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Abstract. We give a formula for generalized Eulerian numbers, prove monotonicity of sequences of certain
ratios of the Eulerian numbers, and apply these results to obtain a new proof that the natural symmetric measure
for the Bratteli-Vershik dynamical system based on the Euler graph is the unique fully supported invariant ergodic
Borel probability measure. Key ingredients of the proof are a two-dimensional induction argument and a one-to-one
correspondence between most paths from two vertices at the same level to another vertex.

1. Introduction

The Euler graph is the infinite directed graph with vertices (i, j), i, j ≥ 0, with j + 1
edges from (i, j) to (i + 1, j) and i + 1 edges from (i, j) to (i, j + 1); see Figure 1. The
number i + j is called the level of (i, j).

A generalized Eulerian number Ap,q(i, j) is the number of paths in the graph from
(p, q) to (p + i, q + j). We prove that

Ap,q(i, j)=
i∑

t=0

(−1)i−t

(
p + q + t + 1

t

)(
p + q + i + j + 2

i − t

)
(p + 1 + t)i+j(1.1)

and

Ap,q(i, j + 1)

Ap,q−1(i, j + 1)
≤ Ap,q(i, j)

Ap,q−1(i, j)
≤ q + j

q + 1 + j

Ap,q(i + 1, j)

Ap,q−1(i + 1, j)
.(1.2)

As a corollary we show that

Ap,q(i, j)

A0,0(p + i, q + j)
tends to

1

(p + q + 1)!(1.3)

as both i, j tend to infinity.
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These results are motivated by continuing study of the adic dynamical system associated
with the Euler graph. They yield a new proof of the fact that the natural symmetric measure for
the Bratteli-Vershik dynamical system based on the Euler graph is the unique fully supported
invariant ergodic Borel probability measure.

The Euler adic system is a particularly interesting nonstationary Bratteli-Vershik (or adic)
system based on an infinite directed graded graph with remarkable combinatorial properties.
How such systems arise from reinforced walks on graphs is explained in [6]. For the viewpoint
of urn models, see for example [4, p. 68 ff.]. A first step in studying the Euler adic system,
or the associated C∗ algebra, is the identification of the adic-invariant measures (sometimes
called central measures or traces), namely those that give equal measure to each cylinder
set determined by an initial path segment from the root vertex to another fixed vertex. In
[1] it was proved by a supermartingale argument that the natural symmetric measure, which
assigns equal measure to all cylinders of the same length, is ergodic. In [5] this result was
strengthened by using a coding of paths by permutations to show that in fact the symmetric
measure is the unique fully supported ergodic probability measure for this system. We found
out recently that the paper [8] contains related results, arrived at by different arguments and
including also identification of all the other (partially supported) ergodic measures, and that
a version of Formula (1.1) appears in [2]. Although the connection with path counting is not
made explicitly in [2], it seems that it is not too far from Formula (6.2) of that paper to our
Formula (1.1). When one seeks to study higher-dimensional versions of the Euler adic system,
the coding by permutations is no longer available; therefore we have developed a proof via a
different approach, which we present here. This proof also yields a stronger result, namely
identification of the generic points for the symmetric measure and indeed a “directional unique
ergodicity” property such as was established in [10, 11] for the Pascal adic system.

For background on adic systems, we refer to [1, 7, 9–12, 15–17]. A Bratteli diagram is
an infinite directed graded graph. At level 0 there is a single vertex, R, called the root. At
each level n ≥ 1 there are finitely many vertices. There are edges only from vertices at level
n to vertices at level n + 1, for all n. Each vertex has only finitely many edges leaving or
entering it. For nontriviality we assume that each vertex has at least one edge leaving it and,
except for R, at least one edge entering it. The set of edges entering each vertex is ordered.
Often when the diagram is drawn we assume that the edges are ordered from left to right.
The phase space X of the dynamical system based on the diagram is the set of infinite paths
that begin at R. The space X is a compact metric space with the distance between two paths
that agree on exactly the first n levels being 1/2n. A cylinder set is the set of all paths with
a specified initial segment of finite length. That length is called the length of the cylinder.
Cylinder sets are open and closed and form a base for the topology of X. We define a partial
order on the set X. Two paths x and y are comparable if they coincide after some level. In
this case we determine which of x and y is larger by comparing the last edges that differ. In
this partial order there is a set Xmax of maximal paths and a set Xmin of minimal paths. The
adic transformation T : X \Xmax → X \Xmin is defined by letting T x be the smallest y such

