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Abstract. We study the nonlinear magnetic Schrodinger equation, —(V — i AA)zu = f(x, |u|2)u on RY,
where N > 2 and the nonlinearity is super-linear and subcritical. The vector potential A and the associated magnetic
field are assumed to vanish on a common bounded open set §2. It is shown that the equation above has more and
more solutions which are localized near §2 as A — oo.

1. Introduction and results

In this paper, we study the nonlinear Schrédinger equation with magnetic field,
—(V =2 A u () = fx, u(0)Pux) (1.1

on RY, where A > 0 is a large parameter and N > 2. We are concerned with the existence
of multiple solutions which are localized near the interior of the zero set of the magnetic
potential as A — oo.

This kind of the “steep-potential-well” problem for equations of the form —Au +
AV(x)+ Wx)u = f(x,u) as A — oo, where the interior of the zero set V~—H0) is as-
sumed to be nonempty, has been studied by many authors under various conditions on the
potentials and the nonlinearity (See, e.g., [Ba-Wa], [Ba-Wa2], [Ba-Pa-Wa], [Si], [De-Di],
[CI-Di], [Di-Ta], [Al], [Al-So], [Al-Mo-So], and the references therein). In [Tal], [Ta2],
and [Ta3], Tang considers the corresponding problem for the equation with magnetic field,
—(V—iAG)2u+ QAVE) + WE)u = f(u).

Our result gives a magnetic analog of these works, replaced the steep scalar potential
well by the steep magnetic well. The proof is based on the argument used in [Ba-Pa-Wa] and
[Ba-Wa2].

We fix some notation. By “A + B =: C + D”, we mean that C and D are defined by
A and B, respectively. We denote by | - | the standard Euclidean norm. For any metric space
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M, we set B.(x) = {y € M|dist(x, y) < r}. For any subset S of M, we set dist(x, S) =
infyes dist(x, y) and set S = {x € M|dist(x, ) < §} for§ > 0.

For any subset §2 of a topological space X, we denote the closure, the complement, the
interior, and the boundary of £2 by 2,02 0rX \ £2), int(£2), and 952, respectively.

We denote by F(M, M') the space of all M’-valued F-functions on M, and we denote
FRY,C) by F(RY). We denote by C5°(R") the space of all (complex-valued) smooth
functions on R with compact support. We say that u, — u in L (RY) if u, — u in
L4 (K) for each compact subset K of R,

The symbol 2* stands for 2N /(N — 2) if N > 3 and for oo if N = 2. For any sequence
{un}, and an element u in a Banach space X, we write “u, — u” if the sequence {u,},
converges weakly to u in X as n — oco. The notation x/ (-, -) x stands for the coupling between
the dual X" and X.

By abuse of notation, we write, e.g., f(x, |u |2) to indicate either the function £ (-, |u|?(-))
or the value f(x, |u(x)|?) if there is no fear of confusion.

For a magnetic vector potential A = (Ay, ..., Ay), we define the magnetic field B =
dA = (Bjr)Y,_,, where Bjx = 9 A — ¢ A;. Define

12
|B(x)| = <Z|B,-k<x)|2) (12)

j<k

V<Bjk(x)) 2>1/2 (1.3)
|B(x)| ’ '

To formulate the main results, we make the following assumptions.

(A.1) The magnetic vector potential A belongs to C2(RY, RV).

(A.2) liminfjy|—eo [B(x)| > 0. In particular, B~1(0) is bounded.

(A.3) limsupjy_, o ¥B(X) < 00.

(A4) The set £2 = int (B~!(0)) is non-empty and has smooth boundary.

(A.5) £2 ¢ A~1(0) and Meas(B~1(0)\ £2) = 0. Here, Meas(-) stands for the Lebesgue
measure.

and

yB(x) = <Z

j<k

For the nonlinearity, we make the following assumptions.

(f.1) The function f belongs to C(RY x [0, c0), R).

(f.2) There exists p € (2,2%) and C > 0 such that sup, g~ | f (x, ) < C( +1P72)
for any t > 0. Moreover, lim;_, 1 sup,cgv | f(x, )| = 0.

(f.3) There exists @ > 2 suchthat0 < 0F(x,t) < f(x,t)t forallx € RY andt > 0,
where F(x, 1) = 1 [0 f(x, D)d.

(f.4) There exists fo > 0 such thatinf, g~ F(x, tg) > 0.
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(f.5) The function f(x, -) is strictly increasing for a.e. x € RV.
(f.6) There exists C > 0 such that sup, gn | f(x, [u + v+ v) — fx, julPu| <
C(1 + |u|P~% 4 |[v|?~?)|v| holds for all u, v € C. Here, the constant p is as in
(f.2).
Throughout this paper, we denote by V; 4 the distributional covariant derivative V—iAA.
For any A > 0, we introduce the Banach space

E, ={ueL>?RY)| Viau € L>R", CM)} (1.4)

. N .
with norm [Jull, = [ Vaaull g2y cvy = (5= 109 — u\Aj)uniz(RN))l/z. We define the

functional
1 . 2 2
B(w) = SN = A Al g vy — /R Fx P (1.5)

on E,. It is standard that any critical point u of J, is a weak solution to the equation (1.1),
i.e., u satisfies (Viau, Viav) 2wy cvy = [gn [, lu|>)uvdx for any v € Ej.

The main results of this paper are the following three theorems.

THEOREM 1.1. Assume (A.1)-(A.5) and (f.1)-(f.4). For any integer m > 1, there
exists Ay > 0 such that the equation (1.1) has at least m weak solutions {v;\-}’J’?:l in E, for
any A > Ap.

Moreover, for any j = 1,2, ..., m, there exist A-independent constants aj, b;, and c;
such that 0 < a; < ||v?||Lp(RN) <bj <ajy1 and ||vjf||k <cjforall A = A,. Here, the

constant p is as in (f.2).

Define Io (1) = %||Vu||iz(9)—fQ F(x, |u|>)dx foru e Hol(.Q). Throughout this paper,

we regard the space HO1 (£2) as a closed subspace of H!(R") by zero extension.
THEOREM 1.2.  Assume (A.1)=(A.5) and (f.1)~(f.4). Let {\,};2 | be a sequence such

that A, — 00 asn — 00. Assume that, for every n, the equation (1.1) with A = A, has
a weak solution u, in E,, satisfying: sup, |u,lln, < oo and inf, lunllprmyy > 0. Then

there exist a subsequence {u, )}k of {un}n and v € HO1 (82) such that |upiky — v, —> 05
Up(ky — V In LiRN) for every g € [2,2%); iy Uny)) —> 12(v); and v is a nontrivial
weak solution to
—Av = f(x, o). (1.6)
Define V), = {u € E; \ {0} ) (J; ), u)g, = O} and c;, = infx;, J;.. Define N = {u €
Hol(.Q) \ {0} H&(Q)’U?Z (u), u)H&(m = 0} and ¢(£2) = infp, Io.
It is well-known that c(2) is positive and attained by some critical point of /.

