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Abstract. We consider the Cauchy problem for the semilinear wave equation with time-dependent damping{
utt −∆u+ b(t)ut = f (u) , (t, x) ∈ R+ × RN

(u, ut )(0, x) = (u0, u1)(x) , x ∈ RN .
(∗)

When b(t) = (t + 1)−β with 0 ≤ β < 1, the damping is effective and the solution u to (∗) behaves as that to

the corresponding parabolic problem. When f (u) = O(|u|ρ) as u → 0 with 1 < ρ < N+2
[N−2]+ (the Sobolev

exponent), our main aim is to show the time-global existence of solutions for small data in the supercritical exponent
ρ > ρF (N) := 1 + 2/N . We also obtain some blow-up results on the solution within a finite time, so that the
smallness of the data is essential to get global existence in the supercritical exponent case.

1. Introduction

We consider the Cauchy problem for the semilinear wave equation with time-dependent
damping {

utt −∆u+ b(t)ut = f (u) , (t, x) ∈ R+ × RN

(u, ut )(0, x) = (u0, u1)(x) , x ∈ RN ,
(1.1)

where the coefficient of damping

b(t) = b0(t + 1)−β , 0 ≤ β < 1(b0 : positive constant) (1.2)

and the sourcing semilinear term

f (u) = ±|u|ρ or |u|ρ−1u , ρ > 1 . (1.3)

Throughout this paper we assume

1 < ρ < ∞(N = 1, 2) and 1 < ρ <
N + 2

N − 2
(N ≥ 3) (1.4)
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(denote this simply by 1 < ρ < N+2
[N−2]+ ) and

(u0, u1) ∈ H 1 × L2 , supp{u0, u1} ⊂ {x; |x| ≤ L} =: BL (1.5)

for some positive constant L. Then there exists a unique weak solution u to (1.1) in

XT := C([0, T );H 1) ∩ C1([0, T ); L2) for some T > 0 ,

whose support

supp{u(t, ·)} ⊂ Bt+L = {x; |x| ≤ t + L} (1.6)

(Strauss [20]). In these conditions our concern is with time-global existence of solutions and
blow-up within a finite time.

When f (u) ≡ 0, Wirth has obtained in [23, 24] that, if −1 < β < 1, then “the damping
term +b(t)ut is effective”, and that the solution has “the diffusion phenomena” if −1/3 <
β < 1, that is, the solution behaves as that of the corresponding diffusion equation

−∆φ + b(t)φt = 0 (1.7)

as t → ∞ (see also Yamazaki [25, 26]). Therefore, for (1.1) we can expect that there is
some critical exponent and, in the supercritical exponent the time-global existence theorem
of solutions for small data holds, while in the critical and subcritical exponents the blow-up
phenomena within a finite time occurs.

The solution φ to (1.7) with φ(0, x) = φ0(x) ∈ Lq (1 ≤ q ≤ ∞) is given by

φ(t, x) = [
eB(t)∆φ0

]
(x) , B(t) =

∫ t

0

dτ

b(τ )

= (4πB(t))−
N
2

∫
RN
e
− |x−y|2

4B(t) φ0(y)dy =: [GB(t, ·) ∗ φ0](x) ,
(1.8)

so that for 1 ≤ q ≤ p ≤ ∞

‖φ(t, ·)‖Lp ≤ Ct
− (1+β)N

2 ( 1
q
− 1
p
)‖φ0‖Lq . (1.9)

If the solution u to (1.1) behaves as φ with q = 1, then∫ ∞

0

∫
RN
b(t)−1|f (u)|(t, x)dxdt ≤ C

∫ ∞

0
(t + 1)β− (1+β)N

2 (1− 1
ρ )ρdt < ∞

provided that β− (1+β)N
2 (1− 1

ρ
)ρ < −1 or ρ > 1+ 2

N
. Hence we expect the critical exponent

to be the Fujita exponent

ρF (N) := 1 + 2

N
, (1.10)

named after his pioneering work [1]. In fact, when f (u) = −|u|ρ−1u, that is, the semilinear
term works as absorbing, the critical exponent is believed to be ρF (N) even in the time-
dependent damping case (Nishihara and Zhai [18]). When b(t) ≡ const. > 0, there are many
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literatures [2]–[8], [10]–[12], [14]–[16], [19, 21, 27] etc. See also the references therein. In
the case of space-dependent damping, see [9, 17].

