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Introduction

In this paper we are concerned with exponentially bounded C-semi-
groups introduced by Davies and Pang [1].

Let X be a Banach space and let C: X— X be an injective bounded
linear operator with dense range. A family {S(t): 0=<t< } of bounded
linear operators from X into itself is called an exponentially bounded C-
semagroup if

0.1)  St+s)C=S#)S(s) for ¢, s=0, and S(0)=C ,
(0.2) for every xze€ X, S(@t)x is continuous in ¢=0,
(0.3) there exist M=0 and a=0 such that ||S(t)||<Me* for ¢=0.

For every t=0, let T(t) be the closed linear operator defined by
T@)x=C'St)x for x € D(T(t))={x € X: S{t)x € R(C)}. We define the operator
G by

D(G)={x € R(C): lgﬁ( T@)x—x)/t exists} and
Gxtlg)r}r( T)x—x)/t for e D(G).

(0.4)

For every Aa>a, define the bounded linear operator L;: X— X by
L1x=§ e *S(t)xdt for xe X. It is known that G is closable with dense
domain (see [1]) and by [2, (2.8)]

A—G)Lx=Cx for ze X and a>a,

0.5 ~ : -
0.5) L,AW—G)x=Cx for xeD(G) and A>a,

where G denotes the closure of G. G is called the C-c.i.9. (C-complete
wnfinitesimal generator) of {S(t): ¢=0}.
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§1 is devoted to the representation of exponentially bounded C-
semigroups. §2 treats the generation of exponentially bounded C-semi-
groups, and §38 deals with the abstract Cauchy problem. Finally, §4
concerns the connections with semigroups of growth order a>0.

§1. Representation of exponentially bounded C-semigroups.
We start with the following

LEMMA 1.1. Let T be a closed linear operator satisfying the following
conditions

1.1) D(THDR(C) for n=1,
1.2) there are M>0 and a=1 such that |T*C||<Ma* for k=1,
1.3) TCx=CTx for xe R(C) .

Then for x € X we have

(i) e & 22 mhGn— 10

éM m(a-—l){m2(a_1)2+m(a——1)+m}1/2”(T— I)Cx”

for m=1 and

(ii) ” —t/h 2 / T"Cz — T/MC2y

_gMeﬂa-”/h(a‘/h{htZ(i‘-‘-;—l-)z+ht( “;1 )+t}”2+1/h— )1/}7 1| A*Ca|

for t=0 and h>0, where A*=h"(T—1I) for h>0 and [ ]| denotes the
Gaussian bracket.

PROOF. We first note that by (1.2), v, (m*/k!)T*C converges in
norm and defines a bounded linear operator.

Let xe¢ X. We have
= mH(T*C*x— T™C%x)
> k! )

e ™ Z m* T"sz TC*x=e™™
But, by (1.3) for k>m,

T*Crg — Tﬂczx=§ T« TC*%— C'x)
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i=m

and hence by (1.2), we have

I T*Cte— TmCall s M( S, o )I(T—D)Cx]
- =EMorEe—m)|[(T-DCx|
On the other hand, for k<m,
| T*C?*x — T™C%|| < Ma™(m —k)||(T—I)Cx|| .

Therefore, we obtain that

”e“”‘ g %T"Czw — T"‘C’x!

By the Schwarz inequality

g 1k—1z|'a"m" ge”'“{mz(a—l)z-i-m(a—l)+'m,}1/2 .

So that (i) is proved.
Using (i) with m=[t/h] (£t/h), we have

k=0

1.4) He—wh] i _Lﬁlz}_?;_]f_chzx — T2

< Maa/hem_l)/h{ﬁ( a;l ) +t( a;l >+t/h}mll(T— I)Ca|

=Ma‘/’*e‘<a-“/"{ht2(-‘-”;h'-1-)2+ht(—0-‘:i)+t}ml/7 lArC]| .

h
We define the bounded linear operator S,(s) for every s=0 by

Sis)=e— 3, G gy
= k!
It is easy to see that
24 _3,(s)Cr=S,(s)A*Cx .
ds
Integrating this from s=[t/h]h to s=t, we obtain

S,(&)Cx— S,([t/h)k)Car = S:M S,(s)A*Cads .

<Mamc™ 3, '-’f*—-’jc"‘,ﬁ"—m—"n(T—mmu .
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Since ||S,(s)||<e™** 35, ((s/h)*[k!) Ma* = Me**“"/*, we have

< Mhet | A*C]| .

S,(#)Cx—e /M i‘, {1710 T*C*x
k=0 k!
Combining this with (1.4), the desired inequality is proved. Q.E.D.

REMARK. If C=Iin Lemma 1.1, the estimates (i) and (ii) are known.
(See [3] or [B].)

