On the Exponentially Bounded C-semigroups

Naoki TANAKA

Waseda University
(Communicated by J. Wada)

Introduction

In this paper we are concerned with exponentially bounded C-semi-groups introduced by Davies and Pang [1].

Let X be a Banach space and let $C: X \to X$ be an injective bounded linear operator with dense range. A family $\{S(t): 0 \le t < \infty\}$ of bounded linear operators from X into itself is called an *exponentially bounded C-semigroup* if

- (0.1) S(t+s)C=S(t)S(s) for $t, s \ge 0$, and S(0)=C,
- (0.2) for every $x \in X$, S(t)x is continuous in $t \ge 0$,
- (0.3) there exist $M \ge 0$ and $a \ge 0$ such that $||S(t)|| \le Me^{at}$ for $t \ge 0$.

For every $t \ge 0$, let T(t) be the closed linear operator defined by $T(t)x = C^{-1}S(t)x$ for $x \in D(T(t)) \equiv \{x \in X : S(t)x \in R(C)\}$. We define the operator G by

$$(0.4) \qquad D(G) = \{x \in R(C): \lim_{t \to 0+} (T(t)x - x)/t \text{ exists}\} \quad \text{and} \quad Gx = \lim_{t \to 0+} (T(t)x - x)/t \quad \text{ for } x \in D(G) \ .$$

For every $\lambda > a$, define the bounded linear operator $L_{\lambda}: X \to X$ by $L_{\lambda}x = \int_{0}^{\infty} e^{-\lambda t} S(t)xdt$ for $x \in X$. It is known that G is closable with dense domain (see [1]) and by [2, (2.3)]

where \overline{G} denotes the closure of G. \overline{G} is called the C-c.i.g. (C-complete infinitesimal generator) of $\{S(t): t \ge 0\}$.

§1 is devoted to the representation of exponentially bounded C-semigroups. §2 treats the generation of exponentially bounded C-semigroups, and §3 deals with the abstract Cauchy problem. Finally, §4 concerns the connections with semigroups of growth order $\alpha>0$.

§1. Representation of exponentially bounded C-semigroups.

We start with the following

LEMMA 1.1. Let T be a closed linear operator satisfying the following conditions

- $(1.1) D(T^n) \supset R(C) for n \ge 1,$
- (1.2) there are M>0 and $\alpha \ge 1$ such that $||T^kC|| \le M\alpha^k$ for $k \ge 1$,
- $(1.3) TCx = CTx for x \in R(C) .$

Then for $x \in X$ we have

(i)
$$\left\| e^{-m} \sum_{k=0}^{\infty} \frac{m^k}{k!} T^k C^2 x - T^m C^2 x \right\|$$

$$\leq M \alpha^m e^{m(\alpha-1)} \{ m^2 (\alpha-1)^2 + m(\alpha-1) + m \}^{1/2} \| (T-I) C x \|$$

for $m \ge 1$ and

(ii)
$$\left\| e^{-t/h} \sum_{k=0}^{\infty} \frac{(t/h)^k}{k!} T^k C^2 x - T^{\lfloor t/h \rfloor} C^2 x \right\|$$

$$\leq M e^{t(\alpha-1)/h} \left(\alpha^{t/h} \left\{ h t^2 \left(\frac{\alpha-1}{h} \right)^2 + h t \left(\frac{\alpha-1}{h} \right) + t \right\}^{1/2} + \sqrt{h} \right) \sqrt{h} \|A^h C x\|$$

for $t \ge 0$ and h>0, where $A^h = h^{-1}(T-I)$ for h>0 and [] denotes the Gaussian bracket.

PROOF. We first note that by (1.2), $\sum_{k=0}^{\infty} (m^k/k!) T^k C$ converges in norm and defines a bounded linear operator.

