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Classification of T?-bundles over T?

Koichi SAKAMOTO and Shinji FUKUHARA

Tsuda College

By T, we mean a two dimensional torus R*/Z®. The purpose of this
paper is to classify fiber bundles which have T as fibers and base spaces.
(Simply we call them T*-bundles over T*.)

In view of bundle isomorphisms, we obtain Theorem 4 which gives
necessary and sufficient condition that two bundles are bundle isomorphiec.
By this theorem, one might determine even by computer whether two
bundles are isomorphic or not.

In view of homeomorphism types of total spaces, we obtain Theorem
5 which says that total spaces are homeomorphic if and only if their
fundamental groups are isomorphic.

In Theorem 3, we show that any 7*bundle over T is isomorphie to
one of some standard types of bundles.

§1. Notations and definitions.

Given A, Be GL(2, Z) such that AB=BA, and m, n € Z, we construct
a T*bundle over T denoted by =: M(A, B; m, n)— S, as follows.

Denote by [Z] the point of T?= R*/Z* corresponding to (‘;) e R*. Let
F=T? S=T? and we define
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Denote the point of M,=M(A, B; 0, 0) which corresponds to

Ll Gl)o e L) GO (23]

Then n: M,—S is a T*-bundle over 7%, where n is defined by = tyl|=

[Z] Let D be a small disk in S centered at %g] with radius ¢, and let

M(A, B; m, n)=(M,—zx"(Int D)) U(F x D)
where F'xoD is attached to #'(0D) by the homeomorphism h:z~(8D)—

T Aol e

where s(ﬂ)=(ﬂ§iz :(i)rs; Z) Define the map n: M(A4, B; m, n)—S

Loo[s] « [Jen. w
(L)) = o

Then this is a T*bundle over T

For the homeomorphism group Homeo (7T?) of 7%, it is known that
n(Homeo (T*)=GL(2, Z) and =, (Homeo (T?)) is isomorphic to ZZ under
the isomorphism which assigns & to (m,n) (see [2]). Hence every
T*-bundle over T* is isomorphic to the form as above, where the pair
(A, B) represents the monodromy, and the pair (m, n) represents the
obstruction for constructing a cross-section.

Corresponding to a T*bundle over T2, n: M— S, there is an exact
sequence

l—nF—a M » T,S > 1

where F' is a fiber. We call this the associated exact sequence. Finally,
we define the loops in M=M(A, B; m, n) as follows:

0, u 0,0
a(u)=[o, 0] ’ B(u)—-[o’ u] ,

u, 0 _[0,0
a(u)=[0’ 0] , r(u)—[u, 0] 0=u=x1).
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We use the same notations for the corresponding elements in 7,M. Then
M is generated by a, B, ¢, ¢ and generating relations are given by
oT=10, a ‘ca=o0°c", a‘ra=0t,

B leB=0"t", B ltR=0'T",
aBa—IB—l — aan

where A=<g’ 3) and B=(£ g) We call the set {«, B, 0, 7} the canonical
generators of w(M(A, B; m, n)).

§2. Fundamental lemmas.

Let M=M(A, B; m, n). Since H,M is isomorphic to the abelianization
of .M, we obtain from the above presentation of =, M:

PropOSITION 1. H,(M(A, B; m, n)) is isomorphic to Z*P(Z*/K), where
K is the subgroup of Z* generated by (Z”) and the colummn wvectors of
A—FK and B—E (E stands for (1) (1)>>

In the following propoéition, we study about typical bundle isomor-
phisms. '

PROPOSITION 2. Let A, B, A', B'e GL(2, Z) such that AB=BA and
A'B'=B'A’. Let a, B, 0, T and o', B, ¢, T are canonical generators
of mM and wM' respectively, where M=M(A, B;m,n) and M'=
M(A', B'; m/, n').

