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Introduction

The purpose of this paper is to show that Maslov’s quantization
condition determines the eigenvalues of the Schrodinger operator of the
hydrogen atom, the angular momentum operator and the Lenz operator,
and also determines multiplicities of the eigenspaces for the hydrogen
atom. Namely, we concern the eigenvalue problem of the following
Schrodinger operator on R®:

(1) ﬁ<x _}:_ aax >=»— };2 4= [;1;,-| ’ lxl:(él ”?‘y/z’

where h is a positive parameter and 4 is the 3-dimensional Laplacian.

Maslov [7], [8] introduces his index and the quantization condition for
Lagrangian submanifolds and studies the “asymptotic solutions” of the
eigenvalue problems in quantum mechanics (c¢f. [4]). On the contrary,
wm our case, we get exact values. Thus, as far as these systems are
concerned, we need not to consider the operator theory to obtain the
exact quantum mechanical conclusion. What we need is only classical
mechanics, invariant Lagrangian submanifolds and Maslov’s quantization
conditions.

Associated with (1), we consider the following commuting system of
operators {H(x, (k/3)(3/32)), 1,(x, (h/3)(3/5%)), &(x, (h/i)(3/0x))}, where [,(x, (h/7)
(6/x)) and é(x, (h/i)(d/ox)) are the angular momentum operator and the
Lenz operator, respectively, defined by

(2) » z\1(97’ 'ZL ‘%>=xzﬁa'—xsﬁz ’
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A1<33; —h‘ i)=xzﬁ1ﬁz+wsﬁ1ﬁs—x1(ﬁ§+ﬁ§)+ﬁ1+—%— ’
i 0% |2z
ﬁk—_—i.—'a , k=1,2,3.
1 0%,

We investigate eigenfunctions of H, which are also eigenfunctions of

1,, é. Denote the corresponding Hamiltonian functions of H, I, and &,
by

1
||
l(x; p) =2, 05— 23D

H(z; p)=%lplz—

e.(x; p)=D,{x, P)—2, |’ _I%I_ ,

where <{z, p)>=3i_, x.D,.
Let us denote the level set of (H, 1, e,) by
L(E, 1,, &)={(x; p) € T*R\{0})| H(x; p)= — E(E>0) ,
L(x; p)=1,, e,(x; p)=¢€} .
REMARK. Since our concern is the bound states, we have only to

consider the negative parameter — E(E£>0).
As a main result, we have the following:

THEOREM 1. L(E, 1, &,) satifies Maslov’s quantization condition if
and only if

where n, n,, n,, M€ Z, n, n,=0, and n=n,+n,+|m|+1.

ANoi:ations are as above. Comparing above values with the eigenvalues
of H, l,, ¢, we get the following (cf. [5], p. 119, 131).

THEOREM 2. (i) FE,, l,. and €,,,. are just equal to eigenvalues
of H, I, and &, respectively.



QUANTIZATION CONDITIONS 417

(ii) Moreover, for each E,(=1/2n’h?), the number of elements of
{L(E,, z-l,m’ El,nl,nz)ln=n1+n2+lm|+1’ Ny, N, =0}
18 equal to the multiplicity of the eigemspace of H eorresponding to E.,.

Using another commuting system, Leray [6] showed that the quanti-
zation condition gives exactly eigenvalues for the hydrogen atom with
Zeeman effect. To be precise, he considered the following operator on R°.

£ h o (.. h 0 > h o

(3) H1<w, —i-%)—H@, " —a;)+sl1<x, " —a;) .

¢ € R, where H and il are defined by (1) and (2), respectively. Associated
with (8), he considered the commuting system {ﬁl, 7, S, A?,}, where
(T, 1. T =2 A(R/7)(3/6%), and corresponding Hamiltonian functions H,=H+
ely, b, 3., 1, where (I, l,, ;)= Ap. He constructed invariant Lagrangian
submanifolds by the level set of H,, I, and >}i_,li. By means of the
quantization condition of these Lagrangian submanifolds, he obtained all
eigenvalues of H, and 7, (see Th. 4.2., Chap. III, §1, [6]).

Lastly, we remark that Leray [6] has given several examples of
operators (i.e., Schrodinger, Klein-Gordon, Dirac operators) whose eigen-
values are exactly determined by the above classical method. We may
expect a certain class of quantum mechanical models, of which the eigen-
value problems are exactly solved by the classical method.

Finally the author wishes to express his hearty thanks to Professor
H. Omori for his encouragement.

§1. Invariant Lagrangian submanifolds.

