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Introduction

A sequence of m polynomials f,, ---, f,, in C[x, ---, x,] defines a
configuration of hyper-surfaces S;: f;=0 in C". The space of such con-
figurations, being parametrized by the coefficients of polynomials, can
be regarded as an analytic space. On this space, the integrals

)  |explAlsne - pindan - A,
J" Sﬂo Moo findp, A - - Ada,

satisfy Gauss-Manin connections or equivalently holonomic systems in the
sense of S. S. K. (See [8], [16] and [18].) But generally it seems difficult
to get their explicit formulae in global forms. According to the method
which has been developed in [1] and [5], in this note we shall give the
Gauss-Manin connections for the above integrals in invariant expressions
with respect to certain algebraic groups which act on them in a natural
way, when f, 18 quadratic and f,, ---, f. are all linear (see the formulae
EI, EIl,— EII, EIIl, EIV, and EV,). These equations generalize the
Schlafli formula for the volume of a spherical simplex (see [2]) and
Appell’s hyper-geometric functions of type (F,) (see [10]). In case where
Jfo is linear, they have been computed in terms of logarithmic forms and
simple rational 1-forms of Grassmann coordinates attached to the confi-
guration of hyper-planes (see [3]).

In Part II of this note, we shall show from the results obtained in
Part I, that in case where the exponents n,, \,, - -+, \,, are all integers, the
integrals can be expressed by means of logarithmic connections of basic
algebraic invariants, so that they become hyper-logarithms in the sense
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of [4]. This proves the Theorem 2 stated in [6]. The integrability
condition for these Gauss-Manin connections gives certain significant
relations among logarithmic forms and associated hyper-logarithms (see
the formulae RI,— RI, RII,—RII, and also [7]). On the other hand, as
V. Lakshmibai, C. Musili and C. S. Seshadri have recently shown, the
classical invariant theory can be formulated in the framework of Schubert
Calculus in “miniscule” flag manifolds, by using so-called “standard
monomials” (see [12]). It seems interesting to study further the structures
of logarithmic forms and hyper-logarithms of standard momomials, in
relation to Schubert Calculus on the generalized flag manifolds.

As is well known, the integral (J) give some important models in
mathematical physics such as the Feynman integrals of one loop diagrams
in Q. E. D. (see [10], [15] and [17]), and the correlation fumctions of the
F. J. Dyson’s complex systems or the Onsager wvortex models (see [9] and
[14]). These will be discussed elsewhere.

ACKNOWLEDGMENT. The author would like to be thankful to the
referee for careful reading and useful advices.

§1. Generalized Schlafli integrals.

First we are going to describe in an explicit way the Gauss-Manin
connection for the integral, m = =,

(J. I,) PNy = * 5 Moms ¢)=S exp(fo) - fir-fize o« fimdt, A\ - - - NdE,

where f,=(—1/2)({:+---+¢2) and (A, -+ -, \,,) € C™, by means of the funda-
mental SO(n)-invariants attached to the configuration {f,, ---, f.». Itis
known that &(¢) is a meromorphic function of i, ---, A, satisfying the
maximally overdetermined linear difference system. First we shall
compute this. We shall denote by X the space of configurations
{fyy ***, fw>» canonically identified with C*+i=,

We denote by T'; the j-th difference operators acting on the integrals
defined by:

(1-1) T:ia(k'u Sty 7\'m)':a()‘u "')x’iﬂ—_lv "';)"m) .
The followings are easily proved.

Lemma 1. () T;,-T.=T,-T;,
(ii) Each T; is tnvertible,
(iili) For any multiplication of a function (\), we have T joqp(\)=
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Tipr(W)o Ty,
(iv) For any differential operator of constant coefficients P on,
T;oP=P-T;.

Let S; be the hyperplane f;=0,0<j<m, and S=U™,S; in C~
First we assume

H.1) S,8S, -, S, are all real and normally crossing each other,
where S,,,, denotes the hyperplane at infinity.

(H.2) N, .-+, N\, are all real and positive, such that , +--- +Ny, €
Z for any 1=14 <9,<++-<i,=m+1, 1<p=<mn, where \,,,, denotes —>™, \,.

Let M be the complement C*—S and H*(M, 7, be the rational de
Rham cohomology with respect to the covariant differentiation V=
dyr+w A+, defined by the 1-form

(1.2) w=dﬂ+2":,l>»,-df,-/fj .

This is essentially the regularization of integrals in the sense of Hadamard-
Leray. For the general theory of this cohomology, see [1] and [8].

LEMMA 1. H"(M,V,) has a basis of the following type:
(1.3) P(lyy » oy W) =T/fiy Sy

1=4,<--- <, =m, 0=p=n, sothat rk H* (M, V,,) is equal to ZLO(?), where

T denotes the n-form dt,A--- Adt,. This is also equal to the number of
comnected components 4 of R*—R"NS.

We have the pairing:
(1-4) @(ily Tty ?:p)z <¢(i19 Tty /ip)y A>
= expos- i, -+, 4,)

between the cohomology H"(M,F,) and the homology of twisted cycles
H,(M, &) with the modified local system <, (see [5]), where

(1.5) AU -)=U-V o ,
for the function U=exp(f,) fi- - fim.
PrOOF. See [5].

We shall abbreviate by #(I) the form ®(i,, ---, 1,) for the sequence
of indices I=(i,, -+, 1,) of length |I|=p. We put f;=3", u;t,+u;,.



252 KAZUHIKO AOMOTO

We may assume the norm of f;, || f;|*=>r-, u3, to be equal to 1. We
define the symmetric matrix A=(a,,;), 0=1, j<m as follows:

Qo090 To,15 ** 9 Aoy
Q09 T1y1y °** 5 Upym
(1.6) A=) e

Qg 00 Bgny1y °° ° 9 Amyom

where a,,;=(f}, f;) denote the scalar product of the coefficients of f; and
Jit (fo [)=20=1 wa Uy A0A @ 0=1, G0, =01,0=Us 0 *** Cpnyy=0Co,m=Um,o These
matrix elements invariant with respect to O(n, C) parametrize the con-
figuration space X of sequences {f;, ---, fn>- Remark that A is normalized
such that a,,=a,,='--=a,-.=1. As was noted in [11], this space can
be identified with a Schubert variety in a big cell of a miniscule flag
manifold.

NOTATION. For 1<4,<---<i,<m,0<p=n, we put A( >the
subdeterminant of A of the ¢, ---, 7,-th lines and 3, ---, ,7,,-th columns

of A and abbreviate by A(i, ---,1,) the principal one A(z . ::"> We
P

shall denote by [i, ---,%.] and [%, ---, 7,,,] the determinants of the

matrices ((u.,, o))ls,,s,, and (s, ,,))ls,,,s,,+1 respectlvely d0,I and 0,0,I will
ogsn

represent the deleted sequences (1,1, sy Tpgy Tuyry c 0y 1p) @NA (T, v 0, Ty,

Tosty *° %y Cyety Typry = * °y 4p) fOT I=(3,, - - -, i,,) respectively.

PRrROPOSITION 1.1,. (Maximally overdetermined system of linear dif-
Jerence equations). We have, for any sequence of indices I=(3,, «--, 1,),
0=p=mn,

(i) T, 9I)=%@.D),
(Remark that $(I) is symmetric with respect to ,, -« -, 1,.)

©.1) (i) ADTFD=F,(-1~4(, | )-GO —u, D)
H PO+ Zd( 1 )7, D

if 1, € 1.

PrOOF. As the affine coordinates, we can take y,=f,, ---, y,=f;, and
Yor1=Fiprp ***» Yn=JSi, Where (i,,, ---, ¢,) are suitably chosen such that
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IN(yy, -+, %,)=0. Then f, is written as follows:

€7 fom=L S b= e ) (Foy—e)

2 n,y=1

where the matrix B=((,,)).<s,<. denotes the inverse of (@6, 150500
Then,

Udfil/\ - Adfy,
fofe

(1.8) [isy <+, 61, -y 1=

and we have

1.9) 0~7<ﬂ$df/\---/\df Adf, A - Adf, )
¢ @ .ftl' . "fip i ipt+pu—1 ip+p+i in
2 b u(.f( — Uy 0)
2—2 2+, v w2l d 1/\.../\d N
y=1 -ﬂl. . .f;p ﬁ ﬁ

+>‘-’ip+y[?:1’ Y in]@(I)
P
+,§}7\'k(_1)p+”_1[k59 7:19 Tt 'ip+l'9 ) ?:,,]@(k, I) .