Let $x \in X$. We have

$$e^{-m} \sum_{k=0}^{\infty} \frac{m^k}{k!} T^k C^2 x - T^m C^2 x = e^{-m} \sum_{k=0}^{\infty} \frac{m^k (T^k C^2 x - T^m C^2 x)}{k!}$$

But, by (1.3) for k>m,

$$T^{k}C^{2}x - T^{m}C^{2}x = \sum_{i=m}^{k-1} T^{i}(TC^{2}x - C^{2}x)$$

$$=\sum_{i=m}^{k-1} T^i C(T-I) Cx$$

and hence by (1.2), we have

$$||T^kC^2x - T^mC^2x|| \le M \Big(\sum_{i=m}^{k-1} \alpha^i\Big) ||(T-I)Cx||$$

 $\le M\alpha^k(k-m) ||(T-I)Cx||.$

On the other hand, for k < m,

$$||T^kC^2x-T^mC^2x|| \leq M\alpha^m(m-k)||(T-I)Cx||$$
.

Therefore, we obtain that

$$\left| \left| e^{-m} \sum_{k=0}^{\infty} \frac{m^k}{k!} T^k C^2 x - T^m C^2 x \right| \right| \leq M \alpha^m e^{-m} \sum_{k=0}^{\infty} \frac{|k-m| \alpha^k m^k}{k!} ||(T-I)Cx||.$$

By the Schwarz inequality

$$\sum_{k=0}^{\infty} \frac{|k-m| \, \alpha^k m^k}{k!} \leq e^{m\alpha} \{ m^2 (\alpha-1)^2 + m(\alpha-1) + m \}^{1/2} .$$

So that (i) is proved.

Using (i) with m=[t/h] ($\leq t/h$), we have

$$\begin{aligned} (1.4) \qquad & \left\| e^{-[t/h]} \sum_{k=0}^{\infty} \frac{[t/h]^k}{k!} T^k C^2 x - T^{[t/h]} C^2 x \right\| \\ & \leq & M \alpha^{t/h} e^{t(\alpha-1)/h} \left\{ t^2 \left(\frac{\alpha-1}{h} \right)^2 + t \left(\frac{\alpha-1}{h} \right) + t/h \right\}^{1/2} \| (T-I)Cx \| \\ & = & M \alpha^{t/h} e^{t(\alpha-1)/h} \left\{ h t^2 \left(\frac{\alpha-1}{h} \right)^2 + h t \left(\frac{\alpha-1}{h} \right) + t \right\}^{1/2} \sqrt{h} \| A^h Cx \| . \end{aligned}$$

We define the bounded linear operator $S_{h}(s)$ for every $s \ge 0$ by

$$S_h(s) = e^{-s/h} \sum_{k=0}^{\infty} \frac{(s/h)^k}{k!} T^k C$$

It is easy to see that

$$\frac{d}{ds}S_h(s)Cx = S_h(s)A^hCx.$$

Integrating this from s=[t/h]h to s=t, we obtain

$$S_h(t)Cx - S_h([t/h]h)Cx = \int_{[t/h]h}^t S_h(s)A^hCxds$$
.

Since $||S_h(s)|| \leq e^{-s/h} \sum_{k=0}^{\infty} ((s/h)^k/k!) M\alpha^k = Me^{s(\alpha-1)/h}$, we have

$$\left\| S_h(t)Cx - e^{-[t/h]} \sum_{k=0}^{\infty} \frac{[t/h]^k}{k!} T^k C^2 x \right\| \le Mhe^{t(\alpha-1)/h} \|A^h Cx\|.$$

Combining this with (1.4), the desired inequality is proved. Q.E.D.

REMARK. If C=I in Lemma 1.1, the estimates (i) and (ii) are known. (See [3] or [5].)

THEOREM 1.2. Let $\{S(t): t \ge 0\}$ be an exponentially bounded C-semigroup. If \bar{G} is the C-c.i.g. of $\{S(t): t \ge 0\}$, then

(1.5)
$$S(t)x = \lim_{l \to \infty} S_l(t)x \quad \text{for} \quad x \in X,$$

where $S_{\lambda}(t)x = e^{-\lambda t} \sum_{n=0}^{\infty} (t^n \lambda^{2n}/n!)(\lambda - \overline{G})^{-n}Cx$ for $x \in X$ and $t \ge 0$, and the limit is uniform in t on any bounded interval.

