jλn(un) → IΩ(v), as λ → ∞.

PROOF. We show (i). Since v ∈ H 1
0 (Ω), it follows from (A.5) that

E′
λn

〈J ′
λn

(v), un − v〉Eλn

= Re

( ∫
Ω

∇v∇(un − v)dx +
∫

Ω

f (x, |v|2)v(un − v)dx

)
. (5.3)

The first term on the right-hand side of (5.3) tends to 0 as n → ∞ since un|Ω ⇀ v in H 1(Ω)

by Lemma 5.2. By the L
q

loc-convergence of {un}n and Lemma 3.1 (iii), the second integral on

the right-hand side of (5.3) tends to 0 as n → ∞. Thus, we have limn→∞〈J ′
λn

(v), un−v〉 = 0.

Since J ′
λn

(un) = 0, it follows that, as n → ∞,

o(1) = Eλn
〈J ′

λn
(un) − J ′

λn
(v), un − v〉Eλn

= ‖un − v‖2
λn

−Re
∫

RN

f (|un|2)un(un − v)dx + Re
∫

Ω

f (|v|2)v(un − v)dx .



NONLINEAR SCHRÖDINGER EQUATIONS 21

From this, using Lemma 3.1 (iii) with ε = 1 and the L
q

loc-convergence, we have

‖un − v‖2
λn

≤ (‖v‖L2(Ω)‖un − v‖L2(Ω) + C1‖v‖p−1
Lp(Ω)

‖un − v‖L2(Ω)

) + o(1)

= (‖un‖L2(RN)‖un − v‖L2(RN) + C1‖un‖p−1
Lp(RN)

‖un − v‖Lp(RN)

) + o(1)

≤ Cp

(
sup
n

‖un‖λn + sup
n

‖un‖p−1
λn

)(‖un − v‖L2(RN) + ‖un − v‖Lp(RN)

) + o(1)

≤ C′
p

(‖un − v‖L2(RN) + ‖un − v‖Lp(RN)

) + o(1)

as n → ∞, where we used (2.6) in the first inequality and used the finiteness assumption.
Then the assertion (i) follows from Lemmata 5.4 and 5.2 (i).

The assertion (ii) follows from (i) and the Lp(RN)-convergence of un to v from Lemma

5.4. Indeed, since v ∈ H 1
0 (Ω), we have

Jλn(un) − IΩ(v) = 1

2

(‖un‖2
λn

− ‖v‖2
λn

) −
∫

RN

(
F(x, |un|2) − F(x, |v|2))dx .

The first term on the right-hand side tends to zero as n → ∞ by (i). The second term tends to
zero by Lemma 3.1 (iv).

We now complete the proof of Theorem 1.2.

6. Proof of Theorem 1.3

In this section, we show Theorem 1.3. Assume (A.1)–(A.5) and (f.1)–(f.6). We may
assume that λ is large enough.

Under the assumptions (f.1)–(f.5), we can show the positivity of the infimum cλ over the
Nehari manifold and the existence of a (PS)cλ-sequence for Jλ; this can be shown as in the
proof of Theorem 4.2 in [Wi]. Moreover, we have lim infλ→∞ cλ ≥ b > 0, where b is as in
Lemma 3.5, because of the mountain pass type characterization of cλ obtained as in Section
4 in [Wi].

In addition, under (f.6), we can show that Jλ satisfies the (PS)cλ-condition for any large λ

by using the results in Subsection 3.1 and the argument in the proof of Lemma 4.6; the proof
is similar to that of Proposition 2.1 in [Ba-Wa2]. Therefore, the value cλ is attained by some
critical point uλ ∈ Eλ for Jλ (e.g., [Wi]). Note that it follows from the definition of the Nehari

manifolds that (0 < b ≤) cλ ≤ c(Ω) since H 1
0 (Ω) ⊂ Eλ.

Finally, we show that cλ → c(Ω) as λ → ∞ by contradiction. Assume that there
exists a diverging sequence {λn}n such that cλn = Jλn(uλn) → A ∈ (0, c(Ω)) as n → ∞.
Then the sequence {uλn}n satisfies the conditions: J ′

λn
(uλn) = 0, supn ‖uλn‖λn < ∞, and

infn ‖uλn‖Lp(RN) > 0 by Lemma 3.6 (i), (iv). In particular, all the assumptions of Theorem 1.2
with un = uλn are fulfilled. Hence, we find a (renamed) subsequence such that Jλn(uλn) →
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IΩ(v) for some nonzero critical point v of IΩ . Therefore, c(Ω) ≤ IΩ(v) = A < c(Ω). This
contradiction finishes the proof.
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