THEORE]![ 1.2. Let {S®):t=0} be an exponentially bounded C-semi-
group. If G is the C-c.i.g. of {S(t): t=0}, then

(1.5) S(t)x=}£12 S:(t)x Jor zeX,

where S(H)x=e"% 2 t"\"/n))A—G)"Cx for xeX and t=0, and the
limit is uniform in t on any bounded interval.

ProoF. By (0.3), ||S@®)||=Me* for t=0 and by [2, Theorem 1],
|, —G)"C|| < M/(»—a)" so that

” S;(t) ” < e~ 4t Metzﬁ/(z—a) — Melatl(z—a) < Me?t for \> 2a .

It is easily seen that

-(—id;S;(s)Cx=Sz(s)7\.@(7\,—-G)“IC:G for zeX,

and by [1, Lemma 8]

diss(s)x—_-S(s)éx for xeCD@) .

By (0.5), S(8)\(\n—G)'Cx=S8(s)L,x=L,;S(8)x=(—G)"'CS(s)x for z e X, i.e.,
GO—G)'C (=A(A—G)'C—C) commutes with S(s). Now, let z € CD(G) and
2=Cy, y€ D(G). Then
—:li—s(Sz(t—s)S(s)x) = — Syt—a\GO—B)'CS(s)y
+S,(t—8)S(s)Gx
=8,(t—8)S(8)(Gx—A\GO\—G) %) .
Integrating this from s=0 to s=¢, it follows that

S#)Cx— S;(t)Cx= S: S:(t —8)S(s8)(Gx —\G(—G)x)ds .
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Therefore
| S(t)Cax— S;(t)Crl| = S: 18:(&—8)||1S(s)]| ds [|Ge—AG L —G) |
=Mt ||Gx—AGO\—G) ||
and hence we have that for a>2a, T> 0, and z e CD(G)
sup IS(#)Cx — S;(#)Cx|| < M2¢*” T||Ge — NGO — G) x| .

By [1, Theorem 11 (b)],

(1.6) lzim AGA—G)Cx=GCx for zeD@G).

So that

1.7 lim {sup [|[SE)x—S;(&)x||}=0 for xeC:D@G) .
A0, 0StST

Since C®*D(G) is dense in X, ||S()||<Me** and ||S;(®)||<Me** for A>2a
and 0=t=<T, (1.7) holds for every x e X. Q.E.D.

THEOREM 1.8. Let {S():t=0} be an exponentially bounded C-semi-
group. If G is the C-c.i.g. of {S(t): t=0}, then

(1.8) S(t)x=1im(1 -——i—@)—an for zeX

n—oo

and the limit is uniform in t on any bounded imterval.

PROOF. By virtue of [2, Theorem 1], D((A—&)")DR(C), ||(z—6G)~"C|| =
M(n—a)™ for A>a and n=1, and (\—G)'Cx=CA—G)'x for ze
D(An—G)™). Using (if) in Lemma 1.1 with T=AxQ0A—G&), a=\/(—a)
and A=)\"!, we have

“ -2t z (Nt) SAE)T 5 ko — G)—kczm A(u— G) NGy

)((1 a/n)” “{ (_f—(%/x—.)‘_l_—;ﬁ( l—aa/x,)

+t} +1/1/x)(lll/x)lle(x—-G)*ICxH for zeX.

=M exp(

Here we wused AC=A0OA—GF)C—-C)=AGA—G)'C. Noting that
A—a/M)=Q1 —a/A)"—e as Ao oo for 0=<¢t<T, and by (1.6),
ING(.—G)~*Cx|| — ||GCx|| as A — oo for z e D(G), we have that for z e D(@G
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llim )|S:(#)Cx— (x(x—@)*‘)“‘lclel =0

uniformly in ¢ on any bounded interval. Combining this with (1.5), it
follows that ‘

(1.9) S(t)w=£im(>\,(7\.——@)")“‘]Cx for 2eCD@G) .
Since CD(G) is demse in X and |(OA—G)™)HC|=MA/(L—a)*<

MQA+@Qa/\)¥<Me* for n>2a, (1.9) holds for xe X. Setting A=n/t in
(1.9), we obtain (1.8). Q.E.D.

REMARK. Let ze R(C) and z=Cy. By (1.5)

S(tyz=1im = i _t;%’l(x—é)-"c .Cy

A—+00 n=0

=Clim ¢~* i t;)‘;h A—G)"Cy .
Therefore we have
(1.10) T(tyo=lime™ 3} t;_’”!”'(x—@)—ﬂx for zeR(C).
By the same argument and (1.8), we obtain

(1.11) T(t)z=lim 1-%@)_":» for zeR(C).

§2. Generation of exponentially bounded C-semigroups.

