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Introduction

The fractal sets called a twindragon and a dragon are encountered
in a complex binary representation [7] and a paper folding curve [5],
respectively. We have constructed in a previous paper [1] dynamical
systems on the twindragon (Figure 1) and the tetradragon (Figure 2) tiled
by four dragons which are obtained as realized domains for a two state
Bernoulli shift and a some subshift with a finite coding from a Markov
subshift [8], respectively.

We propose in this paper a new construction of a dragon different
from the paper folding process and consider a dynamical system on a
domain, tiled by four dragons, which are not the tetradragon. We call
this domain a cross dragon. Moreover surprisingly we can show in Sec-
tion 4 that this cross dragon system is actually a dual system [1] of a
very simple group endomorphism.

Indeed the cross dragon system is obtained as a realization of a fol-
lowing Markov subshift. Let M=(M;,), 1=j, k<4, be a matrix such that

01 1 0
0 0 1 1
M_1001
110 0

We consider M as a structure matrix for a state space I'={0, i, —1+4,
—1} by a correspondence t:{l,2, 8,4}—I" such that z[1]=0, 7[2]=71,
7[8]=—1+4 and z[4]=—1, that is, let V be a set of infinite sequences
generated by the structure matrix M,

V={("y Vo ++*); My, ;;,,=1, v;eI for all je N},
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and o a shift on V. Then the system (V, ¢) is a Markov subshift. Define
a realization map @:V—YCC such that

B: (Yyy Yoy = %2 Yy =0 0) — ki‘, v (14+4)~*
=1

for each (7,, 7., +++) €V, and let Y; be the set {z€ Y ={®(7,, 7y, -+ )} ",=7}
for YeI'. Then we can see in Section 2 that each set Y, is the dragon
whose construction is different from a paper folding process and the set
Y is tiled by four dragons {Y;}, in spite of that Y is not the tetradragon.
This is why we call Y a cross dragon (Figure 3). Also we can see in
Section 3 that the cross dragon system (Y, T') can be defined as a reali-
zation of (V, o) such that

Tz=Q1+1)2z—[1+12)z]; for zeY,

where [w]y="7 if weY+ (YUY for M yn=M;m=1.

In Section 4 we will see in Theorem (4.1) that this cross dragon
system (Y, T) is actually a dual system [1] of a group endomorphism T,
on the torus T* such that

) ) s

We remark that by Theorem (3.3) the cross dragon system (Y, T') is iso-
morphic to a simple system on the torus such that

r)=(a 2l () v

§1. Properties of twindragon and dragon.

We summarize the properties of a twindragon and a drangon obtained
in the previous paper [1]. Recall notations by Dekking [3] [4]. Let S be
a finite set of symbols, S* be the free semigroup generated from S by
the equivalence relation ~, which is defined as W~V iff W and V deter-
mine the same word after cancellation, that is so-called reduced word.
And let 6: S*—S* be a semigroup endmorphism. Let f:S*—C be a
homeomorphism which satisfies

SVW)=fV)+fW), [V H==AV)

for all words V, W eS*. Define a map K:S*— %7(C), the nonempty
compact subsets of C, which satisfies '
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K[VW]=K[V]UEK[W]+fV))
for all reduced words V, W eS*, by
K[s]={tf(s); 0=t=<1} for seS.

This makes K][s, - s,] the polygonal line with vertices at 0, f(s,), f(s,)+

f(sz), MR (sl)+ °e +f(sm)'
Let S={a, b, ¢, d} and the endomorphism 4, be

0,.a —> ab, b—— ¢cb, c— cd, d —> ad ,
and the homomorphism f be
fla)=1=—f), [fO)=—i=—fd).

Define the n-step twindragon D, and n-step dragon H, (or paperfolding
dragon [5]) [1] [2] [3] [4] by

1.1) D,=1—1)"K[07(abed)]
and
1.2) ' H,=(1—1%)""K[6z(ab)] .

Notice that the n-step twindragon is tiled with two n-step dragon (Figure
1(b)), that is,

(1.3) D,=H,U(—H,+1—1) .

