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On the Existence of a Darling-Kac Set for the Renormalized Rauzy Map

Kae INOUE and Hitoshi NAKADA

Keio University

Abstract. It is well-known that the renormalized Rauzy map is conservative and ergodic. In this paper, we
show that a Darling-Kac set exists for the renormalized Rauzy map. This implies the pointwise dual ergodicity of
this map.

1. Introduction

Let d be a positive integer larger than 1. We denote by E the d × d identity matrix and
by I (i, j) the d × d matrix defined by

I (i, j)k,l =
{

1 (k, l) = (i, j) ,

0 otherwise .

We also denote by π an irreducible permutation of {1, 2, . . . d} where a permutation π is said
to be irreducible if π{1, . . . , k} = {1, . . . , k} implies k = d . We consider λ = (λ1, . . . , λd),

λi > 0 for 1 ≤ i ≤ d ,
∑d
i=1 λi = 1 and put β0 = 0 and βi = βi(λ) = ∑i

j=1 λj for

1 ≤ i ≤ d . We define λπ = (λπ1 , λ
π
2 , . . . , λ

π
d ) by λπi = λπ−1(i) for 1 ≤ i ≤ d . The interval

exchange map T of [0, 1) associated to (π, λ) is defined by T x = x − βi−1(λ)+ βπ(i)−1(λ
π )

for x ∈ [0, 1). Since π is irreducible, T [0, τ ) = [0, τ ) implies τ = 1. In the sequel, we
assume T satisfies the infinite distinct orbit condition, i.e.

1. {T nβi}n∈Z ∩ {T nβj }n∈Z = ∅ for any βi and βj , 1 ≤ i �= j ≤ d − 1.
2. {T nβi}n∈Z consists of infinitely many points for 1 ≤ i ≤ d − 1.

We consider a set of d-interval exchange maps and a map on this set. M. Keane [3] conjec-
tured that almost every interval exchange map is uniquely ergodic. To discuss this problem,
G. Rauzy [7] introduced a map on a set of interval exchange maps to itself which we call the
Rauzy map or the Rauzy induction. Then W. Veech [10] showed that a.e. interval exchange
map is uniquely ergodic if every “renormalized” Rauzy map is conservative with respect to
Lebesgue measure. Indeed he showed that it is conservative ergodic (but its absolutely contin-
uous invariant measure is not finite). A. Zorich [11] considered an induced map of a “renor-
malized” Rauzy map which is finite measure preserving and then A. Avila and A. Bufetov [2]
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showed that the correlation of Zorich’s map is exponential decay. Moreover T. Morita [4],
[5] discussed the central limit theorem and some other properties of the renormalized Rauzy-
Veech-Zorich map. In this paper, we discuss the ergodic property of the renormalized Rauzy
map as an infinite measure preserving transformation. We show that the renormalized Rauzy
map is pointwise dual ergodic in the sense of J. Aaronson [1].

Let T be a measure preserving transformation on a measure space (X,B, µ)withµ(X) =
∞. T is said to be conservative if for any A ∈ B, µ(A) > 0, there exists a positive integer n

such that µ(T −nA ∩ A) > 0 and be ergodic if T −1A = A, A ∈ B implies either µ(A) = 0
or µ(Ac) = 0, respectively. In the case µ(X) = ∞, we can not expect the strong law of
large numbers such as the pointwise ergodic theorem even if T is conservative and ergodic.
J. Aaronson introduced a notion of a strong law of large numbers in generalized sense ; a law
of large numbers for T is a function L : ∏∞{0, 1} → [0,∞] such that for any measurable
subset A, for µ-a.e. x ∈ X,

L(1A(x), 1A(T x), 1A(T
2x), . . .) = µ(A) .

Then he gave some classes of transformations having this property. The notion of the point-
wise dual ergodicity is one of sufficient conditions for T having a law of large numbers. A
measure preserving transformation T on a measure space (X,B, µ) is said to be pointwise
dual ergodic if there is a sequence of positive numbers (an) such that

lim
n→∞

1

an

n−1∑
k=0

T̂ kf =
∫

X
f dµ µ-a.e.

for any integrable function f , where T̂ is the pre-dual operator of T , i.e.
∫

X T̂ f · g dµ =∫
X f · g ◦ T dµ for f ∈ L1(µ), g ∈ L∞(µ), see [1].