Let M be a symplectic manifold and L be a subset of M. Suppose
F,F, ..., F, are smooth functions on M. We call L an invariant
Lagrangian submanifold of (F.,, F,, ---, F},) if L satisfies the following
two conditions; (i) L is a Lagrangian submanifold of M, (ii) L is invariant
under Xy, k=1,2, ---, 1, that is, X (p)eT,L k=1,2, «++, ] for every
pe L, where X, is a Hamiltonian vector field of H,.

We set the Kepler manifold as

U={(x; p) € T*(R*{0}) | H(x; »)<0} .

Remark that L(E, 1, &) is contained in U.
In this section, we prove the following.

PRrROPOSITION 1.1. (a) For every point (x; p)e U,
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1 ) leu(x; p)|
gy ) = |li(x; p)l+1/—2fﬁx; =

(o) If ANV2E)>|T|+(elV'2E), then L(E, 1, &) is an invariant
Lagrangian submanifold of (H, 1, e,).

() If ANV2E)=|l,|+(eJV2E), then L(E, 1, &) is contained in
two dimensional submanifold (for 1,-€,#0), or one dimensional sub-
manifold (for 1,-&,=0), respectively.

First of all, we consider the following theorem. Let F,, F,, ---, F,
be smooth functions on 2n-dimensional symplectic manifold M. Suppose
they are in involution, that is, {F, F\}=0 (j,k=1,2, ---, n), where {, }
is the Poisson bracket induced by the symplectic form. We denote the
level set by

Mfz{xeMIFk(x)sz; k——_lr 2, .-, n} .

THEOREM A ([3], [1]). If » functions F, are independent on M,
i.e., 1-forms dF, are linearly independent at each point of M,, then M P
18 tnvariant Lagrangian submanifold of (F,, F,, +--, F,). Furthermore,
assume M, is compact, then it is diffeomorphic to n-torus.

Direct calculation yields the following.
LEMMA 1.2. H, [, and e, are in involution.

In view of theorem A and Lemma 1.2, we have to study the in-
dependency of H, I, and e¢,. Besides this, we also have to study the
possible values of H, I, and e, since there exists some relation among
them.

In what follows, we transfer the system to 7T*S* through the
Souriau’s symplectic diffeomorphism and we investigate the above on
T*S.

We prepare notations.

S*={y e R!||ly|’=9i+vi+vi+vi=1},
4
T*S"={(y; §eR'XR'|ye S, (y, 5>=§1yk&,=0} ,
T*S*= T*S*\(0-section) ,
C=T*S*, where ¢=(0,0,0,1),

co=k§“, &dy.| T*S* (canonical 1-form) .
=1
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We define the diffeomorphism (See [9].)

Wi T*S\C— U
by

(1.1) {”= — el -y +yE' —& cos L(y; &)+¥ sin{(y; &)},

§ sin {(y; &)+ cos {(y; &)
ll&]|(&, sin L(y; &) +y, cos L(y; &) —1)

where y=(y', y.), &=E, &), &=a/lel, k=1,2,8,4, and {(y;8 is the
function satisfying the equation

p:

1.2) = —E&,cos{+y,sinl,

Note that (1.2) has the unique solution {={(y; &) and {(y; &) is smooth on
T*S*\C and continuous on 7T*S°.

Through +, the system can be written as follows on T*Se.
ProroSITION 1.8 (ef. [9]).

() vo=w+d2]¢ll; &),

where 0=>3_, p,dx,.
Thus, + ts a symplectic diffeomorphism.

(b) v*(—1/CQH))=||¢|*,
ﬂ,b‘*l1=y2§3—y352 s
"l"*(el/(_zH)l/Z) =YYl -

We set 1¥(y; &) =¥ubs—¥sley [F*W; ©)=¥.6—Y&- In view of Proposition
1.3, we see the functions [&[%, I¥(y; &) and f*(y; &) are in involution.
For a=(a,, a,, a;), we denote the level set by

T(@={; & e T*S*|ll¢ll=a., L¥(¥; &) =an [ (¥; &) =as} .
Proposition 1.3 implies the following.
COROLLARY 1.4.
L(E, T, )=vy(T(@)\C) ,
where a=/(a,, a,, a;) satisfies
1 ~

T S -7 —_ &
1.3) al_l/fE’—' a;=1l, and a, T35
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Now, we study the possible values and the independency of ||¢|?,
l¥(y; & and f*(¥; &), so that we may get Proposition 1.1. Set

r={; & e T*S*| |||+ ¥) =8+ &, 9.6+ v.6,=0} .
Then, we get the following.

