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Abstract. We say that a regular graph G of order n and degree r ≥ 1 (which is not the complete graph) is
strongly regular if there exist non-negative integers τ and θ such that |Si ∩ Sj | = τ for any two adjacent vertices i

and j , and |Si ∩ Sj | = θ for any two distinct non-adjacent vertices i and j , where Sk denotes the neighborhood of

the vertex k. We say that a graph G of order n is walk regular if and only if its vertex deleted subgraphs Gi = G � i

are cospectral for i = 1, 2, . . . , n. We here establish necessary and sufficient conditions under which a walk regular

graph G which is cospectral to its complement G is strongly regular.

1. Introduction

Let G be a simple graph of order n. The spectrum of the simple graph G consists of the
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of its (0,1) adjacency matrix A = A(G) and is denoted
by σ(G). The Seidel spectrum of G consists of the eigenvalues λ∗

1 ≥ λ∗
2 ≥ · · · ≥ λ∗

n of its
(0,−1, 1) adjacency matrix A∗ = A∗(G) and is denoted by σ ∗(G). Let PG(λ) = |λI − A|
and P ∗

G(λ) = |λI − A∗| denote the characteristic polynomial and the Seidel characteristic

polynomial, respectively. Let c = a + b
√

m and c = a − b
√

m where a and b are two
nonzero integers and m is a positive integer such that m is not a perfect square. We say that
Ac = [cij ] is the conjugate adjacency matrix of G if cij = c for any two adjacent vertices i

and j , cij = c for any two nonadjacent vertices i and j , and cij = 0 if i = j . The conjugate
spectrum of G is the set of the eigenvalues λc

1 ≥ λc
2 ≥ · · · ≥ λc

n of its conjugate adjacency
matrix Ac = Ac(G) and is denoted by σc(G). Let Pc

G(λ) = |λI − Ac| denote the conjugate
characteristic polynomial of G.

Further, we say that an eigenvalue µ of G is main if and only if 〈j, Pj〉 = n cos2 α > 0,
where j is the main vector (with coordinates equal to 1) and P is the orthogonal projection
of the space R

n onto the eigenspace EA(µ). The quantity β = | cos α| is called the main
angle of µ. Similarly, we say that µc ∈ σc(G) is the conjugate main eigenvalue if and only
if 〈j, Pcj〉 = n cos2 γ > 0, where Pc is the orthogonal projection of the space R

n onto the
eigenspace EAc(µc). The quantity βc = | cos γ | is called the conjugate main angle of µc.

Received November 27, 2008; revised September 16, 2009
1991 Mathematics Subject Classification: 05C50
Key words and phrases: walk regular graph, strongly regular graph, conjugate adjacency matrix, conjugate charac-
teristic polynomial



224 MIRKO LEPOVIĆ

Let M(G) be the set of all main eigenvalues of G. Then |M(G)| = |M(G)|, where

G denotes the complement of G. According to [3], we have |M(G)| = |Mc(G)|, where
Mc(G) denotes the set of all conjugate main eigenvalues of G.

PROPOSITION 1 (Lepović [3]). Let λ ∈ σc(G) be a conjugate eigenvalue of the graph

G with multiplicity p ≥ 1 and let q be the multiplicity of the eigenvalue
λ + c

2b
√

m
∈ σ(G). Then

p − 1 ≤ q ≤ p + 1.

Next, replacing λ with x + y
√

m the conjugate characteristic polynomial Pc
G(λ) can be

transformed into the form

Pc
G(x + y

√
m) = Qn(x, y) + √

m Rn(x, y) ,(1)

where Qn(x, y) and Rn(x, y) are two polynomials of order n in variables x and y, whose
coefficients are integers. Besides, according to [3]

Pc

G
(x − y

√
m) = Qn(x, y) − √

m Rn(x, y) .(2)

We note from (1) and (2) that x0 + y0
√

m ∈ σc(G) and x0 − y0
√

m ∈ σc(G) if and only
if x0 and y0 is a solution of the following system of equations

Qn(x, y) = 0 and Rn(x, y) = 0 .(3)

THEOREM 1 (Lepović [3]). Let G and H be two graphs of order n. Then Pc
G(λ) =

Pc
H (λ) if and only if PG(λ) = PH (λ) and PG(λ) = PH (λ).