A subset A of X, 0 < µ(A) < ∞, is said to be a Darling-Kac set for a conservative
ergodic transformation T if there is a sequence of positive numbers (an) such that

lim
n→∞

1

an

n−1∑
k=0

T̂ k1A = µ(A)

uniformly.
Suppose that (Xi)∞i=1 is a sequence of random variables defined on a probability space

(Ω,B,Pr). (Xi) is said to be continued fraction mixing if the following holds; there exists
ψ(k), k ≥ 1, such that for any positive integer k and n

|Pr(A ∩ B)− Pr(A)Pr(B)| < Pr(A)Pr(B)ψ(k)

for any measurable sets A generated by X1, . . . , Xn and B generated by Xn+k+m, m ≥ 0 and
ψ(k) → 0 as k → ∞ with ψ(1) < ∞.

Suppose that there exists a subset D ⊂ X of finite measure such that the first return map
of T on D with a partition {Bi, i ≥ 1} of A induces a continued fraction mixing process, i.e.
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1. {T −nBi, i ≥ 1, n ≥ 0} generates the set of measurable subset of D

2. {Xn, n ≥ 1}, Xn(x) = i if T n−1
D (x) ∈ Bi , is continued fraction mixing.

ThenD is a Darling-Kac set and T is pointwise dual ergodic (see J. Aaronson [1], 3.7.5).
In this paper, we will show the following.

MAIN RESULT. There exists a Darling-Kac set for the renormalized Rauzy map, (see
Theorem in Section 2).

To show this theorem, we show that there exists a “good” set, i.e. the first return map
on this set satisfies conditions for a Kuzmin type theorem by F.Schweiger [8]. Because
Schweiger’s theorem implies that the map is continued fraction mixing (see H. Nakada and
R. Natsui [6]), we see that the “good” set is a Darling-Kac set. We note the result by A. Avila
and A. Bufetov’s result [2] does not imply that Zorich’s map is continued fraction mixing.

2. Definitions

First we define a set of irreducible permutations called Rauzy class. We define two maps
a and b defined on the set of d-permutations by

a(π)(j) =


π(j) if j ≤ π−1(d) ,

π(d) if j = π−1(d)+ 1 ,
π(d)+ 1 if π(j) = d ,

and

b(π)(j) =


π(j) if π(j) ≤ π(d) ,

π(j)+ 1 if π(d) < π(j) < d ,

π(d)+ 1 if π(j) = d ,

for an irreducible permutation π . The Rauzy class R(π0) is the set of permutations which are
mapped from π0 by compositions of a and b. We define

||λ|| =
d∑
i=1

λi for λ =


λ1
...

λd




and

∆d−1 =






λ1
...

λd


 : λi > 0, 1 ≤ i ≤ d,

d∑
i=1

λi = 1


 .

Hereafter, we regard λ as a column vector. Put

∆d−1
a = {λ ∈ ∆d−1, λd < λπ−1(d)} ,
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∆d−1
b = {λ ∈ ∆d−1, λd > λπ−1(d)} ,

and denote by ι the projection from the positive cone of Rd to the open regular simplex∆d−1

i.e.

ι(λ) = λ

||λ||
for a positive vector λ. We also define n× n matrices A(π, a) and A(π, b) by{

A(π, a) = (E + I (π−1(d), d))P (τπ−1(d)) ,

A(π, b) = E + I (d, π−1(d)) ,

with permutations τk defined by

τk(j) =


j if j ≤ k ,

j + 1 if k < j < d ,

k + 1 if j = d ,

and the d × d matrix P defined by

Pk,l(π) =
{

1 if l = π(k) ,

0 otherwise .