THEOREM 1.3. Assume (A.1)—(A.5) and (f.1)—(f.6). Then there exists A > 0 such
that for any A > A, the value c;, is attained by some critical point u) € E; of J.. Moreover,
lim)h_ﬂ)o Cy = C(.Q)
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REMARK 1.4. (i) We give examples of A which satisfy all the conditions (A.1)—
(A.5) with A=1(0) = B~1(0) = B (0). Fix x € C*®([0, 00)) satisfying: 0 < x < I and
0<x <lon[0,00); x(r)=0ifand only if 0 < r < 1; x(r) = 1if r > 4; x is increasing.
Then the examples are given by A(x) = x (|x1?)(—x2, x1)/2, where x = (x1, x2) € R? for
N =2,and A(x) = x(|x|*)(=x2, x1,0)/2 + (0,0, x(x3)) for N = 3. Similar examples can
be constructed in higher dimensions.

(ii) The power-type nonlinearity f(r) = r?=2/2 where 2 < p < 2*, satisfies all the
conditions (f.1)—(f.6).

(iii) Let {vj?} be the solutions obtained in Theorem 1.1. Let A, — oo asn — oo. Then
for each j, the sequence {u,}, = {v]k-” }n satisfies the assumption as in Theorem 1.2.

(iv) All of the statements of the theorems above remain valid for the equation —(V —

iAA)u + pu = f(x, |ul?)u forany u < 1, where 1 is the first eigenvalue of the Dirichlét
Laplacian on £2. Proofs are similar.

The organization of this paper is as follows. In Section 2, we formulate the Avron-
Herbst-Simon type formulae for the quadratic form ||u ||/2\. In Section 3, we give preliminary

results; some basic properties of the functional J;, a spectral concentration of —(V — i1A)?
as A — 00, and a variation of fountain theorem. In Sections 4, 5, and 6, we give proofs of
Theorems 1.1, 1.2, and 1.3, respectively.

2. Lower estimates of quadratic forms

We assume (A.1)-(A.5) in the following. Let E; be as in (1.4). Let H(A) be the unique
self-adjoint operator associated with the form ||V, Au||%2 (RV.CNy ON Cgo(RN ). Then H(A) is
essentially self-adjoint on Cgo([.?), and E, is the form domain of H (%) (e.g., [Le-Si]).

The proof of the next lemma is elementary.

LEMMA 2.1. Let K be an open subset of RN and let ¢ Cé (K). Then we have the
following assertions for anyu € E; :

(1) Viaa(ulg) = (Vyau)|k in the sense of distribution.

(i) If K is bounded, then {u belongs to HOI(K) and satisfies ||Sull g1 gy < Ca(llulln +
lullL2rnNy)- Here, Cy is independent of u.

Define f;j(x) = B;j(x)/|B(x)| forx € R¥ \ B~!(0)and 1 < i, j < N. We note that
2
() = (X, VB 012) 2.

LEMMA 2.2 ([He-Na], LemmaB.3). Let & = (&;;)i,; be a (constant) real anti-
symmetric matrix with 3, _ ; |&ij |> = 1. We have the inequality

H() =Y Aim Bim

I<m
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in the sense of the sesqui-linear form.

PROPOSITION 2.3. Assume that F is a closed subset of R and B~'(0) C F. Assume
that0 <s <8and0 < s < l/sup(F; ye YB. Then

H\) > A|B|<1 —s[ sup yB]>I(F;:ﬁ)C — co/SZ’
(F3 )¢ ‘

where
co = nf{| Vil T2 gy v/ 4172 vy 1 € CG° (it B1(0), R) \ {0},
and 1g stands for the characteristic function on S.

PROOF. The proof is essentially the same as that of Proposition B.1 in [He-Na]; how-
ever, we give a proof for the sake of completeness.
Take 1 € C3°(intB1(0), R) with |ufl;2 = 1. For any xo € R and s > 0, we define

s, xo(x) = sV ((x — x0)/s). Then supp(is,vy) C By(x0), [gu [is,xo(¥)|*dxo = 1 and
Jrv Vxbtsxo@)Pdxo = s Vitll35 g g, forall x € RY.

LetO <s <dand xg € (F;r)‘“. By Lemma 2.2 with &;; = B;;(xo), we have

H() =Y ABim (x0) Bim (x)

I<m

= A(IB(X)I + Y (Bim(xo0) — ,Blm(x))Blm(x)>

l<m

172
z/\IB(x)I<1 - [szm(x) —mm<xo)|2} ) @.1)

I<m

By the mean-value theorem, for any x € By (xop),

1
[Bim (x) — Bim(x0)| < |x — on/O [V Bim(tx + (1 — t)xo)|dt
1/2

1
<lx —on</0 IV Bim (tx + (1 — t)xo)lzdt>

Therefore, it follows from the definition of yp that

1/2
[Z|ﬁlm(x)—ﬂlm(xo)|2] <s sup yp (2.2)

= By (x0)

for all x € B;(xp).
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On the other hand, using the IMS type formula, which can be verified by direct compu-
tation, we have

1
5(<us,x0)2H(x) + H ) (s,10)?) = Moo H O s xg — [Vt x|

as a sesqui-linear form on C{°(RY) x C§°(RN). Integrating this with respect to xo over RV,
we have, from (2.1) and (2.2),

HQO) = /R Mg H )1t vpdx0 = s IV 2 g oy

Z ‘/(\ +) MS,X()H()‘)MS,X()de - S_ZHV/’L”%Z(RN RN)
Fyh)e '

> A|B] (1 — s[ sup yg])ms,xoﬂdxo — sVl 2 my qy
(F§He Bs(x0) (RTRD)

zA|B|<1—s[ sup m) / s lPdxo = T2V gy vy
(Fgh)© )

(FiL e
=AB|[1— 1— Zdxg ) — s 72| Vul?
=A|B| s[ sup ygl ltts.xol"dxo ) = s I Viliz2 gy mivy
+ e FJr !
(F(;_S) )
> x|B|(1 — s[ sup yB])l(F;;)c — s IVl 2y g - (2.3)
(Fy e ’

Here, the last inequality follows from the contraposition of the inclusion (supp(is,x,) C)
Bg(xo) C Fy' forxo € Fy".
Finally, taking the infimum over u on both sides of (2.3), we have the conclusion. |

LEMMA 2.4. Let R > 0 satisfy B~1(0) C int(Bg(0)). There exist Ag > 0 and
2 2 2 2
Cr > O such that ||u||L2(BR(0)) < Crllully and)\||u||L2(BR(0)c) =< Crllull5 foranyu € Ej and
any A > Ag.
In particular, there exist A > 0 and C > 0 such that ||ullj2gny < Cllullx for any

u € Ey andany A > A.