The following is a generalization of generation theorem of (C,)-
semigroups.

THEOREM 2.1. A closed linear operator T is the C-c.i.g. of an ex-
ponentially bounded C-semigroup {S(): t=0} with ||S(t)||< Me* if and only
tf T satisfies the following conditions

(A1) IXT) is dense in X,

(A2) A—T 18 wnjective for v >a,

(A3) D(L—T)"™"DR(C) for n=1 and \>a,

(A4) [[\—T)Cll=M/(n—a)" for n=1 and \>a,

(A5) W—T)""Cx=C(n—T)*x for xe D(L—T)™") and \>a,

(A6) CD(T) is a core of T.

PRrROOF. By virtue of [2, Theorem 1], G satisfies (A1)-(A5). To prove
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that G satisfies (A6), i.e., CD(G) is a core of G, we first note that

St S(z)zdr € D(G) and
(2.1) o '
GS S(z)zdz=8S(t)z—C=z for ze X and t=0.

In fact, let ze X and t=0. Since D(G) is dense in X, we can choose
z2,€ D(G) with lim,..z,=2. Noting S(z)z,€ D(G) and (d/dz)S(7)z,=
GS(7)z,=8S(z)Gz,, we obtain

S(t)z, —Cz, = S S(t)Gz,dr

- S‘ GS(@)z,dc=G S’ S(t)z.dr .

Now, the closedness of G implies (2.1) because lim,_... St S(T)anz"‘—“st S(z)zdr
— [t 0 0
and lim,_... GS S(t)z.dr = S(t)z—Cz.
0
It suffices to show
(2.2) élom'@)DG .

To this end, let x € D(G) and ¢>0. Using (2.1) with 2=C*x, we have

S S(r)C ndz —w and G( ¢ SS(z')C"lxdz')—t‘l(S(t)C‘lw ) =t (T(E)x — ) —
Gz as t—0". Hence there is a ¢,>0 such that ” 5 So S(z)C*axdr — x“—i—
HG(t° S S(z)C- xdz')-—GxH<e/2 Since CD(G) is dense in X, we ecan
choose #z,€CD(G) such that z,—»Cx as mn—~. By (2.1) again,
o\’ 82,4z € CD@G) and

G( - S‘° S(z')a:,,dz') = (S(t)x, — Caz,)/ts
- (S(t)C-%—C - C~'m)/t, = G( - §:° S(z)c-lxdz)

as n— . Take an 7, such that

o S:o ST, dr—t5* S:° S(Z‘)C"‘xdr”
+ I|G(to“‘ S:o S(r)x,.odz-) —@( o S:o S(z-)C‘lacdz-)H <e/2.

Then we have that ¢! S:o S(z)x,dr € CD(G) and
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tt S:o S(t):vnodz'—xll+l\@( . S:o S(z-)w,,odz')—Gx”<s .

So that (2.2) is satisfied.

Conversely, let T satisfies (A1)-(A6). By virtue of [1, Theorem 11],
there exists an exponentially bounded C—semlgroup {S(®): t=0} satisfying
|S®)|| < Me** and

(2.8) W—T)"Cx= S —%S(t)xdt for zeX and A >a .

By (2.3) and (A5), L,(\— T)z=Cz for € D(T) and x>a. Combining this
with (0.5), we have AL, Tx=G(\L;x) for x € D(T) and x>a. Since ALxz—Cx
and GO\L;x)=A\L;Tx—CTx as n—co, we obtain that Cx e D(G) and GCx=
CTx=TCx for xeD(T) and hence CD(T)cD(G) and Tloper —-G[aDmCG
So that (A6) implies TCG. Next, by [2, Lemma], for ze DG) TCx=
CGx=GCz, i.e., CD(G)CD(T) and Glop@ = Tlena, CT. Since CD(G) is a
core of G, we obtain G= Glg,,(g)c T. Therefore T=G, i.e., T'is the C-c.i.g.
of {S(t):t=0}. Q.E.D.

§3. The abstract Cauchy problem.

In this section we consider the following abstract Cauchy problem
(ACP) (d/dt)u(t)=Au(t) for t=0 and u(0)=2.

By a solution u(t) of the (ACP) we mean that u(t) is continuously dif-
ferentiable in t=0, u(0)=x, u(t) € D(A) and (d/dt)u(t)= Au(t) for every t=0.
The following is a direct consequence of [1, Corollary 13.1].

THEOREM 3.1. If A is the C-c.i.g. of an exponentially bounded C-
semigroup {S(t):t=0} with ||S@)||<Me*, then the (ACP) has a umnique
solution u(t) satisfying ||u(t)||<Me*||C'x|| for every x e CD(A).

Conversely the following theorem holds.