PROOF. By (0.3), $||S(t)|| \le Me^{at}$ for $t \ge 0$ and by [2, Theorem 1], $||(\lambda - \bar{G})^{-n}C|| \le M/(\lambda - a)^n$ so that

$$||S_{\lambda}(t)|| \le e^{-\lambda t} M e^{t\lambda^2/(\lambda-a)} = M e^{\lambda at/(\lambda-a)} \le M e^{2at}$$
 for $\lambda > 2a$.

It is easily seen that

$$\frac{d}{ds}S_{\lambda}(s)Cx = S_{\lambda}(s)\lambda \bar{G}(\lambda - \bar{G})^{-1}Cx$$
 for $x \in X$,

and by [1, Lemma 8]

$$\frac{d}{ds}S(s)x = S(s)\overline{G}x$$
 for $x \in CD(\overline{G})$.

By (0.5), $S(s)(\lambda - \overline{G})^{-1}Cx = S(s)L_{\lambda}x = L_{\lambda}S(s)x = (\lambda - \overline{G})^{-1}CS(s)x$ for $x \in X$, i.e., $\overline{G}(\lambda - \overline{G})^{-1}C$ ($=\lambda(\lambda - \overline{G})^{-1}C - C$) commutes with S(s). Now, let $x \in CD(\overline{G})$ and x = Cy, $y \in D(\overline{G})$. Then

$$egin{aligned} rac{d}{ds}(S_{\lambda}(t-s)S(s)x) &= -S_{\lambda}(t-s)\lambdaar{G}(\lambda-ar{G})^{-1}CS(s)y \\ &+ S_{\lambda}(t-s)S(s)ar{G}x \\ &= S_{\lambda}(t-s)S(s)(ar{G}x-\lambdaar{G}(\lambda-ar{G})^{-1}x) \;. \end{aligned}$$

Integrating this from s=0 to s=t, it follows that

$$S(t)Cx-S_{\lambda}(t)Cx=\int_{0}^{t}S_{\lambda}(t-s)S(s)(\bar{G}x-\lambda\bar{G}(\lambda-\bar{G})^{-1}x)ds$$
 .

Therefore

$$||S(t)Cx - S_{\lambda}(t)Cx|| \leq \int_{0}^{t} ||S_{\lambda}(t - s)|| \, ||S(s)|| \, ds \, ||\bar{G}x - \lambda \bar{G}(\lambda - \bar{G})^{-1}x||$$

$$\leq M^{2}e^{8at}t \, ||\bar{G}x - \lambda \bar{G}(\lambda - \bar{G})^{-1}x||$$

and hence we have that for $\lambda > 2a$, T > 0, and $x \in CD(\overline{G})$

$$\sup_{0 \leq t \leq T} ||S(t)Cx - S_{\lambda}(t)Cx|| \leq M^2 e^{8aT} T ||\bar{G}x - \lambda \bar{G}(\lambda - \bar{G})^{-1}x||.$$

By [1, Theorem 11 (b)],

(1.6)
$$\lim_{\lambda \to \infty} \lambda \overline{G}(\lambda - \overline{G})^{-1} Cx = \overline{G}Cx \quad \text{for} \quad x \in D(\overline{G}) .$$

So that

(1.7)
$$\lim_{\lambda \to \infty} \left\{ \sup_{0 \le t \le T} ||S(t)x - S_{\lambda}(t)x|| \right\} = 0 \quad \text{for} \quad x \in C^2D(\overline{G}).$$

Since $C^2D(\overline{G})$ is dense in X, $||S(t)|| \leq Me^{aT}$ and $||S_{\lambda}(t)|| \leq Me^{2aT}$ for $\lambda > 2a$ and $0 \leq t \leq T$, (1.7) holds for every $x \in X$. Q.E.D.