PROPOSITION 2 (Lepović [6]). Let G be a graph of order n. Then G is cospec-

tral to its complement G if and only if Qn(− a,−λ) = Qn(− a, λ) and Rn(− a,−λ) =
− Rn(− a, λ).

PROPOSITION 3. Let G be a graph of order n. Then G is cospectral to its complement

G if and only if Qn(λ, 0) = Pc
G(λ) and Rn(λ, 0) = 0.

PROOF. First, since Pc
G(λ + 0 · √

m) = Qn(λ, 0) + √
m Rn(λ, 0) and Pc

G
(λ − 0 ·√

m) = Qn(λ, 0) − √
m Rn(λ, 0), using (1) and (2) we obtain that Pc

G(λ) = Pc

G
(λ) if and

only Qn(λ, 0) = Pc
G(λ) and Rn(λ, 0) = 0. Using Theorem 1 we obtain the proof. �

PROPOSITION 4 (Lepović [3]). Let G be a connected or disconnected graph of order
n. Then

PG

(
λ − b

√
m

2b
√

m

)
=

cP c
G(λ − a) + (−1)ncP c

G
(−λ − a)

2n+1a(b
√

m)n
.(4)
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2. Some auxiliary results

PROPOSITION 5. Let G be a connected or disconnected graph of order n. If n is an
even number then

PG

(
x + a + (y − b)

√
m

2b
√

m

)
= a(Qn(x, y) + Qn(x, y)) + mb(Rn(x, y) + Rn(x, y))

2n+1a (b
√

m)n

+ b
√

m (Qn(x, y) − Qn(x, y))

2n+1a (b
√

m)n

+ a
√

m (Rn(x, y) − Rn(x, y))

2n+1a (b
√

m)n
,

where x = −x − 2a.

PROPOSITION 6. Let G be a connected or disconnected graph of order n. If n is an
odd number then

PG

(
x + a + (y − b)

√
m

2b
√

m

)
= a(Qn(x, y) − Qn(x, y)) + mb(Rn(x, y) − Rn(x, y))

2n+1a (b
√

m)n

+ b
√

m (Qn(x, y) + Qn(x, y))

2n+1a (b
√

m)n

+ a
√

m (Rn(x, y) + Rn(x, y))

2n+1a (b
√

m)n
,

where x = −x − 2a.

PROOF. Replacing λ− a with x + y
√

m in (4) and making use of (1) and (2) we easily
obtain Propositions 5 and 6. �

PROPOSITION 7. Let G be a connected or disconnected graph of order n. If n is an
even number then

PG

(
− x + a + (y + b)

√
m

2b
√

m

)
= a(Qn(x, y) + Qn(x, y)) − mb(Rn(x, y) + Rn(x, y))

2n+1a (b
√

m)n

− b
√

m(Qn(x, y) − Qn(x, y))

2n+1a (b
√

m)n

+ a
√

m (Rn(x, y) − Rn(x, y))

2n+1a (b
√

m)n
,

where x = −x − 2a.

PROPOSITION 8. Let G be a connected or disconnected graph of order n. If n is an
odd number then

PG

(
− x + a + (y + b)

√
m

2b
√

m

)
= − a(Qn(x, y) − Qn(x, y)) + mb(Rn(x, y) − Rn(x, y))

2n+1a (b
√

m)n
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+ b
√

m(Qn(x, y) + Qn(x, y))

2n+1a (b
√

m)n

− a
√

m(Rn(x, y) + Rn(x, y))

2n+1a (b
√

m)n
,

where x = −x − 2a.

PROOF. Applying (4) to its complement G and replacing − λ − a with x + y
√

m, we
easily obtain Propositions 7 and 8. �

PROPOSITION 9. Let G be a connected or disconnected graph of order n. If n is an
even number then

P ∗
G

(
− x + a + y

√
m

b
√

m

)
= Qn(x, y) + Qn(x, y) + √

m (Rn(x, y) − Rn(x, y))

2 (b
√

m)n
,

where x = − x − 2a.

