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Abstract. We say that a regular graph G of order n and degree r > 1 (which is not the complete graph) is
strongly regular if there exist non-negative integers 7 and 6 such that |S; N S| = 7 for any two adjacent vertices
and j, and |S; N S| = 6 for any two distinct non-adjacent vertices i and j, where Sy denotes the neighborhood of
the vertex k. We say that a graph G of order n is walk regular if and only if its vertex deleted subgraphs G; = G \ i
are cospectral fori = 1,2, ..., n. We here establish necessary and sufficient conditions under which a walk regular

graph G which is cospectral to its complement G is strongly regular.

1. Introduction

Let G be a simple graph of order n. The spectrum of the simple graph G consists of the
eigenvalues A1 > Ay > --- > X, of its (0,1) adjacency matrix A = A(G) and is denoted
by o (G). The Seidel spectrum of G consists of the eigenvalues )“T > A; > ... > A of its
(0, —1, 1) adjacency matrix A* = A*(G) and is denoted by 0*(G). Let Pg(1) = |Al — A]
and Pj; (L) = |Al — A*| denote the characteristic polynomial and the Seidel characteristic
polynomial, respectively. Let ¢ = a + by/m and ¢ = a — b./m where a and b are two
nonzero integers and m is a positive integer such that m is not a perfect square. We say that
A€ = [c;j] is the conjugate adjacency matrix of G if ¢;; = ¢ for any two adjacent vertices i
and j, ¢;j = ¢ for any two nonadjacent vertices i and j, and ¢;; = 0if i = j. The conjugate
spectrum of G is the set of the eigenvalues A{ > A5 > --- > Ay of its conjugate adjacency
matrix A° = A°(G) and is denoted by 0“(G). Let PG (L) = |A] — A¢| denote the conjugate
characteristic polynomial of G.

2a > 0,

Further, we say that an eigenvalue p of G is main if and only if (j, Pj) = n cos
where j is the main vector (with coordinates equal to 1) and P is the orthogonal projection
of the space R" onto the eigenspace £4(u). The quantity 8 = |cosa]| is called the main
angle of . Similarly, we say that u¢ € 0“(G) is the conjugate main eigenvalue if and only
if (j, P¢j) = ncos?y > 0, where P¢ is the orthogonal projection of the space R” onto the
eigenspace E4c (). The quantity B¢ = | cos y| is called the conjugate main angle of €.
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Let M(G) be the set of all main eigenvalues of G. Then |[M(G)| = |M(G)|, where
G denotes the complement of G. According to [3], we have [M(G)| = |[M°(G)|, where
ME(G) denotes the set of all conjugate main eigenvalues of G.

PROPOSITION 1 (Lepovi¢ [3]). Letr € 0¢(G) be a conjugate eigenvalue of the graph
P

G with multiplicity p > 1 and let q be the multiplicity of the eigenvalue % € 0(G). Then
m

p—l=g=p+1

Next, replacing A with x 4 y./m the conjugate characteristic polynomial P& (}) can be
transformed into the form

1) PE(x + y/m) = Qn(x, ) +/m Ry (x, y),

where Q,(x, y) and R, (x, y) are two polynomials of order » in variables x and y, whose
coefficients are integers. Besides, according to [3]

) PE(x — y3/m) = Qn(x,y) — /m Ry (x, y).

We note from (1) and (2) that xo + yo/m € 0°(G) and xog — yo/m € o°(G) if and only
if xp and yg is a solution of the following system of equations

3) On(x,y)=0 and R,(x,y)=0

THEOREM 1 (Lepovi¢ [3]). Let G and H be two graphs of order n. Then PG (L) =
Py (A) if and only if PG (L) = Pu(X) and Pg(X) = Pz (}).

PROPOSITION 2 (Lepovi¢ [6]). Let G be a graph of order n. Then G is cospec-
tral to its complement G if and only if Qn(—a,—X) = Qu(—a,r) and R,(—a, —L) =
— Ry(—a, ).