For λ ∈ ∆d−1
γ , γ = a or b, we put

λ′ = A−1(π, γ )λ (1)

and define

T (λ, π) = (ι(λ′), γ (π)) for λ ∈ ∆d−1 . (2)

Thus the map T is defined on ∆d−1 × R(π0) and is a 2-1 map. Indeed, A−1(π, γ )∆d−1
γ is a

(d − 1)-open simplex as well as ∆d−1
γ , and

T (∆d−1
γ × {π}) = ∆d−1 × {π1}, π1 = γ (π) (3)

for γ = a or b. Moreover, T has an absolutely continuous invariant measure (not finite
measure) and T is conservative ergodic with respect to this measure (see W. Veech [10]). We
call T the renormalized Rauzy map. Note that T is defined for each Rauzy class R(π). For

(λ, π0) ∈ ∆d−1 × {π0}, we define a sequence Γ1, Γ2, . . . by

Γk = Γk(λ, π0) =


a if λ

(k−1)
d < λ

(k−1)

(π
(k−1)
0 )−1(d)

b if λ
(k−1)
d > λ

(k−1)

(π
(k−1)
0 )−1(d)

where (λ(k), π(k)0 ) = T k(λ, π0) and π(k−1)
0 = Γk−1 · · ·Γ1(π0). For a fixed finite sequence

(γ1, . . . , γn), γi = a or b, 1 ≤ i ≤ n, we denote by C(γ1, . . . , γn) the cylinder set induced
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from (γ1, . . . , γn) i.e.

C(γ1, . . . , γn) = {(λ, π0) : λ ∈ ∆d−1, (Γ1, . . . , Γn) = (γ1, . . . , γn)} .
We rewrite the main result precisely as follows :

THEOREM. If {λ ∈ ∆d−1 : (λ, π0) ∈ C(γ1, . . . , γn)} is bounded away from ∂∆d−1,
then C(γ1, . . . , γn) is a Darling-Kac set.

We denote by η the Euclidean distance between {λ ∈ ∆d−1 : (λ, π0) ∈ C(γ1, . . . , γn)}
and ∂∆d−1. We define

ĵ (λ, π0) =




min{j ≥ 1 : T j (λ, π0) ∈ C(γ1, . . . , γn)}
if there exists j ≥ 1 such that T j (λ, π0) ∈ C(γ1, . . . , γn) ,

∞
if T j (λ, π0) /∈ C(γ1, . . . , γn) for all j ≥ 1 ,

for (λ, π0) ∈ C(γ1, . . . , γn). Because T is conservative, ĵ (λ, π0) < ∞ for a.e. (λ, π0) ∈
C(γ1, . . . , γn) with respect to the volume measure of the cylinder set. For (λ, π0) ∈
C(γ1, . . . , γn) with ĵ (λ, π0) < ∞, we put γj = Γj (λ, π0), for n + 1 ≤ j ≤ ĵ (λ, π0),

where ĵ (λ, π0) > n. Then we see that

(λ, π0) ∈ C(γ1, . . . , γĵ(λ,π0)
, γ1, . . . , γn) .

Moreover we have

T ĵ (λ,π0)C(γ1, . . . , γĵ(λ,π0)
, γ1, . . . , γn) = C(γ1, . . . , γn) (4)

and

T j (λ, π0) /∈ C(γ1, . . . , γn)

for 1 ≤ j < ĵ(λ, π0). The identity (4) follows from (3) by induction. We note that the
cardinality of such cylinder sets is countable. Thus we have a countable partition

{C(γ1, . . . , γĵ , γ1, . . . , γn)}
of C(γ1, . . . , γn) (mod. 0). We denote by {ξ1, ξ2, . . .}, this countable partition of
C(γ1, . . . , γn). From the definition, we have

T ĵ C(γ1, . . . , γĵ , γ1, . . . , γn) = C(γ1, . . . , γn)

for all such C(γ1, . . . , γĵ , γ1, . . . , γn)’s, here, ĵ = ĵ (λ, π0) for some (λ, π0) ∈
C(γ1, . . . , γn). For each C(γ1, . . . , γĵ , γ1, . . . , γn), since T ĵ is given by concatenations of
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linear maps of the form A−1(π, γ ) and ι, C(γ1, . . . , γĵ , γ1, . . . , γn) is a (d − 1)-simplex. We

define

T (λ, π0) = T ĵ (λ, π0)

for (λ, π0) ∈ C(γ1, . . . , γĵ , γ1, . . . , γn). From the definition of ĵ , T is the first return map of

T to C(γ1, . . . , γn).

3. Proof of Theorem

In the sequel, the second coordinate π of (λ, π) is always π0 when we concentrate our

discussion only on C(γ1, . . . , γn). Thus we can identify (λ, π0) ∈ ∆d−1 × {π0} with λ ∈
∆d−1. So we regard all subsets or points in∆d−1×{π0} as sets or points in∆d−1, respectively.
Now we will show that T satisfies the conditions (A), (B), (C), (D), (E) and (F) by F.Schweiger
[8]. In our case, these can be rewritten as follows :
We put

< ξi1 , . . . , ξiu >= ξi1 ∩ T −1ξi2 ∩ · · · ∩ T −(u−1)ξiu .