PROOF. Letr > 0 satisfy that B~10) c int(B,(0)), and let ¢ > 0 small enough. Set
8 = edist(B~1(0), 3B,(0)) and s = min{§, 1/ SUpg._;(0)c yB}/3, which are positive by (A.2)
and (A.3). By Proposition 2.3 with F = B,(0), we have

2 : 2 2 2
lull = AC inf BN —s sup ye)lulfoqpr o) = (co/sD) el 72 g,
(Fysy)© (Fy)* e
= ACIUI T s yey — M2 e,
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2
= (A'C - c)”u”LZ((F(S‘:ﬂ )) C||u||L2(F+ )
for any u € E,. Hence,

2t o) = OC = 7 ellulZy s + ). (2.4)

L2((F) L2(Fy7)

Take and fix § € CP(RY) such that 0 < ¢ < 1 on RV, ¢ = 1 on Br4ss, and

supp(¢r) C int[Ba,(0)]. Since | u| € HO1 (int[ B2, (0)]) for any u € E, by Lemma 2.1 (ii), it
follows from the Poincaré and the dia-magnetic inequalities that

2
”u”LZ F+ )S ”;ru”LZ(B ) — < C||V|§ru|||L2(B (0),RN)
S C||V)‘A(§ru)”Lz(Bz,(O),CN) CH(”u”LZ(BZ (0)\F+ ) + ”M”i)

< C"(|lul? + llul?)

L2((F§ )9

<C"e(AC — ) Mjul? +C"(+ (C =) Hull3,

L2(Fg )
where we used (2.4) in the last inequality. Hence,

(AC —c —C"o)||ul? < C"(AC —c+ Dul?. 2.5)

L2(Ff ) =

Since r and ¢ are arbitrary under the restrictions described above and F 5 by = = Br4+545(0),
we deduce the lemma from (2.4) and (2.5). |

COROLLARY 2.5. Letr > 0 be fixed. Let {y,}, be a sequence in RN such that %, —
oo asn — 00. There exist A’ > 0, N' > 0, and C' > 0 such that

2 ! 2
”u”A Z )‘-C ||u”L2(B,(yn))

forany A > A',anyu € E,, and anyn > N'.

COROLLARY 2.6. Letd >0Qand F = [B_l(O)];' There exists Cs > 0, independent

of large A, such that \|ul|? C5||u|| foranyu € Ej;.

L2(F¢) =

PROOF. Let§ > 0and F = B~!(0). Fix R > 0so large that [B~!(0)]] C int (Bg(0)).
By (A.2), (A.3) and Proposition 2.3, for any small s > 0, we have

lull? = A inf 1B)(1 S VRN L2t ey = (OIS 2y
S+s ¢

= ()\,C — C)”u”iz((Fg; ) C||u||L2(F+ )
= 0C = Ol oy ey = Nl 00

= 0C = Ml oy = €CrIMIZ
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for any u € E;, where we used Lemma 2.4 in the last inequality. The arbitrariness of  (and
small 5) shows the lemma. |

LEMMA 2.7. Forany A > A, where A is as in Lemma 2.4, we have the following
assertions:

() The Banach space E; is continuously embedded into LY (RN) for any q € [2, 2*]
if N >3 andforanyq > 2if N = 2.

(i) For any bounded measurable subset K of RN, the restriction map Ej — L4(K) is
compact for any q € [2,2%) if N > 3 and forany q > 2 if N = 2.

PROOF. Let g be as above. It follows from the Sobolev and the dia-magnetic inequali-
ties, and Lemma 2.4 that

el o vy < Cv.gMulll g1 gy < Cng UVaaul 2 gy ony + Il 2 )

<Cng(14+CHY2|ull; (2.6)

forany u € E) and any A > A. Here, Cy 4 and C are independent of A. This shows (i).

Next, we show (ii). Let K and g be as in (ii) above. Choose R > 0 such that K C Br(0),
and take and fix ¢x € CSO(RN) suchthat 0 < g < 1onR¥, ¢x = 1 on K, and supp(¢x) C
int[Bog(0)].

Themap 71 : E) > u > ru € HOl (int[ B2 (0)]) is continuous by Lemmata 2.1 and 2.4,
the embedding 7> : HOl (int[Bag(0)]) — L9(B2r(0)) is compact by the Rellich-Kondrashov
theorem, and the restriction 73 : LY(Byr(0)) — L9(K) is continuous. Thus, the composition
T30T, 0T, : E) >u+ ulg € LY(K) is compact for each . > A. This completes the
proof. |

In the rest of this paper, we always assume the condition A > A, where A be as in
Lemma 2.4, in the place where E) is under consideration.

To apply the standard variational calculus, except for Subsection 3.2, we shall regard E,
as a real Hilbert space equipped with the inner product (u, v), = Re (Viau, Viav) 2 gy cny-

It follows from (A.5) that Vyau = Vu and (u,v), = Re(Vu, Vv) 25 vy hold for

any u, v € HOl (£2). Therefore, we may regard the space HO1 (£2) as a closed subspace of the
Hilbert space E; by zero extension.

3. Preliminaries

3.1. Variational structure of J,. In this subsection, we recall some (well-known)
variational properties of J,. Assume (A.1)—(A.5) and (f.1)—(f.4). Let p € (2,2*) and 6 > 2
be as in (f.2) and (£.3).

LEMMA 3.1. (i) There exist C > 0 and C' > 0 such that inf, g F(x,1%) > Ct? —
C't? foranyt > 0.
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(i) Foranye > 0, there exists C; > 0 such that
0 <OF(x,1%) < f(x, 1)1 < et? + Cot?

foranyt > 0and any x € RV,
(iii)) Forany ¢ > 0, there exists Cg > 0 such that

/N f P llwldx < ellvll 2y llwll 2wy
R
+Ce lull? s 101 llwll
3 LP(RY) LP(RN) LP(RN)»
2 2 2 2
[ s P+ [ FG P < el g, + Colel g,

/ f(x,|u|2)|u|2dx+f F(x, [ul?)dx < ellull} + Cellull?
RY RY

foranyu,v, w € E,. Here, C; is independent of large A.
(iv) If u converges to v in L*RN) and in LP(RY), then fRN F(x, |u|®)dx tends to
Jgn F(x, [v[H)dx.

PRrROOF. First, we show (ii). By (f.2), for any ¢ > O there exists z, > 0 such that
fx, 1> < et*> forallt € (0,f,] and all x € RV, and f(x,t)t> < C(t* +1P) <

Ct: P 4 1)t? =: CotP forall t > 1, and all x € RY. The rest of the assertion fol-
lows from (f.3).

