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Ideal Class Groups of CM-fields with Non-cyclic Galois Action
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Abstract. Suppose that L/k is a finite and abelian extension such that k is a totally real base field and L is
a CM-field. We regard the ideal class group ClL of L as a Gal(L/k)-module. As a sequel of the paper [8] by the
first author, we study a problem whether the Stickelberger element for L/k times the annihilator ideal of the roots of
unity in L is in the Fitting ideal of ClL , and also a problem whether it is in the Fitting ideal of the Pontrjagin dual

(ClL)∨. We systematically construct extensions L/k for which these properties do not hold, and also give numerical
examples.

0. Introduction

Our aim in this paper is to study the Galois action on the ideal class group of a CM-
field over a totally real base field. Let k be a totally real number field and L be a CM-
field such that L/k is finite and abelian. In this paper, we fix an odd prime number p, and
study the p-component AL of the ideal class group ClL, namely AL = ClL⊗Zp. We put
RL = Zp[Gal(L/k)] and regard AL as an RL-module.

Let θL/k be the Stickelberger element defined by

θL/k =
∑

σ∈Gal(L/k)

ζ(0, σ )σ−1 ∈ Q[Gal(L/k)]

where ζ(s, σ ) = ∑(
L/k
a

)
=σ N(a)

−s is the partial zeta function. We define μp∞(L) to be

the group of roots of unity in L with order a power of p, and IL = AnnRL(μp∞(L)) to
be the annihilator ideal of μp∞(L) in RL. The results in Deligne and Ribet [2] imply that
ILθL/k ⊂ RL. In this setting, Brumer’s conjecture claims that

(B) ILθL/k ⊂ AnnRL(AL) .

For a commutative ring R and a finitely presented R-module M , we denote by FittR(M)
the (initial) Fitting ideal of R (cf. Northcott [12] §3.1). In general, we have FittR(M) ⊂
AnnR(M). As a sequel of the paper [8], we study in this paper the following two stronger
properties (SB) and (DSB) than (B);

(SB) ILθL/k ⊂ FittRL(AL) ,
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and

(DSB) ILθL/k ⊂ FittRL((AL)
∨) .

Here, (AL)∨ is the Pontrjagin dual of AL with cogredient Galois action, namely σ ∈
Gal(L/k) acts as (σf )(x) = f (σx) for f ∈ (AL)∨ and x ∈ AL. In many cases, these
two properties hold true. For example, if k = Q, (SB) always holds true, which was proved
in our previous paper [9]; if the μ-invariant of L vanishes and any prime above p does not
split in L/L+, (SB) holds by Nickel [11] Theorem 4; if μp∞(L) is cohomologically trivial,
(DSB) holds by Greither [4]. (Nickel [11] Theorem 4 implies more, for example, it implies

that (SB) holds true if all primes above p are tamely ramified in L/k and Lcl �⊂ (Lcl)+(μp)
where Lcl denotes the normal closure of L over Q.) But these two properties do not hold in
general (see [5], [8]). In [5], some explicit numerical examples for which (SB) does not hold
were given. In [8], (DSB) was studied but explicit numerical examples for which (DSB) does
not hold were not given. In this paper, we give explicit numerical examples for which (DSB)
does not hold, and also give explicit conditions under which (DSB) does not hold. Also, we
give explicit examples for which neither (SB) nor (DSB) holds. While the first author studied
(SB) and (DSB) in [8] using Iwasawa theoretic arguments, we study these problems in this
paper by investigating finite and abelian extensions directly. Concerning the background and
known results on these two problems, see [8] and [3]. For the function field case, see Popescu
[13].

We are interested in the Teichmüller character component of AL. So we assume that a
primitive p-th root of unity is in L, and put K = k(μp), which is a subfield of L. Let K∞/K
(resp. L∞/L) be the cyclotomic Zp-extension of K (resp. L). We assume that L/k is a

finite and abelian extension, L/K is a p-extension and L ∩ K∞ = K . We denote by K+
the maximal real subfield of K , and by Ln the n-th layer of L∞/L (so [Ln : L] = pn) for
any integer n ≥ 0. If Gal(L/K) is cyclic, (SB) and (DSB) are equivalent. In this paper, we
consider the case that Gal(L/K) is not cyclic. In §1 we will prove the following theorem (we
will prove in §1 a slightly more general Theorem 1.2).

THEOREM 0.1. We assume that no prime above p splits in K/K+ (namely (NTZ) is
satisfied, see the beginning of §1), and also that if a prime v splits inK/K+, v is unramified in
L/K (we call this property (R), see the beginning of §1). Suppose also that G = Gal(L/K)
is not cyclic. Then (DSB) does not hold for Ln/k for all n ≥ 0. Namely, we have

ILnθLn/k �⊂ FittRLn ((ALn)
∨)

for all n ≥ 0.

In §2 we will give an explicit numerical example L/k of Theorem 0.1 where k =
Q(
√

1901), p = 3, K = k(μ3) and L = K(α, β) with α3 − 84α − 191 = 0 and
β3 − 57β − 68 = 0. Then we know that Gal(L/K) � Z/3Z ⊕ Z/3Z. For this L/k, we
explicitly compute AL, the Galois action on it, θL/k and also FittRL((A

−
L)
∨) (for the minus
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part A−L , see the beginning of §1). We will see directly

#μp∞(L)θL/k �∈ FittRL((AL)
∨)

from these computations for this example.
In §3 and §4 we study the case that L/k does not satisfy (NTZ). In §3 we prove Proposi-

tion 3.2 which says that ifL/k satisfies some conditions,L/k satisfies neither (SB) nor (DSB).
Using this Proposition 3.2, we will see in §3.2 that there is an explicit example L/k for which

neither (SB) nor (DSB) holds. The example we give in §3.2 is p = 3, k = Q(
√

69,
√

713),

K = k(μ3), and L = K(α, β) where α3 − 6α− 3 = 0 and β3 − 6β − 1 = 0. Then we know
that Gal(L/K) � Z/3Z⊕ Z/3Z. For this L/k, neither (SB) nor (DSB) holds.

The condition of Proposition 3.2 is not easy to check. In §4 we will prove another
theorem by which we can easily construct examples for which neither (SB) nor (DSB) holds.

THEOREM 0.2. Suppose that L/k satisfies the conditions of §4.1. Then neither (SB)
nor (DSB) holds for Ln/k for any integer n ≥ 1. Namely, we have both

ILnθLn/k �⊂ FittRLn (ALn) and ILnθLn/k �⊂ FittRLn ((ALn)
∨)

for all n ≥ 1.

We give in §4.3 a numerical example for which Theorem 0.2 can be applied.
We would like to thank heartily X.-F. Roblot who kindly helped us to compute the nu-

merical examples in this paper. Especially, we learned much from him on the computation of
the L-values and of the Galois action on the class group of a number field. The first author
would like to thank C. Greither for several significant discussions with him.

ERRATUM FOR THE PAPER [8]: The first named author would like to make a cor-
rection concerning his previous paper [8]. In page 426 line 21, the correct formula is

Ĥ−1(G,Xω
L∞) = Ĥ 0(G,AωL∞)

∨ = (∧2
G)(1).

NOTATION

For any positive integer n, μpn denotes the group of pn-th roots of unity. For a groupG

and a G-module M , we denote by MG the G-invariant part of M (the maximal subgroup of
M on whichG acts trivially), and byMG theG-coinvariant ofM (the maximal quotient ofM
on which G acts trivially).

1. The case that there is no trivial zero

In this section, we assume the conditions before Theorem 0.1. Namely,K = k(μp), L/k
is a finite and abelian extension,K ⊂ L, L/K is a p-extension, and L ∩K∞ = K . Suppose
that K+ is the maximal real subfield of K . We take n ∈ Z≥0 and consider the n-th layer Ln
of the cyclotomic Zp-extension L∞/L. We put RLn = Zp[Gal(Ln/k)]. Any RLn-moduleM

is decomposed into M = M+ ⊕M− where M± = {x ∈ M | ρ(x) = ±x} for the complex
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conjugation ρ ∈ Gal(Ln/k). Let ω be the Teichmüller character which gives the action of
Gal(K/k) on μp. For any Zp[Gal(K/k)]-moduleM , we define Mω to be

Mω =M ⊗RK RK/〈{σ − ω(σ) | σ ∈ Gal(K/k)}〉
� {x ∈ M | σ(x) = ω(σ)x for all σ ∈ Gal(K/k)} .

Note that M �→ Mω is an exact functor.
For any n ∈ Z≥0, we call the following condition (R)n;

(R)n Any prime which splits in K/K+ is unramified in Ln/K .

We simply write (R) for the condition (R)0.
We also consider the following condition (no trivial zero);

(NTZ) No prime above p splits in K/K+.

Of course, if n is sufficiently large, the condition (R)n implies (NTZ). Also, if we assume
(NTZ) and (R), then we get (R)n for all n ≥ 0.

The following is a key Proposition of this section.

PROPOSITION 1.1. We assume that Ln/k satisfies (R)n and G = Gal(L/K) is not
cyclic. Then we have

#(A−Ln)
Gal(Ln/K) > #A−K

and

#(AωLn)
Gal(Ln/K) > #AωK .

