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Introduction
R. Perlis, in [3], showed the following theorem.

Theorem. (Cassels & Frohlich [5, p. 363 ex. 6.4])

Let L be a finite Galois extension of @, let G=Gal(L/Q), and let E
and E’ be subfields of L corresponding to the subgroups H and H' of G
respectively. Then the following conditions are equivalent:

(1) H and H’ are Gassmann equivalent in G.

(2) &x(8)=Cx(9).

(3) The same primes p are ramified in E as in E’, and for the
non-ramified p the decomposition of » in E and E’ is the same.

We shall extend this theorem in case that the base field is not
necessarily @. In this case the condition (2) is not sufficient for (1). So
we will replace {-function by Artin’s L-functions for some characters.

T. Funakura, in [4], constructed the isomorphism @ from the additive
group Ch(®) to € where Ch(®) is the character group of 8=G(Q/Q) and
L={L(s, ¥, E/Q): E is a subfield of @ corresponding to an open normal
subgroup 9 s.t. eCh(®/9)}. And he showed the equivalent relation
between (1) and (2) as a corollary of his theorem. To show that @ is
monomorphic, he used the fact that the L-functions for the irreducible
characters of Gal(E/Q) are multiplicativelly independent. We shall show
the equivalence of (1) and (2) if the L-functions for the irreducible
characters of Gal(E/k) are multiplicativelly independent.

§1. Preliminaries.

Now let k, K, K’ be finite algebraic number fields where K, K’ contain
k. For a relative normal algebraic extension N over k which contains
both K and K’, we put G=Gal(N/k), H=Gal(N/K), H'=Gal(N/K’). Then
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H and H' are said to be Gassmann equivalent in G when
|HNc®|=|H'Nc°

for every conjugacy class c®={o"'¢cc|o € G} in G. In case k=Q, R. Perlis
in [3] showed that the condition {.(s)={x.(s) holds if and only if H and
H’ are Gassmann equivalent and when these conditions hold then |K: Q|=
IK": Q|, d(K)=d(K’), the number of real (resp. complex) infinite primes
of K and K’ coincide. Our purpose in this paper is to show that H and
H' are Gassmann equivalent if and only if L(s, 4, N/K)=L(s, +', N/K')
for some characters +, 4 even if k+Q.

Before we start on it, we will refer to the relation between the
Gassmann equivalence and the decompositions of ideals of k& in K, K’ as
R. Perlis did. '

LEMMA 1. H and H' are Gassmann equivalent in G if and only if

coset type [G mod(Z, H)]=coset type [G mod(Z, H')]
Sor every cyclic subgroup Z of G.
PrOOF. See [3], Lemma 1 on p. 344.

Let p be a prime of k, we say A,=(f,, -, f,) € N° the splitting type
of p in K, if p=Pp--- Py in K, Ng,PB=V", fi£firn (=1, .-+, g—1).
And for A=(f, ---,f,), where g, f, (:=1, ---, g) are positive integers
such that f,<f,,, (¢:=1, ---,g—1), we put

Py, (A)={p|p is a prime of k s.t. A=A}.

We note that there are only finite many A for which Pg,(A) is not
empty. If p is unramified in N, p has the same splitting type in both
K and K’ if and only if

coset type [G mod(Z, H)]=coset type [G mod(Z, H’)],
|H|=|H'|, for the decomposition subgroup Z of p in G.
The notation
Pr(A)= Py, (A)
will be used to indicate that these two sets differ by at most a finite
number of elements.

PROPOSITION 1. The following conditions are equivalent.

(1) Pgu(A)=Pgp(A) for every A.

(2) coset type [G mod(Z, H)]=coset type [G mod(Z, H')] for every
cyclic subgroup Z of G.
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(3) H and H' are Gassmann equivalent in G.

Furthermore, when these conditions hold then [K:Q]=[K':Q], the
two fields determine same normal closure and the same normal core over
k, the number of real (resp. complex) infinite primes of K, K' coincide,
and the unit groups are isomorphic Nx=Ug.

We can prove this proposition easily by improving what R. Perlis
([38]) did in the proof of Theorem 1.

§2. Main results.

Now we return to L-functions. First we introduce some notations
for characters. From now on, X, « and ' always denotes charaters of
G, H and H’ respectively and X|, denotes the restriction of X to H.
(,)s stands for the inner product in G. Let {X, ---, X}, {4y Y}
{41, ***Ym:} be the sets of normalized irreducible characters of G, H and
H’ respectively, where X, 4, 41 are principal characters of each groups.