(1) Assume A'=A*B", B'=A'B* and (Z",)=3(Z’) for some P= (£ g) €
GL(2, Z) where 6=ps—qr==x1. Then there is a bundle isomorphism

F:M'— M such that

f_;(o' =0, f#(z")_= i and_
fla)=ar@", fB)=a'p’
where f: 8’ — 8 is a corresponding homeomorphism between the base spaces
and a=mya) ete..
(2) Assume A'=P—'AP, B'=P~BP and (")=P(") for some P=

(g g) € GL(2, Z). Then there is a bundle isomorphism f: M’'— M such that

fHla)=a, H(B)=B and

filo") =077, filth=0%".
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(3) Assume A'=A, B'=B and (”"’) ( ) (A— E)<q)+(B E)()

Jor some p,q,k,lecZ. Then there is a bundle isomorphism f: M'—M
such that

fHa)=d""a, f(B)=0"T"8 and
fioh)=e, fi(zh=7,

where (})= B(}) and (B)=4(?).

PrOOF. Let R=(Y2)e I* (I=[0,1]). We identify I* and the cone
1/2

over oI with the vertex R. Denote u* X=(1—u)R+uX (0=u=<1, Xeol®).
Then u*xXeI? 0xX=R and 1+ X=X.

Proof of (1): Since the group GL(2, Z) is generated by G (1)) and

((1) 5), it is sufficient to prove (1) in the cases when P—-(p ¢I> G g)
and P= ((1) (1)) Assume P= (1 O) Then there exists a homeomorphism

F:8’—S which is isotopic to the map [ZI:I I: x :| such that f [0}_[8]

and, in some neighbourhood of D, f [y]—[y:l. (For example f [z:l=[z:l

if 0<2<2/3 and f‘[;]:[wé";_z] if 2/350s1.)
Define the map f: M'— M as follows:

[ 7)) o s
CLE)-E1E) = o

The map f satisfies the desired condition. Next assume P= ((1) (1)> Define
f:M'—>M as follows:

f[s, xJ=[s, y] on M'—z"'(Int D) and
t,y t, x

E)E)-[E)en)] [) = oo

Then f is well defined and a desired map.
Proof of (2): Define f: M'—z~'(Int D)— M—z"*(Int D) by

)] 2() o],
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Let h, h': #7%(0D)— Fx oD be the attaching maps in the definitions of M
and M’. Then the map hofo(h')™: FxoD— FxoD is as follows:

hf(h)(m : [ew)]) = (E] , [e<o>1) ,

where (g,)=P((j)—(a/zn)(’x,'))Jr(a/zx)(j’;‘)=P(§). Therefore, it can be
extended to a bundle map f: FxD*— FxD? by

A1 G- (=605

Then f is a desired map.
Proof of (38): Define f: M'—=n~'(Int D)— M—zn"'(Int D) by

) +eB () mex] it x=(g).
| \E l 0
o) +ely) wex] o 2=()),
le)eex]=r
t s D e 0
) -valg) wex] it x=(]).
L\¢ q Y
(o)-vlg)wex] ot x=()).
L\¢ q Y
This is well defined, and its restriction to #~(6D) is expressed as follows:

7(5) 0= (7)o, )|,

where ¢: R— R* is a continuous map such that

¢(0+277:)—¢(0)=(A—E)<§) +(B—E)<f> .

So, the map hofo(h')™: FxoD-—-FxoD as in the proof of (2) becomes:

(3] won) — () +s@]. o).

where ¢’(0)=—(0/21:)((27’:>—(7,}:>)+¢(0). Since ¢'(0+27)=¢'(6), f can be
extended to a bundle map M’'—M. And it is a desired map.
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REMARK. The last result (3) of the above proposition corresponds to
the fact that the obstruction class to constructing a cross section lies in
HXS, #,(F)) (£(F) is the locally constant sheaf whose stalk at ze S is
naturally isomorphic to =, F,, where F,=rn"'(x)), and that HXS, #,(F)) is
isomorphic to the quotient group Z*/(A—E, B—E) where (A—E, B—E)
is the subgroup generated by the column vector of A—FE and B—E.

When we apply Proposition 2, we need some lemmas about the group
GL(2, Z).