Since the subdeterminant B(i,,,, - --, ,)0 (see (H. 1)), we can solve
the right hand side with respect to T,, +#<7D(I ), ISpu<n—p, and get the
proposition.

As for the inverse operators T7;', we have
PROPOSITION 1.2,. For 0=p<n and I=(i, ---, 1),

ToeD) =36y, ), if Wel,

_ Y ~
0.13) (v =1 AD- T2 =3, 4 7 (=17 7.D
Sa A( I >”(k n A( >”(I)
=M\ 6.0)7 0, 3,1)7"
Proor. We have only to use the relations
Afu - AdF\ . .
(1.10) 0~7r, 2 2 ) =N, —D[dy « -+, 4]
( FRATETS )=0n— I

X TP+ S0l iy -+, ]P0, D

— 36,y — ey <y Gl
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and to solve these with respect to T;'¢(I), in view of the Proposition
1.1,.

For p=n, we have the following truncated form:
PROPOSITION 1.2,. For I=(,, ---, %,),
(D. 1) (1) [ %y + -, 2]T'P)
=§)(—1)°.¢)(1’0’ N FRERRNE 2| ¢ NPT S i I

if doe L.
_ (%, 0.1] 5
(i) ,—-DT e)= 27\' I, I] A2 25(1)
[k, 3,11k, 3.1] ~
+5 vl lsa, o)
0, 8,1 oI
A7) Ao )1z
2 I ), vy @ oI J(—13(3,I) .
2 VTR — s

ProoFr. The first is simply obtained by partial fraction:
(1.11) [io, 7:19 ) in]=i“ [7:0’ o ay o n]{ 1)v .
Sl fin 0 fuoro S ﬁ,,

The second is obtained by the relation

(1.12) 0~ V,,,(df‘zﬂ /\f /> Uer

and (D. I}»)-(1).
Propositions 1.2, and 1.2, imply the following:

THEOREM 1. (D.I}),0=p=<mn, define the maximally overdetermined
linear difference system with respect to the basis $(i,, - -+, 1,), 1=<4,< -+ <
1,=m, 0=p=mn. These are also equivalent to the system (D.I,), 0<p<n.

Now we have an invariant expression of the Gauss-Manin connection
of the integral (J) as follows.

PROPOSITION 1.3. (Generalization of Schldafli formula, inhomogeneous
case).

(E. L) ZOBSEURVZORS S5 W R W ¢ 0N

lSﬂtk
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Proor. By suitable change of coordinates we may assume that f,=
ty, o, fu=t, and foi=—1/2) 332 o1 bu ,(Ep—Up,0)(t,— U, ). Then we have

(1.13) M:)\,ﬂ“@(fn_}_ D,
aun+:i,o
(1.14) 9PB) TP+ §) — g Moy P+ 5))
n+ 5,
= | 2L (G() 5B+ )
an+.1'.'n+.‘)'
<n+a', #)
+ 3 2T G g, k)] .
k#n+j an+.‘im+.7'

In the same way

(1.15) a§(¢)=—<Tp—up,o><T,—uy,o>¢<¢>, prty
Y,y
05@) _ Lo e
(1.16) by 2(Tp Up,0) ' P(D) -

According to Proposition 1.1,, each right hand side can be described
in terms of &(3,, ---, ¢,) as follows: For 1=p, v<n,

1D (T =T~ 0,05 = (N2 %+ a,, ) 5(@)

@j,i
3, v k, v
m Qi Qs Qs 1 a’j,!’A<- k> ak,PA(k .) _
=\, ZRi0 G () 2204 535, k) »

J=1 a,-,,- 2 1s§fkksm a,-,_,,- ak,k
(1.18) (T )P(8) = i N5, P(3) -
Since we have
(1.19) 43P =3 dun ;. @229 15 S du,, ;@ 228

g=1 OUpijo =1 #=1 Uy j,p

1 0P(9) | < 0P(¢)
— by ,Q—=== db )
+ ) 1§;§x‘«§nd 1 & 36, +ﬂ2=.1 v &Q FT

the formula (E. I,) is proved.

THEOREM 2. In addition to (D.I}), 0<p=n, (E. 1) gives a maximally
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overdetermined system of linear differential equations with respect to
the basis p(I)=&(4,, ---, 1,), 0<p=mn.

§2. Generalization of Schlafli formula, homogeneous case.

We assume now that f; are all homogeneous, namely u; ,=0, 1<j<m.
In stead of (H.1) we shall put the following hypothesis:
(H.1)* Any n members of f; are all linearly independent.

LEMMA 2.1. Under (H. 1)* and (H.2), the cohomology H™(C"—S, V,)
has a basis

di A - - - Ndt
2.1 I=— n
(2.1) P(I) Fu fs,

Jor 14, <+ - <i,=m, 0<p=<n, with the fundamental relations:

n+1 ~ .
(2'2) 0=|§1 (_l)p_l[ily R FP R "’n+1]¢(ay-[) ’

n—1 m—n
for I={isy- - -, i} 80 that T HC"—8,7.) is equal to 53 W)+ 35 (— 1), ™).
RROOF. See [5].
As was proved in [5], this rank is also equal to the number of
connected components 4 of R*—R*N S. The pairing

(. IL,) FID) =<, 5=\ U-o(1)

defines the duality of H(C"—S,r,) and H,(C"—8, &#,) due to the well-
known comparison theorem (see [8]).

As for the linear difference system, Proposition 1.1, is reduced to
the following:

PROPOSITION 2.1,. For 0<p=<n,
(i) T pI)=5@0.I),

) I
(D.IL)  (ii) A(I)-T¢°5(I)=—#ZA(z. aI)(—l)"@(apI)

=1
Bo, I

r I)cp(k, I,

+ 3
kel

if i€ 1.
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PROOF. We have only to put w;,=0 in Proposition 1.1,.
Proposition 1.2, is transformed as follows by putting u;,=0.
PROPOSITION 2.2,. For 0=p<n and I=(i, ---, i,),

D. II7) (i) T3pI)=3(, I), iel,

I
5k, I).
' all)sv( )

. 0,
(1) = DADTIFD =4[ ) (-0~ S0
PrROOF. We have only to put u;,=0 in Proposition 1.2,.

When p=n, we have to modify Proposition 1, 2, as follows:

PropoSITION 2.2,. &I)=% (1, ---1,) satisfy the linear difference
equations: ‘

n i ot _ 1_ A(a 0 I) +v
D. II2 T (1) = DB@aT)
O.I) () TEED=g=lo s A<3FI>( Y5 (3,0,1)
o, 1
for i,¢ 1, and
('io, 618,1)
(ll) T @(I)—— Z (_1)/4+v+n+1 -sgn ([,t})) 'I:O., 3,,6,I
0 el Ay, 0,1)
SHYSN,UFV,vEL
io, ayl ~ . Kto
X A( I )@(’bo, 8,,8 I} ()\,,tl—l)()\, _1)
A<6 I)
N+, —1) & 0,1
— 1 n ___1 o+1, q)(a I
N, —D(Ne—1) 2D A) ) -

Proor. We fix 4,. In view of the equality,

df. A« NS,
2.3) O~I7w( f;gﬁ...ﬁf">
=, DT ' eD2y, - -, ’5,,]+JZ¢'.IM[J', Ty =y P4, I)
A(37)
-3 om0, il

On the other hand we have, by partial fraction,
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(24) [il, 7:2’ M) 7"n]+z"“ (_I)V[j9 1"1: ) :l‘:w Y ) %n] =0 .
‘f‘l.".'f‘ﬂ v=1 fjﬁl...f;y.-.ﬁ”
Therefore the right hand side of (2.8) is described as:
(2.5) (M= 1+ 30 TZED, -+, 6]
sel
+3, 3 (DNTEPG, 0D, by vy By ooy ]

= Y(alI)['l'u *t %y "'n] ’
where Y(0,I) denotes
' n . oI\ _
(2.6) Ye.DAD=3, (-1 A} I)go(a.,z).
v= 1
Owing to the Lemma 2.2, which will be proved later, we have the

proposition.