THEOREM 1.3. Let $\{S(t): t \ge 0\}$ be an exponentially bounded C-semigroup. If \bar{G} is the C-c.i.g. of $\{S(t): t \ge 0\}$, then

(1.8)
$$S(t)x = \lim_{n \to \infty} \left(1 - \frac{t}{n}\overline{G}\right)^{-n}Cx \quad \text{for} \quad x \in X$$

and the limit is uniform in t on any bounded interval.

PROOF. By virtue of [2, Theorem 1], $D((\lambda-\bar{G})^{-n})\supset R(C)$, $\|(\lambda-\bar{G})^{-n}C\|\leq M(\lambda-a)^{-n}$ for $\lambda>a$ and $n\geq 1$, and $(\lambda-\bar{G})^{-1}Cx=C(\lambda-\bar{G})^{-1}x$ for $x\in D((\lambda-\bar{G})^{-1})$. Using (ii) in Lemma 1.1 with $T=\lambda(\lambda-\bar{G})^{-1}$, $\alpha=\lambda/(\lambda-a)$ and $h=\lambda^{-1}$, we have

$$\begin{split} \left\| e^{-\lambda t} \sum_{k=0}^{\infty} \frac{(\lambda t)^k}{k!} \lambda^k (\lambda - \overline{G})^{-k} C^2 x - (\lambda (\lambda - \overline{G})^{-1})^{\lfloor \lambda t \rfloor} C^2 x \right\| \\ & \leq M \exp \left(\frac{at}{1 - a/\lambda} \right) \left((1 - a/\lambda)^{-\lambda t} \left\{ \frac{t^2}{\lambda} \left(\frac{a}{1 - a/\lambda} \right)^2 + \frac{t}{\lambda} \left(\frac{a}{1 - a/\lambda} \right) + t \right\}^{1/2} + 1/\nu \sqrt{\lambda} \right) (1/\nu \sqrt{\lambda}) \|\lambda \overline{G} (\lambda - \overline{G})^{-1} C x \| \quad \text{for} \quad x \in X \ . \end{split}$$

Here we used $A^hC=\lambda(\lambda(\lambda-\bar{G})^{-1}C-C)=\lambda\bar{G}(\lambda-\bar{G})^{-1}C.$ Noting that $(1-a/\lambda)^{-\lambda t}\leq (1-a/\lambda)^{-\lambda T}\to e^{aT}$ as $\lambda\to\infty$ for $0\leq t\leq T$, and by (1.6), $\|\lambda\bar{G}(\lambda-\bar{G})^{-1}Cx\|\to\|\bar{G}Cx\|$ as $\lambda\to\infty$ for $x\in D(\bar{G})$, we have that for $x\in D(\bar{G})$

$$\lim_{l\to\infty} ||S_{l}(t)Cx - (\lambda(\lambda - \bar{G})^{-1})^{[l+1]}C^{2}x|| = 0$$

uniformly in t on any bounded interval. Combining this with (1.5), it follows that

$$(1.9) S(t)x = \lim_{\lambda \to \infty} (\lambda(\lambda - \overline{G})^{-1})^{[\lambda t]} Cx \text{for} x \in CD(\overline{G}).$$

Since $CD(\overline{G})$ is dense in X and $\|(\lambda(\lambda-\overline{G})^{-1})^{[\lambda t]}C\| \leq M(\lambda/(\lambda-a))^{\lambda t} \leq M(1+(2a/\lambda))^{\lambda t} \leq Me^{2at}$ for $\lambda>2a$, (1.9) holds for $x\in X$. Setting $\lambda=n/t$ in (1.9), we obtain (1.8). Q.E.D.

REMARK. Let $x \in R(C)$ and x = Cy. By (1.5)

$$S(t)x = \lim_{\lambda \to \infty} e^{-\lambda t} \sum_{n=0}^{\infty} \frac{t^n \lambda^{2n}}{n!} (\lambda - \overline{G})^{-n} C \cdot Cy$$

$$= C \lim_{\lambda \to \infty} e^{-\lambda t} \sum_{n=0}^{\infty} \frac{t^n \lambda^{2n}}{n!} (\lambda - \overline{G})^{-n} Cy.$$

Therefore we have

(1.10)
$$T(t)x = \lim_{\lambda \to \infty} e^{-\lambda t} \sum_{n=0}^{\infty} \frac{t^n \lambda^{2n}}{n!} (\lambda - \overline{G})^{-n}x \quad \text{for} \quad x \in R(C).$$

By the same argument and (1.8), we obtain

(1.11)
$$T(t)x = \lim_{n \to \infty} \left(1 - \frac{t}{n}\overline{G}\right)^{-n} x \quad \text{for} \quad x \in R(C).$$

§2. Generation of exponentially bounded C-semigroups.