Second, we show (i). Let 7o > 0 be as in (f.4). Fort > to, we have F(x,t) > Ct?/2 by
integrating the inequality in (f.3). For t < fo, the assertion follows from (ii).

Third, the assertion (iii) follows from (ii), the Holder inequality, and (2.6).

Finally, we show (iv). For any ¢ > O there exists C; > 0 such that u)> — |v|?| <
lu — v|(Jul + |v]) < Ce'u — v|* + e(Jul?® + |v]?). Then it follows from the mean-value
theorem and (ii) with ¢ = 1 that 2| F (x, |u|?) — F(x, |[v|*)| < |(Ju|? — [v]?) fO‘ ftu?>+1 -
Dlv)dt| < Cp(Celu — vI> + e(|ul?® + [v|*))(1 + |u|P~2 + [v|P~2) for any & > 0. Then the

assertion follows from the Holder inequality [ |u|*[v|P~2 < [|ul|?, ||v||§,72. |
The next lemma is well-known (e.g., the proof of Theorem 1.22 in [Zo-Sc]).

LEMMA 3.2. (i) Ifu, —vinE), asn — oo, then

lim f(x, |un|2)unwdx = / fx, |v|2)dex
RN

n—oo RN

for each w € Ej.
@) Ifu, - vin E, asn — oo, then

lim  sup
" weE; \{0)

/f(x,lunlz)unwclx—/ f(x, o) vwdx
RN RN

/wllx=0.
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The next lemma follows from a simple calculation.

LEMMA 3.3. Letp > 2,a > 0,andb > 0. The function f(x) = ax?/2 — bxP?/p on
[0, 00) takes the maximum f((a/b)"/(P=2) = Pz_;z(ap/bZ)l/(p—Z). Moreover, f(x) > 0 if
0<x < (a/b)l/P=2,

The next lemma follows from the Holder inequality.

LEMMA 3.4. Letl <s <q <r < oo. Let K be ameasurable subset of RN. We have
lull oy < el lull i, foranyu € LS (K)NLT(K), where a = s(r —q)/[q(r —5)] €
0, 1).

Let J, be the functional on the real Banach space E) defined by (1.5). It follows from
Lemma 3.2 that J; € C'(Ej, R) and the Fréchet derivative is given by the dual coupling

E;(J){(u), v)E, = Re <(u, V) — /RN fx, Iulz)uz')dx>

for any u, v € Ej.

LEMMA 3.5. There existr > 0 and b > 0, both of which are independent of A, such
that J(u) = b if lullx =r.

PrROOF. By Lemma 3.1 (iii) with ¢ = 1/2, we have

1 1
() = Nl - /RN Fx, ul?)ydx = Zllully = Cuyallul] 3.1

for any u € E,. By Lemma 3.3, the rightmost of (3.1) takes the maximum
/’2—;2[(1/2)P/(pcl/2)2]1/<1’—2> =: b if |lull = [1/@2pCi2)]"/P=2 =: r. This proves the
lemma. |

For given ¢ € R, we say that a sequence {u,}, C E, is a (PS).-sequence for J if
Jy(up,) — ¢ and ||J;(("‘n)||E; — 0 asn — oo. A functional is said to satisfy the (PS),-
condition if any (PS).-sequence has a convergent subsequence.

LEMMA 3.6. Forany (PS).-sequence {u,}, C Ej for J,, we have:

(1) limsup,_, ||un||§ < [260/(0 — 2)]c. In particular, {u,}, is bounded in E; and
¢ > 0. Here, 0 is as in (f.3).

(ii) Foranyq € [2,2*] for N > 3 and for any q > 2 for N = 2, there exists C4 > 0
such that limsup,,_, o lun |, ®Y) = C2126/(6 —2)]c.

(iii) There exists ¢c1 > 0 such that if c < ¢y then ¢ = 0.

(iv) There exists a > 0 such that liminf,, _, o ||y || oc.

P >
LP(RN) =
Here, all the constants Cy, c1, and o above are independent of A, ¢, and of the choice of

the (PS).-sequence.
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PROOF. We give a proof of these standard results for the sake of completeness. Let
{un}, be a (PS).-sequence for J,. Then it follows from (f.3) that

1
c+o() +oM)lunlln = Ji(un) — §E;<Jﬁ(un), Un)E;

1
=(1/2=1/0)|unl? + /R (5f(x, ltn| P un|* — F(x, |un|2)> dx

> [(6 —2)/QO)]llunl?

as n — 0o, which implies (i) because o(1)|jun|[x < 8||u,,||% + o(1) for any ¢ > 0. Then,
applying (2.6) to (i) above, we have (ii). Note that the constant C; from (2.6) depends only
on N and g.

It follows from Lemma 3.1 (iii) with ¢ = 1/2 that

1
o) lunlls = g (5 (n), un) 5, = llutnlly — <§uunu% + cl/zuunu§’>

1 1
= —lunll + ( ~lunl? — Ci1p2llunll? (3.2)
4 4
asn — oo. Thus, by Lemma 3.3 witha = 1/2 and b = pCy 2, we have

lunll3 < o(1)llunlls (3.3)

if unlln < 2pCiyp)~ 102,

We now assume that ¢ < [(0 — 2)/(29)](2pC1/2)_2/(/’_2) =: c1. Then it follows
from (i) that limsup,_, o lluxll, < ([120/©@ — 2)10)'/? < (2pCi12)~"?=2), and hence
lim,—  |l#n ]l = 0by (3.3). Then Jy (u,) — J»(0) = 0 = c. This shows (iii).

Finally, we show (iv). By Lemma 3.1, (i), (ii), and (2.6), for any ¢ > O there exists
C. > O such that, asn — o0,

1
¢+ o) +oMllunllx = Jr(un) = 3 g (J;(un), n) E,

1
= /R (Ef(x, ltn) P un|* — F(x, |un|2)) dx

= 8””)‘! ”iZ(RN) + CS ”u” ”iP(RN)
< eC3 llunlly + Cellunll} g, - G4

Using (i), we deduce from (3.4) that
> C7N (1= C320/(0 — 2)]e)c.

. p
lilgé%f ”Mn ”Lp(RN)

Choose ¢ > 0 so that C§[29/(9 —2)]e = 1/2 and set ¢ = Cs_l/2. This completes the
proof. |
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LEMMA 3.7. Let {un}n be a (PS).-sequence for J,. There exist a renamed subse-
quence {un}, and v € E, satisfying: (1) u, — vin E,; (i) up, — vin L?OC(RN) for any

q € [2,2%); (iii) un (x) = v(x) fora.e.x € RV; (iv) J{(v) = 0; (v) Forany R > 0,
ac —msup lunll7 p g0y < 0N, vy < (CH120/(6 = D)1c}P2.
n—o0

Here, the constants C), and a are as in Lemma 3.6 (ii) and (iv).

