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\S 1. Introduction.

In this paper we shall consider properties of ergodic measure preserv-
ing (e.m. $p.$ ) transformations $T$ defined on an infinite (a-finite) Lebesgue
measure space (X, ra $m$). It is well known that, in general, properties
of such transformations are quite different from those of e.m. $p$ . trans-
formations defined on a finite measure space. For example, if $ m(X)<\infty$

then it is easy to show that any non-singular measurable transformation
$S$ defined on (X, $\mathscr{G},$ $m$) satisfying $ST=TS$ must preserve the same measure
$m$ ; this need not be the case if $ m(X)=\infty$ , see [8]. Furthermore, if
$ m(X)=\infty$ , then the $L^{\infty}$-point spectrum $\Lambda(T)$ can be uncountable; [1], [9],

[12].
$A$ distinguishing feature of e.m. $p$ . transformations $T$ defined on a

a-finite measure space is the fact that if $ m(X)=\infty$ then $T$ always

admits weakly wandering (w.w.) sets of positive measure, and hence
w.w. sequences; this is never the case if $ m(X)<\infty$ .

In [7], an example of an e.m. $p$ . transformation $T$ was constructed
which possessed an exhaustive (exh.) w.w. sequence. Namely, an infinite
sequence $\{n_{i}\}$ of integers for which there exists a measurable set $W$ such
that $ T^{n_{i}}W\cap T^{n_{j}}W=\emptyset$ for $i\neq j$ , and $\bigcup_{i}T^{n_{i}}W=X$. It was shown later in
[10] that every e.m. $p$ . transformation $T$ defined on an infinite measure
space admits an exh. w.w. sequence $\{n_{i}\}$ . However, sets which are exh.
and w.w. under such sequences may or may not be of finite measure.
In [4] and [5] a class of e.m. $p$ . transformations is constructed which admit
exh. w.w. sequences $\{n_{i}\}$ for which the corresponding w.w. sets $W$ must
have finite measure; we designate these as transformations of finite type.
We will show in Theorem 1 below that for any e.m. $p$ . transformation $T$

defined on an infinite measure space (X, $\ovalbox{\tt\small REJECT} m$) sets which are exh. and
$w.w$ . for $T$ under the same sequence $\{n_{i}\}$ must have the same measure,

finite or infinite. Hence for a given e.m. $p$ . transformation $T$ defined on
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an infinite measure space it makes sense to talk about exh. w.w. sequences
of finite type or of infinite type. We shall see later that there are e.m. $p$ .
transformations which admit exh. w.w. sequences only of infinite type;
we designate these as transformations of infinite type. In this article
we shall study some properties of e.m. $p$ . transformations of finite type;
in particular, we shall show that those transformations of finite type
belonging to the special class constructed in [4] behave in many respects
like e.m. $p$ . transformations defined on a finite measure space.

\S 2. Definitions and basic properties.

Let $T$ be an e.m. $p$ . transformation defined on an infinite Lebesgue
measure space (X, ta $m$). All sets considered will be measurable, and
sets of measure zero will be ignored in expressing relations among sets.
An infinite sequence of integers $\{n_{c}\}$ is called an exhausting (exh.) sequence
for $T$ if there exists a set $W$ of positive measure such that $\cup T^{n}W=X$;
and $\{n_{i}\}$ is called a weakly wandering (w.w.) sequence for $T$ if $ T^{n_{i}}W\cap$

$ T^{n_{j}}W=\emptyset$ for $i\neq j$ . The corresponding set $W$ in each case will be called
an exhausting (exh.) or weakly wandering $(w.w.)$ set for $T$ under $\{n_{i}\}$ ,
respectively.

DEFINITION. Let $T$ be an e.m. $p$ . transformation defined on an infinite
measure space. If there exists a set $W$ of finite measure which is exh.
w.w. for $T$ under a sequence of integers $\{n_{i}\}$ then we say that the
transformation $T$ is of finite type; otherwise, $T$ is of infinite type.