Let D(s, X, N/k) be a function on the complex plain C defined for
every Galois extension N/k and for every character of Gal(N/k) satisfying
the following conditions: ‘ v

D(s, X+X', N/k)= D(s, X, N/k) - D(s, X', N/k) for characters X, X’ of
Gal(N/k),

D(s, Xy, N/k)=D(s, 4, N/JK) for every intermidiate field K and for
every character « of Gal(N/K). We have three examples for D i.e.,
A(X, N/k), L(s, X, N/k), &(s, X, N/k).

LEMMA 2. The following equation holds.
D(s) x:ilHy N/K)=ﬁ D(s, Xl’ N/k)(ll'H'ZﬂH)H
=1

Jor 1550,

Proor. If we decompose Xy, (1=¢=m) into the sum of irreducible
characters, say

Xy, = En] a,;X; with non-negative integers a,; ,
i=1
then we have
xi[H_—';:.‘;aij"/"t A=sj=n),

by Frobenius reciprocity low for characters. And
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D(s, X;lzy N/K)=D(8, Xz;15, N/k)
=D(s, 3, iy, Nk)
D(S; g{ @5 g aqX;, N/k)
=D\ s, 2"1 i at:‘aa)xn N/k)
=1 \i=1

= ;I:Z_‘I D(s’ xb N/k)fgl“ijau .

The exponents
m m mn
2.000,5=2, 3, at,latzi("/"qs "l"t,)H
=1 41=1 i5=1

= ( >, N py atzﬂb’iz)
=1 ip=1 H
=Xl ay leH)H .

This concludes the proof.
We see that (X|n, X;l0)a=Xiluy Xjlu)n if and only if
> Li(@)X ;e )(|H' |- |[HN | — |H| - |H' N c®|)=0, because

| H |(Xy] &y xilH)H':’g}ixl(x)xi(x—l)
=3 5 HELE

¢G zcHNe

= ZGL Li(@)X;(x~")|H N cf,

where ¢ ranges over all conjugacy class, and similarly

| H'|(Xy| a7 x:ilH’)H' = ZG:. X,(x)X,-(x“)]H’ Nce .

Since the Gassmann equivalence of H and H’ implies |H|=|H'| and
|HNc=|H Nc| for every conjugacy class ¢ and a character X of G is
decomposed into a sum of X; (1<j7=<m) with integer coefficiants, we have

following lemma.

LEMMA 3. If H and H' are Gassmann equivalent, then (X)|x, Xlp)a=

Kl zrs Xl ar ASIZ0) for every character X of G.

PROPOSITION 2. The following conditions are equivalent.

(1) H and H' are Gassmann equivalent.

(2) Gla Xl)a=lan Xlag)a ASIU=n) for every character X of G.

(3) ilw ¥)a=lay ¥Du A=l=n).
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(4) Xy, =Xy
PrROOF. (1)=(2) Lemma 3.
(2)=(8) Since X|g=, X,z =4, this is clear.
(8)=(4) As we have done in the proof of Lemma 2,
we put
xw:ﬁ{aﬁxi 1<ism),
=
Ay =D aiX;  (I=ism').
i=1
Then we have
xilzl:;:‘i v
x.‘i‘H':Ziaf;j"/"; , l=j=n.
We calculate (Xy|a ¥)x and Xy |as, Y1)z as follows.

Rl Y= (32':1 15X |, "P‘l)H
= (i gla 0@ os ’31"1)H

j=1

The condition (3) implies (Xy,|us ¥)z= Xy lns ¥1)a. Therefore
3 (ah—ayai)=0. (&)

Similarly,
g(aﬁ-—aﬁa{j)=0 . (B)

Making sums of (A) and (B), it holds that
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n
_2; (a;— a;j)z =0,
,—_—'

80 a,;=ay; for every j. This means Xy =Xy,

(4)=(1) For every element o of G, Xy (0)=Xy;(0). And

Xw(o)=l—él— 2 ¥i(t7'07) |
=—H§—I|Hnaal-ssa<o>| :

where Sy(o) denotes the stabilzer of ¢ in G. Thus, A/|HNHNo% =
(1/|H'))|JH' N6, for every conjugacy class ¢°. If we take the unity
element of G as o, we have |H|=|H'|. So we have |HNo®|=|H'Na%,
for every ¢°. This completes the proof.

COROLLARY 1. If D(s, X;, N/k) (1<I<n) are multiplicatively inde-
pendent, the following conditions are equivalent.

(1) H and H' are Gassmann equivalent.

(2) D(s, X|g, N/K)=D(8, |z, N/K'), for every character X of G.

(38) D(s, 4, N/K)=D(s, ¥, N/K").