THEOREM 3.2. Let A be a densely defined closed limear operator
which commutes with C. Suppose that the following conditions are
satisfied:

(a) The (ACP) has a unique solution w(t) with |u(®)|<Me*|C x|
for x € CD(A).

(b) CD(A) s a core of A.

Then A 18 the C-c.i.g. of an exponentially bounded C-sengroup {S():
t=0} with ||S®)||=Me*.
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PROOF. We define the operator 7¥(t): CD(A)— D(A) by Tt)z=u(t) for
x € CD(A), and the bounded linear operator S(¢) by S(t)w=67f‘(7)x for x € X.
Let G be the operator defined by (0.4). Then {S(t): t=0} is an exponen-
tially bounded C-semigroup with ||S(¢)||<Me** and

3.1) CD(A)c D(G) and Glepy=Alopw »

so that (b) implies A_CG. (See [1, Theorem 14].) To conclude the proof,
we will show that GCA. We first note

8.2 Lx e D(A) and AL x=M\L,x—Cx for zeX.

Indeed, let x€ X. Since CD(A) is dense 111 X, we can choose x, € CD(A)
with lim,..#,=2. Noting that S(t)x,=CT(t)x, c CD(4), we see from (3.1)
that AS(t)x,=GS(t)x,=S(t)Gx,. Using the closedness of A,

AD:’ e'*‘S(t)x,,dt]=S e AS(t)z, dt—-s e~*S(t)Gu,dt

i.e., AL;x,=L,Gx,. Combining this with (0.5), AL, =Lx,—Czx,. Since
A is closed, Lx,— L;x and ALx,=\Lx,—Cx,—ALx—Cx as n— oo, (3.2)
holds. Now, by (3.2) and (0.5), A(Lw)=AL,Gx for xe D(G). Noting
that AL, x— Cx and A(xL;oo) AL;Gx— CGx as A— oo, it follows from the
closedness of A that

CxeD(A) and ACx=CGx=GCx for xzeD@G) , i.e.,
CD(G)cD(4) and (_;Iap(ﬁ):AlaD(t?)CA .

Since CD(G) is a core of G we obtain G=G|cpa, CA. Therefore A=G,
i.e., A is the C-c.i.g. of {S(t): t=0}. Q.E.D.

S4. Connections with semigroups of growth order a>0.
We first recall some results on semigroups of growth order a.

THEOREM 4.1 ([4, Theorem 1.2]). Let n be the integral part of a>0.
Then a closed linear operator A in X is the complete infinitesimal
generator of a semigroup of growth order a if and only if the following
Sour conditions are satisfied:

(I') There is a real number @ such that for each £>w, R(E—A)
contains D(A™) and (¢—A)™ exists.

(II) There is a constant M >0 such that

 A\~m M I'im—ea)
e~y M Llm=a g
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for xe D(A™Y), > @ and m=k(n+1), k=1,2, «--.
(A1) D(A"™**) is a core of A and D(A) is dense m X.
dV) For some b>w, (b—A)*** 48 closable.

LEMMA 4.2 ([4, Lemma 4.1]). Let A be a closed linear operator in
X satisfying conditions (D)-{II). Then for each &>@ there exists a
bounded linear operator V(¢ A) such that

(a) AV(, Ax=V(, A)Ax  for x < D(A),

(b) Vi, A)—Artz=z  for xeD(A™™),

(e) Vg A) 18 invertible if and only if (e—A)*** is closable.

Our result of this section is the following

THEOREM 4.3. Let {U(t): t=0} be a semigroup of growth order a>0.
If A is the complete infinitesimal generator of (U(t): t=0} then T=A
and C= V(b, A) satisfy (A1)-(AS), so that A is the C-¢c.i.g. of am expomenti-
ally bounded C-semigroup {S(): t=0}. Moreover, we have S@)= V(b, A)U®)

and

@.1) Uz=lim e 3, L2~ )"

m
—lim (1 —%A)’"'x for ze DA™ .

M —r00

ProoF. By virtue of [1, Theorem 26], T=A and C=V(b, A4) satisfy
(A1)-(A5). We will prove that T=A and C=V(b, A) satisfy (A6), i.e.,
V(b, A)D(A) is a core of A. By (IID), it is sufficient to show that

4.2) V(b, A)D(A)D D(A™) .

To this end, let x € D(A™?) and y=(0b—A)""'x € D(A). Then it follows
from Lemma 4.2 (b) that
z=V(b, A)(b—A)+x=V(b, A€ V(b, A)D(A) .

So that (4.2) is satisfied. Finally, it is seen from [1, Remark after

Theorem 26], (1.10) and (1.11) that S(t)= V(b, A)U(t) and (4.1) is satisfied.
Q.EoD-
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