PROPOSITION 3. Let G be a graph of order n. Then G is cospectral to its complement
G if and only if Q,,(A,0) = Pé()») and R,(1,0) = 0.

PROOF. First, since PG(A + 0 - /m) = Qu(%,0) + /m R,(%,0) and Pé()» -0-
vm) = 0, (x,0) — /m R, (%, 0), using (1) and (2) we obtain that P (1) = Pé(k) if and
only 0, (%, 0) = P; () and R, (X, 0) = 0. Using Theorem 1 we obtain the proof. O

PROPOSITION 4 (Lepovi¢ [3]). Let G be a connected or disconnected graph of order
n. Then

@ }b(k_b¢ﬁ>:cmyx—m+w—nﬁq;—x—m

2b/m 20+ g (b/m )"
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2. Some auxiliary results

PROPOSITION 5. Let G be a connected or disconnected graph of order n. If n is an
even number then

P <x +a+(y-— b)\/n_1> _a(Qn(x,y) + On(X, ¥)) + mb(Ry(x, y) + R (X, y))
¢ 2bm - 204G (b/m)"
b\/n_'l(Qn(xv y)— Ou(x,y))
21+l g (by/m)"
aym (Ry(x,y) — Ry (X, y))
21+1g (by/m)" '

where X = —x — 2a.

PROPOSITION 6. Let G be a connected or disconnected graph of order n. If n is an
odd number then

<x +a+ (y— b)\/n_1> _ a(Qn(x,y) — On(x,y)) + mb(Ry(x,y) — Ry(xX, y))
2b/m N 2+lg (b/m)"
by/m (Qn(x,y) + Qu(X, y))
21+1g (by/m)"
aym (Ry(x,y) + Ry(X, y))
21+1g (b/m)" '

where X = —x — 2a.

PROOF. Replacing A — a with x + y/m in (4) and making use of (1) and (2) we easily
obtain Propositions 5 and 6. O

PROPOSITION 7. Let G be a connected or disconnected graph of order n. If n is an
even number then

. <_ x+a+(y+ b)ﬁ) _a(Qn(x,y) + On(F, y)) = mb(Ry(x, y) + Ra(X, y))
G 2b/m 21+l g (b/m)"
_ b (Qn(x.y) = 0u(E. y)
2n+lg (by/m)"
a/m (Ry(x,y) — Ry(X,y))
2+1g (by/m)" '

where x = —x — 2a.

PROPOSITION 8. Let G be a connected or disconnected graph of order n. If n is an
odd number then
p (X FratGHbymY  —a(Qux,y) = Qu(X, ) +mb(Ru(x, y) = Ru (X, y))
G 2bym 21+l g (by/m)"
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b/m (Qu(x,y) + On(X, y))
2nt+lg (b/m)"

Vi (Ra(x,y) + Ra(®. )
21+1g (by/m)" '

where x = —x — 2a.

PROOF. Applying (4) to its complement G and replacing — A — a with x 4 y/m, we
easily obtain Propositions 7 and 8. O

PROPOSITION 9. Let G be a connected or disconnected graph of order n. If n is an
even number then

P*( x+a+)’\/"_1> B On(x,y)+ On(x, Y)-i-\/"_i(Rn(x, y) — Ry(X,y))
G —_— — 9

bm 2 (bJm)
where x = —x — 2a.

PROPOSITION 10. Let G be a connected or disconnected graph of order n. If n is an
odd number then

o (_ x+a +yﬁ> 0w y) = Qu(Ey) + m (Ra(x, y) + Ra(E. 1)
A\" " ogm )7 2(b/my" ’

where x = — x — 2a.

PROOF. Using that Pj, (=21 — 1) = on-l (Pz(—=A — 1) + (=1)"Pg (1)) (see [2]), by
an easy calculation we obtain the statements using Propositions 5, 6, 7 and 8. O

Further, let S be any subset of the vertex set V (G). To switch G with respect to S means
to remove all edges connecting S with § = V(G) \ S, and to introduce edges between all
nonadjacent vertices in G which connect S with S. Two graphs G and H are switching (Seidel
switching) equivalent if one of them is obtained from the other by switching. It is known that
switching equivalent graphs have the same Seidel spectrum.

