More on the Schur Index and the Order and Exponent of a Finite Group

Toshihiko YAMADA

Tokyo Metropolitan University

Let G be a finite group and K a field of characteristic 0. Let χ be an absolutely irreducible character of G and let $m_K(\chi)$ denote the Schur index of χ over K. In Fein and Yamada [1], we gave a theorem which relates $m_Q(\chi)$ to the order and exponent of G, where Q is the rational field. In this paper, we will give similar results for the case $K=Q_l$, the l-adic numbers, where l is a prime. These results are easily derived from the formula of index of an l-adic cyclotomic algebra, which was obtained by the author [4], [5].

For the rest of the paper, k is a cyclotomic extension of Q_l , i.e., k is a subfield of a cyclotomic field $Q_l(\zeta')$, where ζ' is a root of unity. For a natural number n, ζ_n denotes a primitive n-th root of unity. A cyclotomic algebra over k is a crossed product

(1)
$$B=(\beta, k(\zeta)/k)=\sum_{\sigma\in\mathcal{S}}k(\zeta)u_{\sigma}, \qquad (u_1=1),$$

$$(2) u_{\sigma}x = \sigma(x)u_{\sigma} (x \in k(\zeta)) , u_{\sigma}u_{\tau} = \beta(\sigma, \tau)u_{\sigma\tau} , (\sigma, \tau \in \mathscr{G}) ,$$

where ζ is a root of unity, $\mathscr G$ is the Galois group of $k(\zeta)$ over k, and β is a factor set whose values are roots of unity in $k(\zeta)$. Put $L=k(\zeta)$. Let $\varepsilon(L)$ denote the group of roots of unity contained in L. Let $\varepsilon'(L)$ (respectively, $\varepsilon_l(L)$) denote the subgroup of $\varepsilon(L)$ consisting of those roots of unity in L whose orders are relatively prime to l (respectively, powers of l). We have $\varepsilon(L)=\varepsilon'(L)\times\varepsilon_l(L)$. Let

$$(3) \qquad \beta(\sigma, \tau) = \alpha(\sigma, \tau) \gamma(\sigma, \tau) , \quad \alpha(\sigma, \tau) \in \varepsilon'(L) , \quad \gamma(\sigma, \tau) \in \varepsilon_l(L) .$$

Suppose that l is an odd prime. Let $\langle \theta \rangle$ denote the inertia group and ϕ a Frobenius automorphism of the extension $k(\zeta)/k$. The order e of θ has the form $e=l^te'$, e' | l-1. Let f denote the residue class degree of the extension k/Q_l , so $\zeta_l f_{-1} \in k$.

THEOREM 1 (Yamada [4]). Let l be an odd prime and k a cyclotomic extension of Q_l . Notation being as above, let $(\beta, k(\zeta)/k) \sim (\alpha, k(\zeta)/k) \bigotimes_k (\gamma, k(\zeta)/k)$ be a cyclotomic algebra over k given by (1)-(3). Then the number

$$\delta = (\alpha(\theta, \phi)/\alpha(\phi, \theta))^{e/(l^{f}-1)}\alpha(\theta, \theta)\alpha(\theta^{2}, \theta) \cdots \alpha(\theta^{e-1}, \theta)$$

belongs to k, so that we can write $\delta = \zeta_l^v f_{-1}$ for a certain integer v. The index of the cyclotomic algebra $(\beta, k(\zeta)/k)$ is equal to e'/(v, e').

PROOF. In [4, Theorem 3], this theorem is stated for the case $k(\zeta) = Q_i(\zeta')$, ζ' being some root of unity. But it is easy to see that the same proof is also valid for any extension $k(\zeta)/k$, ζ being a root of unity.

COROLLARY 2. Notation being as in Theorem 1, suppose that the factor set β has all its values equal to roots of unity of order prime to l, i.e., $\beta(\sigma,\tau) \in \varepsilon'(k(\zeta))$, for all $\sigma,\tau \in \mathscr{G}$. Furthermore, suppose that e=e', i.e., the ramification index e of the extension $k(\zeta)/k$ is not divisible by l. Then the index of the l-adic cyclotomic algebra $(\beta, k(\zeta)/k) = \sum_{\sigma} k(\zeta)u_{\sigma}$ divides the least common multiple of the orders of the elements $[u_{\theta}, u_{\phi}]$ and u_{j}^{l-1} , where $[u_{\theta}, u_{\phi}] = u_{\theta}u_{\phi}u_{\theta}^{-1}u_{\phi}^{-1}$.