The following theorem establishes some characteristic properties of
e.m. $p$ . transformations of finite type.

THEOREM 1. Let $T$ be an $e.m.p$ . transformation defined on an infinite
measure space (X, $\mathscr{G},$ $m$). Suppose $We\mathscr{G}$, with $ m(W)<\infty$ , is an $exh$ .
$w.w$ . set for $T$ under a sequence $\{n_{i}\}$ , and let $ V\in$ ta We consider the
following statements:
a) $V$ is $exh$ . under $\{n_{i}\}$ .
b) $V$ is $w.w$ . under $\{n_{i}\}$ .
c) $m(V)=m(W)$ .
Then any two of the above statements together imply the third. For the
implication a) and b) together implying c) the condition that $ m(W)<\infty$

is not necessary.

Before proving Theorem 1 we state and prove the following lemma
where we gather some properties of sets that are exh. or w.w.
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LEMMA 1. For an $e.m.p$ . transformation $T$ defined on an infinite
measure space (X, $\ovalbox{\tt\small REJECT},$ $m$) the following statements hold:
(i) $Ww.w$ . under $\{n_{i}\}$ implies $Ww.w$ . under $\{-n_{i}\}$ .
(ii) $Ww.w$ . under $\{n_{i}\}$ implies $T^{k}Ww.w$ . under $\{n_{l}\}$ for every $keZ$.
(iii) $Wexh$ . under $\{n_{i}\}$ implies $T^{k}Wexh$ . under $\{n_{i}\}$ for every $keZ$.
(iv) $Ww.w$ . under $\{n_{i}\}$ and $Vexh$ . under $\{n_{i}\}$ imply $m(W)\leqq m(V)$ .
(v) $Wexh$ . $w.w$ . under $\{n_{i}\}$ and $ m(W)<\infty$ imply $Wexh$ . $w.w$ . under
$\{-n_{i}\}$ .

PROOF. (i), (ii), and (iii) follow from the definitions. Next we prove
(iv). Since $V$ is exh. under $\{n_{i}\},$ $T$ is m.p., and $W$ is w.w. under $\{-n_{i}\}$

we have

$m(W)=m(W\cap\bigcup_{l}T^{n_{i}}V)\leqq\sum_{i}m(W\cap T^{n_{i}}V)=\sum_{l}m(T^{-n_{i}}W\cap V)$

$=m(\bigcup_{i}T^{-n_{i}}W\cap V)\leqq m(V)$ .

To prove (v) it is enough to show that $W$ is exh. for $T$ under $\{-n_{i}\}$ . For
each keZ we let $W_{k}=T^{k}W$. Then, since $W_{k}$ is exh.$w.w$ . under $\{n_{i}\},$ $T$

is m.p., and $W$ is w.w. under $\{-n_{i}\}$ , we have

$m(W)=m(W\cap\bigcup_{i}T^{n_{i}}W_{k})=\sum_{i}m(W\cap T^{n_{l}}W_{k})=\sum_{i}m(T^{-n_{i}}W\cap W_{k})$

$=m(\bigcup_{i}T^{-n_{i}}W\cap W_{k})\leqq m(W_{k})=m(W)<\infty$ .
We conclude that $W_{k}=T^{k}W\subset\bigcup_{i}T^{-n_{i}}W$ for each $k\in Z$, and since $\bigcup_{k}T^{k}W=$

$X$ by the ergodicity of $T$, it follows that $\bigcup_{i}T^{-n_{i}}W=X$. $\square $

REMARK 1. In order to emphasize the significance of (v) in Lemma
1 we note that, in general, if $W$ is an exh. set for a transformation $T$

under a sequence $\{n_{i}\}$ then it does not follow that $W$ is exh. for $T$ under
$\{-n_{i}\}$ . To show this in a simple case for a finite sequence, we let $T$ be
an e.m. $p$ . transformation defined on a measure space (X, $\mathscr{G},$ $m$) for which
there exists a decomposition