PROPOSITION 11. Let GV and G be two switching equivalent graphs of order n.
If n is an even number then

O, y)+ 0 (—x —2a,y) = 0P (x.y) + QP (—x — 2a. y);
RV (x,y) — RV (—x —2a,y) = RP(x, y) = RP (—x — 2a, y),
where Q,(,k) (x,y) and R,gk) (x, y) are related to G® for k=1,2.

PROPOSITION 12. Let GV and GP be two switching equivalent graphs of order n.
If n is an odd number then

0V (x,y) = 0V (=x = 2a,y) = 0P (x,y) — QP (—x —2a, y);
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RV (x, y) + RV (—x — 2a,y) = RP (x, y) + RP(—x —2a, y),

where Q,(,k) (x,y) and R,(,k) (x, y) are related to G® for k=1,2.

PROPOSITION 13. Let G be a connected or disconnected graph G of order n. Then:

1
On(x,y) = ?(Qn(—a, AT + Qu(—a, x7) + @ (Ro(—a, A7) = Ry(—a, 17));
1
Rp(x,y) = ?(Rn(—a, AT + Ry(—a,27)) + g—f (Qn(—a, 1) = Qu(—a,17)),
where AT = y + M.
m
PROPOSITION 14. Let G be a connected or disconnected graph G of order n. Then:
1
On(x,y) = E(Qn(_av AT) 4+ Qn(—a, 17)) — g (Ru(—a, 2%) — Ry(—a, A7)

1
Ry (¥, y) = = (Ru(—a, AT+ Ru(—a, A7) — g—f (Qn(—a, 1) — Qu(—a,r7)),

where X = —x — 2a.

PROOF. Replacing x + y+/m with —a + A/m and replacing x — y/m with —a — A/m
in relations (1) and (2) respectively, we easily obtain Propositions 13 and 14. O

3. Some preliminary results

Let i be a fixed vertex from the vertex set V(G) = {1,2,...,n} andlet G; = G i be
its corresponding vertex deleted subgraph. Let S; denote the neighborhood of i, defined as
the set of all vertices of G which are adjacent to i.

We say that a regular graph G of order n and degree r > 1 is strongly regular if there
exist non-negative integers t and 6 such that |S; N §;| = 7 for any two adjacent vertices i and
J,and |S; N §;| = 6 for any two distinct non-adjacent vertices i and j, understanding that G
is not the complete graph K,,. We know that a regular connected graph is strongly regular if
and only if it has exactly three distinct eigenvalues [1].

THEOREM 2 (Lepovic [6]). A regular graph G of order n and degree r > 1 is strongly
regular if and only if its vertex deleted subgraphs G; have exactly two main eigenvalues for
i=1,2,...,n.

DEFINITION 1. A graph G of order n is walk regular if the number of closed walks of
length k starting and ending at vertex i is the same forany i = 1,2,...,n.

We know that a graph G of order n is walk regular if and only if its vertex deleted
subgraphs G; are cospectral fori = 1, 2, ..., n. Of course, if G is a walk regular graph then

its complement G is also walk regular [6].
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Further, let G®* = G U e, be the graph obtained from the graph G by adding a new
isolated vertex x. We now have the following result [4].

PROPOSITION 15. Let Piu(x + y/m) = Qui1(x,y) + /m Ryy1(x, y). Then:

2 b2
5) Ous1(x,y) = % (0n(x.y) — (=1) On(—x — 2a, y))
— mb (Ru(x, ) + (—1)" Ru(—x — 2a, )
+x Qn(x,y) +myR,(x,y);
az+mb2 n
©) Rust (v, ) = S22 (Ru, ) + (<) Ra(—x = 24, 1)

—b(Qn(x,y) = (=D)" Qn(—x —2a, y))
+x Ry(x,y)+y Oulx,y).