PROOF. We put Γn = Gal(Kn/K) and Gn = Gal(Ln/K). ThenGn = G× Γn by our
assumption.

We denote by ELn the unit group and by CLn the idele class group of Ln. For any prime
w of Ln, we denote by Ln,w the completion of Ln at w, and by ELn,w the unit group of Ln,w
if w is a finite prime, and ELn,w = L×n,w if w is an infinite prime. By Lemma 5.1 (2) in [7] (cf.

also [8] §1), an exact sequence 0 −→ ELn −→
∏
w ELn,w −→ CLn −→ ClLn −→ 0 yields

an exact sequence

Ĥ 0(Gn,ELn)
− −→

( ⊕
v

Ĥ 0(Gn,v, ELn,w )

)−
−→ Ĥ−1(Gn,ALn)

−

−→ H 1(Gn,ELn)
− −→

( ⊕
v

H 1(Gn,v, ELn,w )

)−
−→ Ĥ 0(Gn,ALn)

−

−→ H 2(Gn,ELn)
− −→

( ⊕
v

H 2(Gn,v, ELn,w )

)−

where v runs over all finite primes of K , for each v we choose a prime w of Ln above v, and
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Gn,v = Gal(Ln,w/Kv) is the decomposition group ofGn at v. We know that Ĥ 0(Gn,v, ELn,w )

is isomorphic to the inertia group of Gn,v by local class field theory. The exact sequence

0 −→ ELn,w −→ L×n,w −→ Z −→ 0 implies thatH 1(Gn,v, ELn,w ) = Z/evZ where ev is the

ramification index of v in Ln/K , and thatH 2(Gn,v, ELn,w ) is a subgroup of the Brauer group

of Kv . We denote by l the prime of K+ below v. If l does not split in K/K+, the complex

conjugation ρ acts trivially on Ĥ q(Gn,v, ELn,w ) (q = 0, 1, 2) by the above description, so

ρ acts trivially on
⊕

v|l Ĥ
q(Gn,v, ELn,w ). Hence we have (

⊕
v|l Ĥ

q(Gn,v, ELn,w ))
− = 0.

If l splits in K/K+, v is unramified in Ln/K by our assumption (R)n. Therefore, we have
Hq(Gn,v, ELn,w ) = 0 (q = 0, 1, 2; see [14] Chap.XII §3 for the case q = 2). Thus, in any
case we obtain

(1.1.1)

( ⊕
v

Ĥ q(Gn,v, ELn,w )

)−
= 0 for q = 0, 1, 2 .

Suppose that #μp∞(L) = pc. Then we know Ln = L(μpn+c ) and Kn = K(μpn+c ).

We will computeHq(Gn,ELn)
− = Hq(Gn,E

−
Ln
) = Hq(Gn,μpn+c ). As is well-known (for

example, see Lemma 13.27 in [16]), we haveH 1(Γn, μpn+c ) = 0. Since Γn is cyclic, we have
Hq(Γn,μpn+c ) = 0 for any q ≥ 1. This implies that

Hq(Gn,μpn+c ) = Hq(Gn/Γn,H
0(Γn, μpn+c )) = Hq(G,μpc )

by the Serre-Hochschild spectral sequence. Therefore, we obtain

(1.1.2) Hq(Gn,ELn)
− = Hq(G,μpc) � Hq(G,Z/pcZ) .

Let iLn/K : A−K −→ A−Ln be the natural map. Since the kernel of iLn/K is isomorphic

to the kernel of H 1(Gn,ELn)
− −→ (

⊕
v H

1(Gn,v, ELn,w ))
− (cf. Remark 2.2 in [6]), con-

sidering (1.1.1), we have an isomorphism Ker(iLn/K) � H 1(Gn,ELn)
− � H 1(G,Z/pcZ).

Therefore, we have

(1.1.3) # Ker(iLn/K : A−K −→ (A−Ln)
Gn) = #(G/Gp

c

) .

On the other hand, the norm map A−Ln −→ A−K is surjective by Lemma 5.1 (1) in [7] (cf.

Lemma 1.4 below). Therefore, the image of iLn/K coincides with the image of the multipli-

cation by NGn = Σσ∈Gnσ on A−Ln . Thus, we have an exact sequence

0 −→ H 1(Gn,ELn)
− −→ A−K −→ (A−Ln)

Gn −→ Ĥ 0(Gn,A
−
Ln
) −→ 0 .

Using (1.1.1) and (1.1.2), we get

Coker(iLn/K : A−K −→ (A−Ln)
Gn)� Ĥ 0(Gn,ALn)

− � H 2(Gn,ELn)
−

�H 2(G,Z/pcZ) .
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Considering an exact sequence

0 −→ Z/pcZ −→ Qp/Zp
pc−→ Qp/Zp −→ 0 ,

and taking cohomology, we get an exact sequence

0 −→ H 1(G,Qp/Zp)/pc −→ H 2(G,Z/pcZ) −→ H 2(G,Qp/Zp)[pc] −→ 0

whereH 2(G,Qp/Zp)[pc] is the kernel of the multiplication by pc onH 2(G,Qp/Zp). Since

H 2(G,Qp/Zp) is isomorphic to Hom(
∧2

G,Qp/Zp) by the universal coefficient sequence
(see page 60 in Chap. III in [1] and Theorem 6.4 (iii) in Chap. V in [1], cf. also Lemma

1.3 in [8]), we get H 2(G,Qp/Zp)[pc] �= 0 from our assumption that G is not cyclic. Since

H 1(G,Qp/Zp) is isomorphic to G as an abelian group,H 1(G,Qp/Zp)/pc is isomorphic to

G/Gp
c

as an abelian group. Therefore, we obtain

#H 2(G,Z/pcZ) > #H 1(G,Qp/Zp)/pc = #G/Gp
c

.

This implies that

(1.1.4) # Coker(iLn/K : A−K −→ (A−Ln)
Gn) > #(G/Gp

c

) .

It follows from (1.1.3) and (1.1.4) that #A−K < #(A−Ln)
Gn .

Since H 1(Gn,ELn)
ω = H 1(G,μpc ) � H 1(G,Z/pcZ) and

Ĥ 0(Gn,ALn)
ω � H 2(Gn,ELn)

ω � H 2(G,μpc ) � H 2(G,Z/pcZ) ,

by the same method as above, we obtain an exact sequence

(1.1.5) 0 −→ H 1(G,Z/pcZ) −→ AωK −→ (AωLn)
Gn −→ H 2(G,Z/pcZ) −→ 0.

Since

#H 1(G,Z/pcZ) = #G/Gp
c

< #H 2(G,Z/pcZ) ,

we obtain #AωK < #(AωLn)
Gn . This completes the proof of Proposition 1.1.

As in the proof of Proposition 1.1, we suppose that #μp∞(L) = #μp∞(K) = pc. Let

κ : Gal(L∞/k) −→ Z×p be the cyclotomic character and γ be a generator of Gal(L∞/L) =
Gal(K∞/K). We fix this γ throughout this paper. Since #μp∞(L) = pc, we know that
ordp(1− κ(γ )) = c. We also regard γ as a generator of Gal(Ln/L) = Gal(Kn/K). For θK/k
and θLn/k, we have pcθK/k ∈ RK = Zp[Gal(K/k)], pn+cθLn/k ∈ RLn = Zp[Gal(Ln/k)],
(γ − κ(γ ))θLn/k ∈ RLn .

The Teichmüller character ω induces the ring homomorphism RK −→ RωK = Zp (resp.
RLn −→ RωLn = Zp[Gal(Ln/K)]) such that σ �→ ω(σ) for all σ ∈ Gal(K/k) (note that

Gal(Ln/k) = Gal(Ln/K)×Gal(K/k)). For an element x ∈ RK (resp. x ∈ RLn ), we denote
the image of x by xω.
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THEOREM 1.2. We assume thatLn/k satisfies (R)n,G = Gal(L/K) is not cyclic, and
that FittZp (A

ω
K) = (pcθωK/k) where pc = #μp∞(K). We have

(γ − κ(γ ))θLn/k �∈ FittRLn ((ALn)
∨) .

(If n = 0, we have pcθL/k �∈ FittRL((AL)
∨).) In particular, we have

ILnθLn/k �⊂ FittRLn ((ALn)
∨) .

REMARK 1.3. If [K : k] = 2 (for example, if p = 3), the class number formula

implies FittZp (A
ω
K) = (pcθωK/k). In fact, by definition, we have θωK/k = L(0, ω−1). Since

[K : k] = 2, we get AωK = A−K . So we obtain

FittZp (A
ω
K) = FittZp (A

−
K) = (#A−K) = (pcL(0, ω−1)) = (pcθωK/k)

by the class number formula.

We often use the following lemmas in this paper.

LEMMA 1.4. Let L/K be an abelian p-extension of CM-fields. We put G =
Gal(L/K). For a prime v of K , we denote by Iv(L/K) the inertia group of v in G. Then
we have an exact sequence

μp∞(K)
a−→

( ⊕
v

Iv(L/K)

)−
−→ (A−L)G

N−→ A−K −→ 0

where a is induced by the reciprocity map of local class field theory, v runs over all finite
primes of K , and N is induced by the norm map.