LEMMA 1.5.
(a) el Z [t (s &)+ f*w; &) for every (y; &) e T*S®.
(b) llell=L¥(y; O+ |f*(w; &) if and only iof (y;8&) el .

PrOOF. By direct calculation, we have

{lIellP(i+-v2) + (et + DY — 4 ||&|1* [y.8a— w8l
={||&]PWi+vD) — &+ DY +4||g](ma+v.8): .

Hence,

(1.4) I+ yd) + G+ D =218l lvaga— vt
and the equality holds if and only if (y;&)erl .

Note that ||2]|=|l¥(y; &)| and ||| =|f*(y; &)I, since
IIEIIE% (Yt —Yals)? -

An elementary computation yields

(1.5) (el =1A*(y; D=1l (y; &I
=g+ yD + (E+ D218l ly.gi— vl -
Due to (1.4) and (1.5), we get the desired results. O

LEMMA 1.6. If d||&|]?, dif(y; &) and df*(y; &) are linearly dependent
at (7; &), then (¥; &) is contained in I.

PROOF. We may assume Xz X, and X,, are linearly dependent
at (7;%), where X ;, Xi; and X, are Hamiltonian vector fields of |i¢|*,
l¥ and f*, respectively. Hence, there exists (a, 8, 7) such that (a, B, 7)+#
(0, 0, 0) and aX||5||2+/3XzI+'YXf;=0 s (*).

(*) can be written as follows.

(i) In the case a=0, we have

—7?7-4:() ’ —7§4=0 ’

_Bgs‘—"o ’ —Bgs:—o ’
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Bgz':o ’ ,8-52:0 ’
'Ygl:O ’ 7?1:'0 ’

where (8, 7)#(0, 0). If |8|=|7|, then we have 0="7i+¥})+ B @+ 72 =43,
and this contradicts (B, 7)#(0, 0). If |v|>|B3|, then we have 0="2(72+72) +
B W+ 7)) ="—p)¥i+¥y)+ B’ Thus, 7,=¥,=8=0+7, so that &=¢§=0
Hence, (7;&)e’. For |[B|>|7|, the same manner implies (7;&) eI

(i) In the case a#0. Set v=p/(2a), #=7/(2a). Then, (*) is written
as

& =v¥,, 7= -—”—E—H;E ,
&= 17, , 7= —ﬂ-g‘ﬂz-‘s :
Ev=—17, , _s:ﬂéﬁ“‘z—gz :
f=vlh Bt

Thus, 7,=0*|§]M7. and 7,=0Y|§|H7. We get (F:+7DH{1—0Y|§]H%}=0.
Hence, we have (i) #,=7,=0, or (ii) ||§||*=»?. If (i) holds, §,=&,=0. ' Thus
(7;8)eI'. If (ii) holds, then & +& =7+ 75 =I§|XZ:+72), and 7.&,+7.E =
v, ¥, —v¥.4,=0. Thus, (¥; E)GF

COROLLARY 1.7. Ifa,>l|a.+]asl, then T(a) is an invariant Lagrangian
Submanifold of (||&], l¥(y; &), f*(¥; &), which is diffeomorphic to 3-torus.

Proor. On T(a), |l&]|, I¥(y; & and f*(y;&) are independent. Thus,
theorem A gives the result. O

On the other hand, for the case a,=|a./+|as/, we have the following.
Set SSlz {(Yes Us; &2y &) € R*X R | i +Yi=|a0sl/a, &+&=ala,], u.&+
Y:&,=0} and

SS;3={(y1’ Y &1 &) ER* X R |y +Yi=|asl/ay, Ei+Ei=a,|as|, ¥.&+YL=0}.

We remark that SS; (k=1,2) is diffeomorphic to unit cosphere bundle
of S'(a,+#0), or the point (a,=0), respectively.

LEMMA 1.8. If a,=|a,+|as, then
T(a)=SS:, < SS;, .
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PrROOF. By means of Lemma 1.5 (b), T(a)cI'. Thus, we have
Wi+ yD=&+& 1.4+Y6=0, ¥.&—Yé=a,. We have

@i =&+ YES + Wb —¥) = Wi+ Y)(E+£) .
Hence, we get yi+yi=|asl/a,, &+&i=a,|as. On the other hand,
Vit yi=1—@i+yd)=la.l/a, ,
G+&=al—(El+&)=al—a,la]=a,la, ,
Yoo+ Yals= — W61+ ¥:6)=0 .
Thus, we get the desired result. [:]‘

On account of Corollary 1.7 and Lemma 1.8, we have the following.