(A)

lim
u→∞ sup

i1,...,iu

diam < ξi1 , . . . , ξiu >= 0 ,

“diam” means the diameter by the Euclidean distance. Hereafter we consider the
Euclidean distance.

(B), (D) and (G)

T u < ξi1 , . . . , ξiu >= C(γ1, . . . , γn) (5)

for any i1, . . . , iu, u ≥ 1.

Although, the condition (B), (D) and (G) are different shapes in F. Schweiger [8]
all of them follow from the identity (5), which is a consequence of (4).

Let ω(ξi1 , . . . , ξiu ) is a function defined by

∫
E

ω(ξi1 , . . . , ξiu )dν =
∫
T −1E∩<ξi1 ,...,ξiu>

dν

for any Borel subset of C(γ1, . . . , γn), where ν denotes the normalized volume
measure of C(γ1, . . . , γn).
(C) There exists a constant C1 ≥ 0 (independent of ξi1 , . . . , ξiu ) such that

ess sup
λ∈C(γ1,...,γn)

ω(ξi1 , . . . , ξiu )(λ) ≤ C1 ess inf
λ∈C(γ1,...,γn)

ω(ξi1 , . . . , ξiu )(λ) .
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(E) For any (ξi1 , . . . , ξiu ), u ≥ 1, there exists a Lipschitz continuous version of
ω(ξi1 , . . . , ξiu ) by the same Lipschitz constant R1, i.e.

|ω(ξi1 , . . . , ξiu )(λ)− ω(ξi1 , . . . , ξiu )(λ
′)| ≤ R1 · ν(< ξi1 , . . . , ξiu >) · d (λ, λ′)

for any λ, λ′ ∈ C(γ1, . . . , γn), where d (·, ·) denotes the Euclidean distance.

We denote by V (ξi1 , . . . , ξiu ) the local inverse of T |u<ξi1 ,...,ξiu>, i.e.

V (ξi1 , . . . , ξiu ) is a map of C(γ1, . . . , γn) to < ξi1 , . . . , ξiu > such that
V (ξi1 , . . . , ξiu ) ◦ T |u<ξi1 ,...,ξiu> and T |u<ξi1 ,...,ξiu> ◦ V (ξi1 , . . . , ξiu ) are the identity maps

of < ξi1 , . . . , ξiu > and C(γ1, . . . , γn), respectively.
(F) There exists a constant R2 ≥ 0 (independent of ξi1 , . . . , ξiu ) such that

d (V (ξi1 , . . . , ξiu )(λ), V (ξi1 , . . . , ξiu )(λ
′)) ≤ R2 · d (λ, λ′)

for any λ, λ′ ∈ C(γ1, . . . , γn).

LEMMA 1. There exists a positive constant δ < 1 such that

diam C(γ1, . . . γn, γ
′
1, . . . γ

′
l , γ1, . . . , γn) < δ · diam C(γ1, . . . , γn)

for any sequence of (γ ′
1, . . . , γ

′
l ), where

diam B = sup{d(λ, λ′) : λ, λ′ ∈ B} B ⊂ Rd .

REMARK. (γ ′
1, . . . , γ

′
l ) can be empty and we always assume that

γ ′
l γ

′
l−1 · · · γ ′

1γn · · · γ1(π0) = π0 .

PROOF. Put

∆d−1(η) = {λ ∈ ∆d−1 : d (λ, λ′) > η for any λ′ ∈ ∂∆d−1} .
Then∆d−1(η) is a (d−1)-open simplex. Moreover for each edge of∆d−1, there corresponds

a parallel edge of ∆d−1(η). Then, the distance of these edges is η. Because the diameter of a
simplex is given by the length of its longest edge, we see

diam ∆d−1(η) < diam ∆d−1 − 2η .

We put

δ = diam (∆d−1)− 2η

diam (∆d−1)
.