PROOF. By a standard argument, we have (i)—(iii) since {u,}, is bounded in E,. The
assertion (iv) follows from (i) and Lemma 3.2.

We show (v). Let {u,}, be a renamed subsequence satisfying (i)—(iv). It follows from
(1), Fatou’s lemma, and Lemma 3.6 (i) that

2 s s 2 2
”U”L”(RN) S 1}1n_‘1>%>%f||un|lL17(RN) S Cp[ze/(e - 2)]C

On the other hand, it follow from (ii) and Lemma 3.6 (iv) that, for any R > 0,

P p — 1; p
||v||Lp(RN) > ”v”LP(BR(O)) = nll{go ”u””LP(BR(O))
. . [7 . [7
> liminf{lun |1}, gvy) = 11;1 sup NnllypBec0y)

> ac — limsup ||u, ||} )
m Sup [[un [ (g 0)c)

These complete the proof. |

3.2. Convergence of spectrum. In this subsection, we give a spectral property which
follows from the norm resolvent convergence of the self-adjoint operator H (A) as A — oo.

Let {u j};?": | be the strictly increasing sequence of all distinct eigenvalues of the Dirichlet
Laplacian —Ag acting on the complex Hilbert space L?(£2) with Dom(—Ag) = H?(£2) N
HO1 (£2). We denote by mult(u ;) the multiplicity of the eigenvalue 1 ;.

LEMMA 3.8. For any integer k > 1 and any ¢ > 0, there exists Ay > 0 such that,
SJorany A > Ak,

(i) H(\) has at least ZI;: | mult(u ;) eigenvalues (counted multiplicities):

.. le(u
(1) Zl;=1 i o W5, — il <e
(iii) Spec(H (X)) N (—o0, ug + €] = &
PROOF. This is a consequence of the results obtained by [He-Na] (See also [He-He]).

In fact, since £2 is compact by (A.2), it follows from Theorem 2.2 in [He-Na] that H (1)
converges to a self-adjoint operator K (1) as A — 00 in the norm resolvent sense. On the
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other hand, since A = 0 on £2 by (A.5), it follows from Theorem 3.3 in [He-Na] that K (1) is
unitarily equivalent to —Ag,, therefore Spec(K (1)) = Spec(—Ag). Once we have the norm
resolvent convergence, the spectral concentration follows from the standard argument as in
the proof of Theorems VIII.23 and VIIL.24 in [Re-Si] (or as in Appendix A in [He-Na]). |}

3.3. Fountain theorem. In this subsection, we formulate a variant of Theorem 3.5 of
Willem’s monograph [Wi]. The theorem will be used to produce (PS).-sequences for J, for
certain c’s.

Let X be a real Banach space. Assume that X has a direct product decomposition X =
@;>1X, where each X is a finite-dimensional subspace. Forany k > 1,set Yy = ®1<j<k X
and Zy = @ >« X . Clearly, X = Y + Zy and Yy N Z; = Xi.

Let G be a compact group which acts linearly and isometrically on X. Assume that every
X ; are G-invariant. Assume further that for any bounded, G-invariant, open neighbourhood
U of the origin of Y1, every continuous G-equivariant map f from U to Y has a zero for
every k > 1.

Then we have the following version of a fountain theorem:

THEOREM 3.9. Let k > 1. Assume that ¢ € CYX,R) and ¢ is G-invariant. Let
0 < ry < pr and set

cgk = inf  max @(y(u)),
VEFkMEB/,k(O)ﬂYk

where I', = {y € C(By, (0) N Yy, X)| y is G-equivariant, J/|3(Bpk )Ny, = id}. Assume that

by = inf  @>ar:= max o¢. 3.5)
3By, (ONZk 3B, (N
Then we have the following assertions:
(i) ¢k > by, and
(i) For any ¢ € (0,(ck — ax)/2) and any § > 0, if vy € [} satisfies
SUPyeB,, ()Y o(y(m)) < ci + ¢, then there exists u € X such that |o(u) — cx| < 2¢;

dist (u, y (B, (0) N Yx)) < 285 and ||¢" ()| x' < 8e/8.

In Theorem 3.5 of [Wi], itis assumed that dim X ; is independent of j. However, its proof
applies to Theorem 3.9 above if we use the following intersection lemma instead of Lemma
3.4 in [Wi].

LEMMA 3.10. Let0 < r < p. Assume that y € C(B,(0) N Yy, X) is G-equivariant
andy|33ﬂ(o)myk =id. Then y(0) =0and y(B,(0) N Y) N 3B (0) N Z; # 0.

PROOF. Let y be as above. The equivariance of y implies that y (0) € YkG ={u €
Yilg(u) = u for all g € G}. Note that g(0) = 0 for all g € G because G acts linearly. Define
aconstant map f : Yy41 — YkG (CYr)by f(u) = y(0), and set U = int[B1(0)] N Yi+1. By
the assumption on the action of G, dU N f~1(0) # @. Hence, y (0) = 0.
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Set U = {u € int[B,(0)] N Yg|llyw)llx < r}, which is a bounded, G-invariant, open
neighbourhood of the origin of Y;. Let Py_; : X — Y;_1 be the continuous projection and
set f = Pr_joy : U — Y;_1, which is continuous G-equivariant. By the assumption again,
there exists u € dU N f~1(0). Since u € U, either (i) |lullx = p; or (i) ||y W)|x = r.

If (i) occurs, then y(#) = u and then p = |lullx = |ly(m)||lx < r, which is a contradiction.
Thus, f(u) = 0, |lullx < p and ||y (u)||x = r, and then the element y (1) assures the non-
emptiness. |

In the next section we shall use the antipodal action of G = {£1} on R" to apply the
fountain theorem. In this case, the assumption on the action of G is fulfilled because of the
Borsuk-Ulam theorem:

LEMMA 3.11. Let N > n > 0. Let U be a bounded, symmetric (i.e., invariant under
the antipodal action of the group G = {%£1}), open neighbourhood of the origin of RV . Every
continuous odd map f from dU to R" has a zero.

PROOF. We may assume that N > n 4+ 1 > 2 because the lemma is trivial if » = 0 and
follows from the standard Borsuk-Ulam theorem (e.g., Theorem D.17 in [Wi])if N = n + 1.
Define the inclusion ¢ : R” — R¥~1 = R? xR¥~"~! by ((x) = (x; 0). Then the composition
to f : 90U — RY-! is continuous and odd. By the Borsuk-Ulam theorem, there exists
x € dU N (to £)~1(0). This implies that x € U N f~1(0). |

4. Proof of Theorem 1.1

In this section, we show Theorem 1.1. The proof is an adaptation of that of Theorem 1.1
in [Ba-Pa-Wa].