LEMMA 2.2. Let Xi,,....,_,and Y,,... _, be skew-symmetric with 'reépect
to I=(4,, -++, 1,_,), then the limear equations

RY P

n—1 .
@.7 ( a+3, x,-)X,l ..... A S S MK tin = Ve
; .

jel v=1
can be solved in a unique way, with respect to X, ......_, as follows:
(2.8) a(kl_" e +7\,M)X¢1,...,¢”_1=(a+7\,il+ e +Ni”_1)

n—1
X Yfl...,¢“_1+’§1 %)»,,(—1)”“ Yiriotrerorin_y *

PrOOF. The proof is elementary, so we omit it.

Proor oF (i). First we remark the following identity:
(2-9) [izy STty ’in+l]¢(i1’ ) 7:1.+1)

n+1 -~ o~ ~ .
=Z (_1)1;[,’/1, tetyly, vty ’l'n+1]T(_11q)(7’1, ety byt 7’11+1) .

=2

By the substitution of the formulae (ii) for each term of the right hand
side of the above formula, we have the desired formula.

Propositions 2.2, and 2.2, imply the

THEOREM 3. The system (D.II}), 0=p=n defines a maximally over-
determined system of linear differemce equations with respect to the basis
Pty -+ -, 1,) with the fundamental relations:
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~

(2.10) 3L Plioy ++vy By wo oy )iy 2oy By e, GN(=1)=0

PROPOSITION 2.3. Generalized Schlafli formula, homogeneous case.

1

(E. IL,) - dP(9) =EI§5§§MMM¢U‘, kda;,. .

PROOF. In Proposition 1.8 we have only to put u;,=0.

REMARK. This formula is just a generalization of classical Schlafli
formula (see [2], (8.8)). In fact, when m=n, by taking the limit »\; —
0, we get the well-known Schlafli formula from (E. IL,).

THEOREM 4. In addition to (D, II}), 0<p=<mn, the system (E, II,) defines
a maximally overdetermined system of linear differential equations with
respect to the basis $UI)=P(,, -+, 1,) 0<p=mn, with the fundamental
relations (2.10).

Actually we have the more explicit formula for the variation of (1)
as follows:

ProPOSITION 2.4,.

~ 1 L\ 1 ) I, j
(B.IL)  AD-d3(D)=7 j#kzzj:‘keI{dA(I, k)- 5 d log A(I, g)-A(I, k)
I g
Ik

A B Ao, 1)
+2520 [~ dtog AD— 3, ndtog (F07)

+ 3 nd 1og(%“l)}¢(1)

——;—d log A, k)-A( >}>\,,--M'95(I, 3, k)

1 . a,,1> 1 <a#[>
< e 1 | !
T { dA(«u TgAlp )t o8 A0 )
a,1

oI

I 'k, 0,1
X {dA(k’ % )——%—A( T )dlog A1)

+";‘A< >d log A(apI)}a(aya,I)—i—Z (—1)

I I
k, 0,1
_%A( » O, )dlog Ak, I)}@(k, o.I) .

I

The above formula can be rewritten in the following way:
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PROPOSITION 2.4;,. For 0=p=n, p=|I|,

T4
(E. II}) A(I)-d¢(1)=% 3 dA< ’9>x,--7w,-¢(1, J, k)
iyl Lk

I I
+> dlog A, 7) W( ) +3 dlog AGI)- W< )
jer I, 2 auI

y=1

1 o\ _
- A < P(0,0,1
+ 2 1§P§’§Pd (ayl) q)( Ay )
» k,o0,1 I
y Y . - I ,
+§“§=‘,IdA< 7 ) W(k, a,I>+dA( ) W)
where we put respectively:
e w| el s 4B I9asd, b, B+ir,-40-50)
I g 2 keTik+s Ik Tk T 277

1 g, oI\ .
——g(—l)”+”xjA< 7 )rp(y, oI),

which 18 equal to

%x,-A(j, DT¢d, H0v—1) ,

and
I 1 _ 1 2 0.1\
2.12 = —— D+— —]1)aty .
@1y W(, )=—prFD+g 5 1A ) -FeaD
L1s (—1>v+m,,A("’ ot )@(k, o),
2 51 I
which 18 equal to —(1/2)T,#¢(6,,I)-A(6,,I),
(2.13) W(, I >=(—1)P+F-hj¢)(j, a,I), and
2, al’I
(2.14) WD ={-Z+3n 05D .
2 y=1 kel

CorOLLARY. If A(, k) or A@©,I) vanishes, then W(I, k) or W(,I)
vanishes. In this case (E.II,) still has a meaning.

PROOF. According to the formulae (D.II}), (D.II}) and (D.II), we
have

(2.15) w( d ) =L 0n—1)- AG, D- TP
Ij 2
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I 1 ~

which immediately imply the corollary.

For the variation of &(I) when |I|=n, we can again apply the
formula (E. II,) by putting p=n, A, 7)=0 and W(I, 5)=0. Consequently
we have

PROPOSITION 2.4,. For |I|=n

(B.1I) A -d3(I)= g dlog A@G,I)- W( aI I>

ZdA

) (a I> 5 (0,3,1)

k,o,1 ( I
. A - W) .
-I—gf}dA( I ) Wk,a,I>+d - wI)
Theorem 4 can be restated as follows:

THEOREM 4'. The system of equations (E.IL), 0<p=<n, defines a
maximally overdetermined linear differential equations with respect to
the basis &(I) with the fundamental relations (2.10).

DEFINITION 2.1. We shall denote by co( il’ ) the nor-
. . . 'Ll! : "’p’ 7’p+1; p+2
malized logarithmic 1-form defined by

—A<,’:1’ cee, ":m 7:”+1>+1/-—-A(’l:1, e, ’l:p)A('l:l, cee, ,l:p+2)

(217) zl/l;_ld log Ty, ", 1.,1,, Vpie
-_ ’L ° o o 1
“‘A( 1y ’ .p’ p+1> ]/ A(%, ceey, ’i,,)A('il, cee, ":p+2)
7’1’ *t %y Upy Vpyo

(see [2] p. 5). In particular we have
o\ 1 —a,,; —l—l/a%,,-—l]
‘”(i, e e =1

because a;;=1. We shall also denote by w(fl’ o ;P j) the 1-form
1y y Vo,

(2'18) ad log [A(zly Y ’ip)/A(ily *t %y ?:py j)] .
Then Proposition 2.4, is expressed as follows:

PROPOSITION 2.4;. With respect to the normalized basis
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(2.19) By, + 0y i) =V Ay, <y )Py + 2+, 5)
0<p<m, we have the simple formula:
I ~
(I, 7, k
Ij k)¢>( 3, k)

o1 )
I

®1) dO=-1 s x,--x,,w(

215i%ksm

1 rd I 2
et el el

el

1 0,01\ ~
t3 lg,,zﬂg,, w( 7 )-gv(apa,I)
Ak, 3,DAI) \™* [3I\ =~
+kz¢:|1xk( A(k, I)~A(6,I)) w(k’ I .g)(k’ avI) .

In the same manner, from Proposition 2.4, we have,

ProPOSITION 2.4;. For |I|=n,

~ n ayI ~
(E. II)" dp(I) =—;— {——g{ h,ya)( I ) —gl nid log A(I)} o)

I
+—-1- > w(api"

2 1Sp#vsn

) -86,0.1)

o.I\) ~
+1 s xk{dlogA(k, aJ)-—w( })}m, o.I);

2 kell=vsp

with the fundamental relations:
(2.10)° S (=17, + =, Ty +o 1y 1) =0

The integrability condition for the (E. II,) gives rise to the amusing
relations (see also [2]):

COROLLARY. (i) For two sequences of indices I, J such that ICJ
and |I|+4=|J|, we have

I K\
(R. 1 D> a)( )m( —0
Ak, \K J)

(ii) For any j, kel j+k, we have

I Lk I\ _
R 1) "’(I, J k)A(w(I, d k>—w(1» 9'>>_0‘
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§3. The conformal case.