For each C(γ1, . . . , γn, γ
′
1, . . . , γ

′
l , γ1, . . . , γn), there exist a positive integer k and a d × d

matrix M such that

T kC(γ1, . . . , γn, γ
′
1, . . . , γ

′
l , γ1, . . . , γn)= ι(MC(γ1, . . . , γn, γ

′
1, . . . , γ

′
l , γ1, . . . , γn))

=C(γ1, . . . , γn) (6)
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and

T kC(γ1, . . . , γn, γ
′
1, . . . , γ

′
l )= ι(MC(γ1, . . . , γn, γ

′
1, . . . , γ

′
l ))

=∆d−1 . (7)

Indeed,M is given by products of matrices of the form A−1(π, γ ). Here,

diam (MC(γ1, . . . , γn, γ
′
1, . . . , γ

′
l , γ1, . . . , γn))

and

diam (MC(γ1, . . . , γn, γ
′
1, . . . , γ

′
l ))

are given by the lengths of their longest edges, respectively. From (6) and (7), it turns out

that the ratio of lengths of parallel edges is less than δ. By applyingM−1, the same holds for
edges of

C(γ1, . . . , γn, γ
′
1, . . . , γ

′
l , γ1, . . . , γn)

and

C(γ1, . . . , γn, γ
′
1, . . . , γ

′
l ) ,

that is, the ratio of lengths of the parallel edges. The ratio of

diamC(γ1, . . . , γn, γ
′
1, . . . , γ

′
l , γ1, . . . , γn)

and

diamC(γ1, . . . , γn, γ
′
1, . . . , γ

′
l )

is less than δ. Since

diam C(γ1, . . . , γn, γ
′
1, . . . , γ

′
l , γ1, . . . , γn)

is given by the length of its longest edge and

C(γ1, . . . , γn, γ
′
1, . . . , γ

′
l ) ⊂ C(γ1, . . . , γn) ⊂ ∆d−1(η) ,

we have the assertion of the lemma. �

For a given sequence γ ′
1, . . . , γ

′
l , γi = a or b for 1 ≤ i ≤ l, we define

r1(γ
′
1, . . . , γ

′
l ) =

{
min {r ≥ 1 : γ ′

r · · · γ ′
r+n−1 = γ1 · · · γn, r + n− 1 ≤ l} if r exists,

∞ otherwise.

...
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rj+1(γ
′
1, . . . , γ

′
l ) =




min {r ≥ rj + n : γ ′
r · · · γ ′

r+n−1 = γ1 · · · γn, r + n− 1 ≤ l}
if rj < ∞ and r exists,

∞ otherwise,

and put

L =
{

max {j : rj < ∞} if r1 < ∞,

0 otherwise.

LEMMA 2. For a given γ ′
1, . . . , γ

′
l ,

diamC(γ1, . . . , γn, γ
′
1, . . . , γ

′
l , γ1, . . . , γn) < δL+1 · diamC(γ1, . . . , γn) .

PROOF. This follows by induction with Lemma 1. �

Let q be the number of k’s, 2 ≤ k ≤ n, such that

(γ1, . . . , γn) = (γk, . . . , γn+k−1)

and

π
(k−1)
0 = γk−1 · · · γ1(π0) = π0 .

We put

σ(u) = sup
ξi1 ,...,ξiu

diam (ξi1 ∩ T −1ξi2 ∩ · · · ∩ T −(u−1)ξiu )

for u ≥ 1. The following Lemma implies that the condition (A) holds.

LEMMA 3. There exists a constant C0 > 0 such that

σ(u) < C0 · (δ 1
q )u .

PROOF. We estimate

diam (ξi1 ∩ T −1ξi2 ∩ · · · ∩ T −(u−1)ξiu )

for any choice of (ξi1 , . . . , ξiu ). From the definition of the partition {ξi}, there exists γ ′
1, . . . , γ

′
l

such that

ξi1 ∩ T −1ξi2 ∩ · · · ∩ T −(u−1)ξiu = C(γ1, . . . , γn, γ
′
1, . . . , γ

′
l , γ1, . . . , γn)

whenever u ≥ q + 1. Then we see that

u ≤ (L+ 1)q .

From Lemma 2, we have

diam (ξi1 ∩ T −1ξi2 ∩ · · · ∩ T −(u−1)ξiu )

diam C(γ1, . . . , γn)
< δL+1
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< (δ
1
q )u .