$X=\bigcup_{i=0}^{f}X_{i}$ (disj), with $T(X_{j})=X_{j+1}(mod 6),$ $0\leqq j\leqq 5$ .
We let

$W=X_{0}\cup X_{2}\cup X_{6},$ $n_{0}=0,$ $n_{1}=1,$ $n_{2}=4$ .
Then it is easy to see that

$\bigcup_{i=0}^{2}T^{n_{i}}W=X$ while $i=u_{0}^{2}T^{-n_{i}}W=X-X_{3}\neq X$ .
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PROOF OF THEOREM 1. We suppose a) holds together with b) and do
not assume that $ m(W)<\infty$ . From (iv) in Lemma 1 follows that $ m(W)\leqq$

$m(V)$ ; we obtain the reverse inequality by interchanging the roles of $V$

and $W$, and conclude c).
For the remainder of the proof we assume that $ m(W)<\infty$ . For each

$k\in Z$ we let $W_{k}=T^{k}W$. Then using Lemma 1, since $W_{k}$ is exh. w.w. under
$\{-n_{i}\}$ and $T$ is m.p. we have

(2.1) $m(V)=m(\cup T^{-n_{i}}W_{k}\cap V)=\sum m(T^{-n_{i}}W_{k}\cap V)=\sum m(W_{k}\cap T^{n_{i}}V)$ .
Now we suppose b) holds together with c). Then since $V$ is w.w. under
$\{n_{i}\}$ and $T$ is m.p., using (2.1) we get

$m(V)=\sum_{i}m(W_{k}\cap T^{n_{i}}V)=m(W_{k}\cap\bigcup_{i}T^{n_{l}}V)\leqq m(W_{k})=m(W)$ .
This says that $T^{k}W\subset\bigcup_{i}T^{n_{l}}V$ for each $k\in Z$. From the ergodicity of $T$

we conclude that $V$ is exh. under $\{n_{i}\}$ , and therefore a) holds.
Next, instead of b) we suppose a) holds together with c). Then

since $V$ is exh. under $\{n_{i}\}$ and $T$ is m.p., using (1.1) we get

$m(V)=\sum_{i}m(W_{k}\cap T^{n_{i}}V)\geqq m(W_{k}\cap\bigcup_{i}T^{n_{i}}V)=m(W_{k})=m(W)$ .
This says that for each keZ and for $i\neq j$ the sets $T^{n_{i}}V$ and $T^{n_{j}}V$ do
not intersect on the set $W_{k}$ . From the ergodicity of $T$ we conclude that
$V$ is w.w. under $\{n_{i}\}$ , and therefore b) holds. $\square $

We note that for an e.m. $p$ . transformation $T$ defined on an infinite
measure space, in view of Theorem 1, it makes sense to talk of an exh.
w.w. sequence $\{n_{i}\}$ of finite or infinite type depending on whether it ac-
cepts an exh. w.w. set of finite measure or not, respectively.

COROLLARY. Let $T$ be an e.m.p. transformation of finite type on an
infinite measure space (X, $\mathscr{G},$ $m$), then $T$ admits only $m.p$ . commutators.
In other words, if $S$ is a non-singular transformation such that $ST=TS$,
then $S$ preserves the same measure $m$ .

PROOF. For a set $Ve\mathscr{G}$ we let $m’(V)=m(SV)$ . Then $m’(TV)=$
$m(STV)=m(TSV)=m^{\prime}(V)$ shows that $m$

’ is an invariant measure for $T$,
and the non-singularity of $S$ says that $m^{\prime}\sim m$ . Since $T$ is ergodic it
follows that there exists a constant $c>0$ such that $m(SV)=cm(V)$ for
all $V\in \mathscr{G}$. If $W$ is a set of finite measure which is exh. w.w. for $T$ under
a sequence $\{n_{i}\}$ then so is the set $SW$ under the same sequence $\{n_{i}\}$ .



