K-theory for the C*-algebras of the Discrete Heisenberg Group

Kazunori KODAKA

Keio University
(Communicated by S. Koizumi)

Preliminaries

By the discrete Heisenberg group we mean the group G defined as that of the following matrices;

$$G = \left\{ egin{bmatrix} 1 & m & l \ 0 & 1 & k \ 0 & 0 & 1 \end{bmatrix}; \ k, \ l, \ m \in \mathbf{Z}
ight\}$$
 .

We take two closed subgroups M and N of G as follows;

$$M = \left\{ \begin{bmatrix} 1 & m & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; m \in Z \right\}$$

and

$$N = \left\{ egin{bmatrix} 1 & 0 & l \ 0 & 1 & k \ 0 & 0 & 1 \end{bmatrix}; \ k, \ l \in m{Z}
ight\} \ .$$

It is clear that $M\cong \mathbb{Z}$, $N\cong \mathbb{Z}^2$, so that we may identify M with \mathbb{Z} and N with \mathbb{Z}^2 . An action of M on N is defined by

$$m \cdot z = mzm^{-1} = (k, l + mk)$$

for $m \in M$ and $z = (k, l) \in N$. Then G is isomorphic to the semidirect product $N \times_s M$ of N by M with the multiplication

$$(z, m)(z', m') = (z + m \cdot z', m + m')$$

for (z, m) and $(z', m') \in N \times_s M$. Thererfore we identify G with $\mathbb{Z}^2 \times_s \mathbb{Z}$ Received May 20, 1985

and write the element of G as (k, l, m) where $(k, l) \in \mathbb{Z}^2 = N$ and $m \in \mathbb{Z} = M$. Further by definition of crossed products and the Fourier transformation we see that $C^*(G)$ is isomorphic to the crossed product $C(T^2) \times_{\alpha} \mathbb{Z}$ where α is the automorphism of $C(T^2)$ defined by

$$lpha(f)(s, t) = f(s+t, t)$$

 $f \in C(T^2)$, $(s, t) \in T^2$

and T^2 is the two dimensional torus.

Let τ be the finite faithful trace on $C^*(G)$ defined by $\tau(x) = x(e)$ where $x \in l^1(G)$ and e is the unit element of G, and let σ be the trace on $C(T^2) \times_{\alpha} \mathbb{Z}$ by $\sigma(y) = \int_{T^2} y(0, s, t) ds dt$ where $y \in l^1(\mathbb{Z}, C(T^2))$. Then we see easily that $\tau = \sigma$ on $l^1(G)$. In what follows, we compute

$$K_j(C(T^2)\times_{\alpha} \mathbf{Z})$$
 $(j=0, 1)$ and $\sigma_*(K_0(C(T^2)\times_{\alpha} \mathbf{Z}))$.

§ 1. Computation of $K_i(C(T^2)\times_{\alpha} \mathbb{Z})$ j=0, 1.

We use the following Pimsner-Voiculescu exact sequence of K-theory for crossed products;

$$K^0(T^2) \xrightarrow{\mathrm{id} - \alpha_*^{-1}} K^0(T^2) \longrightarrow K_0(C(T^2) \times_{\alpha} \mathbf{Z})$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 $K_1(C(T^2) \times_{\alpha} \mathbf{Z}) \longleftarrow K^1(T^2) \xleftarrow{\mathrm{id} - \alpha_*^{-1}} K^1(T^2).$

 $K_j(C(T^2)\times_{\alpha} \mathbb{Z})\cong K^j(T^2)/\mathrm{Im}(\mathrm{id}-\alpha_*^{-1})\bigoplus \mathrm{Ker}(\mathrm{id}-\alpha_*^{-1})\ (j=0,1).$ We then compute $\mathrm{Im}(\mathrm{id}-\alpha_*^{-1})$ and $\mathrm{Ker}(\mathrm{id}-\alpha_*^{-1}).$ Let $M_n(C(T^2))$ be the algebra of $n\times n$ matrices with entries in $C(T^2)$ and let $\mathrm{Proj}\ M_n(C(T^2))$ be the set of projections of $M_n(C(T^2))$ and let $U_n(C(T^2))$ be the unitary group of $M_n(C(T^2)).$ We define p_j and q_j in $\bigcup_{n=1}^{\infty}\mathrm{Proj}\ M_n(C(T^2))$ j=1,2 as follows;