Let E) be the (real) Hilbert space introduced at the end of Section 2, and let —Ag, {u};,
H()), and {/‘}\‘,z}j,l be as in Subsection 3.2.

Fix k > 1 arbitrarily. Set

k
.ok
Vi = @PKer(-Ag — pj) = &, X,
j=1

and

k mult(u;)

Y} = @ @ Ker(H(\) — 1) .

j=1 I=1

Set (Y,g\)L = {u € E,| (u,v),, = Oforanyv € Ykk}. For notational convenience, we set
Yo = ¥} = {0} and then (Y}) = E,. Set Z;; = E; © Y.

In what follows, we assume that A > Ay ., where Ag41 ¢ is as in Lemma 3.8 and we
sete = min{p 41 — Mj}ljzl/lOO.
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LEMMA 4.1. There exist r and Ry, both of which are independent of X\, such that
0 <r < Ryand

()
b,’(\ = inf J,>0>-1> a,’(\ ‘=  max
3B (0)NZ} 3 BR, (0)NY

(ii) Ji(u) <0 foranyu € Bg,(0)° N Y;.

PROOEF. First, the estimate of b2 from below follows from Lemma 3.5 with the common

Next, we estimate a,’g from above. For any u € Y, we have

_ Lo 2 [ 0 )
St = 3l = | e e < Sl = Clulogg, + €'l

1
s<5+C>wﬁ—Cﬁvﬂﬁmcm

1
=(5+d>wﬁ—cmw% (4.1)

where we used Lemma 3.1 (i) in the first inequality and used Lemma 2.4 and the equivalence
of norms on the A-independent finite-dimensional space Yy in the second inequality. Here, C”
and Cy are independent of A. Since 6 > 2, we can take Ry > 0 so large that the rightmost of
(4.1) is less than —1 if ||u||, > Rk. This completes the proof. |

Let Ry be the constant obtained in Lemma 4.1 above. Set

cg= inf  max  JLi(y(), (4.2)
yel ueBr, (0)NYg

where Fk)‘ ={y € C(Br,(0) N Yy, Ey)| y is odd, V|3(3Rk(0)ﬁYk) =id}.

LEMMA 4.2. Let c,}(‘ be as in (4.2). There exists a (PS)C]); -sequence for J for every
large M.

PROOF. We take and fix an orthonormal basis {f, m—i+1 of the subspace Z,f 1 =
E; © Y of the Hilbert space E).

We now apply Theorem 3.9 with X = E,; G = {£1} with the antipodal action; ¢ = J,;
X j is the space defined at the beginning of this sectionif 1 < j < k, and set X; = Spanc{ fj}
if j > k + 1; Yy is the space defined above; Zy = Z}; rk = r; px = R ck = ¢ ax = af;
by =b,f;and1“k=1“k’\.

The assumption by > aj in Theorem 3.9 follows from Lemma 4.1. Hence, c,’c‘ > b,ﬁ, and
for any & € (0, (¢} —ax)/2) and any § > O there exists u, € Ej such that |J; (us) — c}| < 2¢

and ||Ji(us)||E; < 8¢/8. Moreover, it follows from Lemma 4.1 that (c; — ax)/2 > (b} —
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ax)/2 > 1/2. Therefore, we can choose ¢ = 1/(4n) and § = 8 so that |/, (u1/,) — c,){‘| <l1/n
and || J] (ul/n)”E;L < 1/n. Then we have a (PS)Clé-sequence {1/n}tn- |

LEMMA 4.3. Forany (PS)Clé-sequence {un}tn for Jy, we have

lim sup [|u, || < [260/(6 — 2)]c}
n—oo

and limsup,_, ., ¢} < co.

PROOF. The first inequality follows from Lemma 3.6 (i). Since id € Fk’\, we have
c,ﬁ < maxgg O)NY J), = maxp R (O)NYk I, which is finite and independent of A. This shows
the finiteness. |

LEMMA 4.4. Let c,f be as in (4.2). Set

¢} = supinf{Jy(u)|u € (Y} ) N 3B, (0)}.
p>0

We have: c,ﬁ > 92 for any large .

PROOF. Let Ry be as in Lemma 4.1. If p > 0 satisfies (Y} ;)= N 3B,(0) N ¥x N
[int(Bg, (0))]¢ # @, then we deduce from Lemma 4.1 (ii) that

inf{J; )| u € (Y} D)FNaB,(0)} <0<cp. (4.3)

Next, we consider p > 0 satisfying (Y,?_I)LOBBP (0)NY,N[int(Bg, (0))]¢ = @. For any
y € Fk)‘, we set O, = {u € Y Nint(Bg, (0)) | ly w)ll» < p}, which is a bounded, symmetric
open neighborhood of 0 € Y. Let P,f_l be the orthogonal projection from E; onto Ykk_1 for
any k > 1. Since P,f_l o y is a continuous odd map from O_y to Ykk_l, by the Borsuk-Ulam
theorem, there exists v € 30, such that Pkl_l(y(v)) =0,ie.,y) € (Y,?_I)L.

Since v € 90,, either (i) [[vllx = Ri; or (ii) |y (v)|Ix = p. If (i) occurs, then y (v) =
v since y € Fkk. Since Ry = |vllx = ly@)lx < p, the element (p/Ri)v belongs to
(Y,:\_l)L N 9B,(0) N Y N [int(Bg, (0))]° = #. This contradiction shows that [v|; < Rx
and ||y (v)|l,, = p. Therefore, v € Bg, (0) N Y and y(v) € (Ykk_l)l- N 9B, (0), and then
inf(J;, ()l € (Y ) NIB,(0)} < Ji(y (v)) < maxyepy, )y, J1(y w)). This implies that

inf{J; u)|u € (Y} Dt NaB,(0)} <c}. (4.4)
The lemma follows from (4.3) and (4.4). |
LEMMA 4.5. Let i be as in Section 3. There exists A;C > 0 such that
ek > Co(up)?

forany ) > Aj. Here, both Co > 0 and § > 0 are independent of A and k.
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PROOF. By the definition of (Yk)‘_l)J— and Lemma 3.8, we have
el = pellulya g, /2 (4.5)
for any u € (Yk"_l)J- if A is large enough. For N > 3, it follows from Lemma 3.4, (2.6) with

g = 2%, and (4.5) that

1- 1-
02 ey < 1001 gy 115 gy = Cov 800 g e

< Clhyllulln/ () (4.6)

forany u € (YkA_I)J-. A similar argument replaced 2* by p + 1 yields (4.6) for N = 2. Here,

the exponent a depends only on p and N. Then, for any u € (Y,:\_l)L and for any ¢ > 0, we
have