DEFINITION. Assume A is a matrix in GL(2, Z). A is called excep-
tional when one of the following conditions is satisfied:

(1) det A=1 and [trace A|<2,

(2) det A= —1 and trace A=0.
Otherwise, A is called general.

LEMMA 1. If A s exceptional, then it is conjugate to one and only
one of the following matrices:

O w0 Y sl ) o
1 0 1 1 01
<1 0) <O 1)
0 —1/)’ 1 0/°
LEMMA 2. (1) If A is gemeral, it is conjugate to a following type

of matrix:
(a b) . (a b)
r —
c d c d

/

where a=b=d=0, a=c=d and ad—bec=+1.
(2) There is a one-to-ome correspondence between the finite sequences

(y -+, ln) of positive integers and the above matrices (g 3), as follows:
(ll 1) (l2 1) (l,,. 1)_((1 b)
1 0/\1 o 1 0/ \¢ d

and conversely ajc=[l, 1, ---,l.] such that (—1)"=ad—bc (see Theorem

1717, [3)).

(8) Two matrices as in (2) are conjugate to each other, if and only
1f the corresponding sequences coincide up to a cyclic permutation.

(4) The class of A~ corresponds to the sequence (L, ---, 1, 1,). (For
the notations of the continued fractions, see Chapt, X, [3].)
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LEMMA 3. Let Ac GL(2, Z) and A+ E. Then there exists Ce GL(2, Z)
as follows:

(i) A==C* for some integer p, and

(i) +f BA=AB where Be GL(2, Z) then B===C? for some integer q.

Proofs and more precise statements are given in §5.

§ 3. Main results.

The problem of bundle isomorphisms is reduces to the group theory
of the associated exact sequences by the following theorem.

THEOREM 1. Let m: M—8S and =n': M'—S' be T*-bundles over T
Then the following statements are equivalent.

(1) They are bundle isomorphic to each other.

(2) Their associated exact sequences are isomorphic to each other,
that is, there exist isomorphisms of groups :w,M'—>n.M and ¥: xS’ —
7S such that myop=1 o (7).

PrROOF. We have only to prove that (2) implies (1). Let M=M(A, B;
m, n) and M'=M(A’, B'; m', n’), and let a, B, 0, 7 and o', &', a’, T’ are
canonical generators of #,.M and 7, M’. Denote @a==,(a) etc.. Since ¥ is

an isomorphism and x,(S)=Z? there exists (P ¢ € GL(2, Z) such that
r 8

y@)=a’p", VB )=aB .

From Proposition 2-(1), it fgllows that there ex_ist_s a bundle isomor-

phism f: M’'—M" such that fy&@)=a"?B"" and fy(B)=a"'8", where

” ’
M"=M(A", B"; m", n"), A'=(A"y(B"Y, B'=(A"Y(B"y and (7 )=5("")
(@=ps—qr==x1). Then ' =+ofit:a M’ —>n M igduce_s an isomorphism
of associated exact sequences, and ' (@")=a, ¥'(8")=p.

v’ induces an isomorphism #,F" —nm F=Z* So, by the similar way
above, using Proposition 2-(2), we have that there is an isomorphism of
associated exact sequences +": w M’ —x,M such that M’ is bundle iso-
morphic to M’, and 3" (@) =&, ¥"(B"")=B, 4" (¢"")=0 and 4" (z"")=7, where

144 1444
M"’=M(A"’, Bm; m”’, ,nm), A"=PA"'P-1, B = PA" P! and <7Z,’)=P(";:l"’)
for some Pe GL(2, Z). As y"(@")=a& and ¥"(B")=R8, 4"(a")=0c"7"a,
(8" )=0""7"g for some ', ¢, k', '€ Z.

Again, by the same way as above using Proposition 2-(3), we obtain
isomorphism of associated sequences +r,: 7,M,— 7, M such that M, is bundle

isomorphic to M’, and (@) =a, ¥(B:)=28, ¥(0,)=0 and +(7,)=17, where
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M,=M(A,, B;; m,, n,), A,=A"", B,=B'"" and (?:"’)—(?::) =(A_E)(g)+
(B—-E)(’{) for some p, q, k, L Z.
Comparing the presentations of #,M and =M, w.r.t. the canonical

generators, we see that A;=A, B,=B, m,=m and n,=n, hence M=M,.
' Q.E.D.

