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Introduction

Let k& be a field of characteristic » and G be a finite subgroup of
GL(V) where V is a k-space. Then G acts naturally on the symmetric
algebra k[V] of V. In the case of p=0 or (|G|, p)=1, it is well known
(e.g., [1], [4]) that the invariant subring k[V]° is a polynomial ring if
and only if G is generated by pseudo-reflections in GL(V).

Suppose that p||G|. We have classified in [2] finite irreducible groups
G such that %[V]® are polynomial rings under certain conditions. In
this paper we try to classify the modular representations of finite
abelian groups with regular rings of invariants. Our main result is the
following

THEOREM. Let G be an abelian p-subgroup of GL(V) which 1is
realizable on F,. If dim V<2 or dim V*¢<2, then the following con-
ditions are equivalent:

(1) K[V]¢ is a polynomial ring.

(2) There exist couples (W, G,)A<i<m) which satisfy the follow-
ing

(i) G,AZism) are subgroups of G and G=Br, G..

(ii) W.(1Zi<m) are l-dimensional subspaces of V and V=V°P
e~ W,

(iii) FEach VPW, is a kG,submodule (1=i=m) of V and W,S V9
if 1#7.

Furthermore we will give some remarks concerned with singular
loci of the rings %[V]® and examples of abelian p-groups generated by
transvections with the invariant subrings which are not Macaulay rings.
It should be noted that there are finite irreducible subgroups G of GL(V')
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generated by reflections which contain no transvections such that k[ V]¢
are not Macaulay rings ([3]).

§1. Preliminaries.

An element ¢ of GL(V) is said to be a pseudo-reflection if
dim (1—0)V=1. A pseudo-reflection o is called a transvection if ¢|,_,,, =1
and a reflection if o|,_,y=—1.

First, we quote the following well known result:

THEOREM 1.1 (J.-P. Serre [4]). If k[V]° is a polynomial ring, then
G 18 gemerated by pseudo-reflections.

Without specifying, & stands for the algebraic closure of F,.

PROPOSITION 1.2. Let G be a finite abelian group generated by
pseudo-reflections in GL(V) and let G, demote the p-part of G. Then
K[V is a polynomial ring if and only if k[V]® 18 a polynomial ring.

PROOF. Let G, be the p’-part of G. It is easy to show that there
are kG,submodules V,(i=1, 2) of V satisfying V=V,PV, and V, S V%
(1#3). Then we have K[V]'=EKk[V ] @, k[V,]>. Since K[V ]%(i=1, 2)
are noetherian graded algebras, the assertion follows.

Hence we have only to treat the case where G is an abelian p-group.
A kG-module V is said to be trivial if G acts trivially on V.

PROPOSITION 1.3. If G is an abelian p-group generated by pseudo-
reflections in GL(V), then V/V¢ is a trivial kG-module.

PROOF. We show this by induction on dim V. Since Im (G—GL(V/V¢%))
is generated by pseudo-reflections, V/VEé/[V/V€]¢ is a trivial kG-module
by the assumption of induction. Set 2={ce€G: o is a pseudo-reflection
acting trivially on V/ V¢, H={2) and U=7-"Y([V/V°¢])°), where ¥: V->V/V¢
is the canonical epimorphism. Since H is generated by pseudo-reflections,
by (38.2) of [2] we can show dim U—dim U#=dim [V/V¢]°. Assume that
V/V¢ is not trivial. Then there is a pseudo-reflection z € G which does
not belong to 2. Since =07 for e 2, the equality dim U—dim UZ =
dim [V/V?]¢ implies that 7€ 2, which is a contradiction.

NOTATION 1.4. (V, G) stands for a couple of a finite group G and
a kG-module V such that V/V¢ is a nonzero trivial kG-module. The
dimension of a couple (V, G) is defined to be dim V—dim V¢.

For a couple (V, G), let p:G—GL(V) be the representation of G
afforded by the kG-module V. Then we put
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d(V, G)=min {dim W¢ W is a G/Ker p-faithful kG-submodule of V}
and
d*(V, G)=min {dim W*¢: W is a G/Ker p-faithful kG-submodule of V}.
We denote by Q(V, G) the ring Im (k[ V]G/<VG>ﬂk[V]G—E;I—'>k[V/VG]).