- We now want to study the analytic structure of the integral
(J. IIL) 5@)=\00-dnA - A,

for U\)=Ffh.fh.. f,,, , where f,=—(a%+ -+ +22)+1 and fl, ,f,,, are
all linear functions: f =V =130 u;.2, +u, o~ We denote by S,, 0=j5<m,
the hyper-quadric f,=0 or hyper-planes f =0. Then (J.III) can be re-
garded as the pairing between the twisted cohomology H "(C" U S, V)
and the twisted dual homology H,(C"—Um. S;, .2), where 7 denotes the
covariant differentiation V,,,qp d'\]r—i-(l)/\a[f, for @O=3",\; ollog'fJ We
put V' —Iz;=t;/t, 1<j<n and fi=Sr,u t,A1<j<n), fi=8+---+2.
Consider the homogeneous form of the integral (J. IIL) as follows:

.1y #4)=\exp(—f2)- 10 T FOatA - Adl,
By change of variables (¢, ---, t.)—(f=¢f, =, ---, «,) and after the

integration with respect to #, this is rewritten as

(3.1) $@=T(=r)-27 (/=D | fio [] e A - - Ada,
= [(—ng)- 279733/ 1),

the integration being done on a suitable twisted cycle ¥ in C"—Jm, S;,
where )\, denotes— (1/2)(2t,+ 3™, N+ n+1).
We denote by p the linear mapping defined by

(3.2) 0: DB =PNoy =y s 8) —— P(B) =P (o, Ny, =+ * N} 8) -
Then

LEMMA 3.1. 0 is a monomorphism from H"(C"—Um.S;, V) into
H*(C""*—U S;, V), where S,.,, denotes the hyperplane t,=0.

The hyper-quadric Y=S§, being fixed, we can take as coordinates of
the configuration of hyper-planes §,, - -, S., the O(n+1, C)-invariants
Q=D neo Ui U5, 11, j<m and ao,0=1 Aio="Us,, 11 M.

DEFINITION 8.1. We denote by T¢, T# the difference operators as
follows:

(33) Toﬂ@(ho, cy Ay ¢)=§5(7\‘0i19 Niy 2ty Amj ¢) ’
Tf‘@():o_, *t %y Aoms ¢)=¢(>"0, STty 7\‘1-—*:-19 Tty Ny ¢) .
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Then

LEMMA 3.2. The following diagrams are all commutative:

p o p

—_— —_— 1 —_
e = -

We assume now

AssumpTiON 8.1. S, S, -+, S.. are in general position among them-
selves in C*, and §,, ---, S, are all real.
The following lemma was proved in [1] (see [1], Théoréme 4.3.)

LEMMA 3.3. Under the Assumption 3.1, H*C*—U™,8;, 7) has a
basis _

. .\ _de N\ ANdw
(3.5) Py, - ° 0y b)) =—1% —
For o Fo,

Jor 124, <+ - <1,=m, 0= p=m, so that its dimension s equal to 3,:_, (m)

The twisted homology H,(C"—Um™0 S;, S~2) has a basis conszstmg of the
relatively compact connected components of R*—U™. RN §;.

We denote by &(iy, - -+, 1,) or $,(i, -+, 1,) the integrals
G 96, - i={00-0G, - i)=T5 - 7596 ,

Pullsy o0, 1) = OO Pulisy -+, 3,)

where @,(,, ---, 1,) is defined to be

I
e ool
(3.6) PuD =)+ 3~ 1r—p2llo@.D) .

Remark that &(¢)=®,.(¢) and @(I) is a linear combination of ¢,(J) for
JcI. In view of (3.1) and (3.4), according to the formulae (D.I,) and
(D. I¥), a direct calculation shows the following:

ProrosITION 3.1, (Reduction from weight p to p+1).
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0,1
(D. II1,) ( DT &)= Al) A(k I) ~
L) (ot p—DT(D = — 206+ D705 I)cp*() — M0 7ok, I),

for 0= |I=n and, in particular
k, 0,1 0,k 01
o) 4

™ A + 0 a I 0 I VP
D. IIIn #0 I n 1 Toq) I —_ - 1 v, 1 v 2 ¢ k, a,I

(/“o+7\'t1+ s +7\'i,.+'n_'1)¢*(I) ’

A
A0, I

for |I|=mn.

In the same manner, according to the formula (D I,), we have the
following difference systems.

PROPOSITION 3.2,. For 0=p=n,
0,71
A
i
A(I)
I

A( )
2 0,0,1 -1
+y§‘; A(I) (— 1) (=2xo) - T5'9(3,1)

+ (o +p+1)=—22p

(D. I1I*) "2)“°'T°_1¢(I)=§, N -3(5, I)

AQ, I) » 1
a7 I .

ProPOSITION 3.3,. For 0=p=mn,
.1V}  TeeD)=¢®k, I), for kel
I

A k,0.I) ; {\u-ti.n
(e —l)T 97(1) Z Nk—z—(-l—.)——( 1) ok, I)

I
o)
0. 9] (—1yp(1)

+(+ 20+ 1) A

o)
R H (-2 THRE.D)

As for the differential system for $(¢), (E.II) and (8.1) imply the
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following:
LEmMMA 8.4,

3.7 —2<xo+1>-d¢(¢>=-§— S Mada BdG, B+ 3 todae T d®) .
1s5+ksm k=1

We now want to eliminate the terms Toé‘)(j, k) and T@(k) in the
right hand side, by using Proposition 8.1. Owing to Proposition 3.1,,
the above can also be written as follows:

D= Sradaey 2B L 5 gy PG, )
(8.8) dp(g) Elkkd%k A(0, k) + 2 155%':‘5,. A Mda * 20\ +1)
1)
LS o k, 3/ T8, k) da

15i5F85m T A0, k) —200n 1) ok

The latter can be described as follows:

w ) a(j k) 230, k)
(3.9) k2=1 0( k )Nk¢* (%) +E1s:‘§sm il —2(\+1)

’

where 0(?) and 0(j¢k) denote the 1-forms which are symmetric with
respect to j, k: ’

(3.10) o ?)=dan /40, 9,
J
(3.11) 0( ? )—--1—-(da +A<Z,’?)da +————(3’3‘) da )
- k) 2\ T 240, k) T 2400, 5 T

More generally we define the following sequence of 1-forms

DEFINITION 3.2. We denote by 0( i ¢ i ), 3=p=n-+1, the 1-form
1y 4
which is symmetric with respect to 7, ---, 5’,, and defined by recurrence

relations:
0Ficeed eoed
o ? é A( Jl. . Iv . j’)
(3.12) 0(_ .>=2(._1)~.¢9< . A ) _ .71.72;".7;» .
Jir* 9 dp y=1 Jis * 5 0w "y 3/ A(4,, R A -79)

A characterization of these forms will be given in Part II.
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By applying repeatedly Proposition 3.1, for the second term in the
right hand side of (3.8), we have

PROPOSITION 3.4. For &(¢)=3,(4),

N ¢ ki,
(#o‘i‘l) (ﬂo+8—-1)

8
( >A(%“... ’b) A(ly'°'9 a)
'Ll," s 2

E.IIL)  dd@g)=3 L =

=1

-, A(O, Uy * "y ) ) P
Ney Ny ¢ )
+ 1 nt1 0| )
(n'*']-)! > ($o+1) - - (to+n—1) (7‘1, * 0y Yo

To@('iu ) 'in+1)
—2(\,+1)

where T‘@(il, cee, Ty 18 given by the following lemma:

’

LEMMA 3.5. For any (n+1) indices ., - -+, i, we have the identity:
A(& ol ) )
(3.13) To=_ 3 (~1 Ag 0l
Consequently,
)
(3.14) PopW=_ 3, | (~DH— 2 56.5,0)

. PRQOF. By simple calculation, we have the identity (3.13) by replacing
T; by f;, which implies the lemma.

According to the Propositions 8.8 and 3.4, we can obtain a similar
but complicated formula for d®(i,, - - -, i,), so that

THEOREM 5. The difference systems (D.III*) and (D.IV*) define a
maximally overdetermined onme with respect to the basis (3.5).

THEOREM 6. The formula (E. II1,) together with (D. IIT*) and (D. IV*)
defines a maximally overdetermined linear differential equations with
respect to the basis (3.5).

§ 4. Configuration of hyper-plane sections in a hyper-quadric.