PROOF. This is Proposition 5.2 in [7].

In general, for an abelian extension L/k and a subfield K such that k ⊂ K ⊂ L, we
define a ring homomorphism

cL/K : Q[Gal(L/k)] −→ Q[Gal(K/k)]
by the restriction σ �→ σ|K for σ ∈ Gal(L/k). We will use the same notation cL/K for any
group rings such as RL = Zp[Gal(L/k)], Zp[[Gal(L/k)]] (in case L/k is infinite), etc.

LEMMA 1.5. Suppose that L/k is a finite and abelian extension and k ⊂ K ⊂ L. We
denote by SL (resp. SK) the set of finite primes of k ramifying in L/k (resp. K/k). Then we
have

cL/K(θL/k) =
( ∏
v∈SL\SK

(1− ϕ−1
v )

)
θK/k

where ϕv is the Frobenius of v in Gal(K/k).
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PROOF. This is well-known, and follows from the expression of θL/k(s) by the Euler
product (see Tate [15] p.86 and Lemma 2.1 in [7]).

PROOF OF THEOREM 1.2. Assume that (γ − κ(γ ))θLn/k is in FittRLn ((ALn)
∨). Let

cLn/K : RLn −→ RK be the ring homomorphism defined by the restriction. Then we have

cLn/K((γ − κ(γ ))θLn/k) ∈ FittRK (((ALn)
∨)Gn)

where Gn = Gal(Ln/K). This implies that

cLn/K((γ − κ(γ ))θLn/k)ω ∈ FittZp (((A
ω
Ln
)∨)Gn) .

If a prime l of k is ramified in Ln/K , the primes of K+ above l do not split in K/K+ by
our assumption (R)n, so ω(ϕl) �= 1. This implies that cLn/K(θ

ω
Ln/k

) = uθωK/k for some unit

u ∈ Z×p by Lemma 1.5. Since #μp∞(L) = pc, we know that pc divides κ(γ ) − 1 but pc+1

does not. Therefore, we get

(cLn/K((γ − κ(γ ))θLn/k)ω) = (pcθωK/k)
as ideals of Zp . Hence we obtain

pcθωK/k ∈ FittZp (((A
ω
Ln
)∨)Gn) = FittZp (((A

ω
Ln
)Gn)∨) = FittZp ((A

ω
Ln
)Gn) .

Here, the last equality holds because FittZp (M) = (#M) for any finite Zp-moduleM .

Since we are assuming FittZp (A
ω
K) = (pcθωK/k), we get

FittZp (A
ω
K) ⊂ FittZp ((A

ω
Ln
)Gn) ,

which implies that #AωK ≥ #(AωLn)
Gn . This contradicts Proposition 1.1. Thus, we get the

conclusion of Theorem 1.2.

PROOF OF THEOREM 0.1. Since (NTZ) and (R) imply (R)n for all n ≥ 0, what we
have to show is FittZp (A

ω
K) = (pcθωK/k) by Theorem 1.2. We define the Iwasawa module

XK∞ by

XK∞ = lim← AKn

where the limit is taken with respect to the norm maps. Then by our assumption (NTZ), we
have an isomorphism (X−K∞)Gal(K∞/K) � A−K by Lemma 1.4.

We put ΛK∞ = Zp[[Gal(K∞/k)]] = lim← RKn . Similarly as in the finite level, we

consider the ring homomorphismΛK∞ −→ ΛωK∞ � Zp[[Gal(K∞/K)]] which is induced by

ω, and we denote the image of x ∈ ΛK∞ by xω ∈ ΛωK∞ . Let ((γ − κ(γ ))θK∞/k)ω ∈ ΛωK∞
be the projective limit of ((γ − κ(γ ))θKn/k)ω ∈ RωKn (which is the numerator of the p-adic

L-function of Deligne and Ribet). Then the main conjecture proved by Wiles [17] can be
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stated as

FittΛωK∞ (X
ω
K∞) = (((γ − κ(γ ))θK∞/k)ω)

because XωK∞ contains no nontrivial finite submodule and hence its Fitting ideal coincides

with its characteristic ideal. Let cK∞/K : ΛK∞ −→ RK be the restriction map. By the
condition (NTZ), we get

cK∞/K(((γ − κ(γ ))θK∞/k)ω) = u((1− κ(γ ))θK/k)ω = u′pcθωK/k
for some u, u′ ∈ Z×p by Lemma 1.5. From the isomorphism (XωK∞)Gal(K∞/K) � AωK , it

follows that

FittZp (A
ω
K) = (pcθωK/k) .

2. A numerical example

In this section, we will give an example of a number field which does not satisfy (DSB).
We will give an extension L/k explicitly, and compute the Stickelberger element of L/k and
the Fitting ideals of AL and A∨L. We will see from these computations that (SB) holds for this
L/k but (DSB) does not.

We take p = 3 and k = Q(
√

1901). Then p = 3 is inert in k. Let Fα be the minimal
splitting field of X3 − 84X − 191 over Q. We know that Fα contains k and Fα/k is a cubic
cyclic extension which is unramified everywhere. We define Fβ to be the minimal splitting

field of X3 − 57X − 68. Then we can check that Fβ/k is a cubic cyclic extension of k
which is unramified outside 3 and that the prime of k above 3 is totally ramified in Fβ/k. Put
F = FαFβ , L = F(μ3) and K = k(μ3). Then L/k satisfies all the conditions in Theorem
0.1. In fact, G = Gal(L/K) = Gal(F/k) � Z/3Z⊕ Z/3Z is not cyclic, and both conditions
(NTZ) and (R) are satisfied because (3) is ramified in K/k and L/K is unramified outside
(3). We also have L ∩ K∞ = K . (Theoretically the existence of F can be checked by class

field theory. For a modulus m = (3)2 of k, the ray class group of k modulo m is isomorphic to
Z/3Z⊕Z/3Z⊕Z/3Z. So the class field theory tells us that there is an abelian extension F/k
whose Galois group is Z/3Z⊕ Z/3Z, and which is unramified outside 3, and F ∩ k∞ = k.)

Let σ (resp. τ ) be a generator of Gal(Fα/k) (resp. Gal(Fβ/k)). We can write the
Stickelberger element for L/k as

θ−L/k =
∑

0≤i≤2
0≤j≤2

aij σ
iτ j ∈ Q[G] � Q[Gal(L/k)]−.

Let χ be the unique quadratic character of Gal(K/k). We define characters ϕi of Gal(Fα/k)
and ψj of Gal(Fβ/k) by

ϕi(σ ) = ζ i3 and ψj(τ) = ζ j3 for 0 ≤ i, j ≤ 2
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where ζ3 is a primitive 3-rd root of unity. Then all the odd characters of Gal(L/k) can be
written as Ψij = χϕiψj . The element θ−L/k is characterized by the L-values;

(2.1) Ψij (θ
−
L/k) = L{3}(0, Ψ−1

ij ) for all i, j such that 0 ≤ i, j ≤ 2

where L{3}(s, Ψij ) is the L-function obtained by removing the Euler factors above 3, which
is (1−Ψij (3)) in this example. In our case, L{3}(s, Ψij )’s coincide with the usual L-functions
L(s, Ψij )’s since (3) is ramified in any subfield of L corresponding to Ψij . Using Pari/GP, we
calculated the values of these L-functions at s = 0. The following table gives these values.

(i, j) (0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1) (0, 2) (1, 2) (2, 2)
L(0, Ψij ) 18 24 24 60 96 24 60 24 96

This implies that

θ−L/k =
142

3
− 2

3
σ − 2

3
σ 2 − 38

3
τ − 38

3
στ + 34

3
σ 2τ − 38

3
τ 2 + 34

3
στ 2 − 38

3
σ 2τ 2 .

Now we identify Zp[G]with Zp[S, T ]/((S+1)3−1, (T+1)3−1) by sending σ and τ to S+1

and T + 1, respectively. In this ring, we have equalities S3 = −3S − 3S2, T 3 = −3T − 3T 2.
Using S and T , we can rewrite θ−L/k as

θ−L/k = 18− 6S − 2S2 − 42T − 18ST − 14S2T − 14T 2 − 14ST 2 − 38

3
S2T 2 .

Since IL = (3, S, T ), ILθ−L/k is generated by the following three elements;

3θ−L/k = 2(33 − 32S − 3S2 − 7 · 32T − 33ST − 7 · 3S2T − 7 · 3T 2 − 7 · 3ST 2 − 19S2T 2) ,

Sθ−L/k = 8(3S + 3S2T + 3ST 2 + 3S2T 2) ,

and

T θ−L/k = 4(5 · 3T + 32S2T + 2 · 3ST 2 + 2 · 3S2T 2) .