Our main aim in this paper is to show the global existence theorem for small initial data
in the case of supercritical exponent and some blow-up results.

THEOREM 1.1 (Small data global existence). Assume that the continuous function f
satisfies |f (u)| = O(|u|ρ) in the neighborhood of u = 0, and that

I 2
0 :=

∫
RN
e
(1+β)|x|2

2(2+δ) (|u1|2 + |∇u0|2 + |u0|ρ+1)dx (1.11)

is sufficiently small with some small δ > 0 for the data (1.5). Then, when ρF (N) < ρ <
N+2

[N−2]+ , there exists a unique global solution u ∈ X∞ = C([0,∞); H 1) ∩ C1([0,∞); L2),

which satisfies

‖u(t, ·)‖L2 ≤ C(δ)I0(t + 1)−
(1+β)N

4 + ε
2

‖(ut ,∇u)(t, ·)‖L2 ≤ C(δ)I0(t + 1)−
(1+β)(N+2)

4 + ε
2

(1.12)

for some small ε = ε(δ) > 0 and large C(δ) > 0 with ε(δ) → 0 and C(δ) → ∞ as δ → 0.

Note that the decay rates (1.12) are almost same as those of φ in (1.8). So we believe
that the asymptotic profile of the solution u is

θ0GB(t, x) := θ0(4πB(t))
−N

2 e
− |x|2

4B(t)

for some constant θ0. Concerning the blow-up we have the following two theorems.

THEOREM 1.2 (Blow-up for any small data). Assume that

f (u) = |u|ρ with 1 + 2β

N
≤ ρ ≤ 1 + 1 + β

N
(1.13)

(ρ > 1 if β = 0), and that∫
RN
ui(x)dx ≥ 0(i = 0, 1) with

∫
RN
(u0 + u1)(x)dx > 0 . (1.14)

Then the solution u ∈ XT to (1.1) does not exist globally.

THEOREM 1.3 (Blow-up for some data). Assume that

f (u) = |u|ρ−1u with 1 + 4β

N
≤ ρ ≤ 1 + 2(1 + β)

N
(1.15)
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(ρ > 1 if β = 0), and that

1

2

(‖u1‖2
L2 + ‖∇u‖2

L2

) − 1

ρ + 1
‖u0‖ρ+1

Lρ+1 ≤ 0 , and∫
RN
(u0u1)(x)dx ≥ 0 with

∫
RN

[u0(u0 + u1)](x)dx > 0 .

(1.16)

Then the solution u ∈ XT to (1.1) does not exist globally.

Theorems 1.2–1.3 are both based on the following blow-up lemma for the ordinary dif-
ferential inequality.

LEMMA 1.1. Let α > 0, 0 ≤ β < 1 and Ψ (t) satisfy

(t + 1)βΨ ′′(t)+ Ψ ′(t) ≥ c0(t + 1)β−γ |Ψ |αΨ (t) ,
Ψ (0) ≥ 0, Ψ ′(0) ≥ 0 with Ψ (0)+ Ψ ′(0) > 0

(1.17)

for some constant c0 > 0. Then Ψ (t) blows up within a finite time provided that

2β ≤ γ ≤ β + 1 . (1.18)

More precisely, if Ψ (0) = ε > 0(0 < ε 
 1), then the life-span Tε of Ψ (t) is estimated from
above as

Tε ≤
{
Cε

− α
1+β−γ γ < β + 1

eCε
−α

γ = β + 1 ,
(1.19)

where Tε := sup{T ; Ψ (t) < ∞, 0 < t < T }.
REMARK 1.1. When β = 0, Lemma 1.1 was given by Li and Zhou [12]. See also

Todorova and Yordanov [21], and Zhou [28]. See also Qi. Zhang [27] for the different method
on the blow-up. Theorems 1.2 and 1.3 are, respectively, based on [21] and [28].

Let the data be (εu0, εu1), ε > 0, instead of (u0, u1) in (1.5). Then Theorem 1.3 does
not hold for small ε > 0, because the assumption (1.16)1 ( 1-st property of (1.16) ) breaks
since

ε2

2

(‖u1‖2
L2 + ‖∇u0‖L2

) − ερ+1

ρ + 1
‖u0‖ρ+1

Lρ+1 > 0 as ε → 0 + .