that y > x. Both T and T −1 are continuous where defined.
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We recall quickly now how counting paths between vertices in a Bratteli diagram is
related to the identification of ergodic invariant measures. For vertices P,Q of a directed
graph, denote by dim(P,Q) the number of paths from P to Q. Cylinder sets determined by
initial paths terminating at a common vertex are mapped to one another by powers of T and
so they must be assigned equal measure by any invariant measure. For a path x ∈ X, denote
by xn the vertex of x at level n. In the case of the Pascal and Euler graphs, we give xn the
rectangular coordinates (in, jn). It can be proved (see [13, 14]) by using either the Ergodic
Theorem or Reverse Martingale Theorem that if µ is a T -invariant ergodic Borel probability
measure on X and C is any cylinder set terminating at a vertex P , then

µ(C) = lim
n→∞

dim(P, xn)

dim(R, xn)
for µ-almost every x ∈ X .(1.4)

In this paper we show that if µ is a fully supported ergodic measure for the adic system
on the Euler graph, then for µ-almost every x the limit in (1.4) has the same value for any two
cylinders of the same length. Consequently we show that there is only one fully supported
ergodic T -invariant measure for the Euler adic system, namely, the symmetric measure, which
assigns equal measure to all cylinder sets of a given length. In particular, if n is the length of
a cylinder C, then µ(C) = 1/(n + 1)! .

THEOREM 1.1. In the Euler graph, for each vertex P the limit

lim
n→∞

dim(P, (in, jn))

dim(R, (in, jn))
(1.5)

exists for all infinite paths (in, jn), n ≥ 0, for which in and jn are unbounded. Moreover, this
limit is constant as P varies over the vertices at any fixed level.

Theorem 1.1, the new proof of which is the main point of this paper, is a corollary of
Formula (1.3).

In Section 2 we introduce the recurrence relations for generalized Eulerian numbers. In
Sections 3 and 4 we prove Formulas (1.1) and (1.2), respectively. In Section 5 we prove that

Ap,q(i, j)

Ap,q−1(i, j)
→ ∞ and

Ap,q(i, j)

Ap−1,q(i, j)
→ ∞(1.6)

as both i, j tend to infinity.
In Section 6, we consider the set Ap,q(i, j) of all paths from (p, q) to (p + i, q + j)

and introduce a subset Gp,q(i, j) ⊂ Ap,q(i, j) of “good” paths. Good paths are defined to
be those which use each of a particular set of labels at least once (see Section 6). These are
designed to substitute, in a way that will extend to higher-dimensional Euler adic systems,
for the path-coding permutations in the two-dimensional case with only singleton “clusters”
in [5] which are predominant. We show that almost all paths are good asymptotically as both
i, j tend to infinity.
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In Section 7 we show that the number of good paths from (p, q) to (i, j) is equal to the
number of good paths from (p′, q ′) to (i, j), if p + q = p′ + q ′ and i, j ≥ p + q + 1. This
will complete the proof of Formula (1.3) and Theorem 1.1.

2. The Euler graph

The Euler graph is an infinite directed graph. The vertices of the graph are labeled by
pairs of nonnegative integers (i, j). The list of edges is given by the rule: for any (i, j) there
are j + 1 edges from (i, j) to (i + 1, j) and i + 1 edges from (i, j) to (i, j + 1); see Figure 1.