ERGODIC MEASURE PRESERVING TRANSFORMATIONS 463

Hence by Theorem 1, $m(SW)=m(W)$ , which implies $c=1$ , and therefore,
$S$ preserves $m$ . $\square $

REMARK 2. In [8], examples of e.m. $p$ . transformations $T$ were con-
structed which commuted with transformations $S$ satisfying $m(SV)=$

$cm(V)$ for all $Ve\mathscr{G}$ and for some $c\neq 1$ . Theorem 1 above shows that
these transformations are necessarily of infinite type.

REMARK 3. In [2], J. Aaronson introduced for e.m. $p$ . tansformations
$T$, a set $\Delta(T)$ of ”normalizing constants”. Namely, $\Delta(T)$ is the set of all
positive numbers $c$ for which there exist an $e$ .m.p. transformation $U$ on
some a-finite measure space $(Y, \mathscr{G}^{-}\mu)$ and two measurable map8 $\Theta_{1}$ and
$\Theta_{2}$ of $Y$ onto $X$ such that

$\Theta_{i}U=T\Theta$ for $i=1,2$ , and $\mu\Theta_{1}^{-1}=m$ , $\mu\Theta_{2}^{-1}=cm$ .
It turns out that $\Delta(T)$ is a multiplicative subgroup of $R^{+}$ , the non-
negatiVe reals, and is an invariant for ”similarity“ of transformations;

for details we refer the reader to [2]. The argument used in the proof

of the corollary above shows that $\Delta(T)=\{1\}$ for any e.m. $p$ . transformation
$T$ of finite type, and hence among other things, the so called Strong

Law of Large Numbers is valid for transformations of finite type.

\S 3. Further properties of transformations of finite type.

In this section, we discuss additional properties of e.m. $p$ . transfor-
mations of finite type that belong to a special class of transformations
constructed in [4]. These transformations have a close connection to the

direct sum decomposition of the integers. Below we describe these

transformations and discuss some of their properties. Now we give a
brief explanation of direct sum decompositions.

DIRECT SUM DECOMPOSITIONS. We denote by $N=\{0,1,2, \cdots\}$ the 8et
of all non-negative integers. By a direct sum decomposition of $N$ we mean
two infinite subsets $A$ and $B$ of $N$ whose direct sum is $N,$ $A\oplus B=N$;

this means that every integer $neN$ can be written uniquely as $n=a+b$

with aeA and $b\in B$ . In this case we say that $B$ is a complement of $A$

in $N$. It is possible to characterize the sets $A$ and $B$ of such a decom-
position of $N$ as IP sets associated with a sequence of positive integers

$\{m|i\geq 1\}$ where $m_{l}\geqq 2$ for all $i$ ; see [3], [4], [11]. Namely, we let $M_{0}=1$ ,
$i$

and $M_{k}=\prod_{n1}^{k}=m_{n}$ for $k=1,2,$ $\cdots$ . Then $A$ is the IP set generated by

the sequence
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$\{0,\frac{M_{1},M_{1},\cdots,M}{\eta-1t1mes}1’\frac{M_{3},M_{3}}{n_{4}-1}\frac{M}{times}3 ’ \frac{M_{2n-1},M_{2n-1},\cdots,M_{2n-}}{n_{2\hslash}-1tlmes}1 \}$
,

and $B$ is the IP set generated by the sequence

$\{0,\frac{M_{0},M_{0},\cdots M}{r_{1}-1tim\circ 8}0’ M_{2}\frac{z’ M_{2},\cdots,M}{n_{3}-1t1m68}, \cdot . . ,\frac{M_{2n},M_{2n},\cdots,M}{n_{2n+1}-1t1mes}2n’ . . \}$
.