PROPOSITION 10. Let G be a connected or disconnected graph of order n. If n is an
odd number then

P ∗
G

(
− x + a + y

√
m

b
√

m

)
= − Qn(x, y) − Qn(x, y) + √

m (Rn(x, y) + Rn(x, y))

2 (b
√

m)n
,

where x = − x − 2a.

PROOF. Using that P ∗
G(−2 λ − 1) = 2n−1(PG(−λ − 1) + (−1)nPG(λ)) (see [2]), by

an easy calculation we obtain the statements using Propositions 5, 6, 7 and 8. �

Further, let S be any subset of the vertex set V (G). To switch G with respect to S means

to remove all edges connecting S with S = V (G) � S, and to introduce edges between all

nonadjacent vertices in G which connect S with S. Two graphs G and H are switching (Seidel
switching) equivalent if one of them is obtained from the other by switching. It is known that
switching equivalent graphs have the same Seidel spectrum.

PROPOSITION 11. Let G(1) and G(2) be two switching equivalent graphs of order n.
If n is an even number then

Q(1)
n (x, y) + Q(1)

n (−x − 2a, y) = Q(2)
n (x, y) + Q(2)

n (−x − 2a, y) ;
R(1)

n (x, y) − R(1)
n (−x − 2a, y) = R(2)

n (x, y) − R(2)
n (−x − 2a, y) ,

where Q
(k)
n (x, y) and R

(k)
n (x, y) are related to G(k) for k = 1, 2.

PROPOSITION 12. Let G(1) and G(2) be two switching equivalent graphs of order n.
If n is an odd number then

Q(1)
n (x, y) − Q(1)

n (−x − 2a, y) = Q(2)
n (x, y) − Q(2)

n (−x − 2a, y) ;
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R(1)
n (x, y) + R(1)

n (−x − 2a, y) = R(2)
n (x, y) + R(2)

n (−x − 2a, y) ,

where Q
(k)
n (x, y) and R

(k)
n (x, y) are related to G(k) for k = 1, 2.

PROPOSITION 13. Let G be a connected or disconnected graph G of order n. Then:

Qn(x, y) = 1

2
(Qn(−a, λ+) + Qn(−a, λ−)) +

√
m

2
(Rn(−a, λ+) − Rn(−a, λ−)) ;

Rn(x, y) = 1

2
(Rn(−a, λ+) + Rn(−a, λ−)) +

√
m

2m
(Qn(−a, λ+) − Qn(−a, λ−)) ,

where λ± = y ± (x + a)
√

m

m
.

PROPOSITION 14. Let G be a connected or disconnected graph G of order n. Then:

Qn(x, y) = 1

2
(Qn(−a, λ+) + Qn(−a, λ−)) −

√
m

2
(Rn(−a, λ+) − Rn(−a, λ−)) ;

Rn(x, y) = 1

2
(Rn(−a, λ+) + Rn(−a, λ−)) −

√
m

2m
(Qn(−a, λ+) − Qn(−a, λ−)) ,

where x = −x − 2a.

PROOF. Replacing x+y
√

m with −a+λ
√

m and replacing x−y
√

m with −a−λ
√

m

in relations (1) and (2) respectively, we easily obtain Propositions 13 and 14. �

3. Some preliminary results

Let i be a fixed vertex from the vertex set V (G) = {1, 2, . . . , n} and let Gi = G � i be
its corresponding vertex deleted subgraph. Let Si denote the neighborhood of i, defined as
the set of all vertices of G which are adjacent to i.

We say that a regular graph G of order n and degree r ≥ 1 is strongly regular if there
exist non-negative integers τ and θ such that |Si ∩Sj | = τ for any two adjacent vertices i and
j , and |Si ∩ Sj | = θ for any two distinct non-adjacent vertices i and j , understanding that G

is not the complete graph Kn. We know that a regular connected graph is strongly regular if
and only if it has exactly three distinct eigenvalues [1].

THEOREM 2 (Lepović [6]). A regular graph G of order n and degree r ≥ 1 is strongly
regular if and only if its vertex deleted subgraphs Gi have exactly two main eigenvalues for
i = 1, 2, . . . , n.

DEFINITION 1. A graph G of order n is walk regular if the number of closed walks of
length k starting and ending at vertex i is the same for any i = 1, 2, . . . , n.