Next, we proceed to the ideal class groups. By the computation using Pari/GP, we have
isomorphisms

A−K � Z/9Z⊕ Z/3Z

and

A−L � Z/27Z⊕ Z/9Z⊕ Z/3Z⊕ Z/3Z⊕ Z/3Z⊕ Z/3Z⊕ Z/3Z⊕ Z/3Z

as abelian groups. Therefore, we also have

(A−L)
∨ � Z/27Z⊕ Z/9Z⊕ Z/3Z⊕ Z/3Z⊕ Z/3Z⊕ Z/3Z⊕ Z/3Z⊕ Z/3Z .
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Moreover, using Pari/GP, we can compute the Galois action on A−L , namely how σ and τ
act on this group. Pari/GP computes explicitly the basis of the ideal class group, which is
represented by a basis of the ring of integers of L, though we do not write down here this
representation. Let {g1, . . . , g8} be the basis of A−L corresponding to the above isomorphism,
which was computed by Pari/GP. We denote by Mσ (resp. Mτ ) the matrix corresponding to
the action of σ (resp. τ ) with respect to the above basis. The result of the computation is

Mσ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 9 9 −9 9
3 4 −3 3 −3 3 3 −3
−1 1 −1 −1 0 −1 0 −1
1 −1 −1 0 0 0 −1 1
0 0 −1 −1 1 0 −1 1
−1 0 1 0 0 −1 −1 −1
1 −1 0 0 0 −1 1 1
−1 1 1 0 0 1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Mτ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 9 −9 −9 0 0 −9
−3 1 3 0 0 −3 0 3
−1 1 −1 0 −1 1 0 0
−1 −1 0 0 0 1 0 0
1 −1 0 −1 1 1 0 0
−1 1 −1 −1 1 1 0 0
1 −1 −1 −1 −1 0 1 −1
0 0 −1 −1 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This means that σ(g1) = g1 + 3g2 − g3 + g4 − g6 + g7 − g8, for example.
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Thus, the transpose of a relation matrix of A−L is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ − 1 −3 1 −1 0 1 −1 1
0 σ − 4 −1 1 0 0 1 −1
0 3 σ + 1 1 1 −1 0 −1
0 −3 1 σ 1 0 0 0
−9 3 0 0 σ − 1 0 0 0
−9 −3 1 0 0 σ + 1 1 −1
9 −3 0 1 1 1 σ − 1 1
−9 3 1 −1 −1 1 −1 σ

τ − 1 3 1 1 −1 1 −1 0
0 τ − 1 −1 1 1 −1 1 0
−9 −3 τ + 1 0 0 1 1 1
9 0 0 τ 1 1 1 1
9 0 1 0 τ − 1 −1 1 −1
0 3 −1 −1 −1 τ − 1 0 0
0 0 0 0 0 0 τ − 1 0
9 −3 0 0 0 0 1 τ − 1

27 0 0 0 0 0 0 0
0 9 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, each row vector represents a relation of A−L . Substituting S + 1 and T + 1 for σ and
τ respectively, and applying the elementary row and column operations, we can reduce the
above matrix to ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3S 0
9 −S2 + ST − T 2

S + T S + S2 − T − ST − 2S2T + T 2

ST 3+ S2 + 2S2T − T 2

S2 6− ST − 2S2T + T 2

0 3S
0 3T
0 9
0 −S2T + ST 2

0 S2T 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, extra zero vectors and identity matrices which were appeared in the process of the
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reduction were removed. We know from this calculation thatA−L is generated by two elements

as an R−L -module and that these two generators have 10 relations in A−L . Taking all the 2× 2
minors in the above matrix and carrying out tedious computation, we obtain

FittR−L
(A−L) = (81, 3S, 3T , 27− S2T 2) .

So we get

3θ−L/k ≡ 2(27− 19S2T 2) ≡ −36S2T 2 ≡ 0
(
mod FittR−L

(A−L)
)
,

and also

Sθ−L/k ≡ T θ−L/k ≡ 0
(
mod FittR−L

(A−L)
)
.

Therefore, we conclude that

ILθ
−
L/k ⊂ FittR−L

(A−L)

in this case. In particular, #μp∞(L)θ
−
L/k ∈ FittR−L

(A−L) holds.

Note that we also have numerically checked

FittZp ((A
−
L)G) = (27) = FittZp (A

−
K) .

This corresponds to the fact that the norm map induces an isomorphism

(A−L)G
�−→ A−K .

Next we will calculate the Fitting ideal of the dual. Let {f1, . . . , f8} be the dual basis
of (A−L)∨ determined by {g1, . . . , g8}. Namely, f1, . . . , f8 are homomorphisms from A−L to
Q/Z satisfying

f1(g1) = 1

27
, f1(gj ) = 0 (j �= 1) ,

f2(g2) = 1

9
, f2(gj ) = 0 (j �= 2) ,

and for 3 ≤ i ≤ 8,

fi(gi ) = 1

3
, fi(gj ) = 0 (j �= i) .

Note that any element f ∈ (A−L)∨ can be written as

f = 27f (g1)f1 + 9f (g2)f2 + 3f (g3)f3 + · · · + 3f (g8)f8 .

Let M̃σ (resp. M̃τ ) be the matrix representing the action of σ (resp. τ ) on (A−L)∨ corresponding
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to the dual basis {f1, . . . , f8}. Recall that (A−L)∨ have the cogredient Galois action. We have

M̃σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 9 −9 9 0 −9 9 −9
0 4 3 −3 0 0 −3 3
0 −1 −1 −1 −1 1 0 1
0 1 −1 0 −1 0 0 0
1 −1 0 0 1 0 0 0
1 1 −1 0 0 −1 −1 1
−1 1 0 −1 −1 −1 1 −1
1 −1 −1 1 1 −1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

M̃τ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −9 −9 −9 9 −9 9 0
0 1 3 −3 −3 3 −3 0
1 1 −1 0 0 −1 −1 −1
−1 0 0 0 −1 −1 −1 −1
−1 0 −1 0 1 1 −1 1
0 −1 1 1 1 1 0 0
0 0 0 0 0 0 1 0
−1 1 0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Then the transpose of a relation matrix of (A−L)∨ is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ − 1 0 0 0 −1 −1 1 −1
−9 σ − 4 1 −1 1 −1 −1 1
9 −3 σ + 1 1 0 1 0 1
−9 3 1 σ 0 0 1 −1
0 0 1 1 σ − 1 0 1 −1
9 0 −1 0 0 σ + 1 1 1
−9 3 0 0 0 1 σ − 1 −1
9 −3 −1 0 0 −1 1 σ

τ − 1 0 −1 1 1 0 0 1
9 τ − 1 −1 0 0 1 0 −1
9 −3 τ + 1 0 1 −1 0 0
9 3 0 τ 0 −1 0 0
−9 3 0 1 τ − 1 −1 0 0
9 −3 1 1 −1 τ − 1 0 0
−9 3 1 1 1 0 τ − 1 1
0 0 1 1 −1 0 0 τ − 1

27 0 0 0 0 0 0 0
0 9 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Calculating in the same way as before, we can reduce the above matrix to⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9 0 −S2T + ST 2

S 0 −T 2

T 0 −S2

0 3 S2T

0 S T 2

0 T −S2

0 0 3
0 0 S2T 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

From this, we know that (A−L)∨ is generated by three elements and that these elements have

8 relations in (A−L)∨. Furthermore, taking all the 3× 3 minors in the above matrix, we obtain

FittR−L
((A−L)

∨) = (81, 9S, 9T , 3S2, 3T 2, 3ST ) .
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Thus, we have

3

2
θ−L/k ≡ 27− 19S2T 2 �≡ 0

(
mod FittR−L

((A−L)
∨)

)
,

S

8
θ−L/k ≡ 3S �≡ 0

(
mod FittR−L

((A−L)
∨)

)
,

T

2
θ−L/k ≡ 3T �≡ 0

(
mod FittR−L

((A−L)
∨)

)
.

In conclusion, we have

ILθ
−
L/k �⊂ FittR−L

((A−L)
∨)

unlike to the previous case. We also have

#μp∞(L)θ
−
L/k = 3θ−L/k �∈ FittR−L

((A−L)
∨) .

Note that we have checked numerically

FittZp (((A
−
L)
∨)G) = FittZp (((A

−
L)
G)) = (81) � (27) = FittZp (A

−
K) ,

namely #(A−L)G = 81 > #A−K = 27. Note that this is the inequality which was obtained in
Proposition 1.1.

3. Examples for which neither (SB) nor (DSB) holds

In this section, we will prove that there are extensions L/k for which neither (SB) nor
(DSB) holds.

3.1. We begin with the following easy lemma.

LEMMA 3.1. Let k be a totally real number field andM/k be a finite abelian extension
such that M is a CM-field. Suppose that M ′ is an intermediate CM-field of M/k such that
M/M ′ is a p-extension. Then we have

# Ker(A−
M ′ −→ A−M) ≤ [M : M ′] .

PROOF. As is well-known, there is an injective map from Ker(A−
M ′ −→ A−M) to

H 1 (Gal(M/M ′), EM)− = H 1(Gal(M/M ′), μp∞(M)). We put M ′′ = M ∩ M ′∞ where
M ′∞ is the cyclotomic Zp-extension of M ′. Put G = Gal(M/M ′) and H = Gal(M/M ′′).
Consider an exact sequence

0 −→ H 1(G/H,μp∞(M
′′)) −→ H 1(G,μp∞(M)) −→ H 1(H,μp∞(M)) .