As in the preceding section we make the Assumption 3.1, where we
consider it in the (n+1) dimensional affine space C***. We put further,
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ASSUMPTION 4.1. A,=0.
We denote by X or Y the complements C**'—J~,§; or §,—

SenUr.S,;, Then as was proved in [1], Theoreme 4.2 and [5], we
have

PROPOSITION 4.1. Let f}o be the covariant differentiation defined on

X or Y, by ﬁo«/r=d«,b+@°/\11r fo'rA @Dy=>", \d logf,-. We denote by l70
the corresponding function II7.f}#. Suppose that

Assumption 4.2. A, -+, N\, are real and positive. These are generic,
in the sense that \, + - - - +X, € Z for any 1=54,<---<,=m+1, 1<p=mn,
where A\,., denotes—>.7, \;.

Then we have

(4.1) H*(X,7)=0, 0<p=<n,
(4.2) H*(Y,7)=0, 0<p=n—1.
Consequently the boundary homomorphism
(4.3) 8: HYY(X, Y; Vo) — HY; 7,)
is an isomorphism. In view of the exact sequence
(4.4) O0=H™(X, V)— HY, P)— H"(X, Y; P)— H"™(X, P,)—0 ,
we have the isomorphism
(4.5) H"\(X, Y; P)=H"Y; PYQH"(X; 7, .
The corresponding dual basis is obtained as follows:

LEMMA 4.1. The basis of H,.(X, ;) consists of the relatively
compact components of R""—R"*"NU7.S;. The basis of H,.(X, Y; $3)
consists of the relatively compact components of R**'— RN
U S;. H, (X, Y; &2;,) 18 isomorphic to a direct sum E,.PE_, such
that

(4.6) 3: 5, — H(Y, &4)
0: 5_—0.

Namely the basis of H,(Y; S.5) consists of the cycle 4 =04,.N Y, where

4, denotes any relatively compact connected components of R**'—R N
U™ S;.
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NOTATION 4.1. According to J. Leray [12], p. 90 for any
(X, *Ur S;), we shall denote by d*(fu...fin @)/ (df},/2)"+1-—f‘1
fimp+d the residue nm-form on Y of k-th order k! Res (Fi. @)/(f0/2)"+‘.

Then the following is obvious.

LEMMA 4.2. For any € 2""(X, *Um™. S,), ke Z*, we have

(4.7) lim 2<M+1)§ ok Fh . Fing

Ag——1

=1/t-{ fa. - Fimdro@iyr,

if Ye B, and the left hand side vanishes if 7€ 5_.
PROOF. See J. Leray [12], pp. 90-94.

Owing to this lemma, we can compute, from the result in the
preceding section, the linear difference system and the Gauss-Manin
connection of the integral

e
3.1V, H= Sffl- . Fimp®
PW e Y, * Ur.S,) on Y. -

Figure 1

We denote by = the standard form dwx, Adx, A ---Adx,,, and by z-‘”
St (—1ywde, A - - Ade,_ Adx, A -+ ANd2,,,, the residue n-forms

(4.8) Py, + oy ) =TVfy - fi,=m, 0Sp=n+1,

of the (n+1)-forms o(i,, - -, 3,)=7/fi,- - - fi,, With the fundamental rela-
tions in the following way. For any sequence of indices I={%,, ---, t,1s}»
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we have the identity:

(4.9) 1 S (—1)% A0, 0,051) ~ (0.0,I)
2 1sa#fsnte A 0, 0,1
(0: aﬂI

+3 (-1 20D g0, 1=0.

= 0, 2.1
AT
')

In fact, the left hand side is equal to 7. 8G,, -, i...)/df,, which
is obviously equal to zero.
Proposition 4.1 follows from (4.6) and (4.7).

NOTATION. We put
P =p",
A( e )
0’1‘1, LY o, 'Lll’ .o -’ ",’
A("‘ly A 7‘?)

(4.10) PL(%y -+, B)=PP (G, -+ ip)+§i(—1)"

XPW(Tyy v o0y By *o0y B)
for 0=p=n+1,1=<%,<---<t,=m.

By the Lemma 4.1, we can take, as a basis of H(Y, ﬁo), the follow-
ing form:

(4.11) PU(tyy c 1), 0=p=n, 154,<---<i,=m,
and @Y, Gy, + v,y ins) ) 20 <o <hpSm .

On the other hand we know, through [3] Lemma 1, H"*(X, ﬁo) has a
basis of the logarithmic forms

(4.12) dlog fuA---Adlogfi,,,

for 2=<4,<--- <14 Therefore the forms

n+1°

(4.13) Pl <+, %), 0=Spsn+l,159,<---<t,=m,
just constitute a basis of H**'(X, Y; ﬁo).

COROLLARY. The dimension of HY, V,)is equal to S, (711)1,)_'_(7)1,; 1).

We shall now represent the logarithmic forms on Y by means of the
above basis. First we prove
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LEMMA 4.3 (Reduction from weight p to p+1). For 0=p=n, we
have the equivalence in H™(Y,V,):

4.14) (ot+n—p)dlogfuA---Adlogf;, Ada A« Adw,,_,

k: .1; "ty ]
el

O’ jl, ...’jp
X L >, U e,
A(O, Jis * 9 Ips k) y=1 bt

xdlog Fi A -+ Adlogf; AdlogFuhdz A+  AdBLA -+ Adas,
k’ j , t e, ‘7 . .
- Z)\:ku[ ' . % p:lcpf.}’(k, Jiy =y .71’)

keJ 7';." sty Vo1
ng‘n(ii", %y "::H’ in ) Iin—p) ’ Oép_S_'n ’

~ 3 M (=1
keJ

where (1F, ---, 1Y) denotes the complement of (iy, +-+,%,_,) in the set
@, .-+, n+1) and u[ ] the determinant

ul‘l‘I. . .uk.i.

u!pq e u:'p"

Wipig® * " Wiputh,y

In particular, for p=n, the logarithmic forms dlogfy,A---Adlogf,,
can be expressed by means of the above basis as follows:

(4.15) A.dlogf A ---Adlogfi,~
-, Z . ?"i[j’ 7:1’ T 7;,,]?3(,:)(], Ty ***y Ta) -
Conversely any P4y, +++, toy1) can be expressed as follows:
(4'16) [7:17 "ty in+1]¢§h1)(i1, *t %y in+1)~
n+1 ~ R ~
%(—1)"@1 logfy A+ Adlogfy, A==+ Ndlogf,, ., .

PROOF. An elementary computation shows that, on X for I=
('ily % ip)? Oép.s_n’

(4.17) (xw+n—p)i9°(d log fuA---Adlog fi, N\Axy oA\ -+ Adx,.,)
k, I

—————A(O’I) S (1w, -Puld log f dlogf
=2 A0 b vtV T e Vi@ log A Ad log

Adlog FAdT oA -+ + Ad,  AQB A -+ - AdTyyy)
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—Zxku[l’ k”; _|_1_|Vosv“’(k, I,
in particular,
(4.18) Aol o(dlog F A - Adlog f; )= — Sk, IVpQ(k, I,
for I=(4,, -+, %,). By applying the mapping (4.3), we get (4.14) and
(4.15) respectively. '

Therefore we have from (4.11)

LEMMA 4.4. H™(Y, fo) has a system of gemerators
(4.19) ' Pty =00y tp) , 0=p=m,
and

dlog fiA---AdlogF:, ,

with the fumdamental relations

(4.20) >y n;d logf,-/\d logf,l/\ <o« Ad logf,“_1~0 ,

Felig et}
for any sequence {i,, ---, 1,_,}{1, ---, m}.

Using the above basis, Proposition 3.3, implies, through residue
operation (4.7), the difference system

PROPOSITION 4.2. For 0=p=n+1 and I=(, ---, 1,),

I

2 A(Ic 0 I)
(. V) v, =D PP (D= 5, — B (= 1) 25, )

. 4] 4o, 1),

+:§ Al — T (—1)"B® (5, I)+(yo+p+1)TI)(pu)(I)(_1)a’

1"1;(-)1/\(1)(1)_@(1)(,50’ I if i,¢I,
where @@ (I) denotes the residue form of 2-nd order: d’¢(I)/(df,/2).

From (D.III}) this form itself can be expressed by recurrence formula
as follows: For 0=p=n-+1,
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0,1
A( I)
421) o=( 0, I
(4.21) ()= ZN (I) (7, I)
AQ©, D) 4 0,31/, _ 1yt 50
et o+ DELES PV (D) +3 ar D poI) .