We know that a graph G of order n is walk regular if and only if its vertex deleted
subgraphs Gi are cospectral for i = 1, 2, . . . , n. Of course, if G is a walk regular graph then

its complement G is also walk regular [6].
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Further, let G• = G ∪ •x be the graph obtained from the graph G by adding a new
isolated vertex x. We now have the following result [4].

PROPOSITION 15. Let Pc
G•(x + y

√
m ) = Qn+1(x, y) + √

mRn+1(x, y). Then:

Qn+1(x, y) = a2 + mb2

2a
(Qn(x, y) − (−1)n Qn(−x − 2a, y))(5)

− mb (Rn(x, y) + (−1)n Rn(−x − 2a, y))

+ x Qn(x, y) + myRn(x, y) ;

Rn+1(x, y) = a2 + mb2

2a
(Rn(x, y) + (−1)n Rn(−x − 2a, y))(6)

− b (Qn(x, y) − (−1)n Qn(−x − 2a, y))

+ x Rn(x, y) + y Qn(x, y) .

Let H(i) be switching equivalent to G with respect to Si ⊆ V (G) for i = 1, 2, . . . , n,

understanding that Si is the neighborhood of the vertex i. Then H(i) = Hi ∪ •i where ’ •i’ is
the isolated vertex denoted by ’ i’ in G.

PROPOSITION 16 (Lepović [6]). Let G be a walk regular graph of order 4n + 1

and degree 2n. If G is cospectral to its complement G then PHi (λ) = PHi
(λ) for i =

1, 2, . . . , 4n + 1.

THEOREM 3 (Lepović [6]). Let G be a walk regular graph of order 4n+1 and degree

2n, which is cospectral to its complement G. Then G is strongly regular if and only if Gi is
cospectral to Hi for i = 1, 2, . . . , 4n + 1.

PROPOSITION 17 (Lepović [7]). Let G be a connected or disconnected regular graph
of order n and degree r . Then

Pc

Gi
(λ) = (−1)n−1

λ + µc
1 + 2a

(
(λ − µc

1) P c
Gi

(−λ − 2a) − 2aP c
G(−λ − 2a)

λ + µc
1 + 2a

)
,(7)

where µc
1 = (n − 1)a + (2r − (n − 1))b

√
m and µc

1 = (n − 1)a − (2r − (n − 1))b
√

m.

THEOREM 4 (Lepović [6]). A graph G of order n has exactly k main eigenvalues if
and only if |σc

Q(G) ∩ σc
R(G)| = n − k, where σc

Q(G) = { x | Qn(− a, x) = 0} and σc
R(G) =

{ x | Rn(− a, x) = 0}.

4. Main results

PROPOSITION 18. Let G be a walk regular graph of order 4n+1 and degree 2n. If G

is cospectral to its complement G then

2mb2Pc
Hi

(λ) = ((λ + a)2 + 4na(λ + a) + mb2)P c
Gi

(λ)(8)
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− ((λ + a)2 − 4na(λ + a) − mb2)P c
Gi

(λ)

2mb2Pc
Hi

(λ) = ((λ + a)2 − 4na(λ + a) + mb2)P c
Gi

(λ)(9)

− ((λ + a)2 + 4na(λ + a) − mb2)P c
Gi

(λ) ,

where λ = −λ − 2a.

PROOF. Let Pc
Gi

(x + y
√

m) = Q
(i)
4n(x, y) + √

m R
(i)
4n (x, y) for i = 1, 2, . . . , 4n + 1.

Since Gi and its complement Gi are cospectral (see [6]), we find that Q
(i)
4n(λ, 0) = Pc

Gi
(λ)

and R
(i)
4n (λ, 0) = 0 (see Proposition 3). Let Pc

Hi
(x + y

√
m) = S

(i)
4n (x, y) + √

m T
(i)

4n (x, y)

for i = 1, 2, . . . , 4n + 1. In view of Proposition 16 it turns out that S
(i)
4n (λ, 0) = Pc

Hi
(λ) and

T
(i)
4n (λ, 0) = 0. Since Gi is switching equivalent to Hi with respect to Si ⊆ V (Gi), we obtain

from Proposition 11,

Q
(i)
4n(λ, 0) + Q

(i)
4n(λ, 0) = S

(i)
4n (λ, 0) + S

(i)
4n (λ, 0) .(10)