It is proved in [3] [4] that D, and H, converge to limit sets D, and H;
respectively as n— o in the Hausdorff metric d(:, -) where

d(A, B)=sup{sup inf |x—y|, sup inf |[x—y|} .
€ Ad yeB yeB zec A

The sets D, and H, are called the twindragon and the dragon, respectively.
Now let sets Xz, Xz, and X, _, be

XB={k§, a,(1—i)*: a, € {0, —i} for all keN} ,

=1

XB,oz{ki a,(1—i)* a,=0, a, € {0, —i} for all kgz} ,
=1

X, ={3 al— ™ a=—i, e, e {0, —4} for all kz2} .

Then followings were proved in [1]; X, is similar to the twindragon D,,
that is,
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1.4) Xg=01—2)™D, .

X; is tiled by X;, and X, _, which are congruent each other and similar
to X, (Figure 1(a)), that is,

1.5) Xp=XpoUXp_, and NXp,NX;_,)=0,

where )\ is the Lebesgue measure on the plane. This fact indicates that

i i+l

FiGURE 1(a). Twindragon Xz. Xp is similar to D,, the limit set of
twindragon curve (1.1), Xzp=Q1—i)"'D,. Xz is tiled by twin-
dragons which  are a meshed twin dragon Xz, and a dark
twindragon Xj5,—;, congruent to each other and similar to Xp,
namely Xp=Xpg,oUXp,-¢.

FiGure 1(b). Twindragon Xz. X is also tiled by two dragons
which are a meshed dragon (1—i)"'H; and a dark dragon
—(@1—13)*H;+1, where H; is the limit set of dragon curve (1.2),
namely Xp=Q1—3)'H,U(—(1—¢)1Hz+1).
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FiGURE 1(c). The plane is tiled by twindragons {Xz+m-+in; m+
im € Z(1)}. This figure indicates XU (Xz+1), where each twin-
dragon is tiled by two dragons. Notice that the cross dragon
Y in Section 2 is included, namely Y_,U Y,=(1—%)"'H, (meshed
dragon with end points 0 and 1) and Y;UY_,.,=—Q—4)"1H;+
1+4 (dark dragon with end points 1+4¢ and 4) (cf. Figure 3).

twindragon is a selfsimilar fractal set of order 2. Finally the whole plane
is tiled with twindragons (cf. Figure 1(a)(c)), that is,

XB(m+in) =C,

m+ine Z (1)

(1.6) and
M U aXB(m+in))=O ’
m+in

where Xppiim=Xsz+m+in and A is a boundary of a set A.

Next recall W™, which is a set of the revolving sequences (5,, « - -, 8,)
[1] [6]. We call a sequence (5, ---,d,), §,€{0,1,4, —1, —i} for 1<j<m,
a revolving if nonzero digits repeat periodically following pattern from
left to right,

> 1 » —1 > —1 X

L 4

-
v

P

v

L]

.

.

Then W™ is decomposed as following;
W(’n)= U W('n.)
£€{0,1,2,3} ¢ ’
and
Ws(") = W((:o) U W((::z—i)E) ’

where W™ means a set of the revolving sequences whose first nonzero
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digit is (—1%)* and W, a subset of W whose first digit is é (refer to
[1] for more precise definitions). Put

Wew=T® and Wei=Wa, ,
where — means to take a complex conjugate for each digit of (9, -, 9,).
Let sets X", and X} be
X ={500+0% 0, - 00 e W],
and
Xep={Zora-i*@r, - one wag} .
=1

X, X™ X*™ and X**™ are defined in a similar way. Then followings
were proved in [1]; the sets of points {X!}’} are congruent to each other
and similar to a set of folding points of (n—38)-step dragon H,_; to
express more precisely, for n=3 and €€{0, 1, 2, 3}

a.7m e 71— X ={folding points of H, ;}.

Furthermore {X*™} are similar to a set of folding points of (n—2)-step
dragon H,_, and

1.8) e~ i2(1—1): X *™ ={folding points of H,_,} .