From the above proof, substituting P by 6P (6=det P), we have:

COROLLARY. Two fibrations M(A, B; m, n) and M(A', B'; m', n') are
1somorphic if and only if there exist (f g) and PeGL(2, Z) as follows:

A*B"=PA'P, A'B*=PB’'P~" and

P(m,>—<m) ¢(A—E, B-E) ,
n n
where (A—E, B—E) is the subgroup of Z* generated by the column vec-
tors of A—E and B—E. '

THEOREM 2. Let w: M—S and ©’: M’'— S’ be T*-bundles over T=>.
(1) rank (HM)=4 if and only +f M=M(E, E;0,0), which is a
4-dimensional torus.

' (2) Assume rank(H M)+#3. Then the above fibrations are isomorphic
iof and only if 7.M and w.M' are isomorphic.

PRrROOF. (1) follows from Proposition 1. Hence we have only to
prove (2) when rank (H,M)=2. Since w,S=Z* is abelian, the homomor-
phism 7;: .M — xS is factored by the Hurewitz homomorphism 7, M—
H,M. Therefore if rank (H.M)=2, the homomorphism =, is identified
with 7,M — H M — H M/Torsion in the group theoretical meaning, since
both homomorphisms are surjective. And so, 7. M=z, M’ if and only if
the associated exact sequences are isomorphic. In view of Theorem 1,
this completes the proof.

Any fibration has a simple expression as follows:
THEOREM 3. Any T*bundle over T* is isomorphic to ome of the
Jollowing types:
M(A, B;m,n) where B=+E.
Furthermore, we may assume that A satisfies the following conditions:

(1) f det A=—1, then trace A=0,
(2) if det A=1 and B=—E, then trace A=2 and A=E,
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(3) A is one of the matrices as in Lemma 1 or 2.

PROOF. Let M=M(A, B;m,n). By Lemma 3, we see that A=+C*
and B=+C"? for some integers s and ¢. We may assume that s and q
are relatively prime, i.e., ps—gr=1 for some integers p and ». So,
applying Proposition 2-(1), M is bundle isomorphic to M(+C, +E; m, n).
This proves the first part.

(1) if det A=—1, M(A, = E; m, n) is isomorphic to M(A™, +E; —m,
—mn) by Proposition 2-(1). Since trace (A™')= —trace A, we may assume
trace A=0.

(2) Assume det A=1. Then, by Proposition 2-(1), M(A, —E; m, n)=
M(A(—E), —E;m,n)=M(—A, —E;m,n). So, we may assume that
trace A=0. And if trace A=0, M(A4, —E;m, n)=M(A, A(—E); m, n)=
M(A, E; m, n), and if trace A=1, M(A, —E;m, n)=M(—A, —E;, m, n)=
M(—A, (—AX—E);m, n)=M(—A, E;m, n).

(38) follows from Proposition 2-(2). Q.E.D.

REMARK. Under the above assumption (2), B=FE if and only if the
subgroup of GL(2, Z) generated by A and B is a cyclic group. The con-
jugacy class of this group in GL(2, Z) is an invariant of the associated
exact sequence. In fact, if p:7,S— Aut(z,F) is the homomorphism
defined by

o)W =s-yr  (wemM,yemFcaM),

then Im o is mapped onto the above group by a global isomorphism from
Aut (n,F') to GL(2, Z).

THEOREM 4. Assume M=M(A, B; m, n) and M'=M(A’, B’; m’, ')
satisfy the condition of Theorem 3. Denote by (A—E the subgroup of Z*
generated by the column vectors of A—E, and similarly for (A—E, 2E).

(0) If M and M’ are bundle isomorphic to each other, then B=B'.

(1) Assume, B=B'=E. Then M is bundle isomorphic to M’, if and
only if there exists a matrix Pe GL(2, Z) such that

(i) PA’P“:A' or PA'P'=A"" and
(ii) (';’:)—-PC’:) e (A—BD).