Note that some exponents ρ in Theorem 1.3 are in the supercritical exponent interval

(ρF (N),
N+2

[N−2]+ ) when β > 0. Therefore, the smallness condition on the data in Theorem 1.1

is essential.
On the other hand, Theorem 1.2 hold for any small ε > 0. We expect this kind of blow-

up result for any ρ ∈ (1, ρF (N)]. But we could not show this. Our interval of exponents in
(1.13) is not satisfactory. Also, we can obtain the estimate on the life-span Tε of u as ε → 0
in (3.11) later, but we are not sure whether it is optimal. In Theorem 1.3 the estimate on Tε
has no meaning because ε is not necessarily small.
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Throughout this paper, by Ci(a, b, . . .) or ci(a, b, . . .) denote several positive constants
depending on a, b, . . . . Without confusions, denote them only by C or c which are changed
from line to line. By ‖ · ‖X we denote the norm in the Banach space X. By ‖ · ‖ we simply

denote the L2-norm in the Lebesgue space L2 = L2(RN).
In Section 2 we prove Theorem 1.1. In Section 3 we first show Lemma 1.1. Based on it,

we prove both Theorem 1.2 and Theorem 1.3.

2. Global existence for small data in the supercritical exponent

Let u ∈ XT be a weak solution to{
utt −∆u+ b(t)ut = f (u) , (t, x) ∈ R+ × RN

(u, ut )(0, x) = (u0, u1)(x) , x ∈ RN ,
(2.1)

whose support is in Bt+L = {x; |x| ≤ t + L}. Here, the semilinear term satisfies (1.3) and
b0 = 1 without loss of generality, that is,

b(t) = (t + 1)−β , 0 ≤ β < 1 . (2.2)

For the proof of Theorem 1.1 it is enough for us to give a priori estimates. We apply the
weighted energy method and introduce the weight

e2ψ , ψ(t, x) = a|x|2
(t + 1)1+β , (2.3)

originally in Todorova and Yordanov [21]. See also Nishihara and Zhai [18]. Then

ψt = −(1 + β)
a|x|2

(t + 1)2+β = −1 + β

t + 1
ψ ,

∇ψ = 2ax

(t + 1)1+β , ∆ψ = 2aN

(t + 1)1+β .
(2.4)

We choose the parameter a as

a = 1 + β

4(2 + δ)
for some small constant δ > 0 , (2.5)

then −b(t)ψt = 1+β
4a |∇ψ|2 = (2 + δ)|∇ψ|2 and so

|∇ψ|2
−ψt = b(t)

2 + δ
(2.6)

and

∆ψ = (1 + β)N

2(2 + δ)

b(t)

t + 1
=:

(
(1 + β)N

4
− δ1

)
b(t)

t + 1
. (2.7)
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Here and after, by δi denote the functions of δ satisfying

δi = δi(δ) > 0 (i = 1, 2, . . .) , δi → 0 as δ → 0 . (2.8)

Under these preparations, we show the following proposition, which yields Theorem 1.1.

PROPOSITION 2.1. For 0 ≤ t < T and ε = 3δ1, define

M(t) = sup
0<τ<t

{
(τ + 1)

(1+β)(N+2)
2 −ε

∫
RN
e2ψ(u2

t + |∇u|2)(τ, x)dx

+(τ + 1)
(1+β)N

2 −ε
∫

RN
e2ψu2(τ, x)dx

}
.

(2.9)

If M(t) ≤ µ(
 1) for some positive constant, then it holds

M(t)+
∫ t

0

[
(τ + 1)

(1+β)N
2 +1−ε

∫
RN
e2ψu2

t (τ, x)dx

+(τ + 1)
(1+β)N

2 +β−ε
∫

RN
e2ψ |∇u|2(τ, x)dx

+(τ + 1)
(1+β)N

2 −1−ε
∫

RN
e2ψu2(τ, x)dx

]
dτ

≤ CI 2
0 .

(2.10)

PROOF OF PROPOSITION 2.1. Multiplying (2.1) by e2ψut and e2ψu, we have

∂

∂t

[
e2ψ

2
(u2
t + |∇u|2)

]
− ∇ · (e2ψut∇u)

+e2ψ
(
b(t)− |∇ψ|2

−ψt − ψt

)
u2
t + e2ψ

−ψt |ψt∇u− ut∇ψ|2︸ ︷︷ ︸
(#1)

= ∂

∂t
[e2ψF(u)] − 2e2ψψtF (u) (F

′(u) = f (u)) ,

(2.11)

and

∂

∂t

[
e2ψ

(
uut + b(t)

2
u2

)]
− ∇ · (e2ψu∇u)

+e2ψ
{
|∇u|2 +

(
− ψt + β

2(1 + t)

)
b(t)u2 + 2u∇ψ · ∇u︸ ︷︷ ︸

(#2)

−2ψtuut − u2
t

}

= e2ψuf (u) .