DEFINITION 1.5. We say that a couple (V, G) decomposes (to couples),
if there are couples (V@ W,,G,)(1=<i<m) which satisfy the following
conditions:

(i) G,(1=i<m) are subgroups of G and G=@I, G..

(ii) W,(1=<i<m) are nonzero subspaces of V and V=V°Pp P, W..

(ili) Each V°@W, is a kG,-module and W, S V% if i¢+#3.

PROPOSITION 1.6. If a couple (V,G) decomposes to l-dimensional
couples, then kK[ V]¢ is a polynomial ring.

PROOF. This follows easily from (3.5) of [2].
We now extend a result of [2].

LEMMA 1.7. Let (V,G) be a couple with Vé=kX and let Y, eV
(1=iEm) such that V=kXP Pr.kY,. For integers t,c N1=i=m), set
R=K[X, Y?™, ..., Y2'™]. Then R° is a polynomial ring and we can
construct a system of fundamental invariants of R? effectively.

PROOF. Since the affine space A™(k) acts transitively on the set of
maximal ideals of R containing the ideal RX, the normality of R? implies
that R¢ is a polynomial ring.

Now let us make a system of fundamental invariants. We may
assume that V is G-faithful and ¢,=t,=: - -=t, <lpun=" " =tp, <<
tmy 1= =ty . Put V,=kX*"'"@ @r, kY?". The natural action of G
on V, defines o,: G—GL,(k). Since G is a vector group over F,, we
know G=Ker oG, where G,=p,(G). For an element jeN, put V=
EX?"Y D @, kY?" and let p?: G—GL, (k) be the matrix representa-
tion afforded by the natural action of G on V?’. Then clearly Ker p?’=
Ker o, and G,=p"(G). Set V.= V?"®D @®Mn,_,+ kY™ where s,;=t,,—ln,
(2<1<m), then each V,; is a kG,-module. Replacing the elements Yr™iecR
(m,_,+1<j<m,;2<i<n), we may suppose that each KkG,-submodule
EX?™D @My, .+ Y™ is trivial. As in the proof of (3.4) in (2], we
can find homogeneous polynomials f, (1<i=<m,) which satisfy k[V,]:=
E[X?™, f,, -+, fa)- Hence it follows that R%=Ek[X, f,, ---, fa,l [Y2im:
m; ,+1<j<m, 2<i<n]. We continue this procedure for the graded
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polynomial subalgebra R, =k[X][Y?™: m,_,+1<j<m, 2<i<n] of R with
the action of the group Ker p,. Since G is finite, we finally get a system
of fundamental invariants of R.

When a group G acts on a ring R as automorphisms, for a prime
ideal p of R, I (p) is defined to be the inertia group at p.

PROPOSITION 1.8. Let G be a finite subgroup of GL(V). If k[V]¢
18 a polynomial ring, then, for any prime ideal p of k[V], k[V]e® s
a polynomial ring.

PrOOF. Put p*=<{VNp) and H=1yp), then H=Iyp*). For maximal
ideals M,(i=1, 2) containing the ideal p*, we have (K[V]¥)g urix=
(kI V1D g,auvz. Suppose that k[ V]¥ is not a polynomial ring, then clearly
LV IDa, w1z is not a regular local ring, where M, =@, k[V],. Since
the singular locus of k[ V']¥ is closed with respect to the Zariski topology
of Spec k[ V]?, (K[ V]?),snuriz is not a regular local ring. But the local
homomorphism (X[ V1%),.qurvie— (B[ V17),enurviz is étale, and so (K[ V17),.nuviz
is a regular local ring. This is a contradiction.

As a consequence of Lemma 1.7 and Proposition 1.8, we have

PROPOSITION 1.9. Let (V, G) be a couple. If k[V]® is a polynomial
ring, them we can construct a regular system of homogeneous parameters

of Q(V, G) effectively.

PROOF. Let 0=W,CW,C---SW,=V¢ be an ascending chain of
subspaces satisfying dim W,/W,_,=1(1=i<d=dim V¢). Set

R=Kk[V], R=R{o“"|WRic"> , R,=Rc"d[W,RLWD, ...,

and
R,= -RdG——1/ W.R_, .

Then clearly R;,=RS$_,/W,R5_, = Q(V, G). For it follows from Proposition

can

1.8 that R (1<i<d) are polynomial rings. Hence, by Lemma 1.7,
we can make a regular system of homogeneous parameters of Q(V, @)
inductively.