(2) Assume, B=B'=—E. Then M is bundle isomorphic to M’, if

and only if there exists a matrix PecGL(2, Z) such that
(i) PA'P'=+A or PAP'=4A"" and

(i) (",":)—PQ?,') € (A—E, 2E>.

Proor. (0) follows from the above remark.
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(1) By the corollary to Theorem 1, M and M’ are isomorphic if and
only if there exists (f g) PeGL(2, Z) such that

PA'P-'=A?, E=A" and P(’:,>—<7Z>e<A—E>.

From Lemma 1, we see that the order of matrix in GL(2, Z) is infinite
or1,2,8,40r 6. Hence q is a multiple of 0,1, 2,3, 4 or 6, respectively.
And so, since p is relatively prime to ¢, p==1 or p==+1 modulo the
order of A. Therefore A?=A%*', this proves the only if part of (1).
The if part follows from the corollary to Theorem 1.
(2) is proved by the same way as (1).

§ 4. Homeomorphism types.

Let m: M—S be a T>bundle over T% If rank (H,M)+3, the bundle
isomorphism type is determined by z,M (Theorem 2). Now we consider the
case when rank (H.M)=8. According to Proposition 1, rank (H,(M(A, B;

m, n)))=38 if and only if the rank of the 2x5 matrix (A—‘E, B—E, (":))

is equal to 1. Hence in view of Theorem 3, M is isomorphic to one of
the following forms:

(1) M((3 %), B m,0) 20

(2) M(((l) _(1)), E; 0, n) or

(3) M((} ) B m, —m).
Furthermore, we have:

ProOPOSITION 3. If rank (HM)=3, M is homeomorphic to one and
only one of the following forms:

(1) M(((l) ‘f) E; 0, o) @>0)
(2) M(((l) _(1)), E; 0, n) (=0 or 1).

Before proving this, it is convenient to introduce another isomorphic
description for M(A, E; m, n). Let M=FXx R’/~ where

L1 GG Rl (57)):

and let {g” Z} or {(:) , (Z)} denote the point of M corresponding to
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(B]’ (yf-1>) Define 7: M— S by 77-'{':: g}=[g] Clearly, z: M—S is a

T*bundle over T?. Let a, B, 0, = be a loop in M defined as follows:

0 0,0
=0, =l O,

0,0 0, u
u, 0 (o, 0
o(u)= { 0, O} and 7(u)= {u, 0} 0=u=xl).

We use the same notations a, 83, o, ¢ for the corresponding elements of
n,.M. Note that ¢ and  generate =, F, and 7,(a@) and 7(B) generate #.S,
and so «, B, 0, ¢ generate .M. We can see easily that generating
relations for them are the same as that of =,(M(A, E;m, n)) for the
canonical generators. These facts imply that the associated exact
sequences of M and M(A, E; m, n) are isomorphic to each other. From
now on, we identify them.

PROOF OF PROPOSITION 3. If M is orientable, then we may assume:
M=M «(1) If), E;, m, O). Then it is homeomorphic to the following spaces:

M1=M<<1 —m>,E; —k, 0) :
0o 1
M2=M<<1 —k>, E; —m, o) ,
0 1
1 & .
M3=M<<0 1), E; m+1k, O> for any integer [.

In fact, f{‘z: Z}={;’,’:} induces a well defined homeomorphism from M

to M,. And, applying Theorem 4 in the case P=—FE and P=((1) i), we
see that M is bundle isomorphic to M, and M,. Therefore, by the Euclid’s

algorithm, M is homeomorphic to M<((1) ‘%) E; 0, 0) where d=g.c.d. (k, m).
Since Torsion (H,M)=Z,, this proves the assertion in the orientable case.