(2.12)

When b(t) ≡ 1, the desired estimates were obtained by (2.11) and (2.12) ([21]), but in our
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problem we change (#1) and (#2) as follows:

(#1) = e2ψ

−ψt
(
ψ2
t |∇u|2 − 2ψtut∇u · ∇ψ + u2

t |∇ψ|2)
≥ e2ψ

−ψt
(

1

5
ψ2
t |∇u|2 − 1

4
u2
t |∇ψ|2

)

= e2ψ
{

1

5
(−ψt)|∇u|2 − b(t)

4(2 + δ)
u2
t

}
by (2.6)

(2.13)

and

(#2) = 4e2ψu∇u · ∇ψ − e2ψ∇(u2) · ∇ψ
= 4e2ψu∇u · ∇ψ − ∇ · (e2ψu2∇ψ)+ 2e2ψu2|∇ψ|2 + e2ψ(∆ψ)u2 .

(2.14)

Hence, (2.11) and (2.12), respectively, change to

∂

∂t

[
e2ψ

2
(u2
t + |∇u|2)

]
− ∇ · (e2ψut∇u)

+e2ψ
{((

3

4
− 1

2 + δ

)
b(t)− ψt

)
u2
t + −ψt

5
|∇u|2

}

≤ ∂

∂t
[e2ψF(u)] − 2e2ψψtF (u)

(2.15)

and

∂

∂t

[
e2ψ

(
uut + b(t)

2
u2

)]
− ∇ · {e2ψ(u∇u+ u2∇ψ)}

+e2ψ
{

|∇u|2 + 4u∇u · ∇ψ + (−ψtb(t)+ 2|∇ψ|2)u2︸ ︷︷ ︸
(#3)

+
(
β + (1 + β)N

2
− 2δ1

)
b(t)

2(t + 1)
u2 − 2ψtuut − u2

t

}
= e2ψuf (u) .

(2.16)

By (2.6),

(#3) = |∇u|2 + 4u∇u · ∇ψ + (4 + δ)|∇ψ|2u2

=
(

1 − 4

4 + δ/2

)
|∇u|2 + δ

2
|∇ψ|2u2 + ∣∣ 2√

4 + δ/2
∇u+ √

4 + δ/2u∇ψ∣∣2

≥ δ2(|∇u|2 + b(t)(−ψt)u2) .

(2.17)

To change the forms of (#2) and (#3) is a key point in the supercritical case, especially, to

derive the last term e2ψ(∆ψ)u2 in (2.14). Hence, integrating (2.16) with (2.17) over RN , we
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get

d

dt

∫
RN
e2ψ

(
uut + b(t)

2
u2

)
dx

+
∫

RN
e2ψ

{
δ2(|∇u|2 + b(t)(−ψt )u2)+

(
β + (1 + β)N

2
− 2δ1

)
b(t)

2(t + 1)
u2

−2ψtuut − u2
t

}
dx

≤
∫

RN
e2ψuf (u)dx .

(2.18)

To cover the bad term −u2
t in the second term of (2.18), we integrate (2.15) over RN and

multiply it by (t + t0)
β (t0 � 1) to get

d

dt

[
(t + t0)

β

∫
RN

e2ψ

2
(u2
t + |∇u|2)dx

]
− β

(t + t0)1−β

∫
RN

e2ψ

2
(u2
t + |∇u|2)dx

+
∫

RN
e2ψ

{(
1

4
+ (−ψt )(t + t0)

β

)
u2
t + (−ψt)(t + t0)

β

5
|∇u|2

}
dx

≤ (t + t0)
β

[
d

dt

∫
RN
e2ψF(u)dx − 2

∫
RN
ψtF (u)dx

]
=: (NL)1 .