NOTATION 1.10. Let (V, G) be a couple such that k[V]¢ is a poly-
nomial ring. And let 0=W,CSW,=-.- S W;=V? be an ascending chain
of subspaces satisfying dim W,/W,_,=1(1<i1<d). As in the proof of
Proposition 1.9, we can determine the ring Q(V, G) inductively. We
denote the algorithm A(W, --., W,;) of the computation of Q(V, G) as
stated above.
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For convenience we introduce graphic representations of certain
groups.

NoTATION 1.11. Let an element ¢ of GL(V') have the form [ Mo) 2 ]

on the basis {X,, -+, X, Xt ***» Xmia} of V. Let us define a graph
of 0. When M(a)i,-;to, we represent this by a circle of (%, 7)-position in
the following table:

X, - X - X
Xm+1
Xm+n

and we write M{o),; in it. Connect these circles by line segments. For
group G generated by elements a—[ 1%[( o 1 ] we can define a graph of G,
projecting all graphs of independent generators on a table. For example,
let V=@i-.kX,, a‘z[M(a) 1] (i=1, 2) and G=<{o,, 0,), where M(o,)=

% 2] and M(az)zﬁ O_J' Then corresponding graphic representations are

Xl ‘XZ Xl Xz
X; X5
g = ) O ==
X, X,
and
X, X,
. Q2o |%

@é D |X,

§2. The case of dim V%=

Let G be an abelian p-subgroup of GL(V) which is realizable on F,.
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Suppose that G is generated by pseudo-reflections, then the kG-module
V defines a couple (V, G) from Proposition 1.3.

LEMMA 2.1. If dim V¢=2, dim V=4 and k[V]° is a polynomial
ring, then the couple (V, G) is decomposable.

PrROOF. We may assume k=F, and dim V=4. Suppose that (V, G)
is indecomposable. Then it is easy to see that |G|>p% where d=
a*(v, G).

Step 1. If |G|=p*t', then there is no minimal prime ideal p satisfy-
ing |I;(p)|=p%. So G is conjugate to

X,

CiECIORICIE
JCOROEO),

@ |z
@ |u
0

where V=X PrkX.PP:-,. kS.PP:_,. kT PP, kU, st=1, c,#0 and u=0.
If a,=0, then (V, G) is decomposable. Hence a,(1=<7<s) and b,(1=i<¢)
never vanish. Taking polynomials {f, f/, 9., 9},

L d

KIST, for « -y fuo T2y -+, T2, @y -+, 3]
by the algorithm A(%X,, kX.PkX,)

kSt -, 85, T, ff, -+, Flo @l -+, 001
by the algorithm A(kX,, kX, PkX,)

Y, &)=

which is a contradiction. ‘
Step 2. Suppose |G|>p?t'. Then G contains the following
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. X, :
S )
‘

where st>1, d,#0 and ©=0. Replacing a basis of V¢ we may assume
| Is({X>)|=p°. Since G is a vector group over F,, G=HPPr, {(c.>. If
b7'=0(1=+=t) and ¢22=0(1=<i=<u), then (V, G) is decomposable. Let R,=
kS, ---,S, O, ---, U,] and R,=k[T,>---, T,]. The group G contains H,
and so we can easily see that Q(V, G)=R@. R, where R(i=1, 2) are
 graded polynomial subalgebras of R,. By the algorithm A(kX,, kX, PkX,),
the polynomial ring R;=Fkl[h,, h,, ---, h,] satisfies h,=T?* for some i,. On
the other hand, since Q(V, L;({X)))=Fk[S?, - - -, S?], we know Q(V, G) > T2.
This is a contradiction.
We now establish

THEOREM 2.2. Let G be an abelian p-subgroup of GL(V) which is
realizable on F,. If dim V=2, then the following conditions are
equivalent:

- (1) E[VY is a polynomial ring.

(2) The kG-module V defines the couple (V, G) which decomposes

to 1 dimensional couples.