Taking n— oo, the set X*™ and XZ*{' converge to limit sets X.* and
X¢, in the Hausdorff metric, respectively, and so X* is tiled by sets of

FIGURE 2(a). Tetradragon X*. X* is tiled by four dragons {X;
e={0,1, 2, 3}}, namely X*=¢***/?(1—i)"2H; and X*=U X*.
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FiGURE 2(b). Dragon Xj. X;* is tiled by two dragons which are
meshed dragon X%, and dark dragon XJ%.;,. Notice that the
dragon X¢* coincides with Y-;, a part of the cross dragon Y
in Section 2 (Figure 3).

dragons {X*} (Figure 2(a)) and each X* is also tiled by dragons X, and
Xy (Figure 2(b)), that is,
1.9) X*= (U }X;" and MX*NXJF) for exé,
e€{0,1,2,3
and
Xr=X&nUX&e and
7\:(AX(::,O) U X(’:,ie))=0 .

This fact indicates that the dragons X* are also selfsimilar fractal sets of
order 2. We call the set X* a tetradragon. Finally the Lebesgue measure
of each X¢, is

(1.11) MXEn)=1/8 .

The statements for {X, ,} are obtained by taking the complex conjugate.

By the way another approach for the selfsimilar fractal set K is
proposed by Hutchinson [6] using a set of contraction maps. A method
of constructing such set K is shown in the following theorem, '

THEOREM 1.1 (Hutchinson [6]). (i) Let &£ ={S,, -+, Sy_.} be a finite
set of contraction maps on a complete metric space. Then there exists
a unique closed bounded set K such that K= U} S;(K).

(ii) For arbitrary set A let FL(A)=UF:S;(A) and F?(A)=
F(F*(A)), them F*(A)—K in the Hausdorff metric for -closed
bounded A.

(1.10)
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We call the above set K a $“-invariant set.
For ¥ ={S,, -+, Sy_,} let &"(z,) be

(1.12) LMz)= U i Sjn ° Sin—xo v °S:'1(z°) .

(150

where (3, *++, 5,) € [12-.{0, -+, N—1} and z,€C. Then a desired set K
can be obtained by taking n— « for (1.12).

Now we put contraction maps as following; for e €{0, 1, 2, 3}

(1.18) T(2)=(1—1i)z and T(2)=1—i)(z—1),
(1.14) G@=01—%)""2 and Gr()=Q1—3)(iz+13),
(1.15) Go(D)=(1+9)"2 and Gy.()=1+3)(—iz+(—9%)") .

PropoOSITION 1.2. For (3, ***, J.) € II:-, {0, 1}

(i) Z2"0)=X5", T(Z"M)=X5", and T(&Z"0)=X§1P, where
LM2)= Ui Tip0 v 000 Ti(2), and {T,, T\}-invariant set coincides with
X3z, that 1s,

Xp=T(Xp)UTy(X5), MTo(Xs)NTy(X)=0.

i) L"O0)=Xx", Gr(L"0)=XxH*, and G (L 0)=Xiw"
where L™2)= Ug,,....im Gh.c0 *+ ° G} (2), and {G,, GI.}-invariant set coin-
cides with X.*, that 1s,

XX=GF(XNUG(XY), MGIX)NGE(X)=0.
The similar statements for G,. and G,. also hold.
PROOF. It is verified from the definitions of the contraction maps. []

To summarize results obtained in this section: The twindragon is
regarded as the limit set of nm-step twindragon curve D, and also as the
complex binary expansion X; and as well as {T,, T }-invariant set. The
twindragon is also obtained as an interior of a limit of a closed curve
K,=1—1%)"K[6"(aba"'b"")], where 6#(a)=ab and 6(b)=ba~* for S={a, b},
fla)=1 and f(b)=—1 [1] [8]. Also a dragon is constructed as the limit
set of n-step paper folding dragon curve H, and as the revolving expan-
sion X* and as {G{,, G{.}-invariant set.

We give another construction of the dragon in next section.