Let H® be switching equivalent to G with respectto S; € V(G) fori = 1,2,...,n,
understanding that S; is the neighborhood of the vertex i. Then H () = H; U e; where’ o;’ is
the isolated vertex denoted by *i” in G.

PROPOSITION 16 (Lepovi€ [6]). Let G be a walk regular graph of order 4n + 1
and degree 2n. If G is cospectral to its complement G then Py, (M) = Py, ) fori =
1,2,...,4n+ 1.

THEOREM 3 (Lepovi¢ [6]). Let G be a walk regular graph of order 4n+ 1 and degree
2n, which is cospectral to its complement G. Then G is strongly regular if and only if G; is
cospectral to H; fori =1,2,...,4n + 1.

PROPOSITION 17 (Lepovi€ [7]). Let G be a connected or disconnected regular graph
of order n and degree r. Then
(_ 1 )n,1
A+ pi+2a
where p{ = (n — Da + Q2r — (n — 1))by/m and { = (n — )a — 2r — (n — 1))b/m.
THEOREM 4 (Lepovié [6]). A graph G of order n has exactly k main eigenvalues if
and only if |03(G) Nox(G)| =n —k, where oé(G) ={x|Qn(—a,x) =0}and oyx(G) =
{x|Ry(—a,x)=0}

M PO =

<()L ) Péi(_)\' —2a) — w)

A+ pi+2a

4. Main results

PROPOSITION 18. Let G be a walk regular graph of order 4n+ 1 and degree 2n. If G
is cospectral to its complement G then

) 2mb* Pj; () = (A + a)* + 4na (. + a) + mb*) PG (A)
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— (A +a)* —4na(A + a) — mb*) P& (1)
9) 2mb*Pf; (1) = (A + a)* — 4na (. + a) + mb*) PG (X)

— (A +a)* +4na(r +a) — mb*) P& (M),
where A = —\ — 2a.

PROOF. Let PG (x + yy/m) = Qi) (x,y) + /m Ry) (x, y) fori = 1,2,....4n + 1.
Since G; and its complement G; are cospectral (see [6]), we find that Q(l)(k 0) = Pc (k)
and R‘(t’n) (x,0) = 0 (see Proposition 3). Let Pf; (x + y/m) = S‘(m) (x,y) + ﬁT‘fn) (x,y)
fori =1,2,...,4n + 1. In view of Proposition 16 it turns out that SA(‘;) x,0) = P;Ii (A) and

T4(,i) (A, 0) = 0. Since G; is switching equivalent to H; with respectto S; € V(G;), we obtain
from Proposition 11,

(10) 000,00+ 00 @, 0 =50,0 + 5@, 0).

Further, since G is cospectral to its complement G we have Q4,41(%,0) = Pg (M) and
R4n+1(A, 0) = 0. In view of this and using (7), we get

20 Q4n31(1, 0) = (A — 4na)((h + 4na +2a) 0 (1, 0) — (1 — 4na) Q) (%, 0)) ,
which results in
(11) a(Qant1 (X, 0) — Quny1(X,0)) = (A +a) + (4n + Da)(A + a) Q(l)()» 0)
— (A +a)— @n+ D) +a) 0V (%, 0).
Let PS, (x + yy/m) = Sp) (x,y) + /m T, (x.y) fori = 1,2,...,4n + 1. Then
using (5) we get

(12) a(sy

WL 0) = SE (R, 0) = (@G + a) +mb?) Sy) (1, 0)

+ (@ +a) —mb?) S (1, 0).

Since Quni1 (A, 0) — Qans1 (-, 0) = Sy, (2, 0) — Sy | (X, 0) (see Proposition 12), by

using (11), (12) and (10) we easily arrive at (8) and (9). O
Next, let Pé',- ) = Zk 2o piA =k and let PIfIl_ n = Zk 2o g% understanding!
that py and g are integers fork =0, 1, ..., 4n. Let
4n 4n
(13) P v—a) =Y xiA** and P (i—a)=)_ yrtk.
k=0
'We know that if P& (1) = Y }_o(ax + b/m)A"* then PEO) = Yo _o(ax — by /M)A where ay and by,
are integral values for k = 0, 1, ..., n. In view of this it follows that by = O for k =0, 1, ..., n if and only if G is

cospectral to its complement G.
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Besides, let Pg (—A—a) = Y4~ %~ and let Pfy (1 —a) = >4 yeA*"~*. With this
notation we arrive at

PROPOSITION 19. Let G be a walk regular graph of order 4n+ 1 and degree 2n. If G
is cospectral to its complement G then xo = v fork=0,1,...,2n.