PROPOSITION 1.9. (a) If a,>la,|+]|as, then T(a) i8 an invariant
Lagrangian submanifold of (||&l], ¥, fi*), which is diffeomorphic to 3-torus.

(b) If a,=|a,|+]|asl, then T(a) is contained in two dimensional sub-
manifold (for a,-a,#0), or in one dimensional submanifold (for a,-a,=0),
respectively.

Now, we shall prove Proposition 1.1. Proposition 1.3 (b) and Lemma
1.5 (a) show Proposition 1.1 (a). Owing to Corollary 1.4 and Lemma 1.6,
if ANV2E)>|T,|+(el/V2E), then H, l, and e, are independent on
L(E, T,,&). Thus, we get (b). If, AV 2E)=|1,|+(|&e.)/V'2E), then

"I"—I(L(E! l—v e,)CT(a) , a1=|a2l+|a3| .

Hence, Proposion 1.9 (b) gives (c).

§2. The Topology of L(E, 1,, €,) and action integrals.

In this section, we consider the following.
(i) We investigate the topology of T(a)\C, so that we know that
of L(E, 1, &) (cf. Corollary 1.4).

(ii) We compute action integrals S ¢ for the basis

ce H(L(E, 1, &,): Z)

explicitly.

We begin by introducing a global parametrization into 7T(a). Set
T*=(R/Z*3u=0, &, v), and a=(a, a, a;) where a,>|a,/+|a,|]. Remark
that T(a) is an invariant Lagrangian submanifold of (||&|% I¥, fi*) (cf.
Proposition 1.9).
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We define the mapping @,: T® — T*S® by
2.1) Po(u) = (y(u); &(u));

Y. (u)= ——;-M cos(2a7) +—;-N sin@ur) ,
yz(u)=—;-ﬂ cos 2(7\,+#+v)7r—-;—l\7 sin(2v7) ,
va(w)=—1f SIn2(v+-1-+ ) +2-N cos(2vm)
Y (u)= —%M sin(2\7) +—;—N cos(2ur) ,

&(u)= al{-—;— sin(2ax) +——N cos(2;m')}

&)= a,{ i sin 20, + g+ v)+ —1—JV cos(2wr)} ,
2 2
1 ~ 15
&u)=a {—2— cos 2+ p+v)T+ —N sin(2vr) }
1
&(u)= a,{ —5 M cos(2a\7) — —N sin(2ur) }
where
M={(a,+as)*—ai}"*/a, ,
N={(a,—a,)*—a3}"/a, ,
M={(a,+a,)*—a%}"?/a,
N = {(al —a,)’— ag}uz/ a .
PropPoOSITION 2.1 (a) @(T*=T(a) .

(b) @, 18 a diffeomorphism between T°* and T(a).

PROOF. We denote the one parameter transformation groups of X, 161129
X and Xf- by gi, gi and g¢¢, respectively. Since Xiensz X and Xy: are
commutlng, so are gi. Hence, g(t, t, t; p)=gtogirogt 8(10) 1nduces an
additive R® action on 7T™S° Set the point p,=(—MJ2, §i/2, N/2, N/2;
a.N/2, a,N/2, a./1/2, —a,M/2). Then, it is easily checked p,e T(a). Put
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Go(tss oy t) =gyt ta; D). Then, §.: R*— T(a) is onto. Iy={(®, 1€
R}|§.(t, t,, t) =D} (the pre-image of p,) is a discrete subgroup of R®.
Thus, §, induces a diffeomorphism g,; R*/I",— T(a).

On the other hand, §, can be written explicitly in the following
manner.

Set three matrices U,(t), U,t), Uy(t) as

U@®=

cos(2a,t)1, , (l/al)sin(Zalt)I4:|
| —a, sin2a;t)I, , cos(2a,t)l, ’
_ ~R2,8(t) ? O
U=, Rz,.,<t)} ’
_[RL®, O
Us(t) - _0 RlA(t)i‘ ’

where I, is a 4x4 identity matrix and

1 0
cost, —sint

R, ()= ]
2.(8) sint, cost
0 1

(rotation on y,, ¥; plane),

cost —sint

1
R, ()=
14(?) 0 1
sin ¢ cos t

(rotation on y,, ¥, plane).