Define a generalized Eulerian number Ap,q(i, j) to be the number of paths in the graph
from (p, q) to (p + i, q + j). For fixed p, q , the numbers satisfy the recurrence relation

Ap,q(i, j) = (j + q + 1)Ap,q(i − 1, j) + (i + p + 1)Ap,q(i, j − 1)(2.1)

and initial conditions

Ap,q(i, 0) = (q + 1)i , Ap,q(0, j) = (p + 1)j , i, j > 0 .(2.2)

FIGURE 1. The first part of the Euler graph. Numbers along edges indicate multiple edges.
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A closed form is known [3] for A0,0(i, j):

A0,0(i, j) =
i∑

t=0

(−1)i−t

(
i + j + 2

i − t

)
(1 + t)i+j+1 .

We develop a closed form for all Ap,q(i, j) in the next section.

3. The recurrence relation

We say that a collection of numbers {A(i, j), i, j ≥ 0, (i, j) 	= (0, 0)} satisfies recur-
rence relation (2.1), if the relation holds for any i, j > 0. The numbers

A(i, 0), A(0, j) with i, j > 0

will be called the initial conditions of the collection.
It is clear that for any collection of numbers {a(i, 0), a(0, j), i, j ≥ 0, (i, j) 	= (0, 0)},

there exists a unique collection {A(i, j), i, j ≥ 0, (i, j) 	= (0, 0)} satisfying the recurrence
relation (2.1) and initial conditions

A(i, 0) = a(i, 0) , A(0, j) = a(0, j) .

THEOREM 3.1. The collection {Ap,q(i, j), i, j ≥ 0, (i, j) 	= (0, 0)} satisfying the
recurrence relation (2.1) and initial conditions (2.2) is given by the following formula:

Ap,q(i, j) =
i∑

t=0

(−1)i−t

(
p + q + t + 1

t

)(
p + q + i + j + 2

i − t

)
(p + 1 + t)i+j .(3.1)

PROOF. Let t = 0, 1, . . . . For i, j ≥ 0, define the numbers

at (i, j) = (−1)i−t

(
p + q + i + j + 2

i − t

)
(p + 1 + t)i+j

= (−1)i−t Γ (p + q + i + j + 3)

Γ (i − t + 1)Γ (p + q + j + t + 3)
(p + 1 + t)i+j ,

where Γ (x) is Euler’s gamma function. The last expression, in particular, says that

at(i, j) = 0 if j ≥ 0 , t > i ≥ 0 .

LEMMA 3.2. For any t ≥ 0, the collection {at (i, j), i, j ≥ 0, (i, j) 	= (0, 0)} satisfies
recurrence relation (2.1) with the initial conditions

at (0, j) = 0 if t > 0 , at (0, j) = (p + 1)j if t = 0 ,

at (i, 0) = (−1)i−t

(
p + q + i + 2

i − t

)
(p + 1 + t)i
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= (−1)i−t Γ (p + q + i + 3)

Γ (i − t + 1)Γ (p + q + t + 3)
(p + 1 + t)i ,

for all i, j > 0.

The lemma is proved by direct verification.
By Lemma 3.2 any linear combination {∑∞

t=0 Ct at (i, j), i, j ≥ 0} is well defined and
satisfies relation (2.1). Therefore, let us look for Ap,q(i, j) in the form

Ap,q(i, j) =
∞∑
t=0

Ct (−1)i−t

(
p + q + j + i + 2

i − t

)
(p + 1 + t)i+j .

The constants Ct can be found from the equations

i∑
t=0

Ct (−1)i−t

(
p + q + i + 2

i − t

)
(p + 1 + t)i = (q + 1)i .

LEMMA 3.3. For all t ≥ 0,

Ct =
(

p + q + t + 1

t

)
.

PROOF. We need to show that for any i > 0,

i∑
t=0

(−1)i−t

(
p + q + t + 1

t

)(
p + q + i + 2

i − t

)
(p + 1 + t)i = (q + 1)i .(3.2)

The right and left sides of (3.2) are polynomials in q of degree i. To see that the two polyno-
mials are equal it is enough to check that they are equal at

q = −(p + 2),−(p + 3), . . . ,−(p + 2 + i) .