This shows the assertion of this lemma. �

Now we show that T satisfies (C), (E), and (F) of F. Schweiger [8]. For a given finite
sequence ξi1 , ξi2 , . . . , ξiu of elements of the partition {ξi}, there exists a positive integer k such

that T u = T k on< ξi1 , . . . , ξiu >. Then T k is bijective on< ξi1 , . . . , ξiu > to C(γ1, . . . , γn).
We denote by V (ξi1 , . . . , ξiu ) its local inverse. According to (1) and (2), We have matrices
A1, . . . , Ak of the form A(π, a) or A(π, b) and

V (ξi1 , . . . , ξiu )(λ) = ι(Mλ)

for λ ∈ C(γ1, . . . , γn) with

M = (mi j )1≤i≤d, 1≤j≤d = A1A2 · · ·Ak .
We note M is a non-negative matrix. Moreover, the Jacobian J (M, λ) of V (ξi1 , . . . , ξiu ) is

given by
1

||Mλ||d (see W. Veech [9], 5.2).

From the definition of η, there exists η0 > 0, such that η0 ≤ λi , 1 ≤ i ≤ d , for any
λ ∈ C(γ1, . . . , γn). Then we see the following lemma, which shows the condition (C).

LEMMA 4. sup
λ(u)∈C(γ1,...,γn)

J (M, λ(u)) ≤ 1

ηd0

inf
λ(u)∈C(γ1,...,γn)

J (M, λ(u))

Next, we show the following lemmas. The first one is used in the proof of the later.

LEMMA 5. There exists a constant C2 > 0 such that

C2 · ν(< ξi1 , . . . , ξiu >) ≥ sup
λ(u)∈C(γ1,...,γn)

J (M, λ(u)) .

PROOF. From Lemma 4, we have

ν(< ξi1 , . . . , ξiu >)=
∫
C(γ1,...,γn)

J (M, λ)dν(λ)

≥ inf
λ∈C(γ1,...,γn)

J (M, λ) ·
∫
C(γ1,...,γn)

dν(λ)

≥ ηd0 sup
λ∈C(γ1,...,γn)

J (M, λ) · ν(C(γ1, . . . , γn)) .

This implies the assertion of this lemma. Here we recall that ν is the normalized volume
measure of C(γ1, . . . , γn). �

LEMMA 6. There exists a constant C3 ≥ 0 such that

|J (M, λ)− J (M, λ′)| ≤ C3 · ν(< ξi1 , . . . , ξiu >)||λ− λ′||
for λ, λ′ ∈ C(γ1, . . . , γn) and any (i1, . . . , iu).
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PROOF. We put α = ||Mλ|| =
d∑
i=1

d∑
j=1

mi jλj , β = ||Mλ′|| =
d∑
i=1

d∑
j=1

mi jλ
′
j , and

have

|J (M, λ)− J (M, λ′)| =
∣∣∣∣ 1

αd
− 1

βd

∣∣∣∣
=

∣∣∣∣ (β − α)(βd−1 + βd−2α + βd−3α2 + · · ·βαd−2 + αd−1)

αdβd

∣∣∣∣ .
Here we see

|β − α| =
∣∣∣∣∣∣
d∑
i=1


 d∑
j=1

mi j (λ
′
j − λj )




∣∣∣∣∣∣
≤

d∑
i=1

d∑
j=1

mi j |λ′
j − λj |

≤
d∑
i=1

d∑
j=1

mi j · ||λ− λ′||

and 0 < α ≤
d∑
i=1

d∑
j=1

mi j , 0 < β ≤
d∑
i=1

d∑
j=1

mi j . We put P =
d∑
i=1

d∑
j=1

mi j . Then we have

∣∣∣∣ (β − α)(βd−1 + βd−2α + βd−3α2 + · · ·βαd−2 + αd−1)

αdβd

∣∣∣∣ ≤ P · d · Pd−1 · ||λ− λ′||
αdβd

.

We note λ′
j > η0 for 1 ≤ j ≤ d and then

d∑
i=1

d∑
j=1

mi jλ
′
j ≥ η0 · P .