(2.19)

We now add (2.19) to ν·(2.18) (0 < ν 
 1):

d

dt
Ê(t)+ Ĥ (t)

:= d

dt

∫
RN
e2ψ

{
(t + t0)

β

2
(u2
t + |∇u|2)+ νuut︸︷︷︸

(#4)

+νb(t)
2

u2
}
dx

+
∫

RN
e2ψ

{(
1

4
− ν + (−ψt )(t + t0)

β − β

2(t + t0)1−β

)
u2
t

+
(
(−ψt )(t + t0)

β

5
+ νδ2 − β

2(t + t0)1−β

)
|∇u|2

+νδ2b(t)(−ψt)u2 +
(
β + (1 + β)N

2
− 2δ1

)

× νb(t)

2(t + 1)
u2 −2νψtuut︸ ︷︷ ︸

(#5)

}
dx

≤ (NL)2 ,

(2.20)
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where by the form (NL)1 in (2.19)

(NL)2 = d

dt

[
(t+t0)β

∫
RN
e2ψF(u)dx

]
+C

∫
RN
e2ψ(1+(t+t0)β(−ψt))|u|ρ+1dx . (2.21)

The terms (#4) and (#5) are absorbed in the other good terms by choosing small parameters
ν, δ2(ν 
 δ2) and large parameter t0:

|(#4)| ≤ δ2νb(t)

2
u2 + ν

δ2

(t + t0)
β

2
u2
t , (2.22)

|(#5)| ≤ 1

2
(−ψt )(t + t0)

βu2
t + 2ν2b(t)(−ψt)u2 . (2.23)

In the results, denoting

E(t) =
∫

RN
e2ψ(u2

t + |∇u|2)(t, x)dx , (2.24)

Eψ(t) =
∫

RN
e2ψ(−ψt)(u2

t + |∇u|2)(t, x)dx (2.25)

and, for g(t, x) ≥ 0

J (t; g) =
∫

RN
e2ψg(t, x)dx , (2.26)

Jψ(t; g) = J (t; (−ψt)g) =
∫

RN
e2ψ(−ψt )g(t, x)dx , (2.27)

we have

c0(t + t0)
βE(t)+ (1 − δ2)

νb(t)

2
J (t; u2)

≤ Ê(t) ≤ C0(t + t0)
βE(t)+ (1 + δ2)

νb(t)

2
J (t; u2)

(2.28)

and

Ĥ (t) ≥ c1(δ)(E(t)+ (t + t0)
βEψ(t)+ b(t)Jψ(t; u2))

+β + (1+β)N
2 − 2δ1

t + 1
· νb(t)

2
J (t; u2) .

(2.29)

The coefficient (β + (1+β)N
2 − 2δ1)/(t + 1) of νb(t)2 J (t; u2) in (2.29) is important, for which

the parameter a was chosen in (2.5). For a moment we put

B = β + (1 + β)N

2
(2.30)
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and, by (2.28)–(2.29), multiply (2.20) by (t + t0)
B−3δ1 to get

d

dt

[
(t + t0)

B−3δ1Ê(t)
] + (t + t0)

B−3δ1

(
c1(δ)− C0(B − 3δ1)

(t + t0)1−β

)
E(t)

+(t + t0)
B+β−3δ1 · c1(δ)Eψ(t)+ (t + t0)

B−β−3δ1 · c1(δ)Jψ(t; u2)

+(t + t0)
B−3δ1

(
B − 2δ1

t + 1
− (B − 3δ1)(1 + δ2)

t + t0

)
νb(t)

2
J (t; u2)

≤ (t + t0)
B−3δ1(NL)2 ,

(2.31)

and hence, by integrating (2.31) over [0, t] and denoting 3δ1 = ε,

(t + 1)B+β−εE(t)+ (t + 1)B−β−εJ (t; u2)

+
∫ t

0

[
(τ + 1)B−εE(τ)+ (τ + 1)B+β−εEψ(τ)

+(τ + 1)B−1−β−εJ (τ ; u2)+ (τ + 1)B−β−εJψ(τ ; u2)
]
dτ

≤ CI 2
0 + C

∫ t

0
(τ + 1)B−ε(NL)2dτ .

(2.32)

Considering
∫ t

0 (τ + 1)B−εE(τ)dτ to be estimated, we multiply (2.19) by (t + t0)
B−β+1−ε

and integrate it over [0, t] to get

(t + 1)B+1−εE(t)− C(B − β + 1 − ε)

∫ t

0
(τ + 1)B−εE(τ)dτ

+c2(δ)

∫ t

0

[
(τ + 1)B−β+1−εJ (τ ; u2

t )+ (τ + 1)B+1−εEψ(τ)
]
dτ

≤ CI 2
0 + C

∫ t

0
(τ + t0)

B−β+1−ε(NL)1dτ .