We know H 1(G/H,μp∞(M ′′)) = 0 and μp∞(M) = μp∞(M ′′). Therefore, we have

#H 1(G,μp∞(M)) ≤ #H 1(H,μp∞(M)) ≤ #H ≤ #G = [M : M ′] ,
which completes the proof of Lemma 3.1.
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In this section we assume that k is a totally real number field and K = k(μp). For

simplicity, we also assume [K : k] = 2 (namely we replace k byK+ if it is needed). Suppose
that L/k is an abelian extension such that K ⊂ L. We also assume that

Gal(L/K) � (Z/pZ)⊕r , A−K � (Z/pZ)⊕r for some r ≥ 2 ,

and the natural map A−K −→ A−L is the zero map.

PROPOSITION 3.2. Assume that L/k satisfies the above conditions. We also assume
that there are intermediate fields Kα , Kβ of L/K such that [Kα : K] = [Kβ : K] = p, each

prime of k which splits in K and which is ramified in L is ramified in Kα, A−Kα is generated

by exactly r elements as a Zp[Gal(Kα/K)]-module, A−Kβ is generated by exactly r ′ elements

as a Zp[Gal(Kβ/K)]-module, and r ′ > r . Then neither (SB) nor (DSB) holds for L/k.

We will give in §3.2 a numerical example which satisfies all the conditions of the above
proposition. Before the proof, we remark that our assumption implies that (R) is not satisfied

for L/k. In fact, if (R) is satisfied, by Lemma 1.4 we have isomorphisms (A−L)Gal(L/Kα) �
A−Kα and (A−L)Gal(L/Kβ) � A−Kβ . This shows that r = r ′ by Nakayama’s lemma. Therefore,

(R) is not satisfied in our case. After the proof of Proposition 3.2, we will show that our
assumption in Proposition 3.2 implies that (NTZ) is not satisfied for L/k.

PROOF OF PROPOSITION 3.2. We haveL∩K∞ = K . In fact, if we putK ′ = L∩K∞,

we know that A−K −→ A−
K ′ is injective. By Lemma 3.1, we have # Ker(A−K −→ A−L) ≤

# Ker(A−
K ′ −→ A−L) ≤ [L : K ′]. Since the left hand side is pr by our assumption, we

must have [L : K ′] = pr and K ′ = K . We put pc = #μp∞(L) as in §1. Then we have
#μp∞(K) = pc.

For an intermediate field M of L/K such that [M : K] = p, we consider RM =
Zp[Gal(M/k)] and the decomposition RM = R+M ⊕ R−M . Here, R−M = Zp[Gal(M/k)]−
is isomorphic to Zp[Gal(M/K)]. For any element x ∈ RM , we denote by x− ∈ R−M �
Zp[Gal(M/K)] the minus component of x. We take a faithful characterψM : Gal(M/K) −→
μp ⊂ Q

×
p , and put OψM = Zp[ImageψM ] which we regard as a Zp[Gal(M/K)]-

module on which Gal(M/K) acts via ψM . We also denote by ψM the ring homomorphism
Zp[Gal(M/K)] −→ OψM which is defined by σ �→ ψM(σ) for all σ ∈ Gal(M/K). We

define (A−M)ψM by

(A−M)ψM = A−M ⊗Zp [Gal(M/K)] OψM .

Suppose that σM is a generator of Gal(M/K). Then σM acts trivially on μp∞(M) =
μp∞(K) = μpc . Thus, we have (σM − 1)θM/k ∈ Zp[Gal(M/k)] where θM/k is the Stick-

elberger element of M/k. We consider (σM − 1)θ−M/k ∈ Zp[Gal(M/K)] and ψM((σM −
1)θ−M/k) ∈ OψM .
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LEMMA 3.3. For an intermediate field M of L/K such that [M : K] = p, we have

FittOψM ((A
−
M)ψM ) = (ψM((σM − 1)θ−M/k)) .

PROOF. This can be proved by the class number formula. Let ordp : Q×p −→ Z be

the normalized additive valuation at p such that ordp(p) = 1. The class number formula says

that ordp(#A
−
K) = ordp(pcθ

−
K/k) and

ordp(#A
−
M) = ordp(pcθ

−
K/kNQp(μp)/Qp (ψM(θ

−
M/k)))

where NQp(μp)/Qp is the norm from Qp(μp) to Qp. Hence we have

ordp

(
#A−M
#A−K

)
= ordp(NQp(μp)/Qp (ψM(θ

−
M/k))) .

On the other hand, since the norm map A−M −→ A−K is surjective by Lemma 1.4, we
have

(A−M)ψM = A−M/(1+ σM + · · · + σp−1
M )A−M = A−M/ Image(A−K −→ A−M) .

Since the natural map iL/K : A−K −→ A−L is the zero map by our assumption, the image

of iM/K : A−K −→ A−M is in the kernel of iL/M : A−M −→ A−L . By Lemma 3.1 we have

# Ker(A−K −→ A−M) ≤ p and # Ker(A−M −→ A−L) ≤ pr−1. Therefore, we must have

# Ker(A−K −→ A−M) = p and # Ker(A−M −→ A−L) = pr−1. It follows that

#(A−M)ψM = # Coker(A−K −→ A−M) = p
#A−M
#A−K

.

This implies that

ordp(#(A
−
M)ψM ) = ordp(NQp(μp)/Qp (ψM((σM − 1)θ−M/k))) .

Thus, we get lengthOψM ((A
−
M)ψM ) = lengthOψM (OψM /ψM((σM − 1)θ−M/k)), which implies

the conclusion of Lemma 3.3 (note thatOψM is a discrete valuation ring).

Now we prove Proposition 3.2. First, we will prove that (SB) does not hold. Since the

map (A−L)Gal(L/Kβ) −→ A−Kβ which is induced by the norm map is surjective, the number of

generators of A−L as a Zp[Gal(L/K)]-module is ≥ r ′ by Nakayama’s lemma. We consider

a surjective homomorphism (A−L)Gal(L/Kα) −→ A−Kα . Let ψ1 = ψKα be a faithful character

of Gal(Kα/K). For any Zp[Gal(Kα/K)]-module M , we define the ψ1-quotient by Mψ1 =
M ⊗Zp[Gal(Kα/K)] Oψ1 . We consider a surjective homomorphism ((A−L)Gal(L/Kα))ψ1 −→
(A−Kα)ψ1 which is the ψ1-quotient of the above homomorphism. The number of generators
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of ((A−L)Gal(L/Kα))ψ1 (resp. (A−Kα)ψ1 ) as an Oψ1 -module is ≥ r ′ (resp. r) by Nakayama’s

lemma. Therefore, we obtain

(3.1.1) Ker(((A−L)Gal(L/Kα))ψ1 −→ (A−Kα)ψ1) �= 0 .

It follows from Lemma 3.3 that

FittOψ1
(((A−L)Gal(L/Kα))ψ1) � (ψ1((σKα − 1)θ−Kα/k)) .

Let σ ∈ Gal(L/K) be a K-isomorphism whose restriction to Kα is σKα . The image of (σ −
1)θ−L/k in Zp[Gal(Kα/K)] is u(σKα − 1)θ−Kα/k for some unit u by Lemma 1.5 because all the

primes of k which split inK and which are ramified inL are ramified inKα . If (σ−1)θ−L/k was

in FittZp[Gal(L/K)](A−L), ψ1((σKα − 1)θ−Kα/k) would be in FittOψ1
(((A−L)Gal(L/Kα))ψ1), which

is a contradiction. Therefore, we have (σ − 1)θ−L/k �∈ FittZp [Gal(L/K)](A−L), and conclude that

(SB) does not hold.
Next, we prove that (DSB) does not hold. In the proof of Lemma 3.3, we proved that

# Ker(A−K −→ A−Kβ ) = p, # Ker(iL/Kβ ) = pr−1, and Image(iKβ/K) = Ker(iL/Kβ ). Let

ψ2 = ψKβ be a faithful character of Gal(Kβ/K). In the proof of Lemma 3.3 we also proved

that (A−Kβ )ψ2 is isomorphic to Coker(iKβ/K), so we have an injective homomorphism

(3.1.2) (A−Kβ )ψ2 ↪→ (A−L)
Gal(L/Kβ) .

Let π be a prime element of Oψ2 . For any m ∈ Z>0 we know that Oψ2/(π
m) is a

Gorenstein ring, so the Pontrjagin dual (Oψ2/(π
m))∨ is isomorphic to Oψ2/(π

m) (cf. [10]

Proposition 4 on page 328). Since (A−Kβ )ψ2 is a finite Oψ2 -module, we can apply the above

argument to know that the Pontrjagin dual ((A−Kβ )ψ2)
∨ is generated by exactly r ′ elements as

a Zp[Gal(Kβ/K)]-module. Therefore, from the injectivity (3.1.2) we know that the number

of generators of (A−L)∨ is ≥ r ′.
By the same method as (3.1.2), we obtain an injective homomorphism

(3.1.3) (A−Kα)ψ1 ↪→ (A−L)
Gal(L/Kα) .