Further, since G is cospectral to its complement G we have Q4n+1(λ, 0) = Pc
G(λ) and

R4n+1(λ, 0) = 0. In view of this and using (7), we get

2aQ4n+1(λ, 0) = (λ − 4na)((λ + 4na + 2a)Q
(i)
4n(λ, 0) − (λ − 4na)Q

(i)
4n(λ, 0)) ,

which results in

a(Q4n+1(λ, 0) − Q4n+1(λ, 0)) = ((λ + a) + (4n + 1)a)(λ + a) Q
(i)
4n(λ, 0)(11)

− ((λ + a) − (4n + 1)a)(λ + a) Q
(i)
4n(λ, 0) .

Let Pc
H(i) (x + y

√
m) = S

(i)
4n+1(x, y) + √

mT
(i)

4n+1(x, y) for i = 1, 2, . . . , 4n + 1. Then

using (5) we get

a(S
(i)
4n+1(λ, 0) − S

(i)
4n+1(λ, 0)) = (a(λ + a) + mb2) S

(i)
4n (λ, 0)(12)

+ (a(λ + a) − mb2) S
(i)
4n (λ, 0) .

Since Q4n+1(λ, 0) − Q4n+1(λ, 0) = S
(i)
4n+1(λ, 0) − S

(i)
4n+1(λ, 0) (see Proposition 12), by

using (11), (12) and (10) we easily arrive at (8) and (9). �

Next, let Pc
Gi

(λ) = ∑4n
k=0 pkλ

4n−k and let Pc
Hi

(λ) = ∑4n
k=0 qkλ

4n−k , understanding1

that pk and qk are integers for k = 0, 1, . . . , 4n. Let

Pc
Gi

(λ − a) =
4n∑

k=0

xkλ
4n−k and Pc

Hi
(λ − a) =

4n∑
k=0

ykλ
4n−k .(13)

1We know that if P c
G(λ) = ∑n

k=0(ak + bk
√

m)λn−k then P c
G

(λ) = ∑n
k=0(ak − bk

√
m)λn−k where ak and bk

are integral values for k = 0, 1, . . . , n. In view of this it follows that bk = 0 for k = 0, 1, . . . , n if and only if G is
cospectral to its complement G.
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Besides, let Pc
Gi

(−λ−a) = ∑4n
k=0 xkλ

4n−k and let Pc
Hi

(−λ−a) = ∑4n
k=0 ykλ

4n−k . With this

notation we arrive at

PROPOSITION 19. Let G be a walk regular graph of order 4n+1 and degree 2n. If G

is cospectral to its complement G then x2k = y2k for k = 0, 1, . . . , 2n.

PROOF. Replacing λ with λ − a in (10) and keeping in mind that Q
(i)
4n(λ, 0) = Pc

Gi
(λ)

and S
(i)
4n (λ, 0) = Pc

Hi
(λ) we have Pc

Gi
(λ − a) + Pc

Gi
(−λ − a) = Pc

Hi
(λ − a) + Pc

Hi
(−λ − a).

Then according to (13) we get xk + xk = yk + yk for k = 0, 1, . . . , 4n. It is not difficult to
see that

xk =
k∑

i=0

(−1)k+i

(
4n − i

k − i

)
ak−ipi and xk =

k∑
i=0

(−1)i
(

4n − i

k − i

)
ak−ipi ,(14)

for k = 0, 1, . . . , 4n. Similarly, we have

yk =
k∑

i=0

(−1)k+i

(
4n − i

k − i

)
ak−iqi and yk =

k∑
i=0

(−1)i
(

4n − i

k − i

)
ak−iqi ,(15)

for k = 0, 1, . . . , 4n. Using (14) we easily obtain x2k + x2k = 2x2k for k = 0, 1, . . . , 2n

and x2k−1 + x2k−1 = 0 for k = 1, 2, . . . , 2n. Of course, we also have y2k + y2k = 2y2k for
k = 0, 1, . . . , 2n and y2k−1 + y2k−1 = 0 for k = 1, 2, . . . , 2n. Since x2k + x2k = y2k + y2k

we obtain the statement. �

PROPOSITION 20. Let G be a walk regular graph of order 4n+1 and degree 2n. If G

is cospectral to its complement G then

mb2y2k−1 = x2k+1 + 4nax2k ,(16)

for k = 1, 2, . . . , 2n understanding that x4n+1 = 0.