$$p_1(s, t) = 1$$

 $q_1(s, t) = 0$

and

$$p_2(s, t) = R(t) egin{bmatrix} e^{-2\pi is} & 0 \ 0 & 1 \end{bmatrix} R(t)^* egin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix} R(t) egin{bmatrix} e^{2\pi is} & 0 \ 0 & 1 \end{bmatrix} R(t)^* \ R(t) = egin{bmatrix} \cos rac{\pi}{2}t & -\sin rac{\pi}{2}t \ \sin rac{\pi}{2}t & \cos rac{\pi}{2}t \end{bmatrix}$$

$$0 \leqq s, \ t \leqq 1 \ q_{\scriptscriptstyle 2}(s, \ t) = egin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix}.$$

And we define u_j in $\bigcup_{n=1}^{\infty} U_n(C(T^2))$ j=1, 2 as follows;

$$u_1(s, t) = e^{2\pi i t}$$

 $u_2(s, t) = e^{2\pi i s}$.

LEMMA 1. 1) Two generators of $K^0(T^2)$ are $[p_1]-[q_1]$ and $[p_2]-[q_2]$. 2) Two generators of $K^1(T^2)$ are $[u_1]$ and $[u_2]$.

REMARK. We identify $C(T^2)$ with all complex valued continuous functions on $[0, 1] \times [0, 1]$ such that f(0, t) = f(1, t) and f(s, 0) = f(s, 1) for $s, t \in [0, 1]$.

PROOF OF LEMMA 1. 1) $K^0(T^2)$ is isomorphic to $K^0(T^1) \bigoplus K^1(T^1)$. The isomorphism is the direct sum of i_* and Φ where i_* is the homomorphism of $K^0(T^1)$ into $K^0(T^2)$ induced by the inclusion map i; $C(T^1) \rightarrow C(T^2)$ and Φ is the composed map of the suspension map of $K^1(T^1)$ onto $K^0(T^1 \times (0, 1))$ and the homomorphism of $K_0((T^1) \times (0, 1))$ into $K^0(T^2)$ induced by the inclusion map of $C_0(T^1 \times (0, 1))$ into $C(T^2)$. And let $[1_{T^1}]$ be a generator of $K^0(T^1)$ where 1_{T^1} is the identity of $C(T^1)$ and let [v] be a generator of $K^1(T^1)$ where v is defined by $v(s) = e^{2\pi i s}$. Then $i_*([1_{T^1}])$ and $\Phi([v])$ are the generators of $K^0(T^2)$. Therefore we obtain 1).

2) We can prove 2) in the same manner as 1). Q.E.D.

LEMMA 2.

$$K_j(C(T^2) imes_{lpha} Z) \cong Z^s$$
 $j = 0, 1$.

PROOF. We use the Pimsner-Voiculescu exact sequence. Clearly $\alpha_*^{-1}([p_1]) = [p_1], \ \alpha_*^{-1}([q_1]) = [q_1], \ \alpha_*^{-1}([q_2]) = [q_2].$

$$lpha^{-1}(p_2)(s, t) = R(t) egin{bmatrix} e^{-2\pi i (s-1)} & 0 \ 0 & 1 \end{bmatrix} R(t)^* egin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix} R(t) egin{bmatrix} e^{2\pi i (s-t)} & 0 \ 0 & 1 \end{bmatrix} R(t)^* \; .$$

Let

$$V(s, t) = R(t) \begin{bmatrix} e^{2\pi i t} & 0 \\ 0 & 1 \end{bmatrix} R(t)^*.$$

Then $V \in U_2(C(T^2))$ and $\alpha^{-1}(p_2)(s, t) = V(s, t)p_2(s, t)V(s, t)^*$.

