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Let $G$ be a finite group and $K$ a field of characteristic $0$ . Let $\chi$ be
an absolutely irreducible character of $G$ and let $m_{K}(\chi)$ denote the Schur
index of $\chi$ over $K$. In Fein and Yamada [1], we gave a theorem which
relates $m_{Q}(\chi)$ to the order and exponent of $G$ , where $Q$ is the rational
field. In this paper, we will give similar results for the case $K=Q_{l}$ , the
l-adic numbers, where $l$ is a prime. These results are easily derived
from the formula of index of an l-adic cyclotomic algebra, which was
obtained by the author [4], [5].

For the rest of the paper, $k$ is a cyclotomic extension of $Q_{l}$ , i.e., $k$

is a subfield of a cyclotomic field $Q_{l}(\zeta^{\prime})$ , where $\zeta^{\prime}$ is a root of unity. For
a natural number $n,$ $\zeta_{n}$ denotes a primitive n-th root of unity. A cyclo-
tomic algebra over $k$ is a crossed product

(1) $B=(\beta, k(\zeta)/k)=\sum_{\sigma e\Psi}k(\zeta)u_{\sigma}$ , $(u_{1}=1)$ ,

(2) $u_{\sigma}x=\sigma(x)u_{\sigma}$ $(x\in k(\zeta))$ , $u_{\sigma}u_{\tau}=\beta(\sigma, \tau)u_{\sigma\tau}$ , $(\sigma, \tau\in \mathscr{G})$ ,

where $\zeta$ is a root of unity, $\mathscr{G}$ is the Galois group of $k(\zeta)$ over $k$ , and
$\beta$ is a factor set whose values are roots of unity in $k(\zeta)$ . Put $L=k(\zeta)$ .
Let $\epsilon(L)$ denote the group of roots of unity contained in $L$ . Let $\epsilon^{\prime}(L)$

(respectively, $\epsilon_{\iota}(L)$ ) denote the subgroup of $\epsilon(L)$ consisting of those roots
of unity in $L$ whose orders are relatively prime to $l$ (respectively, powers
of $l$). We have $\epsilon(L)=\epsilon^{\prime}(L)\times\epsilon_{\iota}(L)$ . Let

(8) $\beta(\sigma, \tau)=\alpha(\sigma, \tau)\gamma(\sigma, \tau)$ , $\alpha(\sigma, \tau)\in\epsilon^{\prime}(L)$ , $\gamma(\sigma, \tau)\in\epsilon_{\iota}(L)$ .
Suppose that $l$ is an odd prime. Let $\langle\theta\rangle$ denote the inertia group

and $\phi$ a Frobenius automorphism of the extension $k(\zeta)/k$ . The order $e$

of $\theta$ has the form $e=l^{t}e^{\prime},$ $e^{\prime}|l-1$ . Let $f$ denote the residue class degree
of the extension $k/Q_{\iota}$ , so $\zeta_{\iota}J_{-1}\in k\cdot$ .
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THEOREM 1 (Yamada [4]). Let $l$ be an odd prime and $k$ a cyclotomic
extension of $Q_{\iota}$ . Notation being as above, let $(\beta, k(\zeta)/k)\sim(\alpha, k(\zeta)/k)\Phi_{k}$

$(\gamma, k(\zeta)/k)$ be a cyclotomic algebra over $k$ given by (1) $-(3)$ . Then the
number

$\delta=(\alpha(\theta, \phi)/\alpha(\phi, \theta))^{\epsilon/(t^{f}-1)}\alpha(\theta, \theta)\alpha(\theta^{2}, \theta)\cdots\alpha(\theta^{\iota-1}, \theta)$

belongs to $k$ , so that we can write $\delta=\zeta_{\iota}^{v}$’ for a certain $intege\gamma v$ . The
index of the cyclotomic algebra $(\beta, k(\zeta)/k)$ is equal to $e^{\prime}/(v, e^{\prime})$ .

PROOF. In [4, Theorem 3], this theorem is stated for the case
$k(\zeta)=Q_{\iota}(\zeta^{\prime}),$ $\zeta^{\prime}$ being some root of unity. But it is easy to see that the
same proof is also valid for any extension $k(\zeta)/k,$ $\zeta$ being a root of unity.