Taking the dual and the ψ1-quotient, we have a surjective homomorphism

(((A−L)
∨)Gal(L/Kα))ψ1 −→ ((A−Kα)ψ1)

∨

where the number of generators of (((A−L)∨)Gal(L/Kα))ψ1 is≥ r ′ and the number of generators

of ((A−Kα)ψ1)
∨ is r . Therefore, the above surjective homomorphism has nontrivial kernel. This

implies that

FittOψ1
((((A−L)

∨)Gal(L/Kα))ψ1) � (ψ1((σKα − 1)θ−Kα/k))
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by Lemma 3.3. Therefore, by the same method as in the case of (SB), we know that (σ −
1)θ−L/k is not in FittZp[Gal(L/K)]((A−L)∨). Thus, (DSB) does not hold. This completes the

proof of Proposition 3.2.

We finally remark that our assumption in Proposition 3.2 implies that (NTZ) is not satis-
fied for L/k. In fact, (3.1.1) and Lemma 1.4 imply that there is a prime p of k which splits in
K and is ramified in L/Kα . Then p has to be ramified inKα/K by our assumption. Therefore,
the inertia group of p in Gal(L/k) is not cyclic. This shows that p is above p. Since p splits
in K , (NTZ) is not satisfied.

3.2. We give a numerical example which satisfies the conditions of Proposition 3.2.

Let p = 3, k = Q(
√

69,
√

713) and K = k(μ3) = k(
√−3). Suppose that α, β satisfy

α3−6α−3 = 0 and β3−6β−1 = 0, and putKα = K(α),Kβ = K(β). The minimal splitting

field of x3−6x−3 (resp. x3−6x−1) over Q is a S3-extension and contains
√

69 (resp.
√

93).
Therefore, both k(α)/k and k(β)/k are cubic cyclic extensions. We putL = KαKβ . We have

Gal(L/K) = Gal(Kα/K)⊕ Gal(Kβ/K) = Gal(k(α)/k)⊕ Gal(k(β)/k) � (Z/3Z)⊕2.
There is only one prime p in k above 3. We can check that both k(α)/k and k(β)/k

are unramified outside p, and that p is totally ramified both in k(α) and in k(β). Since K =
k(
√−3) = k(√−23), p splits in K . Two primes of K above p are totally ramified in L. So

L/k satisfies neither (NTZ) nor (R).
We can easily check that A−K � (Z/3Z)⊕2 by the computations of the class numbers of

imaginary quadratic fields which are contained in K . More precisely, we have

A−K = AQ(
√−23) ⊕ AQ(

√−31) .

We can check that the natural map AQ(
√−23) −→ AQ(

√−23,
√−3,α) is the zero map both

theoretically (using that the λ-invariant of Q(
√−23) is 1) and numerically (using Pari/GP).

We will explain it numerically. By Pari/GP, we can check that A−
Q(
√−23,

√−3,α)
� Z/3Z.

Since the norm map A−
Q(
√−23,

√−3,α)
−→ AQ(

√−23) is surjective by class field theory, it is

bijective. This shows that the natural map AQ(
√−23) −→ AQ(

√−23,
√−3,α) is the zero map.

Similarly, using A−
Q(
√−31,

√−3,β)
� Z/3Z, we know that AQ(

√−31) −→ AQ(
√−31,

√−3,β) is

also the zero map. Therefore, A−K −→ A−L is the zero map.
Using Pari/GP, we can compute

A−Kα � Z/81Z⊕ Z/27Z⊕ Z/3Z .

The action of a generator σKα of Gal(Kα/K) is represented by the matrix

MσKα
=

⎛
⎝ −32 21 −27
−10 4 0

0 0 1

⎞
⎠ .
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The meaning of the matrix is the same as §2. Putting S = σKα−1, we obtain a relation matrix⎛
⎝ S + 33 −21 27 81 0 0

10 S − 3 0 0 27 0
0 0 S 0 0 3

⎞
⎠

of A−Kα as a Zp[Gal(Kα/K)]-module. The above matrix is reduced to(
3 S 0 0
0 0 27S 3+ 3S + S2 − 9S2

)
.

This shows that A−Kα is generated by exactly two elements.

In the same way, we have

A−Kβ � Z/9Z⊕ Z/3Z⊕ Z/3Z .

The action of a generator σKβ of Gal(Kβ/K) is represented by the matrix

MσKβ
=

⎛
⎝ −2 0 −3

0 1 0
0 0 1

⎞
⎠ .

We put T = σKβ − 1, then a relation matrix of A−Kβ is

⎛
⎝ T + 3 0 3 9 0 0

0 T 0 0 3 0
0 0 T 0 0 3

⎞
⎠ .

Therefore, A−Kβ is generated by exactly three elements. Thus, our L/k satisfies all the condi-

tions of Proposition 3.2. Hence we know that neither (SB) nor (DSB) holds for our L/k.
We finally remark that we could not compute numerically the Fitting ideal of A−L for this

example. We can compute

A−L � Z/81Z⊕ Z/81Z⊕ Z/9Z⊕ Z/9Z⊕ Z/9Z⊕ Z/9Z⊕ Z/9Z

as an abelian group. But since the degree of L is too large, we could not compute the action

of Gal(L/K) on A−L , using Pari/GP.

4. Other examples

4.1. In this subsection, we describe the setting and the assumptions in this section. Let
k′ be a totally real number field and K ′ = k′(μp). We assume (K ′)+ = k′, so [K ′ : k′] = 2.
Let F ′/k′ be a finite and abelian p-extension such that Gal(F ′/k′) is not cyclic. We further
assume that F ′/k′ is ramified at a prime above p. We put L′ = F ′K ′. We assume (NTZ) and
(R) for L′/k′. So every prime above p does not split in K ′/k′, and every prime which splits
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in K ′/k′ is unramified in L′/k′. Let k′∞/k′ (resp. F ′∞/F ′) be the cyclotomic Zp-extension.
We further assume that F ′ ∩ k′∞ = k′, and all the primes of F ′ above p are totally ramified in
F ′∞.

We also assume that there is a CM-fieldK ′′ which is a quadratic extension of k′ such that
A−
K ′′ = 0, and that there is a prime p′ of k′ above p which is ramified in F ′ and which splits

in K ′′. Put L′′ = F ′K ′′. Then (R) is not satisfied for L′′/k′ because p′ splits in K ′′ and is
ramified in L′′. Also, (NTZ) is not satisfied for L′′/k′ because p′ splits in K ′′. Since p′ splits
in K ′′ and does not split in K ′, we haveK ′ �= K ′′. We assume that every prime of k′ which is
prime to p and which splits in K ′′ is unramified in L′′/k′.

In this setting, we put K = K ′K ′′. Then K is a CM-field and K/k′ is an abelian
extension such that Gal(K/k′) � Z/2Z ⊕ Z/2Z. The maximal real subfield K+ of K is
a quadratic extension of k′. We put k = K+, F = kF ′ and L = kL′ = kL′′. We have
K = kK ′ = k(μp). Let p′ be a prime of k′ above p which is ramified in F ′ and which splits
inK ′′. Since p′ does not split inK ′, it does not split in k. We denote by p the prime of k above
p′. Then p splits in K , and is ramified in L. In particular, neither (NTZ) nor (R) is satisfied
for L/k. Since every prime above p is totally ramified in F ′∞/F ′, every prime of L (resp. K)
above p is also totally ramified in L∞ (resp. K∞).

4.2. In this subsection, we will prove Theorem 0.2. Put G = Gal(L/K) = Gal(L′/
K ′) = Gal(L′′/K ′′) = Gal(F/k) = Gal(F ′/k′) and Γ = Gal(K∞/K) = Gal(K ′∞/K ′) =
Gal(K ′′∞/K ′′). Let κ : Γ −→ Z×p be the cyclotomic character and γ be a generator of Γ .

We put Γ1 = Gal(K1/K) = Gal(K ′1/K ′) = Gal(K ′′1 /K ′′) where K1 (resp. K ′1, K ′′1 ) is

the first layer of K∞/K (resp. K ′∞/K ′, K ′′∞/K ′′). We regard γ as a generator of Γ1.

As in §3, we considerRK ′1 = Zp[Gal(K ′1/k′)] and the decompositionRK ′1 = R
+
K ′1
⊕R−

K ′1
.

For any element x ∈ RK ′1 , we denote by x− ∈ R−
K ′1
� Zp[Γ1] the minus component of x. Let

ψ : Γ1 −→ μp ⊂ Q
×
p be a faithful character, and Oψ = Zp[Imageψ] be a Zp[Γ1]-module

on which Γ1 acts via ψ . The ring homomorphism Zp[Γ1] −→ Oψ defined by σ �→ ψ(σ) for

all σ ∈ Γ1 is also denoted by ψ . So ψ(x−) ∈ Oψ is defined for x ∈ RK ′1 .

For any Zp[Γ1]-moduleM , we defineMψ by Mψ =M ⊗Zp [Γ1] Oψ . We will prove

LEMMA 4.1.