PROOF. We have $\beta(\sigma, \tau) = \alpha(\sigma, \tau)$, $\gamma(\sigma, \tau) = 1$ for any $\sigma, \tau \in \mathcal{G}$. Since $[u_{\theta}, u_{\phi}] = \beta(\theta, \phi)/\beta(\phi, \theta)$ and $u_{\theta}^{\bullet} = \beta(\theta, \theta)\beta(\theta^{\bullet}, \theta) \cdots \beta(\theta^{\bullet-1}, \theta)$, it follows that $[u_{\theta}, u_{\phi}]$ and u_{θ}^{\bullet} commute. Since e = e' and e' | l - 1, then

$$\delta^{(l^{f}-1)/e} = (\beta(\theta,\phi)/\beta(\phi,\theta)) \cdot \{\beta(\theta,\theta)\beta(\theta^{2},\theta) \cdot \cdot \cdot \beta(\theta^{e-1},\theta)\}^{(l^{f}-1)/e}$$

$$= [u_{\theta}, u_{\phi}] \cdot (u_{\theta}^{e})^{(l^{f}-1)/e} = [u_{\theta}, u_{\phi}] \cdot u_{\theta}^{l^{f}-1}.$$

Moreover, $[u_{\theta}, u_{\phi}]$ and u_{θ}^{lf-1} commute. On the other hand,

$$\delta^{(l^{f}-1)/e} = \zeta_{l^{f}-1}^{v(l^{f}-1)/e} = \zeta_{e}^{v}$$

whose order is equal to e/(v, e) = e'/(v, e'), the index of $(\beta, k(\zeta)/k)$. The corollary now follows at once.

THEOREM 3. Let G be a finite group and χ an absolutely irreducible character of G. Suppose that l is an odd prime and p is a prime such that $p^n \neq 1$ divides the Schur index $m_{Q_l}(\chi)$ but p^{n+1} does not divide $m_{Q_l}(\chi)$. Then either p^{2n} divides the exponent of G or p^n divides the exponent of G', the commutator subgroup of G, and if p^{2n} does not divide the exponent of G then p^{2n+1} divides the order of G. If a Sylow p-subgroup of G is abelian, then p^{2n} divides the exponent of G.

PROOF. By Theorem 1, $p^{n}|l-1$. Let s be the exponent of G and

let k be the subfield of $Q_l(\zeta_s)$ such that $Q_l(\zeta_s) \supset k \supset Q_l(\chi)$, $[Q_l(\zeta_s): k]$ is a power of p and $p \nmid [k: Q_i(\chi)]$. By the Brauer-Witt theorem (see [6, p. 31]) there is a hyperelementary subgroup H (at p) of G and an irreducible character ξ of H with the following properties: (1) there is a normal subgroup N of H and a linear character ψ of N such that $\xi = \psi^H$; (2) $H/N \cong \mathcal{G} = \operatorname{Gal}(k(\psi)/k);$ (3) $k(\xi) = k;$ (4) $m_k(\xi) = p^n;$ (5) for every $h \in H$ there is a $\tau(h) \in \mathscr{G}$ such that $\psi(hnh^{-1}) = \tau(h)(\psi(n))$ for all $n \in \mathbb{N}$; and (6) the simple component $A(\xi, k)$ of the group algebra k[H] corresponding to ξ is isomorphic to the cyclotomic algebra $(\beta, k(\psi)/k) = \sum_{\tau \in \mathscr{D}} k(\psi)u_{\tau}$ where, if D is a complete set of coset representatives of N in $H(1 \in D)$ with hh'=n(h, h')h'' for $h, h', h'' \in D$, $n(h, h') \in N$, then $\beta(\tau(h), \tau(h'))=\psi(n(h, h'))$. Since $Q_l(\zeta_s)\supset k(\psi)\supset k$ and $[H:N]=[k(\psi):k]$ is a power of p, we may assume that D is contained in a Sylow p-subgroup of H, and so for any τ , $\tau' \in$ $\mathcal{G}, \, \beta(\tau, \, \tau')$ is a root of unity whose order is a power of p. In particular, the factor set β has all its values equal to roots of unity of order prime to l.