Thus $\alpha_*^{-1}([p_2]) = [p_2]$. Therefore the homomorphism id $-\alpha_*^{-1}$ of $K^0(T^2)$

into $K^0(T^2)$ is a 0-map.

$$lpha^{-1}(u_1)(s, t) = e^{2\pi i t} = u_1(s, t)$$

 $lpha^{-1}(u_2)(s, t) = e^{2\pi i (s-t)} = e^{2\pi i s} e^{2\pi i t} = u_2(s, t) u_1^*(s, t)$.

Hence $\alpha_*^{-1}([u_1]) = [u_1]$, $\alpha_*^{-1}([u_2]) = -[u_1] + [u_2]$. Therefore the homomorphism $id - \alpha_*^{-1}$ of $K^1(T^2)$ into $K^1(T^2)$ is given by the matrix

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

It follows by the Pimsner-Voiculescu exact sequence that $K_j(C(T^2 \times_{\alpha} \mathbf{Z}) = \mathbf{Z}^3 \ (j=0, 1)$.

Q.E.D.

COROLLARY 1.

$$K_j(C^*(G))\cong \mathbb{Z}^3$$
 $j=0,1$.

§ 2. Computation of $\sigma_*(K_0(C(T^2)\times_{\alpha} Z))$.

Let $[e_j]-[f_j]$ j=1, 2, 3 be three generators of $K_0(C(T^2)\times_{\alpha} \mathbb{Z})$. The homomorphism i_* of $K^0(T^2)$ into $K_0(C(T^2)\times_{\alpha} \mathbb{Z})$) is injective since

$$\operatorname{id} - \alpha_{*}^{-1}; K^{0}(T^{2}) \longrightarrow K^{0}(T^{2})$$

is a 0-map. Hence two generators are given as follows;

$$e_{1}(m, s, t) = \begin{cases} 1 & \text{if } m = 0 \\ 0 & \text{if } m \neq 0 \end{cases}$$

$$f_{1}(m, s, t) = 0$$

$$e_{2}(m, s, t) = \begin{cases} R(t) \begin{bmatrix} e^{-2\pi i s} & 0 \\ 0 & 1 \end{bmatrix} R(t)^{*} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} R(t) \begin{bmatrix} e^{2\pi i s} & 0 \\ 0 & 1 \end{bmatrix} R(t)^{*} & \text{if } m = 0 \end{cases}$$

$$f_{2}(m, s, t) = \begin{cases} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} & \text{if } m = 0 \end{cases}$$

$$\begin{cases} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} & \text{if } m \neq 0 \end{cases}$$

The generator $[e_3]-[f_3]$ is the element of $K_0(C(T^2)\times_{\alpha} \mathbb{Z})$ satisfying that

$$d_0([e_8]-[f_8])=[u_1]$$

where d_0 is the connecting map of $K_0(C(T^2)\times_{\alpha} \mathbf{Z})$ into $K^1(T^2)$.

Let g be the function on T^2 defined by $g(s, t) = \cos(\pi/2)t$ and let h be the function on T^2 defined by $h(s, t) = \sin(\pi/2)t$. We regard $C(T^2)$ as a C^* -subalgebra of $C(T^2) \times_{\alpha} Z$. Then let

$$e_3 = egin{bmatrix} \delta_{-1} & 0 \ 0 & \delta_{-1} \end{bmatrix} egin{bmatrix} g^2h^2 & -g^3h \ gh^3 & -g^2h^2 \end{bmatrix} + egin{bmatrix} g^4 + h^4 & g^3h - gh^3 \ g^3h - gh^3 & 2g^2h^2 \end{bmatrix} + egin{bmatrix} g^2h^2 & gh^3 \ -g^3h & -g^2h^2 \end{bmatrix} egin{bmatrix} \delta_1 & 0 \ 0 & \delta_1 \end{bmatrix}$$

and

$$\delta_{\scriptscriptstyle 1}(m) = egin{cases} 1_{\scriptscriptstyle T^2} & ext{if} & m = 1 \ 0 & ext{if} & m
eq 1 \ \ \delta_{\scriptscriptstyle -1}(m) = \delta_{\scriptscriptstyle 1}^*(m) = egin{cases} 1_{\scriptscriptstyle T^2} & ext{if} & m = -1 \ 0 & ext{if} & m
eq -1 \end{cases}$$

We see that e_3 is a Rieffel projection in $M_2(C(T^2) \times_{\alpha} Z)$ by computation.