PROOF. First, replacing λ with λ−a in relations (8) and (9), by an easy calculation we
obtain mb2(P c

Hi
(λ−a)−Pc

Hi
(−λ−a)) = (λ2 +4naλ)P c

Gi
(λ−a)−(λ2−4naλ)P c

Gi
(−λ−a),

which yields that

mb2(yk − yk) = xk+2 + 4naxk+1 − (xk+2 − 4naxk+1) ,

for k = 0, 1, . . . , 4n understanding that xk = 0 and yk = 0 if k �∈ {0, 1, . . . , 4n}. Since
y2k−1 + y2k−1 = 0 and x2k−1 + x2k−1 = 0 for k = 1, 2, . . . , 2n and x2k = x2k for k =
0, 1, . . . , 2n, we obtain the statement. �

PROPOSITION 21. Let G be a walk regular graph of order 4n+1 and degree 2n. If G

is cospectral to its complement G then

((4n + 1) − (2k + 1))(4n + 1)ax2k + ((4n + 1) − 2k)x2k+1 = 0 ,(17)

for k = 0, 1, . . . , 2n.
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PROOF. We note first that λ1 = 2n and λi,−λi −1 for i = 1, 2, . . . , 2n are eigenvalues
of G. Using Proposition 1 we find that λc

1 = 4na and −a±(2λi +1)b
√

m for i = 1, 2, . . . , 2n

are the conjugate eigenvalues of G. Let Pc
G(λ − a) = ∑4n+1

k=0 skλ
(4n+1)−k and let P4n(λ) =∑4n

k=0 tkλ
4n−k be a polynomial of degree 4n so that

Pc
G(λ − a) = (λ − (4n + 1)a)

4n∑
k=0

tkλ
4n−k .(18)

Using the last relation we obtain sk = tk −(4n+1)atk−1 for k = 0, 1, . . . , 4n+1. Further, we
note that (4n + 1)a and ±(2λi + 1)b

√
m are the roots of Pc

G(λ − a). Of course, it means that

±(2λi + 1)b
√

m are the roots of P4n(λ). The roots of P4n(λ) are symmetric with respect to
the zero point, which provides that t2k−1 = 0 for k = 1, 2, . . . , 2n. So we obtain (i) s2k = t2k

and (ii) s2k+1 = −(4n+ 1)at2k. Finally, since2(P c
G(λ−a))′ = (4n+ 1)P c

Gi
(λ−a) we obtain

xk = ((4n+1)−k)sk
4n+1 . In view of this and (4n + 1)as2k + s2k+1 = 0 (see (i) and (ii)) we obtain

the statement. �

We shall now establish a better connection between the coefficients of polynomials
Pc

Gi
(λ) and Pc

Hi
(λ) than that is given in relation (16), as follows. First, let c0, c1, . . . , c2n

be some real values so that

x2k = ck

(
(−1)k((4n + 1) − 2k)

(
2n

k

)
(4n + 1)k−1(mb2)k

)
,(19)

for k = 0, 1, . . . , 2n. Since x0 = (4n
0

)
p0 and x2 = (4n

2

)
a2p0 − (4n−1

1

)
ap1 + (4n−2

0

)
p2 we3

obtain x0 = 1 and x2 = −2n(4n − 1)mb2 (see (14)). Consequently, using (19) we find that
c0 = 1 and c1 = 1. Further, using (17) and (19) we obtain

x2k+1 = ck

(
(−1)k+14na

(
2n − 1

k

)
(4n + 1)k(mb2)k

)
,(20)

for k = 0, 1, . . . , 2n understanding that
(2n−1

2n

) = 0. Using (19) and (20) we can easily see
that (16) is transformed into

y2k−1 = ck

(
(−1)k4na(4n + 1)k−1(mb2)k−1)∆n,k ,

where ∆n,k = ((4n + 1) − 2k)
(2n

k

) − (4n + 1)
(2n−1

k

)
. Finally, since ∆n,k = (2n−1

k−1

)
we easily

arrive at

y2k+1 = ck+1

(
(−1)k+14na

(
2n − 1

k

)
(4n + 1)k(mb2)k

)
,(21)