If q = −(p + 2 + t) for 0 ≤ t ≤ i, then the left side has exactly one nonzero summand.
Moreover, that nonzero summand equals the right-hand side polynomial at q = −(p + 2 + t).
More precisely, denote by L(q) and R(q) the left and right sides of (3.2). Then

L(q) =
( i∏

j=0

(p + q + j + 2)

) i∑
t=0

(−1)i−t 1

p + q + t + 2

1

t ! (i − t)! (p + 1 + t)i .

Hence, for 0 ≤ t ≤ i, we have

L(−p − 2 − t) = (−1)t t ! (i − t)! (−1)i−t 1

t ! (i − t)! (p + 1 + t)i = (−1)i (p + 1 + t)i .

But R(−p − 2 − t) = (−p − 1 − t)i . �

Theorem 3.1 follows from Lemma 3.3. �
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COROLLARY 3.4. The collection {Ap,q(i, j), i, j ≥ 0} satisfying the recurrence re-
lation (2.1) and initial conditions (2.2) is given also by the following formula:

Ap,q(i, j) =
j∑

t=0

(−1)j−t

(
p + q + t + 1

t

)(
p + q + i + j + 2

j − t

)
(q + 1 + t)i+j .(3.3)

PROOF. The corollary follows from Theorem 3.1 due to the symmetry of (2.1) and
(2.2) with respect to the transformation (p, q, i, j) → (q, p, j, i). �

4. Monotonicity of ratios

THEOREM 4.1. For p, q ≥ 0, assume that a collection of positive numbers
{a(i, j), i, j ≥ 0, (i, j) 	= (0, 0)} satisfies

a(i, j) = (j + q + 1)a(i − 1, j) + (i + p + 1)a(i, j − 1)

and a collection of positive numbers {b(i, j), i, j ≥ 0, (i, j) 	= (0, 0)} satisfies

b(i, j) = (j + q)b(i − 1, j) + (i + p + 1)b(i, j − 1) .

Assume that the initial conditions of these collections satisfy the inequalities:
a(0, j + 1)

b(0, j + 1)
≤ a(0, j)

b(0, j)
, j > 0 ,(4.1)

a(0, 1)

b(0, 1)
≤ q

q + 1

a(1, 0)

b(1, 0)
,

a(i, 0)

b(i, 0)
≤ q

q + 1

a(i + 1, 0)

b(i + 1, 0)
, i > 0 .

Then for any i, j ≥ 0 we have

a(i, j + 1)

b(i, j + 1)
≤ a(i, j)

b(i, j)
≤ q + j

q + 1 + j

a(i + 1, j)

b(i + 1, j)
.(4.2)

COROLLARY 4.2. The generalized Eulerian numbers satisfy the inequalities

Ap,q(i, j + 1)

Ap,q−1(i, j + 1)
≤ Ap,q(i, j)

Ap,q−1(i, j)
≤ q + j

q + 1 + j

Ap,q(i + 1, j)

Ap,q−1(i + 1, j)
(4.3)

for all p, q − 1, i, j ≥ 0.

PROOF OF THEOREM 4.1. The proof is by induction. Denoting

x = (i, j + 1) , w = (i + 1, j + 1) ,

y = (i, j) , z = (i + 1, j) ,

we assume that

a(x)

b(x)
≤ a(y)

b(y)
≤ q + j

q + 1 + j

a(z)

b(z)
(4.4)
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and prove

a(w)

b(w)
≤ a(z)

b(z)
and

a(x)

b(x)
≤ q + 1 + j

q + 2 + j

a(w)

b(w)
.(4.5)

In fact, we will use not (4.4) but its corollary

b(z)

b(x)
≤ q + j

q + 1 + j

a(z)

a(x)
.(4.6)

We will use also the recurrence relations

a(w) = (q + 2 + j) a(x) + (p + 2 + i) a(z) ,

b(w) = (q + 1 + j) b(x) + (p + 2 + i) b(z) .