PROOF. Replacing & with  — a in (10) and keeping in mind that Q}) (1. 0) = P§ (%)

and S/ (%, 0) = P () we have P& (A — a) + P& (—A —a) = P (A — a) + P (—\ —a).

Then according to (13) we get xx + Xx = yr + y; fork =0, 1, ..., 4n. It is not difficult to
see that

k . k .
(An — i _; _ (4n — i _
4 xe= §Oj(—1)"+’<k_l.)a" 'pi and xk=i§0:(—1)l(k_i>ak "pi
1= =

fork =0, 1, ..., 4n. Similarly, we have

k k

(4n — i . (dn — i .
_ k—+i k—i . - i k—i .
15 y=Y.(-D (k—i)a gi and yk—§j(—1)(k_i>a gi.

i=0 i=0

fork = 0,1,...,4n. Using (14) we easily obtain xo; + X2 = 2xp; fork = 0,1,...,2n
and x2x—1 + x2k—1 = O0fork =1, 2,...,2n. Of course, we also have yox + Yo, = 2y for
k=0,1,...,2nand yp—1 + ¥y =0fork = 1,2, ...,2n. Since x2x + X2k = Y2k + Yoi
we obtain the statement. O

PROPOSITION 20. Let G be a walk regular graph of order 4n+ 1 and degree 2n. If G
is cospectral to its complement G then

(16) mb?you—1 = Xok41 + dnaxo
fork =1,2,...,2n understanding that x4,4+1 = 0.

PROOF. First, replacing A with A — a in relations (8) and (9), by an easy calculation we
obtain mb?(Pf, (A —a) = Pf (=h—a)) = (\* +4nar) PG (h—a) — (A* —4nar) PG (=h—a),
which yields that

mb? (Vi — Vi) = Xpa + 4naxgy 1 — (Xpyo — 4na¥ps1)

for k = 0,1,...,4n understanding that x; = O and yy = 0ifk & {0, 1,...,4n}. Since
Y2k—1 + Vor—1 = 0 and x2k—1 + Xk—1 = Ofor k = 1,2,...,2n and xox = X for k =
0,1,...,2n, we obtain the statement. O

PROPOSITION 21. Let G be a walk regular graph of order 4n+ 1 and degree 2n. If G
is cospectral to its complement G then

(17) (4n+1) — 2k + 1))(dn + Daxy + ((4n + 1) — 2k)x2%4+1 =0,
fork=0,1,...,2n.
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PROOF. Wenote first that .y = 2n and A;, —A; —1fori = 1,2, ..., 2n are eigenvalues
of G. Using Proposition 1 we find that A{ = 4na and —a+(2x; + Db /mfori =1,2,...,2n
are the conjugate eigenvalues of G. Let P5(A —a) = 2’;‘51 siaA@ D=k and let Py, (1) =

2’;0 7ex*" K be a polynomial of degree 47 so that

4n
(18) PG —a) = (A — (4n+ Da) Y ua¥*.
k=0
Using the last relation we obtain s; = ty — (4n+ D)aty_; fork =0, 1, ..., 4n+ 1. Further, we

note that (4n + 1)a and +(2X; + 1)b./m are the roots of PE (X — a). Of course, it means that
+(2X; + 1)b/m are the roots of Py, (A). The roots of Py, (A) are symmetric with respect to
the zero point, which provides that rp;,_; = Ofork = 1,2, ..., 2n. So we obtain (i) sox = tok
and (ii) sox+1 = —(4n + 1)aty. Finally, sincez(Pé A—a)) =@n+ l)Péi (A — a) we obtain

xp = DS 1y view of this and (4n + Dasa + sae41 = 0 (see (i) and (ii)) we obtain
the statement. ]
We shall now establish a better connection between the coefficients of polynomials
P&_ (A) and PIfIl_ (A) than that is given in relation (16), as follows. First, let co, c1, ..., con
be some real values so that
2n
(19) xXok = ck<(—1>k((4n +1) - 2k>( B )(4n + 1)"‘(mb2)"> :