§2. Biased revolving sequences and cross dragon.

In this section we construct the dragon by a new procedure. Let
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M be the structure matrix and V the set of one sided infinite seuences
generated by M and o a shift operator on V. We call V a set of biased
revolving sequences. Then (V, ¢) is a subshift of finite type, namely V
is a closed subset of [[r,I” and shift invariant ¢V =V. Notice that
nonzero entries of the structure matrix can be written as M. (+1) moa ] =
M ctiorn moan=1 for 1<k=<4. We denote these two admissible states
which follow v=<7[k] with Y[1]=7[(k+1) mod 4] and Y[2]=7[(k+2) mod 4].
Denote a set of all finite biased revolving sequences with length n by
V™, Let V™ be

2.1 Vin={("y c+* Y €V™; v,=7}.
PROPERTY 2.1.
(i)
V(n) — U V(n)
ref{0,t,—1+1%,—1} T ’
(ii)
VP =V UV,
where ¢ is defined by (7, <+, V)=V *++, 7,) for (¥, +++, 7, €V and
Mr,r[ﬂ:Mr,r[z]:l‘
(iii)

V4=V, and —VO+(=1+)=V@,
where aV™ +b={(av,+b, ++-, av,+b)} for V™ ={(v,, --+, 7))}

ProoF. (i) and (ii) are obvious. In order to prove (iii), it is enough
to notice that symbols 0, 7, —1+4+% and —1, which can be considered as
points on the plane, are obtained from a symbol by rotating by angle
wj/2, 7=1, 2, 8, around (—1+1%)/2. Indeed, for example,

eV —(—1+9)/2}+ (—1+9/2=V",

and
e VW —(—1+19)/2}+ (—1+1)/2=V T}, . ]
We realize a biased revolving sequence (v, --:,7,) to a point
(Y, +++,7,) of C by the realization map @ defined in the Introduction
(2.2) P(Ty + oy V)= M@+

Corresponding to the sets of sequence V™ and V™, let sets of points
Y™ and Y™ be
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Y(n)={p(v7” coo, '7n); (Vg oo, '7") (= V(n)} , and

2.3
( ) Y’Sn)={p(’71’ Tt 'Yn); (71’ AR 714) € Vr(“)} .

By Property 2.1 we obtain:

PROPOSITION 2.2.
(i)
Y(n)= U Y;n) ,

7e{0,¢,-1+4,-1}
(ii)
A+ Y —=r=YEG U Y 5" for n=2,

where aA+b={ax+b; x € A} for a set A,
(iii)

YRS A+ =Y and — VP43 (- 1)+ =T,

that is, Y3} and Y3 are obtained by rotating Y™ by angle n/2 and =,
respectively, around >3, (—1+12)/2(1+72)7*.

LEMMA 28. Y =Q+ )Y +v+ 30l +)MUu@ +49)7 x
{— Y4y + 3500 (—1+9)(1+9) 78

PrOOF. From Property 3.1
Vr(n) = (7’ O’ Tt O)+{(09 r([nll—l)) U (0’ T([';Tn)}

n—1

2(7; 07 R O)+{(Ov iVT(n—l)_'_,i) U (0! _V;n—l)+(_1+i))} ’
————

n—1

where (0, V*)={0, v, +++, V,_)}eV™ for V*={(v,, -+, 7._)}. By the
relation above we obtain the result. O

This lemma shows that each set Y™ is a recurrent set of order 2,
namely the n-step set Y™ is obtained from two (n—1)-step sets Y, *%
for each 7.