The following is a generalization of generation theorem of (C_0) -semigroups.

THEOREM 2.1. A closed linear operator T is the C-c.i.g. of an exponentially bounded C-semigroup $\{S(t): t \ge 0\}$ with $||S(t)|| \le Me^{at}$ if and only if T satisfies the following conditions

- (A1) D(T) is dense in X,
- (A2) λT is injective for $\lambda > a$,
- (A3) $D((\lambda T)^{-n}) \supset R(C)$ for $n \ge 1$ and $\lambda > a$,
- (A4) $\|(\lambda T)^{-n}C\| \leq M/(\lambda a)^n \text{ for } n \geq 1 \text{ and } \lambda > a$,
- (A5) $(\lambda T)^{-1}Cx = C(\lambda T)^{-1}x \text{ for } x \in D((\lambda T)^{-1}) \text{ and } \lambda > a$,
- (A6) CD(T) is a core of T.

PROOF. By virtue of [2, Theorem 1], \bar{G} satisfies (A1)-(A5). To prove

that \bar{G} satisfies (A6), i.e., $CD(\bar{G})$ is a core of \bar{G} , we first note that

$$(2.1) \qquad \int_0^t S(\tau)zd\tau \in D(\overline{G}) \quad \text{and} \\ \overline{G} \int_0^t S(\tau)zd\tau = S(t)z - Cz \qquad \text{for} \quad z \in X \text{ and } t \ge 0 \ .$$

In fact, let $z \in X$ and $t \ge 0$. Since D(G) is dense in X, we can choose $z_n \in D(G)$ with $\lim_{n\to\infty} z_n = z$. Noting $S(\tau)z_n \in D(G)$ and $(d/d\tau)S(\tau)z_n = GS(\tau)z_n = S(\tau)Gz_n$, we obtain

$$S(t)z_n - Cz_n = \int_0^t S(\tau)Gz_n d\tau$$

$$= \int_0^t GS(\tau)z_n d\tau = \bar{G} \int_0^t S(\tau)z_n d\tau.$$

Now, the closedness of \bar{G} implies (2.1) because $\lim_{n\to\infty}\int_0^t S(\tau)z_nd\tau=\int_0^t S(\tau)zd\tau$ and $\lim_{n\to\infty}\bar{G}\int_0^t S(\tau)z_nd\tau=S(t)z-Cz$.

It suffices to show

$$(2.2) \overline{\overline{G}|_{\sigma_D(\overline{\sigma})}} \supset G.$$

To this end, let $x\in D(G)$ and $\varepsilon>0$. Using (2.1) with $z=C^{-1}x$, we have $t^{-1}\int_0^t S(\tau)C^{-1}xd\tau\to x$ and $\bar{G}\Big(t^{-1}\int_0^t S(\tau)C^{-1}xd\tau\Big)=t^{-1}(S(t)C^{-1}x-x)=t^{-1}(T(t)x-x)\to Gx$ as $t\to 0^+$. Hence there is a $t_0>0$ such that $\left\|t_0^{-1}\int_0^{t_0}S(\tau)C^{-1}xd\tau-x\right\|+\left\|\bar{G}\Big(t_0^{-1}\int_0^{t_0}S(\tau)C^{-1}xd\tau\Big)-Gx\right\|<\varepsilon/2$. Since $CD(\bar{G})$ is dense in X, we can choose $x_n\in CD(\bar{G})$ such that $x_n\to C^{-1}x$ as $n\to\infty$. By (2.1) again, $t_0^{-1}\int_0^{t_0}S(\tau)x_nd\tau\in CD(\bar{G})$ and