Thefollowing is proved by a direct calculation:

LEMMA 4.5.
422) 3 03 MU gon(g, 6)7,(d log fuhda A
1sk=m lsofo'sntl A(O k)
Ay Ady -+ A A AT n A - -+ Ay ) (— 1)+

0,k
1 da,, ,,A( >

. 1. A . k, J
_22591 1§j%sm 2 R‘Jx'kdaﬂ"‘T°¢ , k)+155§5m Moie A(0, k)

x Top(k, 3) .

By this lemma, we have from (3.7) the following:

LEMMA 4.6,

423) dpV9)=F Mok P00

o+to’—1 u’k o'duk o uk aduk o’
+zf DV St A(0, k)

Xdlogfk/\dml/\' . '&' "6" M '/\dxn+1 .

PROOF. In fact

4.24) dp» (¢)= lim —2(+1)dP(g)

21

_ dao. 1 ¢ \ PG, k)
(}.l.r_x} —2(+1) l: ¢* (k) + 2 1s,§gma(j, k) -42(7\.0+1)j|

=% dao: s AUy, Wk, '
PIp A0, 1) PRI+ > A0, 1 "M sgn(o, o)

‘XS U7 logfk/\dxl/\ ceeGeee e Adr (= 1)

=&M7A0, B 2,40, k)

Mok (1) +~ 5, Ptialine'y, sgn(, o')(~ 1)
<\ oo @108 fiAda A G F e A -
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The lemma has been proved.
Finally we obtain the

THEOREM 7. The variation formula for $L(¢)="™ () can be ex-
pressed in terms of PP (4, ---, 1,) as follows:

. )‘,‘1...)\,‘?0(1)<i @ )
B IV dow _ 1000,
( o P% (#) P2 p' b (—Ae—n+1) -« (—Np—n—1+p)

m(?‘h °* " ":p) ?

+
-

n

where 0“’(7: ¢ ,&) does mot depend either om A, ---, A, or on the
1y b2
dimension n.

PrROOF. This follows from Lemmas 4.3, 4.4 and Lemma 4.6.
The 1-forms 0‘”( ¢ ?’) will be determined later more explicitly.
YD

¢ s 0

19

As a special case where n=1, we have the following simple formula:

(B. V.Y dpP(9) =3 0y 200t _50(k)

A(0, k)
. 0,J
1 AG. B .-—A(O, 7 k)dA<0, k)+ A(o k)dA(O J, k)
21s5%ism A(0, 7, k) A(0, A0, k)

XAMPL(, B) .

The Appell’s hyper-geometric function (F,) investigated by J. Kaneko
[10] is a degenerate case for m=4.

§5. Degenerate case I. Invariant connections for the diagonal
general linear group 4(GL,xGL,).

Let f, be the quadratic form 3.,x,.y, of (x, ¥)eC"xC", and
Ji © ¢, fuy m=t-+8, be homogeneous linear functions on C*. We consider
the integral

IV B@)=expl—£(e, DIA@H - f@* - furs@orse - - furore-z,

where 7 denotes the 2n-form dux, A --- Adz, Ady,A---Ady, . A

Since the group G=4(GL,xGL,) leaves f, invariant, the integral
(J.V,) admits of the action of the group G and so its Gauss-Manin
connection can be expressed by means of basic algebraic invariants in
the sense of H. Weyl’s book (see [17], p. 45). We denote by @, ;=
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{So ) =1 Uy ,u;, the inner produet of fi(x)=37"_,u,.x, and fi(y)=
D=1 Ui, 159<8,8+1<j<s+t. These are a basic generating system of
invariants with respect to G. Now we assume the following:

AssuMPTION 5.1. (i) Arbitrary mn-functions among f, ---, f, (or
Sot1y **+, fore) are linearly independent, namely for any indices (7, - - -, 4,)C
a-.--,8 (or c(s+1, ---, s+t)) we have [7, ---, 1,]50.

(ii) For any indices I=(%,, -+, %,)C(, +++,8) and J'=(j,, *+-, J.)C
(541, -+-, s+£), we have A(§,)¢O.

We denote by Ae.=5-1N; and ANo=>315-1 Njr,e

DEFINITION 5.1. The mapping p. By suitable change of coordinates
(z, ¥), we may assume that fi.(x) is equal to ;. Then by the substitution

of the integral variables z, =2, z;=2,-%;, 2<j7<n and Y,=vy, ¥;=Y Y
2<j<mn respectively, (J.V,) can be rewritten in the following way:

1.V 5(5)=exp| - x1y1<1+2x, )

sz(l’ xZ, M) wn)lz fa(l, xz, sy, x;)"f‘,+1(1, y;, ceey, y;)1.+1. .o
.fa+t(19 yé: * %y y;)z'—H
Xde, Adaz A -+ Adxs ANdy,Adys- - - ANdy, .

In view of the fact that

(5.1) Sexp[ —zy ] - wl=t "yt =t de, Ady,

is equal to zero or (27i)I"(Ae+n) fOr Ae#Me Or A.=A\,, We have the
following:

LEMMA 5.1. &(p) vanishes when NoF Nw. If ANo=Nw, then P(¢) is
equal to

(5.2) (2m:>-r<xw+n>§(1+§m;-y;-)-*~~"
X fo(l, @)% -« f,(1, &) fo1(1, a')et2e oo £ (4, @) e+tda A
AATLNAAYN - - AdY.

Jor Nvy=—w+mn). We shall put f},(m y)=14+31.2y; and f',-(w’) =f;1, «)
respectively.

We denote by S, the hyper-quadnc fo(x ¥)=0 in C*'xC**, by §,,
2§g<s, the hyper-planes f,(a;') 0 and by §;, s+2<j<s-+t, the hyper-
planes f,(y’)-—O As in the preceding section, we consider the twisted
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cohomologies H™(C"x C*— 1, S;,7) and H**(C* x C**— Um0 §,, F) for the
covariant differentiations Fyr=dqy+ @ A+, and Fap=dr+@ A 4, respectively,
where and @ denote adfe+2G5- N d log [i(@)+ 25t N d log f(y) and

d log'f',,+2‘,,_2 A\ d log ,)",(a:’)+2',;"5+2 Njd log f,(y') respectively. Then the re-
lation (5.2) deﬁnes the linear mapping p from

H“‘”(C"“XC"“ (:1 A) into H%(C"xc"—gs,., V).

LEMMA 5.2. When \.=\., the mapping o is an isomorphism.

PrOOF. The 2-dimensional homology associated with the integral
(5.1) is just equal to 1. Namely (5.1) can be integrated in a unique way.
This implies the lemma.

According to Theorem 5.2 proved in [1], p. 291, the dimension of
H»¥(Cr'x Crt— U:—o §,-, V) is equal to the Euler number of the space

C*'xC* ' —Um S,, Whlch can be computed easily by Mayer-Vietoris

I#1,8+1
sequence. The result is as follows:

LEMMA 5.8. The Euler number X(C*'XxC*'—U™S;) i8 equal to
“\p » /
Actually this is equal to the number of a subset of connected com-

ponents of the complement R*~*x B*~*—|J=, S;, including all the relatively
compact components, where (5.2) converges (see Figure 2).

. ¥ 5,5, S,
S,

n

S

t

rk H2=13
0 X}

3 So
> N\
Ss
3 W

[ |

FIGURE 2
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Lemma 5.2 and 5.3 imply

LEMMA 5.4. The cohomology H*(C" X C"— ™. S;, V') has the dimension
=00 )(5)
=\ »p » /

We are now in a position to prove the following:

PROPOSITION 5.1. The cohomology H*"(C*x C*—U™, S;, V) has a system
of generators
(5'3) &(I; J,)=¢(7:1; Ty izu j:.y %y j;’)
=7/fo, (@)«  fo,(®) - F3 (W) - - - Fi2(¥)

fO’r I=(7:1) Tt ip)c(ly Y 8)1 J’=(j;9 Tty j’p)C(S'i'l, Ty 8+t), II" lJ'I—S—’n’
with the following fundamental relations:

n+1

(5.4) 5:,‘1(—1)@@1, JN=0 for [I|l=n+1, |J|=n,

(5.5) SU(—DB&; 0,0)=0 for |Il=n, |J|=n+1,
~ | ~

(5.6) 5 B 7, )+ 3 (150, ) =0,

Jor |I|=|J'|+1=Zn, and
~ 1271 ~
6.7 B, I+ 5 (~ 18U 0.0)=0,

Jfor |I|+1=|J"|=n, where &H(I;J') denotes the 2n-form defined by
A(})@'(I . J') (remark that 3L J’) vanishes if |I||J'|). Therefore H*]is

spanned by the linearly independent basis 5(I; I, 2=50,<- - <1,58,
s+1<7,< - <J,<s8+t, 0<p<n—1. The number 18 jJust equal to

n—1 8—1 t"*l
”=°( D >< yY )
ProoF. (5.4) and (5.5) being obvious, we have only to prove (5.6)
and (5.7). The integral (J.V,) is a special case of (J.II). The sym-

metric matrix A having parametrized the configuration of hyper-planes
in §1 can be replaced here by the matrix:

[0 AN [0 (@)
©-8 m‘(tA 0)“(«%,,-)) 0 )

In this situation we can apply the Proposition (2.1), for &(I. J'), |I|=
[J'|+1:
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(509) T.i{,a(Iy J') 'm(Iy J’)
LJ, jo\ . L IJ
=S A B T, i)+ — 1)@, J
Y m(I;J,,J.,>¢< N+, ((M ” .o)< Y. 3@,0; I .