COROLLARY 2. $Notation$ being as in Theorem 1, suppose that the
factor set $\beta$ has all its values equal to roots of unity of order prime
to $l$ , i.e., $\beta(\sigma, \tau)\in\epsilon^{\prime}(k(\zeta))$ , for all $\sigma,$ $\tau\in \mathscr{G}$. Furthermore, suppose that
$e=e^{\prime}$ , i.e., the ramification index $e$ of the extension $k(\zeta)/k$ is not divisible
by $l$ . Then the index of the l-adic cyclotomic algebra $(\beta, k(\zeta)/k)=\sum_{\sigma}k(\zeta)u_{\sigma}$

divides the least common multiple of the orders of the elements $[u_{\theta}, u_{i}]$

and $u_{j}^{\iota^{f}-1}$ , where $[u_{\theta}, u_{\phi}]=u_{\theta}u,u_{\theta}^{-1}u_{\phi}^{-1}$ .
PROOF. We have $\beta(\sigma, \tau)=\alpha(\sigma, \tau),$ $\gamma(\sigma, \tau)=1$ for any $\sigma,$ $\tau\in \mathscr{G}$. Since

$[u_{\theta}, u,]=\beta(\theta, \phi)/\beta(\phi, \theta)$ and $u_{\theta}^{*}=\beta(\theta, \theta)\beta(\theta, \theta)\cdots\beta(\theta^{\epsilon-1}, \theta)$ , it follows that
$[u_{\theta}, u,]$ and $u_{\dot{\theta}}$ commute. Since $e=e^{\prime}$ and $e^{\prime}|l-1$ , then

$\delta^{\{\iota^{f}-1)/\epsilon}=(\beta(\theta, \phi)/\beta(\phi, \theta))\cdot\{\beta(\theta, \theta)\beta(\theta^{2}, \theta)\cdots\beta(\theta^{\epsilon-1}, \theta)\}^{tt^{f}-1)/\iota}$

$=[u_{\theta}, u,]\cdot(u_{\theta}^{6})^{\{\iota^{f}-1)/e}=[u_{\theta}, u_{i}]\cdot u_{\theta}^{\iota^{f}-1}$ .
Moreover, $[u_{\theta}, u,]$ and $u_{\theta}^{\iota f-1}$ commute. On the other hand,

$\delta^{(1^{f}-1)/e}=\zeta_{\iota^{f}-\prime}^{v(l^{f}-1)/}=\zeta^{v}$ ,

whose order is equal to $e/(v, e)=e^{\prime}/(v, e^{\prime})$ , the index of $(\beta, k(\zeta)/k)$ . The
corollary now follows at once.

THEOREM 3. Let $G$ be a finite group and $\chi$ an absolutely irreducible
character of G. Suppose that $l$ is an odd prime and $p$ is a prime such
that $p^{\prime}\neq 1$ divides the Schur index $m_{q_{l}}(\chi)$ but $p^{n+1}$ does not divide $m_{q_{l}}(\chi)$ .
Then either $p^{2}$ $ divide\epsilon$ the exponent of $G$ or $p^{*}$ divides the exponent of

$G^{\prime}$ , the commutator subgroup of $G$ , and if $p$ does not divide the exponent
of $G$ then $p^{a+1}$ divides the order of G. If a Sylow p-subgroup of $G$ is
abelian, then $p^{2}$“ divides the exponent of $G$ .

PROOF. By Theorem 1, $p’|l-1$ . Let $\epsilon$ be the exponent of $G$ and
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let $k$ be the subfield of $Q_{\iota}(\zeta.)$ such that $Q_{\iota}(\zeta.)\supset k\supset Q_{\iota}(\chi),$ $[Q_{\iota}(\zeta.):k]$ is a
power of $p$ and $pf[k:Q_{\iota}(\chi)]$ . By the Brauer-Witt theorem (see [6, p. 31])
there is a hyperelementary subgroup $H$ (at p) of $G$ and an irreducible
character $\xi$ of $H$ with the following properties: (1) there is a normal
subgroup $N$ of $H$ and a linear character $\psi$ of $N$ such that $\xi=\psi^{H}$ ; (2)
$H/N\cong \mathscr{G}=Ga1(k(\psi)/k)_{1}\cdot(3)k(\xi)=k;(4)m_{k}(\xi)=p^{n};(5)$ for every heHthere
is a $\tau(h)\in \mathscr{G}$ such that $\psi(hnh^{-1})=\tau(h)(\psi(n))$ for all $n\in N$; and (6) the
simple component $A(\xi, k)$ of the group algebra $k[H]$ corresponding to $\xi$

is isomorphic to the cyclotomic algebra $(\beta, k(\psi)/k)=\sum_{re\Psi}k(\psi)u_{\tau}$ where,
if $D$ is a complete set of coset representatives of $N$ in $H(1\in D)$ with
$hh^{\prime}=n(h, h^{\prime})h^{\prime\prime}$ for $h,$ $h^{\prime},$ $h^{\prime\prime}\in D,$ $n(h, h^{\prime})\in N$, then $\beta(\tau(h), \tau(h^{\prime}))=\psi(n(h, h^{\prime}))$ .
Since $Q_{\iota}(\zeta.)\supset k(\psi)\supset k$ and $[H:N]=[k(\psi):k]$ is a power of $p$ , we may assume
that $D$ is contained in a Sylow p-subgroup of $H$, and so for any $\tau,$

$\tau^{\prime}\in$

$\mathscr{G},$ $\beta(\tau, \tau^{\prime})$ is a root of unity whose order is a power of $p$ . In particular,
the factor set $\beta$ has all its values equal to roots of unity of order prime
to $l$ .