Next consider the non-orientable case. According to Theorem 4 in
the case P=FE, M(((l) _2), E; 0, n) is bundle isomorphic to M,=

M(((l) _(1)>, E; 0, k) where k=0 or 1, and M((g (1)), E; m, —m) is iso-

morphic to M2=M(((1) 3) E; 0, o). Note that Torsion (H,M)=Z, and

Torsion (H,M,)=Torsion (H,M,)=0. So we have only to prove that M, is
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homeomorphic to M,. In fact, a homeomorphism f: M,— M, is given by

Aog={ms
As a corollary to the above proof, we have:

COROLLARY. Let m: M—S and n': M'—S’ be T>-bundles over T
Assume that M and M’ are both orientable or both non-orientable, and
rank H M=rank HM'=3. Then M is homeomorphic to M’ if and only
of HM=HM’'.

REMARK. The orientability of M is an invariant of 7,M. In fact,
let po: HM— Aut ([%,, x,]), where [x, x,] is the commutator subgroup of
7, M and p is the homomorphism which is defined similarly to the remark
to Theorem 3. When rank HM=3, by the above proposition, we see
that o is a trivial map if and only if M is orientable.

This remark and Theorem 2 imply:

THEOREM 5. Let m: M—S and ©': M'— S’ Vbe T*-bundles over T=.
Then M is homeomorphic to M’ if and only if m M is i1somorphic to
oM.

§5. Proof of Lemmas 1, 2, 3.

Let A=(Z 3)GGL(2, Z). If none of the eigenvalues of A is _4;1,

then |trace A|—1+det A and the eigenvalues must be irrational. For

any complex number ¢, we define A(g)=(a&+b)/(ct+d), and define the
number w(A) such that A(w(4))=w(A) as follows:

@(A)=(a—d+1V'D)/2c, where D=(trace A)*—4(det A).

(When D<0, we choose the value of VD such that Im (1”D)>0.)
Note that, by the above assumption, we have that ¢#0 and w(A4) is not
a rational number since

(trace A)*—4=<D<x(trace A)*+4.

LEMMA 4. Let A, B, PcGL(2, Z), and assume that det A=det B,
trace A=trace B and that any of the eigenvalues of A and B are mot
+1. Then the following conditions are equivalent:

(i) PAP*'=B

(ii) P(w(A))=w(B).
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Proor. If P= 11 or 01 , then it is easy to prove that
01 10

w(PAP)=P(w(A)) by a direct calculation. It follows that (i) implies (ii),
because (PQ)(&)=P(Q(¢)), and the above matrices generate GL(2, Z).
Conversely assume that P(w(A))=w(B). Then, by the above argument,
o(B)=w(PAP™), hence we have only to prove that A=Bif co(A) w(B).

Let A= (“ 3) and B=(% g) and assume w(A)=w(B), i.e., (@a—d+
V' D)/2=(a'—d'+1'D/2¢'. By the assumption of Lemma, D=D’ and
v'D is irrational, hence c¢=c¢’' (#0), a—d=a’'—d’. On the other hand,
a+d=a'+d" and ad—bc=a'd’—b'¢’=+1. Therefore A=B.

According to this lemma, A is conjugate to B if and only if w(4)
is equivalent to w(B), that is, w(A)=P(w(B)) for some Pec GL(2, Z).

- PrOOF OF LEMMA 1. (1) If the eigenvalue of A are +1, A is con-
jugate to +( ) or (0 ) for some integer n. Let P= (0 ) and

Q=((1) ]1‘) then P(O 1>P‘1 (0 —"1%> and Q( )Q“1 (1 n_12). Hence,
A is conjugate to +( ) (n=0) or <(1) n) (n=0or1l). If A= +((1)"{'
(n=0) then » is the greatest common devisor of the elements of AFE,

and so, n is determined by the conjugate class of A. Similarly,
((1) __(1)> is not conjugate to (0 ), and ((1) _i) is conjugate to G_) (1))