It is verified by the definition of Y that

(n) (n+1) 1 "
2.4) as, Y =(—=)
in the Hausdorff metric. Then there exist limit sets Y and Y, such that

Y™ and Y™ converge to Y and Y;, respectively, in the Hausdorff metric.
Taking n— c in Proposition 2.2 and Lemma 2.3, we obtain,
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PROPOSITION 2.4. Let Y={332,7V.A+2)7% (Y Vs +++) €V} and Y,=
S, Y@ +9)7% (Y Ve )€V, Then sets Y and Y,, v eI, satisfy fol-
lowing properties:

(i) Y= U Y,,
7e{0,i,~1+1%,—1}

(ii) A+2)Y,—7= Yr[ﬂU Yr[z] ’

(ili) ’LYT+1= YT[1] and — Yr+1+’b= Y7[2] ’

that is, sets {Y;} are congruent to each other and obtained by rotating
some Y;, by angles wk/2, k=1, 2, 8, around (1+1)/2.
(iv)
Y, =A+9)@Y+7y+1) U@+ (— Yr+7+1+19) .
Let contraction maps F,, and F),,; on the plane be

F,(2)=1+%9)'(tz+7v+1) and

(2.5) . :
F =0+ (—2z+7+1+1) .

Then from Proposition 2.4 (iv) we can say that the limit sets {Y,} are
{F,,, F,}-invariant sets satisfying relations

(2.6) Y. =F,,Y;)UF,(Y;) for each 7€TI.

THEOREM 2.5. Let sets Y,, v€{0, 1, —1+14, —1} satisfy the relation
(2.6) and Y= Ureio,6,~144,—1 ¥Yr- Then

(i) each set Y, is a dragon with NY;)=1/4 and end point besides
the common (1+1)/2 418 0 for Y_,, 1 for Y, 1+1 for Y, i for Y_,...

(i) the set Y 1s tiled by {Y7}, that s,

Y= U Y, and MNY;NYy.)=0 for v

7€{0,¢,—1+4,—1}

(see Figure 3).

ProoF. (i) Notice that the contraction maps F; and F, ; for v=—1
coincide with G¥, and G}, for ¢é=0 in Section 1, namely

F,_2)=G(2) and F,_(2)=G(z) .
As discussed in Section 1, the set Y_, satisfying
Y—1=Fo,—1(Y—1) U F1,-1(Y—1) ’

is a dragon (1—4%)*H, with MY_)=1/4 and end points are 0 and (1+17)/2
(Figure 2 (b)), and
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(*) X(FO,—I(Y—I) N Fx,—x(Y—1)) =0.

Then from Proposition 2.4 (iii) we obtain ().

(ii) A set Y,UY, is tiled by Y, and Y, owing to (+) and Proposition
2.4 (iii). Using Proposition 2.4 (iii), it is shown that each set Y;U Y;, is
tiled by Y; and Y. Proposition 2.4 (iii) also indicates that the set
Y_,UY, also forms a dragon (1—4)"*H; with end points 0 and 1 since
similar condition holds for X*=X*,UX¢ .. Moreover by (1.3), (1.4) and
(1.6) we can see that the twindragon X; has anoter tiling form (Figure
1 (b)), that is,

Xp=Q1—9)"H;U(—1—-9)""H,;+1),
and
MXzN(Xp+1)=0.

Thus we obtain the following relation,
MA=)TH,N{—A—9)""H;+1+1})=0.
Since 1—9)"'H,=Y_,UY,,
MELUY)NTU Y _110)=0,

that is evident from Proposition 2.4 (iii), which was to be demonstrated
(cf. Figure 1 (c) and Figure 3). O

It is verified that Y_,=X*, Y,=X*+1, Y,=X*+14+4 and Y_,,.,=
X*+1. We call the set Y a cross dragon (Figure 3).

S1+i sifeeg 2+i

FIGURE 8. Cross dragon Y. Y is tiled by four dragons {Y;; 7=
{0, ¢, ~1+44, —1}} in a different manner from tetradragon X*
(Figure 2). Notice that Yc(XzU Xps+1)) (Figure 1(c)).
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§3. Dynamical system on cross dragon.

We can define a dynamical system on the cross dragon. Since the
dynamical system is constructed in the same manner as the previous one
in Section 6 of [1], we state propositions without proof.

We consider the map T for each point ze Y

(8.1) T:2— (1+1i)z for zeY.