Let $N_{0}$ be the $k$ernel of $\psi$ and $\zeta$ a primitive $|N/N_{0}$ $|$-th root of unity.
Then $k(\psi)=k(\zeta)$ and $N_{0}$ is also the kernel of $\xi$. Moreover, the cyclotomic
algebra $(\beta, k(\zeta)/k)=\sum_{r}k(\zeta)u_{f}$ contains the finite group $ F=\langle\zeta, u_{\tau}(\tau\in \mathscr{G})\rangle$ ,
which is canonically isomorphic to $H/N_{0}$ , i.e., $F$ is a section of $G$ .

Let $\langle\theta\rangle$ denote the inertia group and $\phi$ a Frobenius automorphism
of the extension $k(\zeta)/k$ . Let $f$ be the residue class degree of $k/Q_{\iota}$ . The
order of $\langle\theta\rangle$ is a power of $p$ , so is relatively prime to $l$ . Corollary 2
now yields that $p^{\hslash}$ , the index of $(\beta, k(\zeta)/k)$ , divides the least common
multiple of the orders of the elements $[u_{\theta}, u_{\phi}]$ and $u_{\theta}^{\iota^{f}-1}$ of $F$. Hence
either $p^{n}$ divides the exponent of $F^{\prime}$ or $p^{2n}$ divides the exponent of $F$,
because $l^{f}-1\equiv l-1\equiv 0(mod p^{n})$ . If a Sylow p-subgroup of $G$ is abelian,
then a Sylow p-subgroup of $H$ is also abelian, and so $hh^{\prime}=h^{\prime}h$ for any
$h,$ $h^{\prime}\in D$ . By the isomorphism $H/N_{0}\cong F$, this implies $u_{r}u_{\tau^{\prime}}=u_{\tau},u_{f}$ for any
$\tau,$

$\tau^{\prime}\in \mathscr{G}’$. In particular, $[u_{\theta}, u_{\phi}]=1$ , and consequently, $p^{2}$
“ divides the

order of $F$.
If $p^{2}$

“ does not divide the exponent of $F$, then $p^{n}$ divides the order
of $[u_{\theta}, u,]\in\langle\zeta\rangle$ , so $p^{\iota}||\langle\zeta\rangle|$ . Recall that $ F=\langle\zeta, u_{\theta}, u_{\phi}\rangle\triangleright\langle\zeta\rangle$ and $ F/\langle\zeta\rangle\cong$

$\langle\theta, \phi\rangle=\mathscr{G}$. By Theorem 1, $p^{n}$ divides the order of $\theta$ , so $p^{n+1}$ divides
$[F:\langle\zeta\rangle]$ . Hence $p^{2n+1}||F|$ . Since $F$ is a section of $G$ , Theorem 3 is proved.

Next we will give a corresponding result for the 2-adic number field
$Q_{2}$ . It is known that $m_{Q_{2}}(\chi)=1$ or 2 for any irreducible character $\chi$ of a
finite group $G$ .

THEOREM 4. Let $G$ be a finite group and $\chi$ an irreducible character
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of G. If $m_{q_{2}}(\chi)=2$ , then $2^{2}$ divides the exponent of $G,$ $2$ divides the
exponent of $G^{\prime}$ , and $2^{3}$ divides the order of $G$ .

PROOF. As in the proof of Theorem 3, the Brauer-Witt theorem
implies that there is a 2-adic cyclotomic algebra $B=(\beta, k(\zeta)/k)=\sum_{re\Psi}k(\zeta)u_{f}$ ,
$\mathscr{G}=Ga1(k(\zeta)/k)$ , with the following properties: (1) $\zeta$ is a root of unity
and $k$ is a cyclotomic extension of $Q_{2\prime}(2)$ the index of $B$ equals 2; (3)
if $\zeta$ has order $2^{t}r,$ $(2, r)=1$ , then $\beta(\sigma, \tau)\in\langle\zeta_{2^{t}}\rangle$ for $\sigma,$ $\tau\in \mathscr{G};(4)B$ contains
a finite group $ F=\langle\zeta, u_{\tau}(\tau\in \mathscr{G})\rangle$ , which is isomorphic to a section of $G$ ;
(5) $ F\triangleright\langle\zeta\rangle$ and $F/\langle\zeta\rangle\cong \mathscr{G}$.