2Let P c
Gi

(x + y
√

m) = Q
(i)
n−1(x, y) + √

mR
(i)
n−1(x, y) for i = 1, 2, . . . , n. Since (P c

G
(λ))′ = ∑n

i=1 P c
Gi

(λ) we

find that ∂Qn(x,y)
∂x = ∑n

i=1 Q
(i)
n−1(x, y) and ∂Rn(x,y)

∂x = ∑n
i=1 R

(i)
n−1(x, y).

3We know that a0+b0
√

m = 1+0·√m and a1+b1
√

m = 0+0·√m. Besides, we know that a2 = −(n
2
)
(a2+mb2)

and b2 = 2ab(
(n
2
) − 2e) where e = e(G) is the number of edges of G (see [5]).
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for k = 0, 1, . . . , 2n − 1.

PROPOSITION 22. Let G be a walk regular graph of order 4n + 1 and degree 2n,

which is cospectral to its complement G. Then G is strongly regular4 if and only if ck = 1 for
k = 0, 1, . . . , 2n.

PROOF. Let us assume ck = 1 for all values k = 0, 1, . . . , 2n. Then using (20) and (21)
we obtain x2k+1 = y2k+1 for k = 0, 1, . . . , 2n−1. In view of this and Proposition 19 it follows
that xk = yk for k = 0, 1, . . . , 4n. Therefore, using (13) we find that Pc

Gi
(λ) = Pc

Hi
(λ). Using

Theorems 1 and 3 we obtain the proof. �

PROPOSITION 23. Let G be a walk regular graph of order 4n+ 1 and degree 2n. If G

is cospectral to its complement G then

Pc
G(λ − a) = (λ − (4n + 1)a)

2n∑
k=0

ck

(
(−1)k

(
2n

k

)
(4n + 1)k(mb2)k

)
λ4n−2k ,

where c0 = 1 and c1 = 1.

PROOF. According to the proof of Proposition 21 we have (4n + 1)xk = ((4n + 1) −
k)sk . Since s2k = t2k and t2k−1 = 0 we obtain the statement using (18) and (19). �

PROPOSITION 24. Let G be a walk regular graph of order 4n+1 and degree 2n. If G

is cospectral to its complement G then

Q
(i)
4n(− a, λ+) =

2n∑
k=0

x2kλ
4n−2k and S

(i)
4n (− a, λ+) =

2n∑
k=0

y2kλ
4n−2k ,

where λ+ = λ
√

m
m

.

PROOF. Since Pc
Gi

(λ − a) + Pc
Gi

(−λ − a) = Q
(i)
4n(λ − a, 0) + Q

(i)
4n(−λ − a, 0) and

Pc
Hi

(λ − a) + Pc
Hi

(−λ − a) = S
(i)
4n (λ − a, 0) + S

(i)
4n (−λ − a, 0) we obtain the statement using

Propositions 13 and 14. �

Since x2k = y2k for k = 0, 1, . . . , 2n we have Q
(i)
4n(− a, λ) = S

(i)
4n (− a, λ) for i =

1, 2, . . . , 4n + 1. Since Q
(i)
4n(− a, λ) = Q

(j)

4n (−a, λ) we also have S
(i)
4n (−a, λ) = S

(j)

4n (−a, λ)

for i, j = 1, 2, . . . , 4n + 1. Besides, using Proposition 12 we find that T
(i)

4n+1(− a, λ) =
R4n+1(− a, λ) for i = 1, 2, . . . , 4n + 1.

PROPOSITION 25. Let G be a walk regular graph of order 4n+1 and degree 2n, which

is cospectral to its complement G. Then Pc
Hi

(λ) = Pc
Hj

(λ) for i, j = 1, 2, . . . , 4n + 1.