JA(M)>1||M||2—(8||M||22 vy + Cellull )
= o IHha L2(RY) LP(RV)
Ce(Cy)”
()P

where we used Lemma 3.1, (4.5), and (4.6) in the second inequality.
Setting ¢ = u1/8, wehave | —4e/ux =1 — u1/Quk) > 1/2. We deduce from (4.7)
and Lemma 3.3 that

1
> 5 (1= 4e/pp) llull3 — lall?, 4.7)

¢} = supinf{Jy(u)|u € (Y} )F NdB,(0))

p>0
1 1 pCo(Cl)P
> sup (—p2 - _Eial\’/zpp
p>0 4 p (ui)?
P2, _ o\ 1/(p=2)
= 2 (2 lpcecir 1T
=: Co(ui)’ -
This proves the lemma. |

LEMMA 4.6. Assume that B~'(0) C Bg_1(0). Then there exist Cik.r >0anda > 0,
both of which are independent of A, such that any (PS) ¢ -sequence {un}n for J, satisfies

limsup,,_, o lltnllLr(Br0)) < Ck,RA™C.

PROOF. By Lemmata 2.4 and 4.3, there exists a constant Cx > 0 such that

ACR ) < llunll? < Cu (4.8)

2
||L2(BR(O)"
for all n and X large enough. For N > 3, it follows from Lemma 3.4, (2.6), and (4.8) that

1—
lunllLe Bro)) = IIMn||‘£z(BR(0)C)||Mn||sz(BR(O)C)
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1— 1—
= CN a”ul’l”(I{Z(BR(O)C)”Mn”)L ¢

< CNUCH Y2 /(CrA)Y, (4.9)

where a is from Lemma 3.4. This completes the proof for N > 3. A similar argument yields
4.9) for N = 2. |

By Lemmata 4.2 and 3.7, we obtain a critical point v,f € Eyof J,. Fix R > O asin
Lemma 4.6. It follows from Lemma 3.7 (v) with v = v,f and Lemma 4.6 that

— 2
act = Cerh™ = IVEI] ey < CHCP =1 B

Here, the constants o, Cp, and Cy are as in Lemma 3.6 (i), (ii), and (4.8), respectively. Thus,
by Lemmata 4.5 and 4.4, for each k > 1,

o = aCo(1u)’ /2 < /2 < 011 v, < P

for any A > [2Ck.r/Co(ux)?1"/* + A, =: A(k). Here, Ay is as in Lemma 4.5.

Since 0 < puy < -+ < ug < --- —> oo as k — o0, it follows from Lemma 4.5 that there
exists a sequence {kj}?"=1 such that Z,Bkj < Qkjy,y for any A > A(kjy1). (Clearly, we may
assume that { A(k)}, is increasing.)

Therefore, for each m > 1, the weak solutions {v,fj };f’zl satisfy

(0 <o <) ak_/' = ||v2j||€]7(RN) = ﬁkj < O‘kj+1 = ||v2j+l ”ZV(RN)
forany A > A(ky) and forany j =1,2,...,m — 1.
‘We now complete the proof of Theorem 1.1 by setting b; = (ﬂkj)l/P, aj = (ozkj)l/”, and
Cj = SUP;>AGk)) | v,f/_ |lx, which is finite by Lemma 4.3 and the weak lower-semicontinuity of
norms. '

5. Proof of Theorem 1.2

In this section, we show Theorem 1.2. Our proof is essentially the same as that of Theo-
rem 1.2 in [Ba-Pa-Wa].

Before proceeding to the proof, we recall a standard result from the theory of Sobolev
spaces. The next result follows immediately from Corollary 5.3.5 in [Ca] for real-valued
functions.

LEMMA 5.1. Let 2 is a bounded, smooth open subset of RN. Assume that v €
HY(2), w € Hj(2),and |v| < |w| a.e. Then v € H} (£2).

Let {1,},2 , be a diverging sequence and let {u, }, be a set of critical points of J,, satis-
fying: u, € E;,, sup, |[unllx, < 00, and infy [[un || ppgyy > 0.
We remark that all the statements in Lemma 5.2 below remain valid if the condition

“J3, (un) = 07 is replaced by “ |/} (un)l|lg; — Oasn — o0”.
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LEMMA 5.2. There exist v € HO1 (82) and a subsequence of {un}n, still denoted by
{un}n, such that uy|o — vin HI(Q), moreover,
1) wu, —vin LfOC(RN)for any g € [2,2%), and u, — v in L*(RN);
(i) wn(x) = v(x) fora.e.x € RY;
(iii) v is a weak solution to —Av = f(x, [v|*)v on £2.

PROOF. By (2.6), we have || lun| || y1gyy < C sup,, [lunlly,, where C is independent of

n. Thus, {|u,|}, is bounded in H'(R"), therefore we find a (renamed) subsequence such that

q
loc

lupl = w e H'RN); lu,| — win L (RN) for any g € [2,2%); [u,(x)| — w(x) for a.e.
xeRY asn — oo.

Let § > 0. It follows from Corollary 2.6 that A, ||u, 1%

2
LZ(RN\[B_I(O)];) S C5 Supn ”un”)hn,

where C; is independent of n. Thus,

. 2 -
il 2 o =10y = © G.D

since A, — oo. Using a countable covering argument, we choose a (renamed) subsequence
such that u, (x) — 0 for a.e.x € [B~1(0)]°. Therefore, w(x) = 0 for a.e.x € £2¢ because of
(A.5). Since 052 has zero measure, we conclude that w € HO1 (£2) (e.g., [Br], Theorem 9.18).

On the other hand, |[Vu,ll ;2o vy = IIViaunl 2wy cvy < sup, lluallx, by (A5).
Thus, {u,|x}, is bounded in H 1 (£2), and then we find a subsequence, still denoted by {u, },,
such that u,|g — v € HY(2); up|lo — vin L1(2) for any g € [2,2%); un(x) — v(x) for
a.e.x € 2. Hence, |[v(x)| = w(x) fora.e.x € 2, and then v € Hol(.Q) by Lemma 5.1.

Let ¢ € [2,2%). For any bounded measurable set K, we have |u, — v||’£q(K) =
Il et ||zq(K\_Q) + lunlo — v||’£q(1mm — 0asn — oo by the L] -convergences. More-

over, by (5.1) and the leoc-convergence, we have

2 _ 2 —_l?
”un - v”LZ(RN) - ”un”LZ(RN\[B*l(O)]g') + ”un v”LZ([B’l(O)];) -0

as n — 0o. These imply (i) and (ii).
Finally, We show (iii). Every u,, satisfies g/ (Jﬁn (un), ¢)E;, =0 for any ¢ € HO1 (£2).
Recall that V(u,|o) = (Vuy)|e; unle — vin Hl(.Q); and u,|o — vin LI (£2). Then we

loc
can deduce from Lemma 3.2 that v is a weak solution to (1.6). |

We recall a lemma due to Lions (Lemma I.1 in [Li]):

LEMMA 5.3. Letr > Oandq’ € [2,2%). Assume that {gn}, is bounded in H'(RV)
and satisfies limy,_ oo SUP RN fBr ) | gn (x)|q/dx = 0. Then {gn}, converges to 0 in L9 (RM)
forany q € (2,2%).