PROOF. From Proposition 1.6, it suffices to show that (1) implies (2).
Hence suppose that k[V]? is a polynomial ring and that (V, G) de-
composes to couples (VPW,, G,)1=i<m) which are indecomposable.
Say dim W,=2. Since we may identify Q(V, G) with Q V¢ W, G, .
QUAVDOW, G) Q. - @. AVDW,, G,), the fact that dim W,=2 con-
flicts with Lemma 2.1. Therefore (V, G) decomposes to 1 dimensional
couples. '
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§3. The case of dim V*¢=2,
In this section we prove the following

THEOREM 3.1. Let G be an abelian p-subgroup of GL(V) which i3
realizable on F,. If dim V*¢=2, then the following conditions are
equivalent:

(1) K[V is a polynomial ring.

(2) The kG-module V defines the couple (V G) which decomposes
to 1-dimensional couples.

Let us give with

LEMMA 3.2. Let V=kSPkTOLUD Di-, kX, and

S T U
@ O @© X

where {a, b, ¢, A} F*. Then k[V]° iz not a polynomial ring.

PrROOF. Assume that %[V]° is a polynomial ring, then K[V]°=
k[S, T, U, f,, fi] for some homogeneous polynomials f;= P+ Sfu+ Tfe+
Ufiu(i=1, 2). Put

S T U T
X X,
L@ i T @ |
® % @ @D |x
Y(X)=X— SX, , Yz(Xz) =X?-T7'X,,
Z(X)=Y(X)— Y (U Y(X), Z(Xp)=TY(Xp)?—c" 'Y (U)'Yy(X,),

and

B(X,, X,)=cY(X,)(UP~'—T?7)— Y(X,)(UP* =87 .
Then K[V =K[S, T, U, Z(X,), Z(X,), B(X,, X;)]. We may suppose
fi+zZ=_ % gliy Ju Gu JABX, X)hSETHU,
(2p—~1)d;1+ig+5g+dg=p% 31>0 .

and so



INVARIANTS OF FINITE ABELIAN GROUPS 209

(.ﬂ+Z1)o|S.U,Xi=0= . 2 . g[jl, 0, ,’ia, 0](—ch2p_1)j1Tj3 .
(2p—1)§1+53=02 §1>0
From this,
(911, 0, p*—(2p—1), 0]—-1)ib+ 3,  g[4, 0, p*—(2p—1)j, 0](ib)!=0

2s§s[p2 (2p-1)]
(1=+=p—1). Hence
1; if j=1
9l3, 0, *—(2p—1)5, 01=1y . ¢ zgjg[ P’ ]
2p—1

Calculating (fi+2Z,)|v,x,=0,r=1
g[ju jz; ja, O]{chp—l —cb+aS» 11— aSP}hSh
>0

2p—1)j1+i5+78=02,5,,39

=bS”‘1——iS”+—a—S”—1—bS”(”““ .
c C

But we can show that g¢[j, ¢, p2°—t—(2p—1)7, 0]=0 (5>1) by induction on
t. This gives a contradiction.

PROOF. Let us begin the proof of Theorem 3.1. Since G is realiz-
able on F,, we may suppose k=F,. G is generated by pseudo-reflections
in GL(V), then V/V¢ is a trivial kG-module by Proposition 1.6. We
prove the theorem by induction on d=d(V, G). So we assume that, for
a subspace W of d(W, G)<d, (W, G) decomposes to 1-dimensional couples
if and only if X[W]¢ is a polynomial ring.

Now we assume that k[V]¢ is a polynomial ring and the couple
(V, G) is indecomposable. Let V=@;_, kS P D:-. kT:D P, kUP D:_, kX,
and let

S, --- S T, .. T,

OO - % % L"i |

sl v Ss Tl A Tt Ul cee Uu
B @ x
o=
(@) ‘ X,
Step 1. “If there i3 a minimal prime ideal p of k[V] satisfying
| Is(p) | =% then (V, @) is decomposable.” Put N=1I,p). Then we can
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find a homogeneous prime ideal ' such that NxI;(p)=G. Since k[V]'¢*"
is a polynomial ring and d(V, I;(¥))<d, (V, Is(y’)) decomposes to 1-
dimensional couples. Hence, it follows that (V, G) is decomposable.