$$\begin{split} & \bar{G}\Big(t_0^{-1} \int_0^{t_0} S(\tau) x_n d\tau\Big) = (S(t_0) x_n - C x_n)/t_0 \\ & \qquad \to (S(t_0) C^{-1} x - C \cdot C^{-1} x)/t_0 = \bar{G}\Big(t_0^{-1} \int_0^{t_0} S(\tau) C^{-1} x d\tau\Big) \end{split}$$

as $n \to \infty$. Take an n_0 such that

$$\begin{split} \left\| t_0^{-1} \int_0^{t_0} S(\tau) x_{n_0} d\tau - t_0^{-1} \int_0^{t_0} S(\tau) C^{-1} x d\tau \right\| \\ + \left\| \bar{G} \left(t_0^{-1} \int_0^{t_0} S(\tau) x_{n_0} d\tau \right) - \bar{G} \left(t_0^{-1} \int_0^{t_0} S(\tau) C^{-1} x d\tau \right) \right\| < \varepsilon/2 \ . \end{split}$$

Then we have that $t_0^{-1}\int_0^{t_0}S(\tau)x_{n_0}d\tau\in CD(\bar{G})$ and

$$\left\| t_0^{-1} \int_0^{t_0} S(\tau) x_{n_0} d\tau - x \right\| + \left\| \overline{G} \left(t_0^{-1} \int_0^{t_0} S(\tau) x_{n_0} d\tau \right) - Gx \right\| < \varepsilon.$$

So that (2.2) is satisfied.

Conversely, let T satisfies (A1)-(A6). By virtue of [1, Theorem 11], there exists an exponentially bounded C-semigroup $\{S(t): t \ge 0\}$ satisfying $\|S(t)\| \le Me^{at}$ and

(2.3)
$$(\lambda - T)^{-1}Cx = \int_0^\infty e^{-\lambda t} S(t)xdt \quad \text{for } x \in X \text{ and } \lambda > a.$$

By (2.3) and (A5), $L_{\lambda}(\lambda - T)x = Cx$ for $x \in D(T)$ and $\lambda > a$. Combining this with (0.5), we have $\lambda L_{\lambda}Tx = \overline{G}(\lambda L_{\lambda}x)$ for $x \in D(T)$ and $\lambda > a$. Since $\lambda L_{\lambda}x \to Cx$ and $\overline{G}(\lambda L_{\lambda}x) = \lambda L_{\lambda}Tx \to CTx$ as $\lambda \to \infty$, we obtain that $Cx \in D(\overline{G})$ and $\overline{G}Cx = CTx = TCx$ for $x \in D(T)$ and hence $CD(T) \subset D(\overline{G})$ and $T|_{\sigma_D(T)} = \overline{G}|_{\sigma_D(T)} \subset \overline{G}$. So that (A6) implies $T \subset \overline{G}$. Next, by [2, Lemma], for $x \in D(\overline{G})$ $TCx = C\overline{G}x = \overline{G}Cx$, i.e., $CD(\overline{G}) \subset D(T)$ and $\overline{G}|_{\sigma_D(\overline{G})} = T|_{\sigma_D(\overline{G})} \subset T$. Since $CD(\overline{G})$ is a core of \overline{G} , we obtain $\overline{G} = \overline{G}|_{\sigma_D(\overline{G})} \subset T$. Therefore $T = \overline{G}$, i.e., T is the C-c.i.g. of $\{S(t): t \geq 0\}$.

§3. The abstract Cauchy problem.

In this section we consider the following abstract Cauchy problem

(ACP)
$$(d/dt)u(t) = Au(t)$$
 for $t \ge 0$ and $u(0) = x$.

By a solution u(t) of the (ACP) we mean that u(t) is continuously differentiable in $t \ge 0$, u(0) = x, $u(t) \in D(A)$ and (d/dt)u(t) = Au(t) for every $t \ge 0$. The following is a direct consequence of [1, Corollary 13.1].