4n—2

fork =0,1,...,2n. Since xo = (4(;1)170 and x, = (42")a2p0 — (4"fl)ap1 + (") p2 we?

obtain xo = 1 and xp = —2n(4n — 1)mb? (see (14)). Consequently, using (19) we find that
co = 1 and c; = 1. Further, using (17) and (19) we obtain

(20) Xkl = ck<(—1>"+‘4na (2” k_ 1)(4n + 1>"(mb2)’<> :

for k = 0, 1, ..., 2n understanding that (2'5;1) = 0. Using (19) and (20) we can easily see

that (16) is transformed into

-1 = ci((=DMna@n + D mb? 1) Ak
where A, ; = ((4n + 1) — 2k) (Zk") — (4n + 1)(2"]:1). Finally, since A, = (Zk":ll) we easily
arrive at

21) Yokl = Chrl ((—1>k+14na (2” k_ 1)(4n + 1)k(mb2>k) :

2Let PS, (x + y/m) = Q;il(x, 0+ vmRY (x, ) fori = 1.2,.on Since (PG = I PG, (1) we
find that 2220 — 571 90 (c y)and Palen) s RO (),

n—

3We know that ag+bg/m = 140-/m and aj+by/m = 0+0-/m. Besides, we know that ay = -(%) (@%+mb?)
and by = 2ab((g) — 2e) where e = ¢(G) is the number of edges of G (see [5]).
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fork=0,1,...,2n— 1.

PROPOSITION 22. Let G be a walk regular graph of order 4n + 1 and degree 2n,

which is cospectral to its complement G. Then G is strongly regular® if and only if cx = 1 for
k=0,1,...,2n.

PROOF. Letusassumecy = 1 forall valuesk =0, 1, ..., 2n. Then using (20) and (21)
we obtain xox4+1 = yor+1 fork =0, 1, ..., 2n—1. In view of this and Proposition 19 it follows
that xy = yx fork =0, 1, ..., 4n. Therefore, using (13) we find that Pét_ ) = Pfii (1). Using

Theorems 1 and 3 we obtain the proof. O

PROPOSITION 23. Let G be a walk regular graph of order 4n + 1 and degree 2n. If G
is cospectral to its complement G then

2n
2
PE(L—a) = (b — (4n + Da) ch<(—1)k< k”) (4n + 1)k(mb2)’<>,\4"—2’< ,
k=0
where co = 1 and c1 = 1.

PROOF. According to the proof of Proposition 21 we have (4n + 1)x;y = ((4n + 1) —
k)si. Since so; = t; and f;—1 = 0 we obtain the statement using (18) and (19). O

PROPOSITION 24. Let G be a walk regular graph of order 4n+ 1 and degree 2n. If G
is cospectral to its complement G then

2n 2n
04 (—a. 2N = xpd* % and Sy (—a,aT) =)yt
k=0 k=0

where 3t = 2/

m

PROOF. Since P§ (A — a) + P (—x —a) = Q§)(n —a.,0) + Q) (— — a.0) and
Py (h—a)+ Py (—A—a) = Sflz) A—a,0)+ Sf";l)(—)» — a, 0) we obtain the statement using
Propositions 13 and 14. U

Since xo; = yy for k = 0,1,...,2n we have Q\)(—=a, %) = S{)(—a, 1) fori =
1,2,....4n+ 1. Since Q) (—a, 1) = 0 (—a, 1) we also have S (—a, 1) = S (—a, 1)
fori,j = 1,2,...,4n + 1. Besides, using Proposition 12 we find that T;};Ll(—a, A =
Ript1(—a,r)fori =1,2,...,4n+ 1.