= (1 0)=( )0 1)1 1) -

2 If detA 1 and trace A=0 or =+1, then w(A4) is not a real
number As is well known, for any &< C which is not real, there exists
a matrix Pe GL(2, Z) as follows (see, for example, p. 107 of [1]). Let
n=P(&), then Im >0, |p|=1 and —1/2<Ren<1/2, where if |7|=1 then
—1/2<Re7=<0. Hence by Lemma 4, A is conjugate to a matrix B such

that w(B) satisfies the above conditions for 7. Let B= (a 3) then
0(B)=(a—d-+1"'D)/2¢ where D= (trace B)'—4(det B)=—4 or —3. By the
above condition, ¢>0, (a—d)*+|D|=4c¢® and —¢<a—d<c. Hence 4c’<
¢*+|D|, and so, 8c*<|D|<4. Therefore, ¢c=1 and a—d=0 or —1. If
a+d=0 or 1, it follows that a=0 and B=<(1) —3) or ((1) _]1‘) And
therefore, if det A=1 and trace A=—1 then —A is conjugate to
((1) —i), as desired.

The above two lemmas are also proved in [4]. Lemma 3 for an

exceptional A can be shown by a direct calculation using Lemma 1. So,
we assume that A is a general matrix in the rest of this section. We
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assume Lemma 2-(2) which can be proved by an easy induction on .
Since w(A) is a real quadratic irrational number, it is expressed as

a continued cyclic fraction: w(A)=[l, ---, 1, ki, - -+, k,], where I; and

are positive integers except !/, (see Theorem 177, [8]). Then w(P'AP)=

P(w(A)) by Lemma 4, and P~ w(A))=[k, ---, k,] where P= (il %) .
i" (1)) Now, Lemma 3 follows from:

LEMMA 5. Let w=w(A)=[k, ---, k,] (» is the minimal period.) and
C=(k1 1\ . (Ic, 1)

10 10/

(i) If BA=AB (BecGL(2, Z)), then B=+C" for some integer q.

(ii) If trace A>0, A=C" for some positive integer p.

(iii) If trace A<0, A=—C” for some positive integer p.

ProOF. (i) Since BAB'=A, Blw)=w by Lemma 4. Note that
C(w)=w, and let cn=(£n gn). Applying Lemma 2-(2) for C*, it follows

n n

that when n — , p,/r,— ®, and also g¢,/s, — w since p,/r,—q./3,= +1/q,8,—
0, as ¢, and s, are monotone increasing. By the same way, since ‘C=
(lfn (1)) cen G“l (1)) and (‘C)"=<g" z"), we have r,,/s,,—»co(‘C)=[fc,, ceey, kE]>1.

Let B=(g' 3) and D=<: £)=BC". Then D(w)=w, and for large n,

z2/w=(1,/8,) X (¢(p./r,)+d)/(c(q./8,) +d)>1. Substituting D by — D if neces-
sary, we may assume that z>w>1. Thus, by Theorem 172 of [3], D=C*
for some positive integer k. Thus B=+C? for some gq.

(ii) It follows from (i) that A= +C* for some integer q. Let n=]|q]|.
Then trace (—C")=trace (—dC™)= —trace C*<0, where §=det C*, so that
A is neither conjugate to —C” nor to —4C~". On the other hand, 6C—"=

(—r ~p) where C=(2 9), hence (3¢~ =(a—p+V/ G=pr+ar)/(—2r)<

0. But w(A)=Fk,>0 so that A#6C~", hence A=C".
(iii) follows from (ii).

Finally, we prove Lemma 2. (1) follows from (2) and I.:emma 5.
(8) follows from Lemmas 4, 5 and the fact that w(C*)=w(C)=[k, ---, k,]
for any positive integer n. If A=+C" as above, A '=P!AP'=

+P(*C)"P~* where 6=det A and pz((l’ —(1)). Since ‘C— (llc,, (1)) ({cl (1))’
(4) follows.
§6. Examples.

Given M(A, B; m, n), by the arguments of §5, we can easily obtain
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an isomorphic form as in Theorem 3. And so, when we compare two
fibrations, we are led to the situation of Theorem 4. Hereafter, the
notations in Theorem 4 are assumed. Again by the arguments of §5,
we can decide whether A’ is conjugate to A (or A™, or +A™") or not,
and, if they are conjugate, we can obtain a matrix P satisfying the
conditions (1)-(i) or (2)-(i) of Theorem 4. So we consider the case when
A=A" and B=B' (==xE).