Step 2. Suppose [G|=p*. From Step 1, we identify G with H.
Since (V, @) is indecomposable, then we have stu=1 and ¢, #0(1=i1=wu).
Put p=<(8S, T, U,>, then

k[ V]IG(p):k[Su Tl) Uu Xl) Xz]IG(p)[Szi ) Sn T2’ ) Tty Uzr Tt Uu]
is a polynomial ring. We can directly show that
k[Sl, TI, Uv Xl) lefg)(v) ISI,TI.U1=0=O .
This contradicts the fact that |Iy(p)|=2p".

Step 3. If |G|=p%", then we may assume that (H, o)=G for some
element ¢. Clearly st=1 and ¢, #0(1=<i<u). Say a;=0. Put p=
<S2; Ss, Tty Sn Tu ST T, Uly Tty Uu> and N=IG(‘p)° Then d(Vy N)<d
and k[V]" is a polynomial ring. From the assumption of induction,
(V, N) is decomposable. Since |N|=p*"*+ we can find a minimal
prime ideal q of k[V] satisfying |Iy(a)|=|Is(q)|=p*. By Step 1, this is
a contradiction. It follows that a!#0(1<1<s), bI#0(1=i<t) and d;+0
(L<i<wu). Suppose u>0. By Lemma 3.2, we know stu>1. Say s>1.
Set W=@:-.kSPD @:-, kTD ®:-. kU,, then d(WD @i, kX, I;KW)))=
u—1 and |I,((W))|=p*"'. From Step 2,

aKW>)

VYo =k WD @ kX, | [S].
Hence we conclude #=0. Let us make a regular system of nomogeneous
parameters of Q(V, G). Then
Q(V, G)
K[X?", X']; by the algorithm A(kS, -- -, sékS,@le, ee, V)
1

es

E[X?, X2'"']; by the algorithm AT, ---, @ kTHKS, ---, V°),

i

1
-

which is a contradiction.

Step 4. Finally we suppose |G|>p?*' and G22H. Then G=H®
@®r. (o). Put F={g, ---, 0.},

F(S;)={0,€ F: a3*+0} (1=j=s),
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F(T)={0.e F:b3=+0} (1=j=¢),
and
F(U;)={0,e F:d}+0} (1=j=wu).

Replacing the set F', we may assume that |F(S)|=1. Set W=@:_.kS:H

i1 kTP @i, kU, and N=I,((W)), then d(WD @i, kX, N)<d. By
the assumption of induction, we know that the couple (WP @:-. kX, N)
decomposes to 1-dimensional couples. Since |F(S,)|=1 and |G|>p?+,
| N|=p*"®®_1+¥¥eM  This inequality and the decomposition of (Wb
@Di.. kX, N)imply that there is an element fe W such that | I,(fk[ WP
@D:_. kX.])|=p*. Hence we conclude that |[I(fk[V]|=|I(fE[V]|=
| In(fEI WD @i-, kX;])|=p%. From Step 1, this is a contradiction.

§4. Some remarks.

For an abelian p-group G generated by transvections, it has not
been known whether k[ V']¢ is a Macaulay ring. We give some examples
of G such that k[V]¢ are not Macaulay rings.

ExamPLE 4.1. Let V=@, kX, (n=2d—1,d=1) and

X Xp  -eees X Xy

Then k[V]° is a Macaulay ring if and only if d=8. (Of course the
groups G are elementary abelian p-groups generated by transvections.)

OUTLINE OF THE PROOF. When d<8, the assertion is clear. For
d=4, we may treat the case of d=4. Let R=Fk[V] and assume that R*
is a Macaulay ring.

Step 1. “The ring R°/X,R¢ i3 normal.” If not, we readily find a
homogeneous prime ideal p of height 2 containing X,R such that R¢ is
singular at pNR°. For the prime ideal p*=<VNp), we know I(p)=
I;(p*) and that R’¢* is not regular. Hence p*=p. But it can be shown
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that R ¢“"» is a polynomial ring for any 2-dimensional subspace W of
V¢ containing kX,.

Step 2. “AX, Xpre=(X,, X;):NR%.” From Step 1, we see that the
canonical map @: R°/X, R —[R'¢“*1) | X R'eXN]6¢/1¢g¥T) {g an isomorphism.
Since R¢%T /X RIe¥I) ig g polynomial ring, for m={(X,, X,)z, mN Re<F =
(X, Xo) pr5¢x- Through the isomorphism @, we get mN R mod X,R°=
[mN RIe“E [ X, RIg(XN|6/IgW C RE/ X, RS,

Step 3. “The ring R°/{X,, X,)rNR® satisfies the Serre condition
R,.” As in the proof of Step 1, it suffices to show that R e¢“"” ig a
polynomial ring for any 8 dimensional subspace W of V¢ containing
EX.PkX,. This follows from direct computation.