Since $B$ has index 2, then $\zeta_{4}\not\in k$ (see [3, Satz 12] or [5, Proposition
5.4]). Furthermore, $t\geqq 2$ , because if $t\leqq 1$ , then $k(\zeta)/k$ would be unramified
and the index of $B$ would be equal to 1. Hence $2^{2}$ divides the exponent
of $F$. By Theorem 3.1 of [5], we see easily that S7 contains an auto-
morphism $f$ with $f(\zeta_{z^{t}})=\zeta_{\overline{2^{l}}}^{1}$ . Then $u\zeta_{z^{t}}u_{\ell}^{-}‘=\zeta_{z^{\overline{t}^{1}}}$ and the commutator $[u_{t}, \zeta_{I^{t}}]=$

$\zeta_{z^{\overline{t}^{2}}}\in F^{\prime}$ has order $2^{t-1}\geqq 2$ , i.e., $2||F^{\prime}$ . Since $f\in \mathscr{G}$ has order 2, then $|F|=$
$[F:\langle\zeta\rangle]\cdot|\langle\zeta\rangle|=|\mathscr{G}|\cdot|\langle\zeta\rangle|\equiv 0(mod 8)$ , as was to be shown.

Let $R$ be the real numbers. Let $G$ be a finite group and $\chi$ an
irreducible character of $G$ . Although $m_{R}(\chi)=1$ or 2, Theorem 4 does not
necessarily hold for the case $m_{R}(\chi)=2$ . We will give such an example.

REMARK. Let $ G=\langle a, b\rangle$ be the group of order 12 with the defining
relations $a^{6}=1,$ $b^{2}=a^{3},$ $bab^{-\iota}=a^{-1}$ . Then $|G|=exponent$ of $G=2^{2}3,$ $|G^{\prime}|=3$ .
It is easy to see that $G$ has a faithful irreducible character $\chi$ which is
induced from a faithful linear character $\psi$ of $\langle a\rangle$ . The simple component
of the group algebra $Q[G]$ over the rationals $Q$ which corresponds to $\chi$

is canonically isomorphic to the cyclic algebra $(-1, Q(\zeta_{3})/Q,$ $f$) $=Q(\zeta_{3})+$

$Q(\zeta_{3})u,$ $u^{2}=-1,$ $u\zeta_{3}u^{-1}=\zeta_{3}^{-1}=’(\zeta_{3})$ . This algebra has R-local index 2, and
so $m_{R}(\chi)=2$ . But 2 does not divide the exponent of $G^{\prime}$ and $2^{3}f|G|$ .

THEOREM 5. Let $G$ be a finite group and $\chi$ a complex irreducible
character of G. Let $p$ be a prime. Suppose $p^{n}(>1)$ divides the Schur
index $m_{Q}(\chi)$ of $\chi$ over the rationals $Q$ and $p^{n+1}\downarrow m_{Q}(\chi)$ . Then either $p^{2}$

“

divides the exponent of $Go\gamma p$ divides the exponent of $G^{\prime}$ . If $p^{2}$
’ does

not divide the exponent of $G$ , then $p^{2+1}$ divides the order of G. If a
Sylow p-subgroup of $G$ is abelian then $p^{2n}$ divides the exponent of $G$ .

PROOF. Recall that $m_{Q}(\chi)$ is the least common multiple of the (local)
Schur indices $m_{O\iota}(\chi)$ and $m_{R}(\chi)$ , where $l$ ranges over all the primes. If
there is an odd prime $l$ such that $m_{C\iota}(\chi)$ is divisible by $p^{n}$ , then Theorem
5 is immediate from Theorem 3. If there is no odd prime $l$ with $m_{C\iota}(\chi)$

divisible by $p^{n}$ , then $p^{n}$ divides either $m_{Q_{2}}(\chi)$ or $m_{R}(\chi)$ . It follows that



MORE ON THE SCHUR INDEX 273

$p=2,$ $n=1$ . Then by the Fein-Yamada theorem [1], $2^{2}=2^{2}$“ divides the
exponent of $G$ , and Theorem 5 is proved.

REMARK. We use the notation of Theorem 5. In [1], we actually
proved that either $p^{n+1}$ divides the exponent of $G$ or $p^{n}$ divides the
exponent of $G^{\prime}$ (see p. 497 of [1]). The fact that either $p^{2n}$ divides the
exponent of $G$ or $p^{n}$ divides the exponent of $G^{\prime}$ is thus a refinement of
part of the Fein-Yamada theorem and was already announced by Ford [2].
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