(4.2.1) FittOψ (((A
−
L′1
)G)ψ) = (ψ(((γ − κ(γ ))θK ′1/k′)−)) ,

(4.2.2) FittOψ ((((A
−
L′1
)∨)G)ψ) � (ψ(((γ − κ(γ ))θK ′1/k′)−)) .

PROOF. We will first prove (4.2.1). Since (R)1 is satisfied for L′1/k′, the norm map
induces an isomorphism

(A−
L′1
)G

�−→ A−
K ′1



IDEAL CLASS GROUPS OF CM-FIELDS 433

by Lemma 1.4. Therefore, we have FittR−
K′1
((A−

L′1
)G) = FittR−

K′1
(A−

K ′1
).

Using the class number formula and the fact that #μp∞(K ′1) = p#μp∞(K ′), we get

ordp

(#A−
K ′1

#A−
K ′

)
= ordp(NQp(μp)/Qp (ψ(θ

−
K ′1/k′

)))+ 1

by the same method as Lemma 3.3. Since A−
K ′ −→ A−

K ′1
is injective in our case, we have an

exact sequence

0 −→ A−
K ′ −→ A−

K ′1
−→ (A−

K ′1
)ψ −→ 0 .

It follows that

ordp(#(A
−
K ′1
)ψ) = lengthOψ ((A

−
K ′1
)ψ) = lengthOψ (Oψ/ψ((γ − κ(γ ))θ−K ′1/k′)) ,

which implies (4.2.1).
Next, we will prove (4.2.2). Suppose that n is an integer > 1. As in the proof of

Proposition 1.1, we have Hq(Gal(L′n/L′1), EL′n )
− = 0 for any q ≥ 1. Using the long exact

sequence in §1 for L′n/L′1, we obtain Ĥ 0(Gal(L′n/L′1), A
−
L′n
) = H 1(Gal(L′n/L′1), A

−
L′n
) = 0

by our assumption (NTZ). This implies that the natural map A−
L′1
−→ (A−

L′n)
Gal(L′n/L′1) is

bijective (cf. the proof of Proposition 1.1). Put AK ′∞ = lim→ AK ′n and AL′∞ = lim→ AL′n . Thus,

we have an isomorphism

(4.2.2.1) A−
L′1

�−→ (A−
L′∞)

Gal(L′∞/L′1) .

Put XK ′∞ = A∨K ′∞ and XL′∞ = A∨L′∞ . In the proof of Theorem 0.3 in [8], we proved

(4.2.2.2) FittΛ−
K′∞
((X−

L′∞
)G) ⊂ (p, γ − 1)(((γ − κ(γ ))θK ′∞/k′)−) .

The isomorphism (4.2.2.1) induces an isomorphism (X−
L′∞)G×Gal(L′∞/L′1) � ((A−

L′1
)∨)G. We

denote by cK ′∞/K ′1 : ΛK ′∞ = Zp[[Gal(K ′∞/k′)]] −→ RK ′1 the natural restriction map. Since

every prime of k′ above p is ramified in K ′1, by Lemma 1.5 we have

(4.2.2.3) cK ′∞/K ′1((γ − κ(γ ))θK ′∞/k′) = (γ − κ(γ ))θK ′1/k′ .
Hence by (4.2.2.1), (4.2.2.2) and (4.2.2.3) we have

FittR−
K′1
(((A−

L′1
)∨)G) ⊂ (p, γ − 1)(((γ − κ(γ ))θK ′1/k′)−) ,

which implies (4.2.2).
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Next, we consider L′′/K ′′. SinceK ′′ �= K ′, K ′′ does not contain a primitive p-th root of
unity, so neither does K ′′1 . Put RK ′′1 = Zp[Gal(K ′′1 /k′)]. Since IK ′′1 = AnnRK′′1

(μp∞(K ′′1 )) =
RK ′′1 , we have θK ′′1 /k′ ∈ RK ′′1 by a theorem of Deligne and Ribet.

As we did for K ′1, we consider the decomposition RK ′′1 = R+
K ′′1
⊕ R−

K ′′1
, and use the

notation x− ∈ R−
K ′′1

which is the minus component of x for any x ∈ RK ′′1 . For a faithful

character ψ : Γ1 −→ μp, we also consider the ring homomorphism ψ : R−
K ′′1
� Zp[Γ1] −→

Oψ .
We will prove

LEMMA 4.2.

(4.2.3) FittOψ (((A
−
L′′1
)G)ψ) � (ψ(θ−

K ′′1 /k′
))

(4.2.4) FittOψ ((((A
−
L′′1
)∨)G)ψ) ⊂ (ψ(θ−K ′′1 /k′)) .

PROOF. We first note that

(4.2.3.1) FittOψ ((A
−
K ′′1
)ψ) = (ψ(θ−K ′′1 /k′)) .

We can prove (4.2.3.1) by the class number formula, using the same method as Lemma 3.3
and (4.2.1) (now we use #μp∞(K ′′1 ) = #μp∞(K ′′) = 1).

We first prove (4.2.3). By Lemma 1.4, we have a commutative diagram of exact se-
quences

0 −→ (
⊕

w Iw(L
′′
1/K

′′
1 ))
− α−→ (A−

L′′1
)G −→ A−

K ′′1
−→ 0⏐⏐�β ⏐⏐�γ ⏐⏐�

0 −→ (
⊕

v Iv(L
′′/K ′′))− δ−→ (A−

L′′)G −→ A−
K ′′ −→ 0

where w (resp. v) runs over all finite primes of K ′′1 (resp. K ′′). Let vk′ be the prime of k′
below a prime v of K ′′. If vk′ is not above p and splits in K ′′/k′, v is unramified in L′′
by our assumption. Hence (

⊕
v Iv(L

′′/K ′′))− = (
⊕

v|p Iv(L′′/K ′′))−. Similarly, we have

(
⊕

w Iw(L
′′
1/K

′′
1 ))
− = (

⊕
w|p Iw(L′′1/K ′′1 ))−. If v is above p, v is totally ramified in K ′′1

because every prime above p is totally ramified in F ′∞/F ′. Let w be the prime ofK ′′1 above v.

Then the restriction map Iw(L′′1/K ′′1 ) −→ Iv(L
′′/K ′′) is bijective because every prime of L′′

above v is totally ramified in L′′1. Therefore, β is bijective. Since A−
K ′′ = 0, δ is also bijective.

Thus, α has a left inverse β−1 ◦ δ−1 ◦ γ . Hence we have isomorphisms

(4.2.3.2) (A−
L′′1
)G �

(⊕
w|p

Iw(L
′′
1/K

′′
1 )

)−
⊕ A−

K ′′1
�

( ⊕
v|p

Iv(L
′′/K ′′)

)−
⊕ A−

K ′′1
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as R−
K ′′1

-modules. Since there is a prime p′ of k′ above p which splits in K ′′ and which is

ramified in L′′, (
⊕

v|p Iv(L′′/K ′′))− �= 0. Therefore, we have

FittR−
K′′1
((A−

L′′1
)G) ⊂ (p, γ − 1) FittR−

K′′1
(A−

K ′′1
) .

By (4.2.3.1), this implies that

FittOψ (((A
−
L′′1
)G)ψ) ⊂ ψ((γ − 1)θ−

K ′′1 /k′
) .

This completes the proof of (4.2.3).

Finally, we will prove (4.2.4). Since #μp∞(L′′1) = 1, we have H 1(G,EL′′1)
− = 0. This

implies that the natural map A−
K ′′1
−→ (A−

L′′1
)G is injective. Hence ((A−

L′′1
)∨)G −→ (A−

K ′′1
)∨ is

surjective, so (((A−
L′′1
)∨)G)ψ −→ ((A−

K ′′1
)∨)ψ is also surjective, which gives an inclusion

FittOψ ((((A
−
L′′1
)∨)G)ψ) ⊂ FittOψ (((A

−
K ′′1
)∨)ψ) .

In general, for any Zp[Γ1]-moduleM , we defineMψ to be the kernel of NΓ1 = 1+ γ + ...+
γ p−1 on M . We have an exact sequence

0 −→ Mψ −→ M
NΓ1−→ M −→ Mψ −→ 0 .

Suppose that M is finite. Then by the above exact sequence, we have

#(M∨)ψ = #(Mψ)∨ = #Mψ = #Mψ .

Applying the above equality to M = A−
K ′′1

, we get

FittOψ ((((A
−
L′′1
)∨)G)ψ) ⊂ FittOψ (((A

−
K ′′1
)∨)ψ) = FittOψ ((A

−
K ′′1
)ψ ) .

Using (4.2.3.1), we obtain (4.2.4).

REMARK 4.3. Note that (4.2.3) shows that (SB) does not hold for L′′1/k′. In fact, we

have cL′′1/K ′′1 (θL′′1/k′) = uθK ′′1 /k′ for some u ∈ R×
K ′′1

by Lemma 1.5 because all the primes of k′

above p are ramified in K ′′1 , and a prime of k′ which is not above p and which splits in K ′′ is
unramified in L′′1/K ′′1 . So if θL′′1/k′ was in FittRL′′1

(AL′′1), θ
−
K ′′1 /k′

would be in FittR−
K′′1
((A−

L′′1
)G),

and ψ(θ−
K ′′1 /k′

) would be in FittOψ (((A
−
L′′1
)G)ψ), which contradicts (4.2.3).