Then we obtain by Proposition 2.4 (ii),
TY,=7+YyaU Yoa) -

We prepare following sets U, and U, for each veT};

U=Y,UY_., U=i+@_,UY),
(3.2) U_,..=—1+i+_UYy), U,=—1+(,UuY), and
Ur= ﬁr—')' .

We call ﬁr a neighbourhood of integer 7.
Define a map T for z€ Y\N;er dY; by

3.3) Tz=1+vz—[A+7)z]c
where [w];=7 if we U,. Then the map T satisfies
(3.4) TY,=Y;yU Yy, for each vel',

that is, the partition {Y;; veI'} of Y is a Markov partition for the map
T. Let v.(2) be

@3.5) 7.(2)=[A+9)T* 2], for k=1.
Then we have

THEOREM 3.1. Let Y be the cross dragon and T be the cross dragon
map (3.83). Then

(i) the transformation (Y, T) induces an expansion
2= v,(2)1+0)* for ze Y\U T~* N aYy),
k=1 k=0 rel’
(ii) the Lebesgue measure \ s inmvariant with respect to (Y, T),

(iii) let ¢ be a Markov invariant measure for the system (V, o) with
the transition probability P and stationary probability II such that
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0 1/2 1/2 0

o 0o 12 172

12 0o o 12)’
12 1/2 0 0

II=(1/4,1/4, 1/4, 1/4) ,

then, the dynamical system (Y, T, \) is isomorphic to (V, o, tr) and con-
sequently (Y, T, \) 18 ergodic.

Identifying the complex plane with R? we can show that the set Y
can be regarded as a covering space of the torus T? because of the tiling
properties of twindragon (1.6) and the set {Y}.

1 -1
L= ,
.
which imduces an expanding endomorphism T, on the torus T®. Then
there exists a Markov partition {Yy; Y€ I'} on the torus for T, T*— T?,

so that the dynamical system (T?, T, ) with this partition i3 130morphic
to the one sided subshift of finite type (V, o, p).

COROLLARY 3.2. Let

This corollary says that there exists a “fractal” Markov partition with
respect to the expanding endomorphism T, (For general expanding endo-
morphisms T, L=(g 3), see Bedford [9]).

Moreover we introduce a simple system (Y, T'*, A" as follows: let
Y'={zx+1y; 0=z, y<1} and a map T' be

(3.6) T'z2=(1—0z+(—1+9)—[A—2)2z+(—1+73)] for zeXY!',

where [w]=[Re(w)]+i[Im(w)] for z € C, and the sequence of integer {£,(2);
ke N} be

3.7 &@)=[A—)T*™ '2+(—1+1)] for each zeY'.

Then we can verify that the transformation (Y', T') induces a expansion
(8.8) z=§; (@) —(—1+9)A—i)* for a.e. zeY?,
=1

and has the Lebesgue measure as an invariant measure \' and also the
partition {Y}; veI'}, where Y ={zeY"; &(z)=7}, is a Markov partition,
that is,

3.9 TTY; = Y;[ﬂ U Y .



DRAGON AND DYNAMICAL SYSTEM 501

Therefore T''-admissible sequences {(&,(z), &(2), +++)} which have the same
structure of the sequences generated by the cross dragon system (Y, T).
Thus we obtain: :

THEOREM 3.3. The dynamical systems (Y, T, \) and (Y, T*, \") are
wsomorphic to each other as an endomorphism, that is there exists measure
preserving invertible map T defined on Y such that

T'oU=ToT.

§4. Dual map and natural extension of cross dragon system.

We show that the cross dragon system (Y, T, A) is nothing but the
dual map [1] of a very simple system.
Let Y*={x+1y; 0=z, y<1} and a map T* be

(4.1) T*2=A4+1)z—[(1+%)2z] for zeY™.

Hence a set {[(1+4)2]; z€ Y*} coincides with I'={0, 7, —1+14, —1}. We
can easily verify that the transformation (Y™*, T*) is well defined on Y™*
and has the Lebesgue measure A* on Y* as an invariant measure and
also induces a expansion for a.e. z€ Y™ such that

(4.2) 2= g D@)(L+9)7*

where
() =[A+)T* 2] .
Let a set Y;* be

4.3) Y,,*={§l D@1 +i)* ze Y* and vl(z)=77} .