Step 4. From Step 2 and Step 8, the ring R%/{(X,, X,>-N R? is normal.
Hence we have

RY(X, XpoN ROZ[RICH D (X, X)p N\ RIS Do/ EuTo)

Put ¢=(X,, Xp>r and H=I,<X,, X,, X;>). Then we have an exact coho-
mology sequence 0— H'G/H, qa¥)— H'(G/H, R¥) of cohomology groups.
Denote by o a generator of I;({X,)) and define N to be 1+o0+---+0o?1.
Clearly (1—o0)qZ,=0 and (1—o)R"NKer (N)Ng?=(1—0)q”. Let U(X;)=
Xr—XrX,, U(X,)=X?—X?'X,, and X=U,(X,)— U,(X,). Then Xe RE,
and (1—o0)X=U/(X,)—Uyx)eq?. Since (1—o)Xe R° we have (1—o)Xe
A1—o)RE,NKer (N)Ng¥. But (1—0)X+0, which is a contradiction.

We can give another proof of Example 4.1, computing local coho-
mology groups at a prime ideal. But the above proof seems to be helpful
to get many examples like Example 4.1 for the spaces V of lower di-
mensions.

For a ring R, we denote by Sing R the singular locus of R.

REMARK 4.2. Let G be an abelian p-group generated by pseudo-
reflections in GL(V). If codim Sing k[V]*=dim V¢, then the following
conditions are equivalent:

(1) Kk[V]¢ is a Gorenstein ring.

(2) There is a subspace W of V¢ with codim,¢W=2 such that
E[VI¢/[KW)>NEK[V]® is normal.

PrROOF. Let 0=W,CW,S.---SW,=W<V? be an ascending chain
of subspaces satisfying dim W,/W,_,=11=<1=d) and codim,¢cW=2. Set
L=I,AWy), G,=G/I,1<i1=d) and R=Fk[V]. Let us prove that (2)
implies (1). If K[V]I?/{W. NK[V]® is normal for some 7<d, then, since
codim Sing R°=dim V¢, there is a commutative diagram with exact rows
and columns:
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0

| |

0— (¥ —RI—  [REKWY —>

N l

0— <W¢+1>G —> Rf—s [RI‘+1/< Wi+1>1i+1]3t+1 —0

l

(W W1 0

v

0

Hence, we can show that RE¢/(W)=[R"/{W,"]° 1is normal and
KWt /{ W %] is monogene as an R°-module. And so {W)NR%=
{W)rs. Since the ring R¢/{(W )N R is a polynomial ring, we can take
elements Y, e V1<i<m=dim V—dim V¢ and integers ¢,€ N such that
the canonical map

@: R4 J(WHNRIE— K[V W TP, .., T2im]

is an isomorphism where Y,= Y, mod W. The group G, acts naturally on
R =kK[Ve/WITY? ---, Y2™] and the isomorphism @ is compatible with
the action of G,. On the other hand, the affine space A™(k) acts transi-
tively on the set of maximal ideals of R’ containing the ideal {<V¢/ W ).
Since the action of A™(k) on Spec R’ is commutative with the one of G,
on R’, R'% is a Macaulay ring by the openness of Macaulay loci. Hence
R¢ is a Gorenstein ring. Conversely, assume that R¢ is a Gorenstein
ring. Then we can show inductively R¢/{ W) N Ré=[R"/{W,) N R*]% and
(WD NR={W,_Dre(1=<i=d). Therefore R°/{W)>N R is normal.

In relation with Remark 4.2, we would like to describe the inde-
composable couple (V, G) which satisfies the condition codim Sing k[V]°=
dim V°>2. But we know the following

REMARK 4.8. Let G be an abelian p-group generated by pseudo-
reflections in GL(V) which is realizable on F,. Suppose that L[V]°
is not a polynomial ring and dim V*¢=2. If dim V¢>2, then
codim Sing k[ V] <dim V€. :

This can be shown by improving the method stated in the proof of.
Lemma 3.2. We omit the proof of Remark 4.3.
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