Let N_0 be the kernel of ψ and ζ a primitive $|N/N_0|$ -th root of unity. Then $k(\psi) = k(\zeta)$ and N_0 is also the kernel of ξ . Moreover, the cyclotomic algebra $(\beta, k(\zeta)/k) = \sum_{\tau} k(\zeta)u_{\tau}$ contains the finite group $F = \langle \zeta, u_{\tau}(\tau \in \mathscr{G}) \rangle$, which is canonically isomorphic to H/N_0 , i.e., F is a section of G.

Let $\langle\theta\rangle$ denote the inertia group and ϕ a Frobenius automorphism of the extension $k(\zeta)/k$. Let f be the residue class degree of k/Q_l . The order of $\langle\theta\rangle$ is a power of p, so is relatively prime to l. Corollary 2 now yields that p^* , the index of $(\beta, k(\zeta)/k)$, divides the least common multiple of the orders of the elements $[u_\theta, u_\phi]$ and u_θ^{lf-1} of F. Hence either p^* divides the exponent of F' or p^{2n} divides the exponent of F, because $l^f-1\equiv l-1\equiv 0 \pmod{p^n}$. If a Sylow p-subgroup of G is abelian, then a Sylow p-subgroup of H is also abelian, and so hh'=h'h for any $h,h'\in D$. By the isomorphism $H/N_0\cong F$, this implies $u_\tau u_{\tau'}=u_{\tau'}u_\tau$ for any $\tau,\tau'\in\mathscr{C}$. In particular, $[u_\theta,u_\phi]=1$, and consequently, p^{2n} divides the order of F.

If p^{2n} does not divide the exponent of F, then p^n divides the order of $[u_{\theta}, u_{\phi}] \in \langle \zeta \rangle$, so $p^n | |\langle \zeta \rangle|$. Recall that $F = \langle \zeta, u_{\theta}, u_{\phi} \rangle \triangleright \langle \zeta \rangle$ and $F / \langle \zeta \rangle \cong \langle \theta, \phi \rangle = \mathscr{G}$. By Theorem 1, p^n divides the order of θ , so p^{n+1} divides $[F: \langle \zeta \rangle]$. Hence $p^{2n+1} | |F|$. Since F is a section of G, Theorem 3 is proved.

Next we will give a corresponding result for the 2-adic number field Q_2 . It is known that $m_{Q_2}(\chi)=1$ or 2 for any irreducible character χ of a finite group G.

THEOREM 4. Let G be a finite group and χ an irreducible character

of G. If $m_{Q_2}(\chi)=2$, then 2^2 divides the exponent of G, 2 divides the exponent of G', and 2^3 divides the order of G.

PROOF. As in the proof of Theorem 3, the Brauer-Witt theorem implies that there is a 2-adic cyclotomic algebra $B = (\beta, k(\zeta)/k) = \sum_{r \in \mathscr{S}} k(\zeta) u_r$, $\mathscr{S} = \operatorname{Gal}(k(\zeta)/k)$, with the following properties: (1) ζ is a root of unity and k is a cyclotomic extension of Q_2 ; (2) the index of B equals 2; (3) if ζ has order $2^t r$, (2, r) = 1, then $\beta(\sigma, \tau) \in \langle \zeta_{2^t} \rangle$ for σ , $\tau \in \mathscr{S}$; (4) B contains a finite group $F = \langle \zeta, u_r(\tau \in \mathscr{S}) \rangle$, which is isomorphic to a section of G; (5) $F \triangleright \langle \zeta \rangle$ and $F/\langle \zeta \rangle \cong \mathscr{S}$.

Since B has index 2, then $\zeta_4 \notin k$ (see [3, Satz 12] or [5, Proposition 5.4]). Furthermore, $t \geq 2$, because if $t \leq 1$, then $k(\zeta)/k$ would be unramified and the index of B would be equal to 1. Hence 2^2 divides the exponent of F. By Theorem 3.1 of [5], we see easily that $\mathscr G$ contains an automorphism ι with $\iota(\zeta_2\iota)=\zeta_2^{-1}$. Then $\iota(\zeta_2\iota\iota)=\zeta_2^{-1}$ and the commutator $[\iota\iota,\zeta_2\iota]=\zeta_2^{-1}\in F'$ has order $2^{t-1}\geq 2$, i.e., 2||F'|. Since $\iota\in \mathscr G$ has order 2, then $|F|=|F:\langle\zeta\rangle|\cdot|\langle\zeta\rangle|=|\mathscr G|\cdot|\langle\zeta\rangle|\equiv 0 \pmod 8$, as was to be shown.