We remark that U,(£), U,(t) and U,t) are phase flows of ||&]|*, I}¥(y; &) and
F¥(y; &), respectively. Thus, we have §.(t,, t,, t)= U,(t,) Us(t,) Us(t)Do. By
means of the above expressions, the direct computation gives that the
generators of I', are v,=(rn/2a, 7, ©), v,=(7/2a;,, ¥, —7), v,=(0, 2=, 0).
Hence, R*/I", is diffeomorphic to 3-torus and the diffeomorphism @' T*—
RYI, is given by T=iv,+pv,+vv, (mod I'y), where T=(t, ¢, t,) € R*/T,
u=0, f, v) e T*. Computing @,=g.p, we get (2.1). Thus, we obtain
Proposition 2.1. O

Using the global parametrization, we know the topology of T(a)\C,
where a=(a,, @, @), a;>|a.]+|as.
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LEMMA 2.2. (a) T(a) intersects C if only if a,=0.
(b) @:%(T(ay 0, as) NC)={(8/4, 0, )X T?).

PROOF. The intersection of T(a) and C is given by . (uw)=
—(1/2) M sin(@\7)+ (1/2)N cos(2ur)=1, Remark that M+N=2. Then,
y.(uw)=1 is equivalent to M+ N=2 and sin(@\7)= —1, cos2ur)=1, namely,
a,=0, x=38/4, pu=0. O
We denote @3'(T(a,, 0, a;) NC) by C,={(8/4, 0, v)}. We remark here [C/] is
a generator of H,(T% Z).

Thus, we have the following.

PROPOSITION 2.3. (@) T(a)\C is diffeomorphic to T° (for a,#0), or
T3\C, (for a,=0), respectively.

(b) Assume AV 2E)>|T|+(e|V2E). L(E, 1, &) is diffeomorphic
to T (for 1,#0), or T*\C, (for 1,=0), respectively.

Remark that T°\C,=(T%point) xS'. Then, it is easily ‘checked
(2.2) H,(T\Cy; Z)=H(T* Z) .
As a corollary of Proposition 2.8, we obtain the following.

COROLLARY 2.4. H(L(E, 1,,8); Z)=ZPZDZ.
Now, we compute action integrals S #. Set three closed curves ¢, (%),
c(t), ¢(t) in T® as

cia=t, p=—, v=0,

Do |-

e A=0, u=t, v=0,

Ca =0, pg=—, v=t,

Do -

0st=1.

Note ¢, k=1,2,3 are contained in T°C, Thus, [¢,] k=1,2,3 are
generators of both H,(T%C,: Z) and H,(T* Z) (see (2.2)). Put €,=+ P,
(k=1, 2, 3), where

ANV ZE)>|T.|+(&)/V'2E). Then, we get generators [¢,] € Hy(L(E, 1, &): Z),
k=1, 2, 3.
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ProroSITION 2.5.

PrOOF. On account of Proposition 1.3 (a),

S~0=S 0=S ,«p*o=§' w=§ Prw .
°k ¥Pack Paok Pack - Jog

Using (2.1), we have, for ¢,

1
S ¢:w=so¢:w1 é,(t)
°1
M=+M2__MN

=q,T S: > sin(2txw) — -Ml—vsm(Ztn-)]

= aln—‘}z—(M ' M) =n(a,+a,+ as)

=7 ———=t —==+1,) .

(5m +3+h)

For ¢,, ¢;, the same manner gives the results. |
§3. Maslov-indeces of L(E, 1, &,).

In this section, we assume

1
V2E

(cf. Propositions 1.1 and 1.9).
We denote the Maslov-form of L(E, I,, ¢) by m,. Our goal of this section
is to prove the following. ' ‘

>Illl+1/|62’1|? and a,>|a,|+ |a,|

PROPOSITION 3.1. {(my, &, )={mg, &,)=2, {(m,, &> =0.

First, we recall the definition of the Maslov-form briefly (cf. [2]).
Let A(n) be the Lagrangian Grassmannian manifold of T*R®, that i is, the
collection of Lagrangian subspaces. The unitary group U(n) acts on A(n)
transitively and A(n)=~ U(n)/O(n). Let A;,={(x, 0)} € A(n). Hence, for any
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) € A(n), there exists We U(n) such that A=W - \;,. Put Det*x=(det W)
Then, Det? is the mapping of A(n) to S'. Let M be a Lagrangian sub-
manifold in T*R". Then, T*M can be naturally identified with the
Lagrangian subspace by translating (q;0) to (0;0) in T*R". Thus, we
have the mapping 7: M— A(n). The Maslov-form of M is an element of
H'(M; Z) given by
— 2 k(1 dz

8.1) m=(Det?o7) (2m; : )

where z€C, |z|=1.

For Lagrangian submanifolds defined as level sets of functions, we
have the following. Let H,(x; p), H,(x; p), - -, H,(x; p) be smooth functions
on the domain D in T*R". Suppose they are in involution. We denote
their level set by

M;={(x; p) e D|Hy(x; p)=1i, k=1,2, --+, m}.
Assume M, be an invariant Lagrangian submanifold of (H,, H,, ---, H,).