Then the set of matrices P satisfying the conditions (1)-(i) or (2)-®i)
forms a subgroup G of GL(2, Z). Applying Theorem 4 in the case when
P=F, we see that:

REMARK 1. If (?@?’)E<%’> mod {(A—E, B—E), then M is isomorphic
to M’'.
As an immediate corollary of this remark:

REMARK 2. M(A, —E; m, n) is isomorphic to M(A, —E; i, 7), where
(¢, )=(0,0), (0,1), (1,0) or (1,1).

On the other hand, if (’Z”)e (A—E, B—E> and PeG, then P(Tg’)e

(A—E, B—E). Hence we can regard (?Z’) as an element of Z*/(A—E,
B—FE)», and furthermore:

REMARK 3. The group G operates on Z*/(A—E, B—FE) as a group
of automorphisms.

For the group G, it is easy to see:

REMARK 4. If A=<(1) _(1)) or (1) (1)>, G is generated by —E, <(1) _g)
and <(1) (1)>

REMARK 5. Assume A#E. Let C be a matrix as in Lemma 3 (or
Lemma 5). If A is not conjugate to A~! or if det A=—1 and B=E,
then the group G is generated by —FE and C. Otherwise —F and C
generate a subgroup of G of index 2.

Furthermore, since A=C? (or —C?), C? (or C**) operates trivially on
Z'/{A—E, B—E>.

REMARK 6. Assume A is general, w(A)=[k, ---, k,] and A is conju-
gate to 0A™' (0=det A). Then by Lemma 4, for some | A1=1I<p) k.=k,
when 1+j=[+1 (mod p). Then P~'CP=e¢C~' where e=detC, and so,

par=oa”, whero P=(5 b) - (5 1) ).
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Finally, we give some examples.

EXAMPLE 1. Let M=M(A, E;m, n).

(i) If A:(‘l’ “{) Z(A—E)=0. Hence M is isomorphic to
M(A, E; 0, 0).

(i) 1f A=(] T0) ZUCA—E>=Z,. Hence M is isomorphic to
M(A, E; 0, 0) or M(A, E; 1, 0).

Gi) 1t A=(_Y _1), ZKA-Ey>=2Z. Hence M is isomorphic to
M(A, E; 0, 0) or M(A, E; =1, 0). Note that —Ec G and (—E)(%)):(“%).
So, M(A, E;1, 0) is isomorphic to M(A, E; —1, 0).

(iv) If A=E, G=GL(2, Z). Hence M is isomorphic to M(A, E;d, 0)
where d=g.c.d. (m, n).

(v) If A=—E, Z’KA—E>=Z®Z, and G=GL(2, Z). Hence M is
isomorphic to M(A, E; 0, 0) or M(A, E; 1, 0). :

Note that according to Proposition 1, in each of the above cases, the
bundle isomorphism types are characterized by H,M.

EXAMPLE 2. Let M= M(A, E; m, n), where A=(’f§ ig . Since

<A—E>=<(“f§ i§)>=<(g g) , we may assume that 0=m, n<6. Since
N /- /1 1\21\/11\ (43 B

det A=1 and 25/18=[1, 2,1, 1,2, 1], C—<1 o)(1 0)(1 0)_(3 2) and A=C"
Let P=<1 O) then PAP'=A"'. Therefore G={+C* +=C*P}. And so,
since C? acts identically on Z*/(A—FE), the number of the elements of
any orbit by the action of G is a devisor of 8.

In fact, there are 10 types of bundle isomorphism classes with the
form M(A, E; m, n), which corresponds to the following orbit of (?:) in

Z¥<CA—E>.

@ {(o)

@) ()}

) {(0) (3}

@ {(3)-()- Q) G}
) @) (o) ) (@)
) {©)- ) () @



[1]
[2]
[3]
[4]
[5]
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™ {(z) @) (1) &)}
® {(z). (1) () ()}
) {(1) () 6) ()}
0 {)-(3)> () 3)- @) &) (6) @
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