(2.33)

Adding (2.32) to µ·(2.33) (0 < µ 
 1), we have

(t + 1)
(1+β)(N+2)

2 −εE(t)+ (t + 1)
(1+β)N

2 −εJ (t; u2)

+
∫ t

0

[
(τ + 1)

(1+β)N
2 +1−εJ (τ ; u2

t )+ (τ + 1)
(1+β)N

2 +β−εJ (τ ; |∇u|2)

+(τ + 1)
(1+β)N

2 −1−εJ (τ ; u2)
]
dτ

≤ CI 2
0 + (NL)

(2.34)
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(we dropped the terms about Eψ, Jψ in the left-hand side) with

(NL) ≤ C(t + 1)
(1+β)(N+2)

2 −εJ (t; |u|ρ+1)

+C
∫ t

0

[
(τ + 1)

(1+β)N
2 +β−εJ (τ ; |u|ρ+1)

+(τ + 1)
(1+β)(N+2)

2 −β−εJψ(τ ; |u|ρ+1)
]
dτ .

(2.35)

We now go to estimate (NL) by M(t), and our goal is (2.40) below from (2.34).

LEMMA 2.1 (Gagliardo-Nirenberg). Let p, q, r (1 ≤ p, q, r,≤ ∞) and σ ∈ [0, 1]
satisfy

1

p
= σ

(
1

r
− 1

N

)
+ (1 − σ)

1

q

except for p = ∞ or r = N when N ≥ 2. Then for some constant C = C(p, q, r,N) > 0 it
holds

‖g‖Lp ≤ C‖g‖1−σ
Lq ‖∇g‖σLr

for any g ∈ C1
0 (R

N)).

Since

J (t; |u|ρ+1) =
∫

RN
e2ψ |u|ρ+1dx =

∫
RN

|e 2
ρ+1ψu|ρ+1dx

and

∇(e 2
ρ+1ψu) = 2

ρ + 1
e

2
ρ+1ψ(∇ψ)u+ e

2
ρ+1ψ∇u,

choosing p = ρ + 1, q = r = 2 and σ = N(ρ−1)
2(ρ+1) (< 1), we have

J (t; |u|ρ+1)
1
ρ+1

≤ C

( ∫
RN
e

4
ρ+1ψu2dx

) 1−σ
2

( ∫
RN
e

4
ρ+1ψ |∇ψ|2u2dx +

∫
RN
e

4
ρ+1ψ |∇u|2dx

) σ
2

and

J (t; |u|ρ+1)

≤ C(t + 1)−
(1+β)(ρ+1)σ

2 J (t; u2)
ρ+1

2 + CJ(t; u2)
(ρ+1)(1−σ)

2 J (t; |∇u|2) (ρ+1)σ
2 .

(2.36)



338 KENJI NISHIHARA

Hence, by simple calculations of the exponent of t + 1,

(t + 1)
(1+β)(N+2)

2 −εJ (t; |u|ρ+1)≤ C(t + 1)−
(1+β)N

2 (ρ−1− 2
N )+ ρ−1

2 εM(t)
ρ+1

2

≤ CM(t)
ρ+1

2

(2.37)

since ρ > ρF (N) and ε = 3δ1 is small. Similarly,∫ t

0
(τ + 1)

(1+β)N
2 +β−εJ (τ ; |u|ρ+1)dτ

≤ C

∫ t

0
(τ + 1)−1− (1+β)N

2 (ρ−1− 2
N )+ ρ−1

2 εM(τ)dτ .

(2.38)

Since −ψt = 1+β
t+1ψ , for small µ > 0

Jψ(t; |u|ρ+1) ≤ C(t + 1)−1
∫

RN
e2ψψ|u|ρ+1dx ≤ C(t + 1)−1

∫
RN
e(2+µ)ψ |u|ρ+1dx.

Hence, similar to (2.36) and (2.38),∫ t

0
(τ + 1)

(1+β)(N+2)
2 −β−εJψ(τ ; |u|ρ+1)dτ

≤ C

∫ t

0
(τ + 1)−1−β− (1+β)N

2 (ρ−1− 2
N
)+ ρ−1

2 εM(τ)dτ .