PROPOSITION 3.2. The Maslov-form m of M, can be written as
m=1/r)d Arg det(H,+1H,),

where H,,=(Zif‘), H,,=<‘?_£{)IJ > , 5 k=1,2, 4, m.

PROOF. Suppose q=(x; p) € M, can be parametrized by x-variables.
Let S(x) be the generating function of M, near g. Then, we have
H.(x; S, (2)=f,, k=1,2, -++, n and 7(q)={(X; S,.(&) - X)| X € R"}. Therefore,

E—1iS,,(x)
Det?o =det =———22x/  (ef. [2] Cor. 3.4.3) .
(Det?oz)(g)=de Eris. () (ef. [2] Cor )
On the other hand, S,,(x)= —H,-H;'. Hence, substituting these into (3.1),
we get the desired form. Regarding other parametrizations, the above
method, combined with the Legendre transformation, gives the result. [7]

In what follows, we will compute Maslov-indeces for L(E, 7,, &). To
this end, we introduce another global parametrization into T(a), which
is convenient to compute Maslov-indeces.

Consider the function @*¢ on 7% In view of (1.2) and (2.1), it is
easily checked @*{ satisfies the following equation:

For any (\, tt) € R?,

(3.2) (f:-;—Mcos(ZMz—!—f)+%Nsin(2p7r+f) .
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Remark that (3.2) has the unique solution £=¢*;. We denote this by

.\, ). Note that {,(\, ) is smooth in the case a,#0, and continuous
in the case a,=0.
Define the map £,: R®®——— R® by

Oy 2, ) (8, 8, V)
800 £ V) =Mt —Lol0 )
2r

(3.3) .
8:(\, Y, v)=p+ o Sy 1)

vy=y.

LEMMA 3.3. For every (s, s, € R*, the following equation has the
unique solution (\, ) € R*.

sl=x+%¢’a(x, ),

(E) 1
S;—= M +-2—Ca(7\u 0 .

T

PROOF. Set

0a(81, sz)=%M cos(2slrr)+%N sin(2s,7) ,

and A=8,—(1/27)p,(s,, 8;), Z=8,—(1/27)p.(3,, 8;). Hence, it holds that

(5 s2>=§M COS(2NT + 04(5,, 82)

+-%—N sin(2ﬁn’+p¢(3u 32)) .

The uniqueness of (3.2) shows 0,(s;, 8,)=C{,(\, Z). Thus, (X, Z) is a solution
to (E). Uniqueness is easy to see. O

Set the map FoaRP—— R* Dby
(81 8z V) (N, U, v)
7\._—‘31—‘%@;(319 82) ’

(3.4) _g L
©r=s, o 0a(84, 82)

y=py,
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where
0u(81) 8) = %M cos(28,7) + -é—N sin(2s,7) .
By means of the proof of Lemma 3.3, we have #,=£;. It is easily

checked £K,(u+f,)=~F,(w)+fi, k=1,2,8, where u=(0, &, v), fi=@1,0,0),
f.=(0,1,0), f,=(00,0,1). So, £, and 7, induce the maps

Kg: T?— T2, 7z,.:T—T°.
Thus, we get the following.

PROPOSITION 3.4. k,: T*—T® is a homeomorphism and the inverse
18 T, Which is given by (3.4).

By means of z,, we get another globai parametrization of 7(a) such that

PooTo: T°———— T(a)
(815 82y V)——(Y(8y, 85, V); &(8y, 8y, V) .

COROLLARY 3.5. For every a=(a, a,, a,),

Ta_l(Co)z{(sn 8z V) | 31:—2" 8,=0, (mod Z)} .

Now, using parameters (s, s, v), we set other representatives of
[c.] e H(L(E, 1, €,): Z) and write the Maslov-form explicitly. Set three
closed curves on T°® as

’ 1
¢ 8,=t, 82=E- , v=0,

c;:sl=—i—, s,=t, v=0,

cQ:sl=sz=—;—, v=t, 0O=ZtZ1).

Corollary 3.5 shows z,(cy), k=1, 2, 83 are contained in T°\C,.
LEMMA 3.6. [z.(c)]=[c.] € H(T"\Cy: Z), k=1, 2, 8.

PROOF. <t.(c;) is written as

x(t)=t—-%-p,,(t, %) :
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ro=3—30dt3)

v=0.