Consequently, we see

|J (M, λ)− J (M, λ′)| ≤ P · d · Pd−1‖λ− λ′‖
αd · ηd0 · Pd

≤ d

ηd0

· 1

αd
· ‖λ− λ′‖

≤ d

ηd0

sup
λ∈C(γ1,...,γn)

J (M, λ)‖λ − λ′‖ .
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Finally, by Lemma 5, the righthand side of this inequality is bounded by

d

ηd0

C2 · ν(< ξi1 , . . . , ξiu >) · ‖λ− λ′‖ ,

which shows the assertion of Lemma 6. �

Since

d(λ, λ′) ≤ ‖λ− λ′‖ ≤ √
d + 1 d (λ, λ′) ,

the condition (E) is an easy consequence of Lemma 6. The following Lemma 7 shows the
final condition (F) by the above inequality.

LEMMA 7. There exists a constant C4 > 0 such that for any i1, . . . , iu, we have

||V (ξi1 , . . . , ξiu )(λ)− V (ξi1 , . . . , ξiu )(λ
′)|| ≤ C4||λ− λ′||

for λ, λ′ ∈ C(γ1, . . . , γn).

PROOF. We put again α = ∑d
i=1

∑d
j=1mi jλj and β = ∑d

i=1
∑d
j=1mi jλ

′
j . The

assertion of this lemma follows by the following calculations.

||V (ξi1 , . . . , ξiu )(λ)− V (ξi1 , . . . , ξiu )(λ
′)||

=
d∑
i=1

d∑
j=1

mi jλj

α
−

d∑
j=1

mi jλ
′
j

β

=
d∑
i=1

∣∣∣∣∣∣β
d∑
j=1

mi jλj − α

d∑
j=1

mi jλ
′
j

∣∣∣∣∣∣
α β

=

d∑
i=1

∣∣∣∣∣∣β
d∑
j=1

mi jλj − β

d∑
j=1

mi jλ
′
j + β

d∑
j=1

mi jλ
′
j − α

d∑
j=1

mi jλ
′
j

∣∣∣∣∣∣
α β

≤

d∑
i=1

∣∣∣∣∣∣
d∑
j=1

mi j (λj − λ′
j )

∣∣∣∣∣∣
α

+

∣∣∣∣∣∣
d∑
i=1

d∑
j=1

mi j (λ
′
j − λj )

∣∣∣∣∣∣
d∑
i=1


 d∑
j=1

mi jλ
′
j




α β
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≤ ‖λ − λ′‖
η0

+


 d∑
i=1

d∑
j=1

mi j


 ‖λ′ − λ‖

d∑
i=1

d∑
j=1

mi j

η0 ·

 d∑
i=1

d∑
j=1

mi j


 η0 ·


 d∑
i=1

d∑
j=1

mi j




≤ ‖λ − λ′‖
η0

+ 1

η2
0

‖λ′ − λ‖ .

�

It is easy to see that there exists an invariant probability measure µ for T equivalent to

the volume measure of C(γ1, . . . , γn). We consider the pre-dual operator T̂ of T :∫
T −1E

f dν =
∫
E

(T̂ f )dν

for any f ∈ L1(ν) and any measurable subset E of C(γ1, . . . , γn). From lemmas 3 - 7, we
have shown that T satisfies all conditions given by F.Schweiger [8]. Thus there exists an
invariant probability measure µ for T equivalent to ν. We denote by h its density function
dµ
dν

. This means that there exists a constant ρ, 0 < ρ < 1, such that

T̂ nf =
(∫

C(γ1,...,γn)

f dν

)
· h+O(α

√
n), n ≥ 1

whenever a real valued function f of C(γ1, . . . , γn) satisfies

0 < m0 ≤ f ≤ M0

where m0 and M0 depend on f , and

|f (x)− f (y)| ≤ K · ||x − y|| for any x, y ∈ C(γ1, . . . , γn) ,

where K depends on f . We refer F. Schweiger [8] for the detail. As a consequence (see [6]),
we see that T is continued fraction mixing with the partition {ξi}. This means that if we put

Xn(x) = i if T n−1(x) ∈ ξi for x ∈ C(γ1, . . . , γn), then there exists a constantK0 such that

|µ(A ∩ T −(n+k)B)− µ(A)µ(B)| < K0 · µ(A)µ(B)α
√
k

for any measurable subset A generated by X1, . . . , Xn and any measurable subset B of
C(γ1, . . . , γn). Thus, we see that T is continued fraction mixing and then C(γ1, . . . , γn)

is a Darling-Kac set of T .
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