LEMMA 5.4. Let {un}, and v be as in lemma 5.2. A renamed subsequence satisfies:
up, — vasn — ooin LYRN) for any q € (2,2*). Moreover, v # 0.
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PROOF. Set g, = up — v (€ Ejy,). It follows from (2.6) that || [ga| | g1 rvy < Clignlls, <

C(sup, llunlln, + IVl g1(2)) < 0o. Thus, {|gs|}, is bounded in H'(R") and g, (x) — 0 for
ae.x € RY by Lemma 5.2 (ii).

We show that |g,| — 0 in L9(RY) for any ¢ € (2,2*) by contradiction. Assume that
{lgn|}n does not converges to 0 in Lq(RN) for some g € (2,2%). Then, by Lemma 5.3 with
r=1,¢q" =2, and g, = |gy|, there exist § > 0, a sequence {y,}, C RY, and a (renamed)
subsequence {| g, |}, such that

inf || gn s. (5.2)

2
1228, () =

(RY) by Lemma 5.2 (i), and we have

gn = Up — v = u, on By(y,) for any large n since v € Hol(.Q). Then it follows from (5.2)
and Corollary 2.5 that

Moreover, we have |y,| — oo since g, — 0 in leoc

2 2
)‘na = )‘n ”gl’l ”LZ(BI()’n)) = )‘I’l ”un ”LZ(BI(}’n))
< C'llunll}, < C'sup lunllf, < oo,
n

where C’ is independent of . Since A, — 00, this is a contradiction.
Finally, we have |[v|l pgyy = infy [[unllppgyy — limsup, o lun — vllpr@ryy =

infy [[unllppryy > O by assumption. This shows that v # 0. |

LEMMA 5.5. Let {un}, and v be as in lemma 5.4. A renamed subsequence satisfies:
@) llup — vlla, = 0, and (ii) Jy, (uy) = I (v), as A — oo.

PROOF. We show (i). Since v € HOI(.Q), it follows from (A.5) that

Ein (],{)1(1)), Up — v)E)m
=Re</ wWww/ fx, |v|2)vmdx). (5.3)
2 2

The first term on the right-hand side of (5.3) tends to 0 as n — oo since u,|o — vin H L)

by Lemma 5.2. By the quoc-convergence of {u,}, and Lemma 3.1 (iii), the second integral on

the right-hand side of (5.3) tends to 0 as # — oo. Thus, we have lim,,— (J,{n ), up,—v) =0.

Since Jﬁn (u,,) = 0, it follows that, as n — oo,

o(1) = g, (J}, n) =I5, (V). tn — Vg,

2
= |luy — v”)m

—Re / F Pty (uy — v)dx + Re / FUvP)v(u, — v)dx.
RN 2
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From this, using Lemma 3.1 (iii) with ¢ = 1 and the Lfoc-convergence, we have

2
lun —vli3,

-1
< (Il 2@y llen = vli20) + C1 ||v||€,,(9)||u,, —vll2g)) +o(l)
—1
= (lunll L2 r¥y 1t — il 2RV + Ci ||un||§p(RN)||’4n — vl Lp®ny) +o(1)
-1
< Cp(sup llunllz, + sup ||’4n||;l:n ) (Ilen — vli2@wyy + i — vlie®yy) +o0(1)
n n

= C;’(”u” - v”Lz(RN) + llun — v”Ll’(RN)) +o(1)

as n — 00, where we used (2.6) in the first inequality and used the finiteness assumption.
Then the assertion (i) follows from Lemmata 5.4 and 5.2 (i).

The assertion (ii) follows from (i) and the L? (RV)-convergence of u,, to v from Lemma
5.4. Indeed, since v € HOI(Q), we have

1
T (tn) = I ) = 2 (lunl, = IVII5,) = /RN (F(x. [un®) = F(x, [v]%))dx .
The first term on the right-hand side tends to zero as n — oo by (i). The second term tends to
zero by Lemma 3.1 (iv). |

We now complete the proof of Theorem 1.2.

6. Proof of Theorem 1.3

In this section, we show Theorem 1.3. Assume (A.1)-(A.5) and (f.1)—(f.6). We may
assume that A is large enough.

Under the assumptions (f.1)—(f.5), we can show the positivity of the infimum ¢, over the
Nehari manifold and the existence of a (PS),, -sequence for J;; this can be shown as in the
proof of Theorem 4.2 in [Wi]. Moreover, we have liminf, _, c) > b > 0, where b is as in
Lemma 3.5, because of the mountain pass type characterization of ¢, obtained as in Section
4 in [Wi].

In addition, under (f.6), we can show that J;, satisfies the (PS),, -condition for any large A
by using the results in Subsection 3.1 and the argument in the proof of Lemma 4.6; the proof
is similar to that of Proposition 2.1 in [Ba-Wa2]. Therefore, the value c, is attained by some
critical pointu, € E, for J, (e.g., [Wi]). Note that it follows from the definition of the Nehari
manifolds that (0 < b <) ¢, < ¢(£2) since HOl (£2) C E,.

Finally, we show that ¢, — c¢(£2) as A — oo by contradiction. Assume that there
exists a diverging sequence {A,}, such that ¢, = Jy,(u;,) — A € (0,c(£2)) asn — oo.
Then the sequence {u3,}, satisfies the conditions: Jx/n (up,) = 0, sup,, llux,llr, < oo, and
infy [[us, | Lr vy > 0 by Lemma 3.6 (1), (iv). In particular, all the assumptions of Theorem 1.2
with u, = u;, are fulfilled. Hence, we find a (renamed) subsequence such that J;, (u3,) —
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I (v) for some nonzero critical point v of Ig. Therefore, c(£2) < I (v) = A < ¢(£2). This
contradiction finishes the proof.

[Al-So]

[Al-Mo-So]

[Al]

[Av-He-Si]

[Br]

[Ba-Pa-Wa]

[Ba-Wa]

[Ba-Wa2]

[Ca]

[CI-Di]

[De-Di]

[Di-Ta]

[He-He]

[He-Na]

[Le-Si]

[Li]

[Re-Si]

[Zo-Sc]
[Si]

[Tal]

[Ta2]
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