Then we can see that the sets {Y,*; neI'} are four triangles with vertices
0,1 for Y*,1,1+4% for Y* 1+4,¢ for Y*,.,%,0 for Y* and (1+7)/2 in
common, and the domain Y* is tiled by these triangles, that is,

(4.4) Y*= U  Y¥ and aM¥FNYE)=0 for =7 .

n€e{0,¢,~1+4,—1}
Let M* be a structure matrix such that

1 if T*YI:NYha+9

M.* —
o i T*YZaNYra=0 .



502 MASAHIRO MIZUTANI AND SHUNJI ITO

Let V* and V* be

(4.5) V*={y 0 +++); ;€I and M}, =1 for all j=1}
(4.6) Vi ={0 7 ++-) eV* m=17} .

It is easily verified that every element of V* has the same admissibility
as the sequence (9,(2), 7,(2), :++) induced by (Y*, T*), Notice that

tM=M* ,
and so for any (9, --, 7.)€V*™ a sequence (7,, *+-,7), which is a

backward sequen¢e of it, is an element of V™. In this sense we call
(V*, ¢*) is a dual|symbolic system [1] for (V, o). Thus we obtain,

THEOREM 4.1.\ The cross dragon system (Y, T,\) i8 a dual system
for the system (YT\VYT*, \*).

The natural extension [1] of the symbolic system (V, o) is (V, &) such
that

4.7) fl‘: {Cooey Yoy Y Y
or all ke Z},

» Yis Toy *° '); k€ I' and Mrk'7k+1 =J1,)

and & is a shift operator on V.

LEMMA 4.2. The set V is decomposed as follows;
I7= U (Vrz* U Vrﬁ) * Vr
re{o,,—1+¢,—1}
= ) Vr* * (Vrm U Vr[z]) ’
re{0,t,—1+%,—1}
where for (M, Ny <+)EV* and (Y4, Yy <+ )EV, (G Moy =) (V1y Yy =-°)=
(' c oy Ny 7]1’ Vs Yoy ° ') and Mr),)’:Mr)',T:Mr,T[ﬂ:MT,T[2]=1'

The proof is easily derived from the admissibilities of ¥V and V'*.

THEOREM 4.3. Let a set ¥ be a subset of such that

Y=U uYrxY,

rel’ 7

=UU Y;XY;

TSTX rel’ &
where Ne{y'; My ,=1} and s€{d"; My, =1} fér veI', and a map T be

for (w,2)eY}rx Y,
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T(w, 2)=(A+9)(w+7), Tz) .

Then the system (Y, T, X) is a natural extension of the cross dragon
system (Y, T, \), where N is the Lebesgue measure on Y.

Proor. The decompositions of V in Lemma 4.2 reduce to the decom-
positions of their realization ¥ with a realization map @ for (7]1, /R P
(Y1 Vo +++) € V such that

6: (771’ Moy ') '(’711 Yoy o ') R (12‘1 77k(1+?:)—k’ g 'Yj(l'f‘?:)_j) .

We can see by Property 2.1 and Lemma 4.2 that if @eVy)-V, then & is
translated by & bijectively to

g e Vr* . (VT[I] U VT[z]) .
The realization (V, &) is nothing but
T(w, 2)=(A+9) " w+7), Tz) for (w,2)eY*xY,.

Therefore the map T is well defined and bijection. It is easily verified
that the Lebesgue measure X is invariant with respect to (¥, 7). O

CORORALLY 4.4. The dynamical system (¥, T, X) is a natural exten-
ston of (Y*, T* \*).

We can say by Corollary 4.4 that the cross dragon system (Y, T, ) is
the dual system of the simple system (Y*, T*, A%).

We point out here that the dynamical system (Y', T, A") in Section
3 is also the dual system for (Y'*, T* \*) which has a simple domain in
contrast with (Y, T, \).
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