PROPOSITION 25. Let G be awalk regular graph of order 4n+-1 and degree 2n, which
is cospectral to its complement G. Then Pf]i n = Pf]/ M fori, j=1,2,...,4n+ 1.

4In the meantime we have demonstrated that a walk regular graph G which is cospectral to its complement G is
strongly regular if and only if A(G;) = A(H;), where A(G) denotes the number of triangles of a graph G. In other
words, it means that G is strongly regular if and only if ¢; = 1.
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PROOF. Itis sufficient to show T(’)( a,) = Ti,{)(—a, A fori, j=1,2,...,4n+1.
Indeed, using (6) we get

(22) T (—a. ) =180 (~a, a4+ 2 T(”(— A,

from which we obtain the statement. a

THEOREM 5. Let G be a walk regular graph of order 4n + 1 and degree 2n, which
is cospectral to its complement G. Then o¢(G;) ~ MC(G;) = o(H;) ~ M (H;) fori =
1,2,...,4n+ 1.

PROOF. First, replacing A with —a + A./m in relation (7) we obtain the following

system of equations’

23)  Quii(—a, 1) = —@n+12a QP (—a,n) — @Gn+1)mrA R (—a, 1)
24)  Rapsi(—a, 1) = @n+ 1200 (—a, 1) + — m R(’)( a,n).

Second, since T, |(—a, %) = Rans1(—a, ) and Siil)(—a, 2) = R{)(—a, ) relation (22)
lS transformed ll'ltO

(25) RO (—a.n) =109 (—a /\)+mb T (—a,n).

4n+1

We shall now demonstrate that G; and H; have the same number of main eigenvalues.
Indeed, let x € aé(Gi) Nok(G;). Since aé(Gi) Nok(Gi) S ox(G) (see (24)) we get
Ran+1(—a,x) = 0. Using (25) we obtain x € O’é(H,‘) N o (H;). Conversely, let x €

0§ (H;) Nog(H;). Then Using (24) and (25) we get Ray11(—a, x) = Oand R} (—a, x) =0,
which proves that aé(Gi) Nog(Gi) = oé(H,-) Nok(H;). In view of this and Theorem 4 we
obtain |0°(G;) ~ M°(G;)| = |6°(H;) ~ M (H;)|, which proves the assertion. According
to [6], there exists a one-to-one correspondence between A° € ¢°(G) ~ M°(G) and x €
aé (G) N ok (G), which completes the proof. O

THEOREM 6. Let G be a walk regular graph of order 4n + 1 and degree 2n, which is
cospectral to its complement G. Then G is strongly regular if and only if H; has exactly two
main eigenvalues fori = 1,2,...,4n+ 1.

PROOF. According to Theorem 5 the vertex deleted subgraphs G; also have exactly two
main eigenvalues fori = 1,2, ...,4n + 1. Using Theorem 2 we obtain the statement. O

5Using (23) and (24) we easily obtain A Q4,,4+1(—a, A) + (4n + 1)aR4,41(—a, 1) = 0. The same relation could
be obtained by using the equality (A + 4na + 2a)Pé(}») = (=D*H o - 4na)Pé (—=A — 2a).
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Using Proposition 1 we obtain that o (G;) ~ M(G;) = o (H;) ~ M(H;). Of course, we?
also have 6 *(G;) ~ M*(G;) = o*(H;) ~ M*(H;) fori = 1,2,...,4n + 1, where M*(G)
is the set of all Seidel main eigenvalues of a graph G. Finally, since G; and H; are switching
equivalent, we arrive at

PROPOSITION 26. Let G be a walk regular graph of order 4n+1 and degree 2n, which
is cospectral to its complement G. Then M*(G;) = M*(H;) fori =1,2,...,4n+ 1.
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SWe know that if A € 6(G) ~ M(G) then —2i — 1 € ¢*(G) ~ M*(G). In view of this it follows that
o*(Gj) ~ M*(G;) = o™ (H;) ~ M*(H;).