THEOREM 3.1. If A is the C-c.i.g. of an exponentially bounded C-semigroup $\{S(t): t \geq 0\}$ with $||S(t)|| \leq Me^{at}$, then the (ACP) has a unique solution u(t) satisfying $||u(t)|| \leq Me^{at} ||C^{-1}x||$ for every $x \in CD(A)$.

Conversely the following theorem holds.

THEOREM 3.2. Let A be a densely defined closed linear operator which commutes with C. Suppose that the following conditions are satisfied:

- (a) The (ACP) has a unique solution u(t) with $||u(t)|| \le Me^{at} ||C^{-1}x||$ for $x \in CD(A)$.
- (b) CD(A) is a core of A. Then A is the C-c.i.g. of an exponentially bounded C-semigroup $\{S(t): t \ge 0\}$ with $||S(t)|| \le Me^{at}$.

PROOF. We define the operator $\tilde{T}(t)$: $CD(A) \to D(A)$ by $\tilde{T}(t)x = u(t)$ for $x \in CD(A)$, and the bounded linear operator S(t) by $S(t)x = C\tilde{T}(t)x$ for $x \in X$. Let G be the operator defined by (0.4). Then $\{S(t): t \ge 0\}$ is an exponentially bounded C-semigroup with $||S(t)|| \le Me^{at}$ and

(3.1)
$$CD(A) \subset D(G) \text{ and } G|_{\sigma_{D(A)}} = A|_{\sigma_{D(A)}}$$
,

so that (b) implies $A \subset \overline{G}$. (See [1, Theorem 14].) To conclude the proof, we will show that $\overline{G} \subset A$. We first note

(3.2)
$$L_{\lambda}x \in D(A)$$
 and $AL_{\lambda}x = \lambda L_{\lambda}x - Cx$ for $x \in X$.

Indeed, let $x \in X$. Since CD(A) is dense in X, we can choose $x_n \in CD(A)$ with $\lim_{n\to\infty} x_n = x$. Noting that $S(t)x_n = C\tilde{T}(t)x_n \in CD(A)$, we see from (3.1) that $AS(t)x_n = GS(t)x_n = S(t)\bar{G}x_n$. Using the closedness of A,

$$A \left[\int_0^\infty e^{-\lambda t} S(t) x_n dt \right] = \int_0^\infty e^{-\lambda t} A S(t) x_n dt = \int_0^\infty e^{-\lambda t} S(t) \overline{G} x_n dt$$
 ,

i.e., $AL_{\lambda}x_n = L_{\lambda}\overline{G}x_n$. Combining this with (0.5), $AL_{\lambda}x_n = \lambda L_{\lambda}x_n - Cx_n$. Since A is closed, $L_{\lambda}x_n \to L_{\lambda}x$ and $AL_{\lambda}x_n = \lambda L_{\lambda}x_n - Cx_n \to \lambda L_{\lambda}x - Cx$ as $n \to \infty$, (3.2) holds. Now, by (3.2) and (0.5), $A(\lambda L_{\lambda}x) = \lambda L_{\lambda}\overline{G}x$ for $x \in D(\overline{G})$. Noting that $\lambda L_{\lambda}x \to Cx$ and $A(\lambda L_{\lambda}x) = \lambda L_{\lambda}\overline{G}x \to C\overline{G}x$ as $\lambda \to \infty$, it follows from the closedness of A that

$$Cx\in D(A)$$
 and $ACx=Car{G}x=ar{G}Cx$ for $x\in D(ar{G})$, i.e., $CD(ar{G})\subset D(A)$ and $ar{G}|_{\mathcal{O}D(ar{G})}=A|_{\mathcal{O}D(ar{G})}\subset A$.

Since $CD(\overline{G})$ is a core of \overline{G} we obtain $\overline{G} = \overline{\overline{G}|_{GD(\overline{G})}} \subset A$. Therefore $A = \overline{G}$, i.e., A is the C-c.i.g. of $\{S(t): t \geq 0\}$. Q.E.D.

§4. Connections with semigroups of growth order $\alpha > 0$.

We first recall some results on semigroups of growth order α .