On the other hand, we see that A(I, J')=0 if |I|=|J'|, and

L g, J I\ (T
.10 —(—1)"" : ’ I=\"+1,
(6.10) 9‘<I;j',.f') (=1 A(J",J'> A( I ) for I|=1J"1+1
I. J' I J’
A1 A ? =A A , T Il=|J"1+1.
6.11) (a L, J') (js, J') <apI> or M=+

By taking j, such that A< o J,>¢0 we get the (5.6). (5.7) is proved
in a similar way. The last part "of ‘the Propsition 5.1 follows from the
following two lemmas.

LEMMA 5.5. The form &(I; J') for |I|=|J'|=n is cohomologous to a
linear combination of the forms $(I, J') for |I|=n—1, |J'|Sn—1.

Proor. The relations (5.5) and (5.7) imply

6.12) 5 3B, 0L I+ (M + 3 0BT )

S (~DBOL .0 +3 ()50, 2,7 ,

9?'7(I J’) being skew-symmetric with respect to the indices i, ---, i, in I,
we can apply the Lemma 2.2 and solve (5.12) with respect to gv(I J') as
follows:

(5.13) L T') Mo z M(— 1) Pk, 89,1; 3,J")

keI Sosn
vsn

HN

n

+ (vt 30, ) S (DB, 0,7

y=

Taking acount of the skew-symmetry of 5(1; J') with respect to j3, ---,
j» and (5.7) we finally have the following formula:

(5.14) MBI T = 3 (=11 83,T; 0,T")
#,y=1

Since A.#0, the lemma has been proved.

The difference system for (J.V,) corresponding to Proposition 2.2,
can be expressed as follows:
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PROPOSITION 5.2. For ho=\.+1 and I=(,, -+, i,), J'=(Fy *, i)
[ Il=]|J'|£n—1, we have _

0.1
| A()
(D. VI,) o= DTZPA, T =3, (=1 —-——%’-—@(I; 5,J")
A(J')
A(k,%l)
— S, LT
Al;)
o1
w45
D.VL)  M—DT;730; J)=35,—3I [_1ywz,,1 g7

y=1 I
)

3,201
S D2 B (L 5, )
o)

PROPOSITION 5.3. For A.=\., and |I|=|J'|<n, we have
o1

Ao
I1Il—1 ’
O. V1) =DTRTHE I)= 5 (-1 - 250,15 5,0
)
i, 0.1

A"
—Sa—L 156, 8.1 07,

i
¢ I
Ty A< ’>
0,1

4o )
O.VL) (= DIFTydd; J)= 3 (—+—29 50,1, .77
T4

I
4l 2]
— Sy —L O s 5 gy

Py I
A
()
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LEMMA 5.6. The cohomology H**(C*xC"—™,S;, ¥) is spanned by the
basis $(I; J') for 254,<---<1,58,8+255,<---<j,<8+t, 0<p=n-—1.

PrOOF. Lemma 5.5, Propositions 5.2 and 5.8 imply that H?* is

generated by the above forms &(I; J'). This number is equal to
:;3(3—1)(t_1), which is nothing else than the dimension of H?*"

D D
according to the Lemma 5.4.

Combining the Propositions 5.2 and 5.8 we have

PROPOSITION 5.4.

I
O.VI) DO —DTETA( )55 )

alI ‘ P alI _
—_ (T ’ . 1+y ‘;_1 ’. ’
=4[ o1y )- B0 P B )T o

L, 0,1 .
—Z‘,MA(IL , >T,-71<p(z, I; J"
ier J 1

where T ;7'P(1, 3,J ") and T;;'$@, I, J') can be computed by the formulae
(D. V1), choosing k' ¢ J' such that A(k. g J,);&O and A(]:’,’ 5,)¢0 respec-
tively. o ’

As a consequence we have

THEOREM 8. The difference systems (D. V1)-(D. VI1,) give @ maximal-
ly overdetermined system for (J.V,).

As for the differential equations for (J. V), we have

PROPOSITION 5.4.. The wvariation formula for S(I; J') can be simply
expressed by means of logarithmic conmections:
1, I

E.V,)) do;J)= 3 Angdlog A( S
tel,j'ed’ J,J

)-5@, I; 3'J")

o, I\ ~
+3(-1rdlog A( 71 )-501 0.0
"y v

Fdl k’ avI ~
+EZ(—1)”“-hkdlogA< g’ ><P(k,3y1; J)

kel v=1

+3 S (—1)-ndlog 4

I\ »
BT K, 8,
ey it (k’, ayJ') ( )
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111 I\~
+21 N d log A(J,>¢(I; J').

1771
+3n,.d log A( ,
y=1 v J

I\ ~
)-qo(f; 7,
for |I|=|J'|E=n—1.
PrROOF. We remark firstly the form a)( I ?:I, :,I,' j') defined in Definition
2.1 is here equal to T

_ I i
—V—l[dlogA<J,>+dlog A<J,’ .’i’)jl .

By applying the Proposition 2.4, for &(I; J'), we have

I,i

2 ' I
(5.15) do(L; J )= D, AN {d logA( )-I—d log A( , .
tel,57ed’ J’ J, 3

2 g e

,)}5(1, i T, )
I
J'

EW g

- 3 (—1)*‘*”{«1 log A<ayJ,

1sp,vs|I)

) +d log A( )} B0,1; 0.7

v=1

1z k, 0,1 I\) ~
+Z(—-1)”“Zxk{dlogA< , >+dlogA< )}@(k,ayI;J’)
Ked J J’

121 I\ !
+3 S (-1 'M'{dbgA(J')J“dl"gA(k, )

kled’ v=1

o~ I\~
XPL; Ky 0,J")+ (W —Npe+ Ny —Nyre)d log A<J,>¢(I; J),

where \; denotes 3.\, and I’ the complement of I. Taking account
of the relations (5.6) and (5.7), we arrive at the conclusion. Consequently,

THEOREM 9. (E.V,) together with (5.14) give a maximally over-
determined system of linear differential equations.

. As an important result of the above formula, we have the following

relations among the logarithmic forms d log A( f,)

PROPOSITION 5.5. We put, for |I|=|J'|=n—2,

AV i kI k
I >=dlogA( v )/\dlogA(;’k' >—dlogA<j’I>

5.16) =
( “"(f, z"J' 7,
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1, k, I 1, I 1, k, I
dlA")—dlA(’)l (")
A og (j', l', JI og l', JI /\d og A j’, l’, J'
k, I i, k, I
log A| .~ 1 ’Y .
+d log (l’, J,>/\d ogA<j,’ v J’)
Then we have the cocycle conditions for 2-simplices 1, 1,, i, and J,, 7., J.
as follows:
o] I LD e Ap
®- 1L o=s( 7| ;) -5 (7 2n) +5( 2 ))
*x_ % I *k_ ok I *_ Xk I
(R. I1,) 0=3< S . ,>—E<,,’ ., )+E( ) ,).
: g gz | I Joy J2 |J” Joy J1|J

PROOF. These identities are nothing else than the integrability
conditions for the Gauss-Manin connection (E.V,). In fact the exterior
differentiation of the left hand side of (E. V,) vanishes, and so, that of
does, too. By comparison of the coefficients of each monomial of A, ---,

the right hand side A, we get (R. II,) and (R. IL).