REMARK. Let A be a unital C^* -algebra and (A, \mathbb{Z}, β) a C^* -dynamical system. A projection in $A \times_{\alpha} \mathbb{Z}$ satisfying the following condition is called a *Rieffel projection*;

- 1) $p=u^*x_1^*+x_0+x_1u x_0, x_1 \in A$
- 2) u is a unitary element in A satisfying that $Adu = \beta$.

LEMMA 3. With the above notation let ε be the left support projection of x_1 in the enveloping von Neumann algebra of A. Then the unitary $\exp(2\pi i x_0 \varepsilon)$ is in A and

$$d_{0}([p]) = [\exp(2\pi i x_{0} \varepsilon)]$$

where d_0 is the connecting map of $K_0(A \times_{\beta} \mathbb{Z})$ into $K_1(A)$.

PROOF. See Pimsner-Voiculescu [4].

Q.E.D.

LEMMA 4. $[e_3]-[f_3]$ is a generator of $K_0(C(T^2)\times_{\alpha} \mathbb{Z})$ where

$$f_{3}(m, s, t) = \begin{cases} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} & if \quad m = 0 \\ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} & if \quad m \neq 0. \end{cases}$$

PROOF. It is clear that $d_0([f_s])=0$. So we show that $d_0([e_s])=[u_1]$. Let

$$x_0 \! = \! egin{bmatrix} g^{4} \! + \! h^{4} & g^{3}h \! - \! gh^{3} \ g^{3}h \! - \! gh^{3} & 2g^{2}h^{2} \end{bmatrix}$$

$$x_1=\begin{bmatrix}g^2h^2&gh^3\\-g^8h&-g^2h^2\end{bmatrix}.$$

Let ε be the left support projection of x_1 in the enveloping von Neumann algebra of $C(T^2)$. Since $\varepsilon = [x_1] = [x_1x_1^*] = s - \lim_{n \to \infty} (1/n + x_1x_1^*)^{-1}x_1x_1^*$, where $[x_1]$ and $[x_1x_1^*]$ are the range projections of x_1 and $x_1x_1^*$ respectively, by the trivial calculation we see that

$$arepsilon(s,\,t) = egin{cases} egin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix} & ext{if} & t = 0 \ egin{bmatrix} h^2(s,\,t) & -g(s,\,t)h(s,\,t) \ -g(s,\,t)h(s,\,t) & g^2(s,\,t) \end{bmatrix} & ext{if} & 0 < t \le 1 \ . \end{cases}$$

Hence we obtain that

$$\exp(2\pi i x_0 arepsilon) = \expigg(2\pi i h^2 egin{bmatrix} h^2 & -gh \ -gh & g^2 \end{bmatrix}igg)$$
 .

Let

$$F(c,\,s,\,t) = \expigg(2\pi i h^2(s,\,t)igg[egin{array}{ccc} h^2(s,\,ct) & -g(s,\,ct)h(s,\,ct) \ -g(s,\,ct)h(s,\,ct) & g^2(s,\,ct) \ \end{array}igg]igg) & 0 \!\leq\! c \!\leq\! 1 \;.$$

Then

$$egin{aligned} F(c,\,s,\,0) = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} \ F(c,\,s,\,1) = \expigg(2\pi i igg[egin{aligned} h^2(s,\,c) & -g(s,\,c)h(s,\,c) \ -g(s,\,c)h(s,\,c) & g^2(s,\,c) \end{bmatrix} \ = igg[1 & 0 \ 0 & 1 \end{bmatrix} + (e^{2\pi i} - 1) igg[egin{bmatrix} h^2(s,\,c) & -g(s,\,c)h(s,\,c) \ -g(s,\,c)h(s,\,c) & g^2(s,\,c) \end{bmatrix} \ = igg[1 & 0 \ 0 & 1 \end{bmatrix} \end{aligned}$$

since $\begin{bmatrix} h^2(s,c) & -g(s,c)h(s,c) \\ -g(s,c)h(s,c) & g^2(s,c) \end{bmatrix}$ is a projection.