Since 0,0, (1/2))=p.(1, 1/2)), z.c)~c, (homotopic). Thus, we have

[z.(cD]=[c.]. About ¢; and ¢,, the same method gives the result.

¢, G5, it is obvious.

LEMMA 3.7.
(FroPao ra>*mL=—Tlc—d Arg(R+iI)
R=—a*MN cos(2s,7)sin(2s,7)

-+ —‘(1—_-—)—2'(14. i+ z2)

i z)“{( Qs +A) +pE(1— z)+p.,( Sy +A)A}

_ 1 ) 1
I={z+ ad—2r ) ad—2r

x{- ( +A)A+p¢(z -4y},

where

A= —-%—M cos(2s,m) +—%—N sin(2s,7) ,
1 . 1
Az-—?M sm(Zslrc)+-2—N cos(2s,7) ,
1 . 1
z= ——2-M 31n(2817c)+EN cos(2s,7) ,

p,=%M cos(2sl7r)+%N sin(2s,7) .

PrROOF. Applying Proposition 3.2 to L(FE, 7, &), we have
my=2d Arg(B+iI) ,

where

For
H
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B=pir*—2E(pl— )+ (L - %) (o, p)*
r\xr r

_ Lz, p? _ zp 2, P
,ra 7,.3 ’

| T=(2+%){<x, p|pl*—<, pdpi— <x’rp> + xf} :

r=lx .

Owing to (1.1), we have

* —_ 1 .
P, p)—VﬁfC(yy £,

* ____1__ (g
r.,kfr-ZE(l 2 9),

¥ |p)P=2E 1+2'(y; &)

1-2'(y; 8) °
x —__1 {e+Ecosl(y; &)—y sin(y; &)}

X (£, sin {(y; &)+, cos L(y; &) ,

*p,= —y/2F L1850 L(¥; &)+, cos {(y; &)
v 1=7; §

’

¥*a= (e 4§ cos {(w; )~ v, sin S ©)) .
where
s &)= —E,cos Cw; &)+, sin C(w; &) ,
Z(y; ©)=Esin {(y; §)+y, cos L(y; &) .
On account of (2.1) and (8.4), we get
(Pa°7.)*C=0u(8y 8,) ,
 (@eoT)* P =2(s, 8) ,
(Paot)*E sing+y, cos0)=4,,
(Paota)*(E cosL—y, sin ) =A4,,

431



432 AKIRA YOSHIOKA

1 ~ @
—_—= ’ = —,
R BT,
The above equalities yield
(¢°¢¢°Ta)*E=R and (qp0¢aoz‘a)*T=I . D

For the constants given in (2.1), the following inequalities hold.

LEMMA 3.8.

1) 1+%(M—N)>O, 1+-;-(N—M)>0.

2) 1+N—% >0, 1+M+—Z§->o.

a,

1,
3) 0< A <
1+%M—I/I+M+as/a1
1.
0< AN <

Now, we are in a position to prove Proposition 3.1. On account of
Lemma 3.6,
(Mg &) =<{Myy Y Pali) =My, P © Pg o Tolh)
={(foP,oT)*my ¢y, k=1,2,3.

On ¢, R and I are written as follows.

=__1___(Ai+z’)
ai(1—=2)
A et A) =)o (o)),
I={2+ i b

x|~ (L +a) A+ o2 — a0}

where
A= —%M cos(2tr) ,
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A= %M sin(2tm) ——;—N ,

2= —-—;-M sin(2¢7) ———;-N ,

pa=%M cos(2t) .

Thus, we have A4,=—p, and A,=—2—N. Putting these into B and I,
we have

R=Eli_—z?(pi+z2+N——Z—3){(1—z)”—(1+N— 2 >} ’

1 a,

I= —{2+ a‘;(ll-—z)s } al(ll__z)z{pi—i—zz%—N—-%j-}pa )

By means of Lemma 3.8,

1——z=1+—;-N+%Msin(2tn)gl+%(N——M)>O ,

o+z+ N—% =%N2+N+—%—MNsin(2t7z:)

1

;N{1+-;—(N—M)}>o :

-2y —(1+N— “3)

1

=1—2z+V1+N—asa,)(M/2)
1+—1—N—1/1+N—a3/a1}

X {sin(2tﬂ:) + i

Hence, we have

R=(positive function)

{ 1—l—-lN-1/1+N—-a3/a,1}
i (267) -+ ’
X ]sin(2tw) + 2
I=(negative function) x cos(2tx) .