Seeing that A(}) for |I|=|J'|=mn, is equal to the product of deter-

minants [, ---, 4] and [j,, ---, 5,], there are further relations among
them, as was shown in [7], §2. It seems to the author an interesting
problem if these two types of relations are basic in the de Rham algebra

generated by d log A(f,).

§6. Degenerate case II. Invariant connections for the symplectic
group.

Let f, be the symplectic form >\, (% Yrn—%sn-¥) of (x, ¥)€C™X
C*™ and f, ---, f., 3=2n, be linear homogeneous functions on C**. We
shall consider the following integral:

(J. VL) ¢(¢)=§exp[fo(w, WIf@)"- - @) fi(y) et - - fuy)ee T,

where 7 denotes the canonical 4n-form dx, A - - - AdZ,, AdY, A -+ - - AdY,,. This
can be regarded as a special case of the integral (J. V,), m=2s, and admit
of the action of the symplectic group S,(n, C), which leaves invariant the
alternating form f,(x, y). Therefore the Gauss-Manin connection of (J. VI,)
can be described by means of the basic algebraic symplectic invariants.
For arbitrary two linear homogeneous functions f,=>3>7, u,,x, and f;=

., U;,%,, Wwe denote by a,,;=[f;, f;] the bi-linear invariant >, (%;,,%;,n1,—
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We,nsWi). The matrix A=((a,,;)) 1=1, j=<s becomes skew-symmetric. We
shall assume now:

ASSUMPTION 6.1. (i) Arbitrary n-functions among f,, ---, f, are
linearly independent, namely for any indices (i, ---,4,)Cc(, -+, 8), wWe
have [%,, ---, 7,]50.

(ii) For any two sequences of indices I=(3,, -+, %,) and J= (4, * -, Jp)
for p=<n, we have A(},)qeo, provided Is#J or I=J, |I|=even.

Then we have almost the same results as in §5 with a little modification.

DEFINITION 6.1. The mapping p. By suitable change of coordinates
(#, ¥) we may assume that f,(x) and f,(y) are equal to w, and y,,, respec-
tively. By the substitution of integral variables =, ==, x,=ux, -a; for 2<
PZ2N, Ynir="Yni1, Yi="Yns: Y: for 1=<i<2m, i=n-+1, the integral (J. VI,) can
be written in the following way:

I VL) $@)={ exp| i1+ 3} in— 3 Toratl) e+l

x y}"_l_l'yfl’rﬁzn-l Xf;(ly x’)la. * 'fa(ly x’)is 8(1: y')18+3' * 'fc(]-; y')lz’
X AT N QY AT =+ AdTe, AGYLNA -+« » AAYn A QYnss
N /\dy;”

which is equal to zero if n.#\., and otherwise equal to the following:
(6-1) 5(95):27:?:'1“(7\‘004'2”)&&(1; x;’ Tty x;n; y;; Y y;u 1’ y:z+2y % y;n)_lw—zn

X )2 gyt ,-ﬁsf i1, @)% ﬂaf (L, Y)reti
- i=
XABA -+ AQB AdY: s - - AAYr AQYnye A -+ - AQYsy
In other words

LEMMA 6.1. &(¢) vanishes when NeFNo. If M=o, them P(¢) is
equal to (6.1).

We denote by §, the hyper-quadric £(#', ¥)=0 in C*'xC*™, by S,
the hyper-plane z,,,=0, by S; for 3<j<s, the f‘,-(x’)=0, by §,., the %.=0,
and by S, for s+3=<j<2s, the f‘,-_,(y')=0. The covariant differentiations
7 and 7 are defined by using the 1-forms dfy(x, ¥)+ 5=\ ;@ log fi(%),
+ 351 Mid log fi(y), and dlog fi(a’, ¥)+Ned 10g This+ Nuind l0g 41+ Sli=s Ny
log fi(&") + 5-s Nossd log fi;(¥') respectively. Then the relation (6.1) defines
the linear mapping p from H**C*'xC*'—Ui S;, ﬁ) into H*(C*" X

j#1,8+2
C*—-U%,8,, 7). Exactly by the same reason as’?n Lemma 6.1.
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LEMMA 6.2. When Mo=X\., then the mapping p is an isomorphism.

LEMMA 6.3. The Euler number X(C*'xC*"'—JiL, +§J., C) is equal
E:Zn—l s—1 2__ 2n—1 s—1 J#1,8+2
to p=°( p ) p=°< p )

ProOOF. This can be proved by the standard argument, using the
Mayer-Vietoris sequence (see the Figure 38).

According to the theorem in [1] cited in the proof of Lemma 5.4,
we can conclude

LEMMA 6.4. The dimension of H*"(C™xC™—U%,S;, V) and

H G x = Ut | 8, 7) s equal to S3(* 1) - xs(® 1)
§=0 g P=0 P=0
#1042 D D

LEMMA 6.5. The Lemma 5.5 holds, by replacing m by 2n. The
analogous formulae to (6.10) and (5.11) hold.

PROPOSITION 6.1. The difference systems (D. VI,)~(D. VI,) in Proposi-
tion 5.2 hold for |I|=|J'|=2n—1.

PROPOSITION 6.2. The cohomology H*"(C*xC*—-U*.8;, V) has a
system of gemerators

6.2 I J)= T
6.2) o, J") fo (@) .f,p(x)f,-i(’y)' . ‘f:‘,’,(y)

where I+J,0=|I|=|J'|=p<2n or I=J, |I|=|J'|=even. These have the
Jollowing fundamental relations:

2n+1

(8.3) >, (—1"5@,I; J)=0,

Jor |I|=2n+1, |J'|=2n.

(6.4 3 (—)EE; 8,0)=0,

for |I|=2n, |J'|=2n+1.

(6.5) 0=3 08, I )+ 5 (—~ 8T .07 ,
for [II+1=|J'|

(6.6) 0=\ 7, I+ 3 (@I T
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for |I|=|J'|+1, where H(I; J') demotes A(})-@(I; J') for |I|=|J'l. Remark
that &(I; I'Y=0 if |I|=o0dd. Therefore a basis of H* can be chosen as
JSollows:

(67) 5(1-; J,) , Jor I=(i1’ ) ":p) ’ J':(j;, ) j;) ’ 0§p§2n ’
2<9,< - <1,58,255,< -+ <J,=8 and p even if I=J.

PrOOF. In view of Lemma 6.5 and Proposition 6.1, H** turns out
to be generated by &(I; J") for |I|=|J'|<2n—1. On the other hand, the
formula (D. VL) in §5 shows that if A( f) —0, and A(aa f )qso then &(I; J')
can be described in terms of the forms & (3.1; 3,J"), #(I; §', 3,J"), P(3, 0.I; J')

and $(1, I; j', J'). Since A I, =0 for |I|=o0dd, #(I; I') is cohomologous to
I

a linear combination of other H(K; J') for K+J, or K=J with |K|=
even. Consequently H*" is generated by the &(I; J') of (6.7). The number
of linearly independent forms is therefore at most equal to 2?,"3(3—1 g
St <s p1>' On the other hand Lemma 6.3 implies that this must be
equal to the dimension of H** so that the above system &(I;J’) in (6.7)
must be linearly independent. The Proposition 6.2 has now been proved.

We have finally

FIGURE 3
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THEOREM 10. The difference system (D. VI,)- (D V1) gives a maximal-

ly overdetermined system with respect to the basis B(I; J') in P'roposv,tzon‘
6.2.

THEOREM 11. The equation (E. VIL) together with the difference
system (D. VI) gives a maximally overdetermined system of limear dif-

ferential equations with respect to the above $(I; J').
As a consequence we can obtain

PROPOSITION 6.3. For |I|=[J'|<2n—2, (R. II,)-(R. IL) hold, where we
must put dlog A(ff,) to be equal to 0 if K=L, |K|=odd.

ADDED IN PROOF. In a recent article by M. Kashiwara and T. Kawai,
it is proved in full generality that integrals of type (J) or (J’) satisfy
certain holonomic systems with irregular or regular singularities (see
M. Kashiwara and T. Kawai, on holonomic systems of micro-differential
equations III, Pub. R.I.M.S., Kyoto Univ., 17, (1981), 813-979).
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