Therefore F is a continuous function of the interval [0,1] into $U_2(C(T^2))$. Hence

$$d_0([e_3]) \!=\! [F(1)] \!=\! [F(0)] \!=\! [e^{2\pi i h^2}] \!=\! [u_1]$$

by Lemma 3. Thus we obtain Lemma 4.

Q.E.D.

THEOREM 1.

$$\sigma_*(K_0(C(T^2)\times_{\alpha} \mathbf{Z})) = \mathbf{Z}$$

where σ_* is the homomorphism of $K_0(C(T^2) \times_{\alpha} \mathbf{Z})$ into \mathbf{R} induced by the trace σ defined in Introduction.

PROOF.

$$\begin{split} &\sigma_*([e_1]) = 1 \\ &\sigma_*([f_1]) = 0 \\ &\sigma_*([e_2]) = \int_0^1 \int_0^1 \mathrm{Tr}(e_2(0, s, t)) ds dt = 1 \\ &\sigma_*([f_2]) = 1 \\ &\sigma_*([e_3]) = \int_0^1 \int_0^1 \mathrm{Tr}(e_3(0, s, t)) ds dt \\ &= \int_0^1 \int_0^1 (g^4(s, t) + h^4(s, t) + 2g^2(s, t) h^2(s, t)) ds dt = 1 \\ &\sigma_*([f_3]) = 1 \end{split}$$

where Tr is the canonical trace on the matrix algebra $M_2(C)$. Since σ_* is the homomorphism, we obtain that

$$\sigma_*(K_0(C(T^2)\times_{\alpha} \mathbf{Z})) = \mathbf{Z}$$
. Q.E.D.

COROLLARY 2.

$$\tau_{\star}(K_{\scriptscriptstyle 0}(C^{\star}(G))) = \mathbf{Z}$$

where τ_* is the homomorphism of $K_0(C^*(G))$ into R induced by the trace defined in Introduction.

REMARK. The above corollary shows that $C^*(G)$ has no nontrivial projection although it is not simple.

ACKNOWLEDGEMENT. I wish to thank Prof. O. Takenouchi for various advices and constant encouragement.

References

- [1] A. Connes, An analogue of Thom isomorphism for crossed products of a C^* -algebra by an action of R, Adv. in Math., 39 (1981), 31-55.
- [2] S. KAWAKAMI Representations of the discrete Heisenberg group, Math. Japon, 27 (1982), 551-564.
- [3] G.K. Pedersen, C*-algebra and Their Automorphism Groups, Academic Press, London, New York, San Francisco, 1979.
- [4] M. Pimsner and D. Voiculescu, Exact sequences for K-groups and Ext-groups of certain cross product C*-algebras, J. Operator Theory, 4 (1980), 93-118.
- [5] M.A. RIEFFEL, C*-algebra associated with irrational rotations, Pacific J. Math., 93 (1981), 415-429.

[6] J.L. TAYLOR, Banach algebras and topology, in "Algebras in Analysis", edited by J. H. Williamson, Academic Press, 1975.

ADDENDUM

After this paper had been typed out, I have received the following preprint of J. Anderson and W. Paschke whose results contain those of ours. I thank to them, but I had reached our results independently, so I will present here.

J. Anderson and W. Paschke, The rotation algebra, Preprint Series, M.S.R.I. Berkeley, February (1985).

Present Address:
DEPARTMENT OF MATHEMATICS
KEIO UNIVERSITY
HIYOSHI KOHOKU-KU
YOKOHAMA 223