To prove the first inequality in (4.5), we need to prove that

a(w)

a(z)
= (q + 2 + j)

a(x)

a(z)
+ (p + 2 + i) ≤ b(w)

b(z)
= (q + 1 + j)

b(x)

b(z)
+ (p + 2 + i)

or

a(x)

a(z)
≤ q + 1 + j

q + 2 + j
· b(x)

b(z)
.(4.7)

Using (4.6) we write

a(x)

a(z)
≤ q + j

q + 1 + j
·b(x)

b(z)
≤ q + 1 + j

q + 2 + j
· b(x)

b(z)
,

and this gives (4.7).
To prove the second inequality in (4.5), we write

a(w)

a(x)
= (q + 2 + j) + (p + 2 + i)

a(z)

a(x)

and

q + 2 + j

q + 1 + j
· b(w)

b(x)
= (q + 2 + j) + (p + 2 + i)

q + 2 + j

q + 1 + j
· b(z)

b(x)
.

Using inequality (4.6) we continue

(q + 2 + j) + (p + 2 + i) · q + 2 + j

q + 1 + j
· b(z)

b(x)

≤ (q + 2 + j) + (p + 2 + i) · q + 2 + j

q + 1 + j
· q + j

q + 1 + j
· a(z)

a(x)

≤ (q + 2 + j) + (p + 2 + i) · a(z)

a(x)
= a(w)

a(x)
.
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Thus, we get

q + 2 + j

q + 1 + j
· b(w)

b(x)
≤ a(w)

a(x)
,

which is the second inequality in (4.5). �

REMARK 4.3. It is interesting that in order to prove monotonicity in each coordinate
direction, we have to consider both directions simultaneously and we have to involve a speed
in one of the two directions.

5. Limit theorems for generalized Eulerian numbers

To study asymptotics of the ratios discussed in the preceding section, we first determine
their limits in the coordinate directions.

PROPOSITION 5.1. For fixed i ≥ 0,

Ap,q(i, j)

Ap,q−1(i, j)
↘ p + q + i + 1

p + q + 1
as j → ∞;(5.1)

while for fixed j ≥ 0,

Ap,q(i, j)

Ap−1,q(i, j)
↘ p + q + j + 1

p + q + 1
as i → ∞.(5.2)

PROOF. The dominant term in both the numerator and denominator of (5.1) occurs
when t = i in Formula (3.1), and the quotient of the two is (p + q + i + 1)/(p + q + 1). The
fact that this limit is a decreasing limit follows from Theorem 4.1 .

For Formula (5.2), we interchange the roles of p and q and use Corollary 3.4. �

THEOREM 5.2. Both ratios
Ap,q(i, j)

Ap,q−1(i, j)
and

Ap,q(i, j)

Ap−1,q(i, j)
(5.3)

tend to ∞ as both i, j tend to infinity; that is, given M there are I, J such that each ratio is
greater than M whenever i ≥ I and j ≥ J .

PROOF. For the first ratio, given M choose I so that (p+q +I −1)/(p+q −1) > M .
Then Ap,q(i, j)/Ap,q−1(i, j) > M for all i, j with i ≥ I according to Proposition 5.1 and
Corollary 4.2. A similar argument applies to the second ratio. �

6. Good paths

For any vertex of the Euler graph, we fix an order on the set of all horizontal edges exiting
that vertex and an order on the set of all vertical edges exiting that vertex.
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Let Ap,q(i, j) be the set of all paths from (p, q) to (p+ i, q +j). We will define a subset
Gp,q(i, j) ⊂ Ap,q(i, j) of good paths. The number of elements in Ap,q(i, j) is the Eulerian
number Ap,q(i, j). The number of elements in Gp,q(i, j) will be denoted by Gp,q(i, j).

Fix (p, q) and call it a base point. For any k, l ≥ 0, the vertex (p + k, q + l) has
p+q +k + l +2 edges leaving it, q + l +1 horizontally and p+k +1 vertically. We label the
first q + 1 horizontal edges by symbols s1, . . . , sq+1, respectively, and the first p + 1 vertical
edges by symbols sq+2, . . . , sp+q+2, respectively.

A path x ∈ Ap,q(i, j) is a sequence of edges each of which is labeled or not. A path is
called good if its edges have each of the labels s1, . . . , sp+q+2 at least once.