(2.39)

Combining (2.9), (2.34)–(2.35) with (2.36)–(2.39), we obtain

(1 − CM(t)
ρ−1

2 )M(t)

+
∫ t

0

[
(τ + 1)

(1+β)N
2 +1−εJ (t; u2

t )+ (τ + 1)
(1+β)N

2 −εJ (τ ; |∇u|2)

+(τ + 1)
(1+β)N

2 −1−εJ (τ ; u2)
]
dτ

≤ CI 2
0 + C

∫ t

0
(τ + 1)−1− 1+β

2 (ρ−1− 2
N
)+ ρ−1

2 εM(τ)dτ .

(2.40)

Therefore, when M(t) ≤ (1/2C)
2
ρ−1 , using the Gronwall inequality we have the desired

estimate (2.10).

3. Blow-up properties

We first prove Lemma 1.1, for which we need the following comparison lemma.

LEMMA 3.1 (Comparison lemma). Suppose that the functions k(t) and h(t) satisfy

a1(t)k
′′(t)+ k′(t) ≥ a2(t)|k|αk(t)

a1(t)h
′′(t)+ h′(t) ≤ a2(t)|h|αh(t)

(3.1)
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for any t ≥ 0, where α ≥ 0 and ai(t) > 0(t ≥ 0), i = 1, 2. If

k(0) > h(0) , k′(0) ≥ h′(0) (3.2)

or

k(0) ≥ h(0) , k′(0) > h′(0) , (3.2)′

then it holds

k′(t) > h′(t) and k(t) > h(t) for any t > 0 . (3.3)

The proof is given in [12] and omitted.

REMARK 3.1. If h(t) ≡ 0, then k(t) ≥ 0 provided that k(0) ≥ 0, k′(0) ≥ 0 with
k(0)+ k′(0) > 0. Hence the absolute value mark can be deleted in (3.1)1.

PROOF OF LEMMA 1.1. Let Φ(t) ≥ 0 be the solution to

Φ ′(t) = δ0c0(t + 1)β−γ Φ(t)1+ α
2 , Φ(0) = Ψ (0) ≥ 0 (3.4)

with

δ0 = c1Φ(0)
α
2 (0 < c1 
 1) . (3.5)

Then, since − 2
α
d
dt
Φ(t)− α

2 = δ0c0(t + 1)β−γ ,

Φ(t) =




[
Φ(0)−

α
2 − αδ0c0

2(1 + β − γ )

(
(t + 1)1+β−γ − 1

)]− 2
α

(β − γ > −1)

[
Φ(0)−

α
2 − αδ0c0

2
log (t + 1)

]− 2
α

(β − γ = −1)

and hence Φ(t) ↗ ∞ as t → T0 − 0, where

T0 =




(
2(1 + β − γ )

αδ0c0
Φ(0)−

α
2 + 1

) 1
1+β−γ − 1 (β − γ > −1)

e
2

αδ0c0
Φ(0)−

α
2 − 1 (β − γ = −1) .

If Φ(0) = ε, then by (3.5), T0 is estimated as

T0 ≤
{
Cε

− α
1+β−γ (β − γ > −1)

eCε
−α

(β − γ = −1) .
(3.6)

We now show Ψ (t) ≥ Φ(t) using Lemma 3.1. Since β − γ ≤ −β ≤ 0 by (1.18),

Φ ′′(t)= (δ0c0)
2(2 + α)

2
(t + 1)2(β−γ )Φ(t)1+α + δc0(β − γ )(t + 1)β−γ−1Φ(t)1+ α

2
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≤ (δ0c0)
2(2 + α)

2
(t + 1)2(β−γ )Φ(t)1+α

and

(t + 1)βΦ ′′(t)+Φ ′(t) ≤ c0(t + 1)β−γ Φ(t)1+α · δ0

(
(2 + α)δ0c0

2
(t + 1)2β−γ +Φ(0)−

α
2

)
.

Hence, the choice of δ in (3.5) means

δ0

(
(2 + α)δ0c0

2
(t + 1)2β−γ +Φ(0)−

α
2

)
≤ c1 ·

(
(2 + α)c0c1

2
Φ(0)α + 1

)
≤ 1

when Φ(0) ≤ C, and, by (1.18)

(t + 1)βΦ ′′(t)+ Φ ′(t) ≤ c0(t + 1)β−γ Φ(t)1+α. (3.7)

By Remark 3.1, we can take k(t) = Ψ (t), h(t) = Φ(t) in Lemma 3.1 and conclude Ψ (t) ≥
Φ(t) ≥ 0 and the blow-up of Ψ (t) within a finite time including the estimate (1.19) on the
life-span. �

REMARK 3.2. If L > 1 and β − γ < 0, then (t + L)β−γ ≥ Lβ−γ (t + 1)β−γ . Hence,
even if Ψ (t) satisfies

(t + 1)βΨ ′′(t)+ Ψ ′(t) ≥ c0(t + L)β−γ Ψ (t)1+α

Ψ (0) ≥ 0 , Ψ ′(0) ≥ 0 with Ψ (0)+ Ψ ′(0) > 0 ,
(3.8)

instead of (1.17), then Lemma 1.1 holds.