THEOREM 4.1 ([4, Theorem 1.2]). Let n be the integral part of $\alpha > 0$. Then a closed linear operator A in X is the complete infinitesimal generator of a semigroup of growth order α if and only if the following four conditions are satisfied:

- (I) There is a real number ω such that for each $\xi > \omega$, $R(\xi A)$ contains $D(A^{n+1})$ and $(\xi A)^{-1}$ exists.
 - (II) There is a constant M>0 such that

$$||(\xi - A)^{-m}x|| \leq \frac{M}{(m-1)!} \frac{\Gamma(m-\alpha)}{(\xi - \omega)^{m-\alpha}} ||x||$$

for $x \in D(A^{n+1})$, $\xi > \omega$ and m = k(n+1), $k = 1, 2, \cdots$

- (III) $D(A^{n+2})$ is a core of A and D(A) is dense in X.
- (IV) For some $b>\omega$, $(b-A)^{n+1}$ is closable.

LEMMA 4.2 ([4, Lemma 4.1]). Let A be a closed linear operator in X satisfying conditions (I)-(III). Then for each $\xi>\omega$ there exists a bounded linear operator $V(\xi,A)$ such that

- (a) $AV(\xi, A)x = V(\xi, A)Ax$ for $x \in D(A)$,
- (b) $V(\xi, A)(\xi A)^{n+1}x = x$ for $x \in D(A^{n+1})$,
- (c) $V(\xi, A)$ is invertible if and only if $(\xi A)^{n+1}$ is closable.

Our result of this section is the following

THEOREM 4.3. Let $\{U(t): t \ge 0\}$ be a semigroup of growth order $\alpha > 0$. If A is the complete infinitesimal generator of $\{U(t): t \ge 0\}$ then T = A and C = V(b, A) satisfy (A1)-(A6), so that A is the C-c.i.g. of an exponentially bounded C-semigroup $\{S(t): t \ge 0\}$. Moreover, we have S(t) = V(b, A)U(t) and

$$(4.1) U(t)x = \lim_{\lambda \to \infty} e^{-\lambda t} \sum_{m=0}^{\infty} \frac{t^m \lambda^{2m}}{m!} (\lambda - A)^{-m} x$$

$$= \lim_{m \to \infty} \left(1 - \frac{t}{m} A \right)^{-m} x for x \in D(A^{n+1}).$$

PROOF. By virtue of [1, Theorem 26], T=A and C=V(b,A) satisfy (A1)-(A5). We will prove that T=A and C=V(b,A) satisfy (A6), i.e., V(b,A)D(A) is a core of A. By (III), it is sufficient to show that

(4.2)
$$V(b, A)D(A)\supset D(A^{n+2})$$
.

To this end, let $x \in D(A^{n+2})$ and $y = (b-A)^{n+1}x \in D(A)$. Then it follows from Lemma 4.2 (b) that

$$x = V(b, A)(b-A)^{n+1}x = V(b, A)y \in V(b, A)D(A)$$
.

So that (4.2) is satisfied. Finally, it is seen from [1, Remark after Theorem 26], (1.10) and (1.11) that S(t) = V(b, A) U(t) and (4.1) is satisfied. Q.E.D.

ACKNOWLEDGMENT. The author is very grateful to Prof. I. Miyadera for his kind advice.

References

[1] E.B. DAVIES and M.M.H. PANG, The Cauchy problem and a generalization of the Hille-Yosida theorem, to appear.

C-SEMIGROUPS

- [2] I. MIYADERA, On the generators of exponentially bounded C-semigroups, to appear.
- [3] I. MIYADERA, Functional Analysis, Rikôgakusha, Tokyo, 1972 (in Japanese).
- [4] N. OKAZAWA, A generation theorem for semigroups of growth order α, Tôhoku Math.
 J., 26 (1974), 39-51.
- [5] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

Present Address:
DEPARTMENT OF MATHEMATICS
SCHOOL OF SCIENCE AND ENGINEERING
WASEDA UNIVERSITY
OKUBO, SHINJUKU-KU, TOKYO 160