The subset Gp,q(i, j) of good paths is nonempty if and only if i ≥ q + 1 and j ≥ p + 1.

THEOREM 6.1. For fixed (p, q),

Gp,q(i, j)

Ap,q(i, j)
→ 1(6.1)

as both i, j tend to infinity.

PROOF. It is clear that the number of elements of the set Ap,q(i, j) \ Gp,q(i, j) of bad
paths is not greater than (q + 1)Ap,q−1(i, j) + (p + 1)Ap−1,q(i, j). By Theorem 5.2, the
ratio

(q + 1)Ap,q−1(i, j) + (p + 1)Ap−1,q(i, j)

Ap,q(i, j)
→ 0 as i, j → ∞ .

This implies the theorem. �

7. A one-to-one correspondence between two sets of good paths

THEOREM 7.1. The number Gp,q(i − p, j − q) of good paths from (p, q) to (i, j) is
equal to the number Gp′,q ′(i−p′, j−q ′) of good paths from (p′, q ′) to (i, j), if p+q = p′+q ′
and i, j ≥ p + q + 2.

PROOF. Denote n = p + q = p′ + q ′.
Take (p, q) as a base point. For any k, l ≥ 0, using that base point define (as in Section

6) the labeled edges s1, . . . , sn+2 exiting any vertex (p + k, q + l).
Similarly, take (p′, q ′) as a base point. For any k, l ≥ 0, using that base point define (as

in Section 6 the labeled edges s1, . . . , sn+2 exiting any vertex (p′ + k, q ′ + l).
For any good path x ∈ Gp,q(i − p, j − q) from (p, q) to (i, j) (with respect to the

first labels) we will construct a good path y ∈ Gp′,q ′(i − p′, j − q ′) from (p′, q ′) to (i, j)

(with respect to the second labels). This construction will establish a bijection between the
corresponding sets of good paths.

Let x = (E1, E2, . . . , Er), r = i + j −p − q , be a path from x0 = (p, q) to xr = (i, j),
where Em are edges and for every m, the edge Em connects a vertex xm−1 of level p+q+m−1
to a vertex xm of level p + q + m. We will encode the path x by a new sequence of symbols
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D(x) = (D1, . . . ,Dr), called the encoding sequence of x, with each label Di coming from
an alphabet

D = {s1, s2, . . . ; h1, h2, . . . ; v1, v2, . . . } ,(7.1)

as follows.
For any m and any a, if one of the edges E1, . . . , Em has label sa , then we unlabel the

edge exiting xm with label sa . This procedure decreases the number of labeled edges exiting
xm. The edges exiting xm which remain labeled will be called the marked edges. The edges
exiting xm which lost a label or were initially unlabeled will be called the unmarked edges.

For any m, we set Dm = D(Em) to be sa if Em is a marked edge with label sa . Now we
label the unmarked edges. We set Dm to be ha if Em is the a’th horizontal unmarked edge
among the set of horizontal unmarked edges. We set Dm to be va if Em is the a’th vertical
unmarked edge among the set of vertical unmarked edges. (Recall that the set of horizontal
edges exiting each vertex is ordered and the set of vertical edges exiting each vertex is ordered,
so that the notion of the a’th edge among the unmarked horizontal (or vertical) edges is well
defined.)

LEMMA 7.2. Let x be a path from (p, q) to (i, j). Let D(x) = (D1, . . . ,Dr ) be its
encoding sequence. Then for any m ≥ 1, we have the following two statements:

(1) The number of horizontal unmarked edges exiting xm equals the sum of the number
of marked edges among E1, . . . , Em and the number of vertical unmarked edges
among E1, . . . , Em.

(2) The number of the vertical unmarked edges exiting xm equals the sum of the num-
ber of marked edges among E1, . . . , Em and the number of horizontal unmarked
edges among E1, . . . , Em.