Now we proceed to the proof of Theorem 0.2. Let Gal(K/k′)∨ be the group of characters
of Gal(K/k′). For any χ ∈ Gal(K/k′)∨ and a Zp[Gal(K/k′)]-moduleM , we define

Mχ = {x ∈ M | σ(x) = χ(σ)x for all σ ∈ Gal(K/k′)} .
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Let χ1 be the trivial character, χk be the character corresponding to k/k′, and χ ′ (resp. χ ′′)
be the character corresponding to K ′/k′ (resp. K ′′/k′). Any Zp[Gal(K/k′)]-module M is

decomposed into M = Mχ1 ⊕ Mχk ⊕ Mχ ′ ⊕ Mχ ′′ . Since χ ′, χ ′′ are odd characters (and

χ1, χk are even characters), we have M− = Mχ ′ ⊕ Mχ ′′ . We identify Gn = Gal(Ln/k)
with Gal(L′n/k′) by the restriction map, and also identify Gn with Gal(L′′n/k′). We have an
isomorphism

(4.2.5) A−Ln = A
χ ′
Ln
⊕ Aχ ′′Ln � A−L′n ⊕ A

−
L′′n

as Zp[Gn]-modules for any n ≥ 0.
Using the identifications of Gn with Gal(L′n/k′) and with Gal(L′′n/k′), we regard θL′n/k′ ,

θL′′n/k′ as elements in Q[Gn]. Then we have

(4.2.6) θLn/k = θL′n/k′θL′′n/k′ .
We will give a proof of (4.2.6). We use a technique of Tate [15] Proposition 1.8 on page 87.
Let σ (resp. τ ) be a generator of Gal(Ln/L′n) (resp. Gal(Ln/L′′n)), which is a cyclic group of
order 2. Note that στ is in Gn and this equals to the complex conjugation ρ. We know that
Gal(Ln/k′) � Gn × 〈σ 〉 � Gn × 〈τ 〉. We have an isomorphism

C[Gal(Ln/k′)]− �−→ C[Gal(L′n/k′)]− ⊕C[Gal(L′′n/k′)]− � C[Gn]− ⊕ C[Gn]−

where the first isomorphism is induced by cLn/L′n⊕cLn/L′′n and the second isomorphism comes

from our identifications of Gn with Gal(L′n/k′) and with Gal(L′′n/k′). Since cLn/L′n (resp.
cLn/L′′n) is defined by σ �→ 1 (resp. τ �→ 1), the above first isomorphism satisfies a + bσ �→
(a + b, a − b) for any a, b ∈ C[Gn]−.

Let x be an element of C[Gal(Ln/k′)]−. The multiplication by x defines an endomor-
phism of C[Gal(Ln/k′)]− which is a free C[Gn]−-module of rank 2. Hence, the determinant

induces a homomorphism N : C[Gal(Ln/k′)]− −→ C[Gn]−. Namely, N (a+bσ) = a2−b2

for any a, b ∈ C[Gn]−, and

(4.2.7) N (x) = cLn/L′n(x)cLn/L′′n(x) .
Let θLn/k′(s) be a C[Gal(Ln/k′)]-valued function defined in [15] satisfying θLn/k′(0) =

θLn/k′ . Using Tate [15] Proposition 1.8 on page 87, we have

(4.2.8) N (θLn/k′(s)) =
∏
v∈S
(1− ϕ−1

v N(v)−s )θLn/k(s)

where S is the set of primes of k′ which are ramified in k/k′ and are unramified in Ln/k, and
N(v) is the norm of a prime v. If v is in S, it is unramified in Ln/K , so it is prime to p. Hence
it is unramified in K ′, and is unramified in L′n. Therefore, we have

S = {v : a prime of k′ | v is ramified in Ln/k′ and is unramified in L′n/k′} .
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By Tate [15] Corollary 1.7 on page 86, we have

(4.2.9) cLn/L′n(θLn/k′(s)) =
∏
v∈S
(1− ϕ−1

v N(v)−s )θL′n/k′(s) .

If a prime v of k′ is ramified in Ln and unramified in L′′n, it is ramified in K ′ so it is a prime
above p. But this contradicts our assumption that all the primes above p are totally ramified
in L′′n/L′′. Hence there is no prime of k′ which is ramified in Ln and unramified in L′′n. By
Tate [15] Corollary 1.7 on page 86, we have

(4.2.10) cLn/L′′n(θLn/k′(s)) = θL′′n/k′(s) .
By (4.2.7), (4.2.8), (4.2.9), and (4.2.10), we get

θLn/k′(s) = θL′n/k′(s)θL′′n/k′(s) .
Substituting s = 0, we obtain (4.2.6). This completes the proof of (4.2.6).

Now, we will prove that (SB) does not hold for Ln/k for n ≥ 1. Suppose that (γ −
κ(γ ))θLn/k is in FittRLn (ALn). Since (A−Ln)Gal(Ln/L1) −→ A−L1

is surjective by Lemma 1.4,

we have cLn/L1((γ − κ(γ ))θ−Ln/k) ∈ FittR−L1
(A−L1

), and

cLn/K1((γ − κ(γ ))θ−Ln/k) ∈ FittR−K1
((A−L1

)G) .

By Lemma 1.5, cLn/K1(θ
−
Ln/k

) = uθ−K1/k
for some u ∈ (R−K1

)× because every prime of k

above p is totally ramified in K1, and every prime of k which is not above p and which splits
in K is unramified. Therefore, we have

(γ − κ(γ ))θ−K1/k
∈ FittR−K1

((A−L1
)G) .

By (4.2.5) and (4.2.6), this implies that

(γ − κ(γ ))θ−
K ′1/k′

θ−
K ′′1 /k′

∈ FittR−K1
((A−

L′1
)G) FittR−K1

((A−
L′′1
)G)

and

ψ((γ − κ(γ ))θ−
K ′1/k′

θ−
K ′′1 /k′

) ∈ FittOψ (((A
−
L′1
)G)ψ) FittOψ (((A

−
L′′1
)G)ψ) .

On the other hand, by (4.2.1) and (4.2.3) we have

FittOψ (((A
−
L′1
)G)ψ) FittOψ (((A

−
L′′1
)G)ψ) � (ψ((γ − κ(γ ))θ−

K ′1/k′
θ−
K ′′1 /k′

)) .

This is a contradiction.
By the same method, we can prove that (DSB) does not hold. Suppose that (γ −

κ(γ ))θLn/k is in FittRLn (A
∨
Ln
). As we saw in §1,

H 1(Gal(Ln/L1), ELn)
− = H 1(Gal(Ln/L1), μp∞(Ln)) = 0
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([16] Lemma 13.27), which implies that A−L1
−→ A−Ln is injective. Therefore, we get

(γ − κ(γ ))θ−K1/k
∈ FittR−K1

(((A−L1
)∨)G)

by the same method as above. By (4.2.5) and (4.2.6), we have

(γ − κ(γ ))θ−
K ′1/k′

θ−
K ′′1 /k′

∈ FittR−K1
(((A−

L′1
)∨)G) FittR−K1

(((A−
L′′1
)∨)G)

= FittR−K1
(((A−L1

)∨)G) .

But (4.2.2) and (4.2.4) imply that

FittOψ ((((A
−
L1
)∨)G)ψ) � (ψ((γ − κ(γ ))θ−

K ′1/k′
θ−
K ′′1 /k′

)) ,

which is a contradiction. This completes the proof of Theorem 0.2.

4.3. We give an example which satisfies the conditions of Theorem 0.2. We consider

p = 3, k′ = Q(
√

1901) and K ′ = k′(μ3). Let F ′α (resp. F ′β ) be the minimal splitting field of

X3−84X−191 (resp. X3−57X−68). Both F ′α and F ′β are S3-extensions over Q containing

k′. We put F ′ = F ′αF ′β . The prime (3) of k′ is ramified in F ′β , so in F ′. The extension F ′/k′

is unramified outside 3. The Galois group G = Gal(F ′/k′) is not cyclic and isomorphic to
Z/3Z ⊕ Z/3Z. Put L′ = F ′K ′. Then L′/k′ satisfies both (NTZ) and (R) as we explained
in §2. From our construction (see §2), we know F ′ ∩ k′∞ = k′, and every prime above 3 is
totally ramified in F ′∞/F ′.

We put K ′′ = k′(
√−2). Then A−

K ′′ = 0, and (3) splits in K ′′/k′. Put L′′ = F ′K ′′.
Then L′′/K ′′ is unramified outside (3). We take k = k′(√6) = Q(

√
6,
√

1901), F = kF ′,
K = kK ′ = K ′K ′′, and L = kL′. Thus, the extension L/k satisfies all the conditions of
Theorem 0.2, namely the conditions in the subsection 4.1. Applying Theorem 0.2, we know
that neither (SB) nor (DSB) holds for Ln/k for all n ≥ 1.
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