Let R be the real numbers. Let G be a finite group and χ an irreducible character of G. Although $m_R(\chi)=1$ or 2, Theorem 4 does not necessarily hold for the case $m_R(\chi)=2$. We will give such an example.

REMARK. Let $G = \langle a, b \rangle$ be the group of order 12 with the defining relations $a^6 = 1$, $b^2 = a^3$, $bab^{-1} = a^{-1}$. Then |G| = exponent of $G = 2^23$, |G'| = 3. It is easy to see that G has a faithful irreducible character χ which is induced from a faithful linear character ψ of $\langle a \rangle$. The simple component of the group algebra Q[G] over the rationals Q which corresponds to χ is canonically isomorphic to the cyclic algebra $(-1, Q(\zeta_3)/Q, \iota) = Q(\zeta_3) + Q(\zeta_3)u$, $u^2 = -1$, $u\zeta_3u^{-1} = \zeta_3^{-1} = \iota(\zeta_3)$. This algebra has R-local index 2, and so $m_R(\chi) = 2$. But 2 does not divide the exponent of G' and $2^3 \nmid |G|$.

THEOREM 5. Let G be a finite group and χ a complex irreducible character of G. Let p be a prime. Suppose $p^n(>1)$ divides the Schur index $m_Q(\chi)$ of χ over the rationals Q and $p^{n+1} \nmid m_Q(\chi)$. Then either p^{2n} divides the exponent of G or p^n divides the exponent of G'. If p^{2n} does not divide the exponent of G, then p^{2n+1} divides the order of G. If a Sylow p-subgroup of G is abelian then p^{2n} divides the exponent of G.

PROOF. Recall that $m_Q(\chi)$ is the least common multiple of the (local) Schur indices $m_{Q_l}(\chi)$ and $m_R(\chi)$, where l ranges over all the primes. If there is an odd prime l such that $m_{Q_l}(\chi)$ is divisible by p^n , then Theorem 5 is immediate from Theorem 3. If there is no odd prime l with $m_{Q_l}(\chi)$ divisible by p^n , then p^n divides either $m_{Q_2}(\chi)$ or $m_R(\chi)$. It follows that

p=2, n=1. Then by the Fein-Yamada theorem [1], $2^2=2^{2n}$ divides the exponent of G, and Theorem 5 is proved.

REMARK. We use the notation of Theorem 5. In [1], we actually proved that either p^{n+1} divides the exponent of G or p^n divides the exponent of G' (see p. 497 of [1]). The fact that either p^{2n} divides the exponent of G or p^n divides the exponent of G' is thus a refinement of part of the Fein-Yamada theorem and was already announced by Ford [2].

References

- [1] B. Fein and T. Yamada, The Schur index and the order and exponent of a finite group, J. Algebra, 28 (1974), 496-498.
- [2] C. Ford, Theorems relating finite groups and division algebras, in Proceedings of the Conference on Finite Groups, ed. by W. Scott, Academic Press, New York, 1976.
- [3] E. Witt, Die algebraische Struktur des Gruppenringes einer endlichen Gruppe über einem Zahlkörper, J. Reine Angew. Math., 190 (1952), 231-245.
- [4] T. YAMADA, Characterization of the simple components of the group algebras over the p-adic number field, J. Math. Soc. Japan, 23 (1971), 295-310.
- [5] T. YAMADA, The Schur subgroup of a p-adic field, J. Algebra, 31 (1974), 480-498.
- [6] T. Yamada, The Schur Subgroup of the Brauer Group, Lecture Notes in Math., Vol. 397, Springer, 1974.

Present Address:
DEPARTMENT OF MATHEMATICS
TOKYO METROPOLITAN UNIVERSITY
FUKAZAWA, SETAGAYA-KU, TOKYO 158