Remark 0<(1+1/2) N—1V1+N—a./a,)/M/2<1. We see Arg(R-+<I) varies
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2r for 0=<t<1. Thus, we get {(m, &)>=2. On ¢, we have

A1=-;—N sin(2tr) ,
Az——z—M + —2-N cos(2tr) ,

-1y, 1
z= 2M+2Ncos(2t7r),

p¢=—%—N sin(2tr) ,

A=p,, A=z+M.
Hence, we get

1
a2y

_ 1 )1
I=—{2+ o v ey

(pi+z’—l—M+ Z“ ){(l—z)’—(1+M+%-)} ’

1 1

2 2 asg
x(p¢+z +M+_a1 )p,, .
Lemma 3.8 gives

1—z=1+-;—M—%-Ncos(2t7r)>O ,

itz M+ % =1 M2+M—%-MNcos(2tn)

1

gM{1+-;—<M—-N)}>o ,

(l—z)’—(l+M+—Z—‘-)=(1—z+l/1+M+a,/a,1)(N/2)

{ 1+lM—1/1+M+a,/a1}
X | —cos(2tr) + N2 .
Thus, we obtain

R=(positive function)



QUANTIZATION CONDITIONS 435

1+ —vITMFays,

2
— 9 ,
X | —cos(2tw) + N2

I=(negative function) xsin(2¢x) .

Hence, {(m,, ¢,)=2.
Since R and I exclude v variable, Arg(R++I) is constant on c:.
Thus, {m,, ¢, =0. Hence, we get Proposition 3.1.

§4. Proof of theorems.

For L(E, 1, &), A/V'2E)>|1,|+(le]V2E), the quantization condition
is as follows.
-}17 31 0—-725<mm g>o=2tn,, me€Z, k=1,23.

By means of Propositions 2.5 and 3.1, we have

T 1 e =
1) T 2 2 19
(1/2E’+1/2E l) xa=ann
&1 7,)—F x2=21h,,
h1/2E Bve o Z) 5 X 2=2n
l,=27m ,

That is,
1/;E—(nl—i—m m+1)h
1/2E (nl_nz)k
T,=mh

Set n,=%,—((m+|m|)/2), k=1, 2. Then, we obtain
V;E =(n,+n.+ |m|+ 1k ,

]/2 = =(n,—n)h ,
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li=mh .

Substituting these into the classical restriction

1 Al
—_—> || =
V2E L V2E '
we get m,+mn,=|n,—n,|, namely, n,, n,=0. Thus, we have
1
=W=En ’ 'n=1, 2,
_ n
61=—';_—2 el yRy,n2 ?
li=mh=1,,,

where
n=n,+n,+|m|+1, n,n,=0, n,n,meZ.

Hence, we obtain Theorm 1.

For each n=1, it is easy to see that the number of tuples (n,, %, m)
satisfying n=n,+mn,+ lm|+1 and n,, n,=0 is equal to n2. Thus we get
the following. FE,, €, ., 7,. are just equal to eigenvalues of H, é, and
T, respectively. For each E,, the number of L(E,, T, €,) satisfying the
quantization condition is equal to the multiplicities of the eigenspace of
H corresponding to E,. (See [56] pp. 119 and 131). Thus, we get
Theorem 2.

References

[1] R. ABrRAHAM and J.E. MARSDEN, Foundations of Mechanics, Benjamin, London, Amster-
dam, 1978.

[2] V.I. ArRNoLD, Characterstic class entering in quantization conditions, Functional Anal.
Appl., 1 (1967), 1-13.

[38] V.I. ArNoLD, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York,
Heidlberg, Berlin, 1978.

[4] J.-P. EckMANN and R. SENEOR, The Maslov-WKB method for the (an-) Harmonic oscillator.
Arch. Rational Mech. Anal., 61 (1976), 1563-173.

[5] L.D. LANDAU and E. M. LirsHITZ, Quantum Mechanics, Pergman Press, Oxford, New
York, 1976.

[6] J. LERAY, Analyse lagrangienne et mechanique quantique, Seminaire du College de
France 1976-1977; R.C.P. 25, Strasbourg, 1978,

[7] V.P. Masrov, Theorie des Perturbations et Methods Asymptotiques, Dunod, Paris, 1972.

[8] V.P. Masrov and M. V. FEDORIUK, Semi-classical Approximation in Quantum Mechanics,
Reidel, Dordrecht-Boston-London, 1981.



QUANTIZATION CONDITIONS 437

[9] J.-M. SouriAu, Sur le variete de Kepler, Symposia Mathematica, 14, Academic Press,
London, 1974, 343-360.

Present Address:

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE

ToxkY0 METROPOLITAN UNIVERSITY
FUKAZAWA, SETAGAYA-KU, TOKYO 158