PROOF. (1)=(2) Lemma 2 and Proposition 2.
(2)=(8) Trivial.
(3)=(1) For D(s, ¥, N/K)=1I}.., D(s, X;, NJk)@'z-¥2n
and D(s, i, N/K')=Ii, D(s, X,, N/k)*'=¥Pa, we have Nilm ¥r)u=
Kl ¥)ar A=l=<m). Then H and H’ are Gassmann equivalent.
Especially when k=@, it is known that L(s, X,, N/k) 1<l<n) are
multiplicatively independent. So we have the following corollary.

COROLLARY 2. If k=Q, the following conditions are equivalent.
(1) H and H' are Gassmann equivalent.

(2) L(8, X|g, N/K)=L(s, X|g:, N/K"), for every character X of G.
(8) Cx(8)=CLx/(s). '

T. Funakura, in [4], have had the same result.

COROLLARY 3. Let L/Q be an abelian extention. If Lx(s)=Cx(8),
then the following conditions are satisfied.

(1) KNL=KNL, Gal(KL/K) = Gal(K'L/K") = Gal(L/k), where k=
KNL=K'NL. ~

( 2 ) {L(S, 'SI"r KL/K)}‘!P‘e Gaﬁux) = {L(S, "I"” K,L/K’)}’W'eGal/(}'L/K’H where A=
{4+ A—C homo.} for an abelian group A.
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Proor. (1) For proving Gal(KL/K)=G(K'L/K'), it is sufficient to
show that KNL=K'NL. Since L/Q is abelian, KN L/Q is normal. So
KNL is included in the normal core of K, which is equal to the normal
core of K' from Proposition 1. Thus we have KNLCK'NL. And we
also have K'NLCcKNL. Hence KNL=K'NL.

(2) Let N/Q be a normal extension such that NOK-K'-L. A
character + of Gal(KL/K) is regarded as a character of Gal(L/k) and
also as the restriction of a character X of Gal(L/Q), for Gal(L/Q) is
abelian. Extending +, X to characters of G(N/K), Gal(N/Q) respectively
in a general way, we have X|;=+. And noting that L(s, |y, N/K)=
L(s, X|4, N/K’) for every character of Gal(N/Q), we have

{L(s, ¥)}precaimr/xy ={L(8, 4, N/K)|yr: H— C* homo., +|z=1}
={L(8, X|a, N/K)|X: G— C* homo., Xg=1}
={L(s, X|g,, N/K")|X: G— C* homo., X|zg=1}
={L(s, ¥, N/K")|y': H' —C* homo., |z =1}
={L(8, ¥ )prcoudRrz/x" »

where H=Gal(N/K), H'=Gal(N/K'), G=Gal(N/L), G=Gal(N/Q), H=
Gal(N/KL) and H'=Gal(N/K'L).

In case k+#Q, L(s, X;, N/k) (1=<l<n) are not always multiplicatively
independent. But we can show the following theorem considering poles
and zeros of them at s=1.

THEOREM. The following conditions are equivalent.

(1) H and H' are Gassmann equivalent.

(2) Pgp(A)=Pg,(A) for every A=(f, + -+, fo)-

(8) L(s, X|g, N/JK)=L(s, X|x, N/K') for every character X of G.
(4) L(s, X4,y N/K)=L(s, Xy |a», N/K'),

L(s, x%;lH’ N/K)=L(s, X’VI‘,"H” N/K’)-

Furthermore, when these conditions hold then [K:Q]=[K’:Q], the
number of real (resp. complex) infinite primes of K, K' coincide, the
two fields determine the same normal closure and the same normal core
over k, the wunit groups isomorphic U,=Ug. And it also holds
F(S, X'H? N/K):F(S’ XH’! N/K’)r S(S, X’H’ N/K)ZE(S’ XIH"N/K’)’ A(Xle N/K)=
A(X|n, N/JK') and NiX|y, N/K)=NiX|y, N/K') for every character X of
G.

PrROOF. (1)<=(2) Proposition 1.
(1)=(83) Corollary 1 of Proposition 2.
(3)=(4) Trivial.
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(4)=(1) From the Lemma 2, L(s, Xz N/K)=
I17-. L(s, X;, N/k)*!'=Xia'a for any character X of G. If l+#1 L(s, X;, N/k) is
expressed as a product of Hecke's L-functions with non-principal character.
Then L(s, X;, N/k) has no poles and no zeros at s=1. If I=1, L(s, X,, N/k)=
C.(s) has a simple pole at s=1. Hence L(s, X|z, N/K) has a pole of order
(X|zs ¥z at s=1. Similarly L(s, X|5, N/K’) has a pole of order (X|;, ¥)x-
at s=1. Thus we have

(x'#l'm '\1’1)11: (X'h[H'r "I/‘:)H'

and

(x')"‘i|11r "/"1)H=(x1"‘i H'S "I";)H’ ’

with which we have shown (1) in the proof of Proposition 2.
The rest is due to Proposition 1 or Corollary 1 of Proposition 2.
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