PROOF. For any m, denote by Hm and Vm the numbers of unmarked horizontal and
unmarked vertical edges leaving xm, respectively. If Em is a marked edge, then Hm =
Hm−1 + 1 and Vm = Vm−1 + 1. If Em is a horizontal unmarked edge, then Hm = Hm−1 and
Vm = Vm−1 + 1. If Em is a vertical unmarked edge, then Hm = Hm−1 + 1 and Vm = Vm−1.

�

Similarly to the above construction, for any path y from (p′, q ′) to (i, j) we can define
its encoding sequence D(y) = (D1, . . . ,Dr ), using the labels with respect to the base point
(p′, q ′). Again every Dm is sa, ha or va for a suitable a.

LEMMA 7.3. There is a bijection

B : Gp,q(i − p, j − q) → Gp′,q ′(i − p′, j − q ′) , x �→ y ,

that is well defined by choosing y to satisfy the condition D(y) = D(x).

PROOF. Let x = (E1, . . . , Er) be a path from x0 = (p, q) to xr = (i, j) with encoding
sequence D(x) = (D1, . . . ,Dr). We need to show that there exists a unique path y =
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(E′
1, . . . , E

′
r ) from y0 = (p′, q ′) to yr = (i, j) with encoding sequence D(y) such that

D(y) = D(x). We prove the existence of edges E′
m by induction on m.

All edges exiting x0 and y0 are marked. In both cases the marks are s1, . . . , sn+2 where
n = p + q = p′ + q ′. If E1 has a mark sa , then E′

1 is chosen to be the edge exiting y0 with
mark sa .

Assume that for some m > 1 a path (E′
1, . . . , E

′
m−1) from y0 to ym is constructed so that

D(E′
1, . . . , E

′
m−1) = D(E1, . . . , Em−1). By Lemma 7.2, the vertices ym and xm have the

same number of exiting unmarked horizontal edges, the same number of exiting unmarked
vertical edges, and the same number of exiting marked edges. Moreover, the exiting edges
from xm and ym have exactly the same set of labels. Hence, for any D(Em) there exists a
unique edge E′

m exiting ym with D(E′
m) = D(Em).

Thus, there exists a unique path y = (E′
1, . . . , E

′
r ) from y0 = (p′, q ′) such that D(y) =

D(x). It is easy to see that y ends at (i, j). �

Lemma 7.3 implies Theorem 7.1. �

THEOREM 7.4.

Ap,q(i, j)

A0,0(p + i, q + j)
tends to

1

(p + q + 1)!
as both i, j tend to infinity.

This theorem is a direct corollary of Theorems 6.1 and 7.1. Theorem 7.4 implies Theo-
rem 1.1.

REMARK 7.5. In this remark, we explain briefly the statements in the introduction
about generic points and directional unique ergodicity. If x = {(in, jn), n ≥ 0} is generic
for a fully supported measure µ, then in, jn must be unbounded, since otherwise using x in
Formula (1.4) will assign measure 0 to many cylinders. Conversely, let x be any path with
in, jn unbounded. Let C be the cylinder determined by an initial path of length n0. Then

lim
n→∞

dim((in0, jn0), (in, jn))

dim(R, (in, jn))
= µ(C) = 1

(n0 + 1)! .(7.2)

Thus, each path with unbounded in, jn is generic for the symmetric measure.
Moreover, it is not necessary to speak of paths. If C is a cylinder set with terminal vertex

P at level n0, then given ε > 0 there is M such that∣∣∣∣dim(P, (i, j))

dim(R, (i, j))
− 1

(n0 + 1)!
∣∣∣∣ < ε(7.3)

for all i, j ≥ M .

REMARK 7.6. The approach presented here to prove ergodicity and unique fully sup-
ported ergodicity of the symmetric measure on the Euler adic system was developed so as
to apply to the case of the higher-dimensional Euler adics. It seems that the correspondence
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of good paths and monotonicity arguments extend readily. An important step is to develop
necessary formulas extending those for the Ap,q(i, j).

ACKNOWLEDGMENT. The authors thank Sarah Bailey Frick and Xavier Méla for con-
versations on this topic and Thomas Prellberg for finding reference [2].
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