We now prove Theorems 1.2 and 1.3.

PROOF OF THEOREM 1.2. Let u ∈ XT be a local solution to (1.1) with f (u) = |u|ρ
satisfying supp{u(t, ·)}⊂ Bt+L. We define

Ψ (t) =
∫

RN
u(t, x)dx =

∫
Bt+L

u(t, x)dx , (3.9)

then, by 1/ρ + (ρ − 1)/ρ = 1

|Ψ (t)| ≤ C

(∫
Bt+L

dx

) ρ−1
ρ

(∫
RN

|u|ρdx
) 1
ρ ≤ C(t + L)

N(ρ−1)
ρ ‖u(t)‖Lρ .

Hence, by integrating (1.1) over RN ,

Ψ ′′(t)+ b(t)Ψ ′(t) = ‖u(t)‖ρLρ ≥ c(t + L)−N(ρ−1)|Ψ (t)|ρ

and

(t + 1)βΨ ′′(t)+ Ψ ′(t) ≥ c(t + L)β−N(ρ−1)|Ψ (t)|ρ . (3.10)
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By (1.14), (1.17)2 follows and Ψ (t) ≥ 0. Hence Lemma 1.1 and Remark 3.2 yield the blow-
up of Ψ (t), and the estimate of life-span Tε

Tε ≤



Cε

− ρ−1
1+β−N(ρ−1) ρ < 1 + 1 + β

N

eCε
−(ρ−1)

ρ = 1 + 1 + β

N
,

(3.11)

which completes the proof of Theorem 1.2. �

PROOF OF THEOREM 1.3. Let u ∈ XT be a local solution to (1.1) with f (u) =
|u|ρ−1u whose support is in Bt+L. We define

Ψ (t) = 1

2

∫
RN
u2(t, x)dx = 1

2

∫
Bt+L

u2(t, x)dx . (3.12)

Since Ψ ′(t) = ∫
RN (uut )(t, x)dx, (1.17)2 follows from (1.16)2.

Integrating (1.1)× ut over RN , we have

d

dt
E0(t) := d

dt

[
1

2
(‖ut (t)‖2 + ‖∇u‖2)− 1

ρ + 1

∫
RN

|u|ρ+1dx

]
= −(t + 1)−β‖ut (t)‖2 ≤ 0

and hence E0(t) ≤ E0(0) ≤ 0 by (1.16)1. Therefore,

Ψ ′′(t)= ‖ut (t)‖2 +
∫

RN
(uutt )(t, x)dx

= ‖ut (t)‖2 +
∫

RN
u(∆u− (t + 1)−βut + |u|ρ−1u)dx

= ‖ut (t)‖2 − ‖∇u‖2 − (t + 1)−β
∫

RN
(uut )(t, x)dx +

∫
RN

|u|ρ+1(t, x)dx

= −(t + 1)−βΨ ′(t)+ (−E0(t))+ 2‖ut (t)‖2 + ρ − 1

ρ + 1

∫
RN

|u|ρ+1dx .

(3.13)

Using 1
(ρ+1)/2 + 1

(ρ+1)/(ρ−1) = 1, we have

Ψ (t) ≤ C(t + L)
N(ρ−1)
ρ+1

( ∫
RN

|u|ρ+1(t, x)dx

) 2
ρ+1

or ∫
RN

|u|ρ+1(t, x)dx ≥ c(t + L)−
N(ρ−1)

2 Ψ (t)1+ ρ−1
2 . (3.14)

From (3.13)–(3.14) it follows that

(t + 1)βΨ ′′(t)+ Ψ ′(t) ≥ c(t + L)β−N(ρ−1)
2 Ψ (t)1+ ρ−1

2 . (3.15)
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Thus, when (1.15) or 2β ≤ N(ρ−1)
2 ≤ β + 1, the blow-up of Ψ (t) occurs. �
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