4In the meantime we have demonstrated that a walk regular graph G which is cospectral to its complement G is
strongly regular if and only if ∆(Gi) = ∆(Hi), where ∆(G) denotes the number of triangles of a graph G. In other
words, it means that G is strongly regular if and only if c2 = 1.
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PROOF. It is sufficient to show T
(i)

4n (− a, λ) = T
(j)

4n (− a, λ) for i, j = 1, 2, . . . , 4n+1.
Indeed, using (6) we get

T
(i)
4n+1(− a, λ) = λ S

(i)
4n (− a, λ) + mb2

a
T

(i)
4n (− a, λ) ,(22)

from which we obtain the statement. �

THEOREM 5. Let G be a walk regular graph of order 4n + 1 and degree 2n, which

is cospectral to its complement G. Then σ c(Gi) � Mc(Gi) = σc(Hi) � Mc(Hi) for i =
1, 2, . . . , 4n + 1.

PROOF. First, replacing λ with −a + λ
√

m in relation (7) we obtain the following

system of equations5

Q4n+1(− a, λ) = − (4n + 1)2 a Q
(i)
4n(− a, λ) − (4n + 1) mλR

(i)
4n (− a, λ) ;(23)

R4n+1(− a, λ) = (4n + 1) λQ
(i)
4n(− a, λ) + m λ2

a
R

(i)
4n (− a, λ) .(24)

Second, since T
(i)
4n+1(− a, λ) = R4n+1(− a, λ) and S

(i)
4n (− a, λ) = R

(i)
4n (− a, λ) relation (22)

is transformed into

R
(i)
4n+1(− a, λ) = λQ

(i)
4n(− a, λ) + mb2

a
T

(i)
4n (− a, λ) .(25)

We shall now demonstrate that Gi and Hi have the same number of main eigenvalues.
Indeed, let x ∈ σc

Q(Gi) ∩ σc
R(Gi). Since σc

Q(Gi) ∩ σc
R(Gi) ⊆ σc

R(G) (see (24)) we get

R4n+1(− a, x) = 0. Using (25) we obtain x ∈ σ c
Q(Hi) ∩ σc

R(Hi). Conversely, let x ∈
σc

Q(Hi)∩σc
R(Hi). Then Using (24) and (25) we get R4n+1(− a, x) = 0 and R

(i)
4n (− a, x) = 0,

which proves that σc
Q(Gi) ∩ σc

R(Gi) = σc
Q(Hi) ∩ σc

R(Hi). In view of this and Theorem 4 we

obtain |σc(Gi) � Mc(Gi)| = |σc(Hi) � Mc(Hi)|, which proves the assertion. According
to [6], there exists a one-to-one correspondence between λc ∈ σc(G) � Mc(G) and x ∈
σc

Q(G) ∩ σc
R(G), which completes the proof. �

THEOREM 6. Let G be a walk regular graph of order 4n + 1 and degree 2n, which is

cospectral to its complement G. Then G is strongly regular if and only if Hi has exactly two
main eigenvalues for i = 1, 2, . . . , 4n + 1.

PROOF. According to Theorem 5 the vertex deleted subgraphs Gi also have exactly two
main eigenvalues for i = 1, 2, . . . , 4n + 1. Using Theorem 2 we obtain the statement. �

5Using (23) and (24) we easily obtain λQ4n+1(− a, λ) + (4n + 1)aR4n+1(− a, λ) = 0. The same relation could
be obtained by using the equality (λ + 4na + 2a)P c

G
(λ) = (−1)4n+1(λ − 4na)P c

G
(−λ − 2a).
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Using Proposition 1 we obtain that σ(Gi)�M(Gi) = σ(Hi)�M(Hi). Of course, we6

also have σ ∗(Gi) � M∗(Gi) = σ ∗(Hi) � M∗(Hi) for i = 1, 2, . . . , 4n + 1, where M∗(G)

is the set of all Seidel main eigenvalues of a graph G. Finally, since Gi and Hi are switching
equivalent, we arrive at

PROPOSITION 26. Let G be a walk regular graph of order 4n+1 and degree 2n, which

is cospectral to its complement G. Then M∗(Gi) = M∗(Hi) for i = 1, 2, . . . , 4n + 1.
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6We know that if λ ∈ σ(G) � M(G) then − 2λ − 1 ∈ σ∗(G) � M∗(G). In view of this it follows that
σ∗(Gi) � M∗(Gi) = σ∗(Hi) � M∗(Hi).