Here by an IP set generated by a sequence $\{P_{1}, P_{2}, \cdots, P_{k}, \cdots\}$ we mean
the set of all finite sums $\{P_{c_{1}}+P_{i_{2}}+\cdots+P_{ij};1\leqq i_{1}<i_{2}<\cdots<i_{j}, j=1,2, \cdots\}$ ,
see [6]. Moreover, it is possible to discuss direct sum decompositions of
$Z$, the set of all integers. However, the situation is quite a bit more
complicated and we leave the discussion to a subsequent paper.

In [4], for each direct sum decomposition of $N,$ $A\oplus B=N$, an infinite
measure space (X, va $m$), an e.m. $p$ . transformation $T$, and a set $W\subset X$

are constructed such that the set $W$ is exh. and w.w. for $T$ under the
sequence $A$ , with $m(W)=1$ . In the following example we give a slightly
different description of these transformations from that given in [4].

EXAMPLE. Let $A\oplus B=N$ be a direct sum decomposition of the non-
negative integers $N$, and let $\{m_{i}|i\geqq 1\}$ where $m_{i}\geqq 2$ for all $i$ be the
sequence of positive integers characterizing the sets $A$ and $B$ as described
above. We let $M_{0}=1$ and $M_{n}=\prod_{i=}^{n}m$ . Now we shall construct an e.m. $p$ .
transformation $T$ defined on a measure space (X, $\mathscr{G},$ $m$) and show that
there exists an exh. w.w. set $W$ for $T$ under the sequence $A$ with
$m(W)=1$ . For each $n>0$ we consider the measure space $(\Omega_{n}, \mathscr{G}_{n}, \mu_{n})$

where $\Omega_{n}=\{0,1,2, \cdots, m_{2n-1}-1\},$ $\mathscr{G}_{n}=al1$ subsets of $\Omega_{n}$ , and $\mu_{n}(p)=1/m_{2n-1}$

for $pe\Omega_{n}$ . We let

$(W, \mathscr{G}, m)=\prod_{n=1}^{\infty}(\Omega_{n}, \mathscr{G}_{n}, \mu_{n})$

be the infinite direct product measure space, and define the transformation
$T_{W}$ on it as follows: $T_{W}:W\rightarrow W$ is the ”adding machine” transformation;
namely, if $weW$

$w=(w_{1}, w_{2}, \cdots, w_{n-1}, w_{n}, w_{n+1}, \cdots)$ ,
$w_{i}=m_{2i-1}-1$ for $1\leqq i\leqq n-1$ , and $w_{n}<m_{2n-1}-1$ ,

then

$T_{W}w=(0, \cdots, 0, w_{n}+1, w_{n+1}, \cdots)$ .
We define a sequence of integers $\{z_{n}(k)|0\leqq k\leqq m_{2n-1}-1, n=1,2, \cdots\}$ by
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$z_{1}(i)=iM_{0}$ for $0\leqq i\leqq m_{1}-1$ ,
$z_{2}(i)=iM_{2}$ for $0\leqq i\leqq m_{3}-1$ ,(3.1)

$z_{n}(i)=iM_{2n-2}$ for $0\leqq i\leqq m_{2n-1}-1,$ $n>2$ .
Then it is easy to check that for each $n>0$ ,

(3.2) $z_{n}(i)>z_{n}(i-1)+\sum_{j=1}^{n-1}z_{j}(m_{2j-1}-1)$ , $1\leqq i\leqq m_{2n-1}-1$

is satisfied. We define a sequence of random variables $\{Z_{n}\}$ on $W$ by

(3.3) $Z_{n}(w)=z_{n}(w_{n})$ for each $n\geqq 1,$ $weW$ ,

then $\{Z_{n}\}$ becomes an independent sequence of random variables on the
probability space $(W, \ovalbox{\tt\small REJECT}, m)$ , and if we let

$h(w)=\sum_{n=1}^{\infty}\{Z_{n}(T_{W}w)-Z_{n}(w)\}$ for $weW$ ,

then in view of (3.2), one can show that $ 1\leqq h(w)<\infty$ for all $weW$. Next
we let $X=\{(w, k)|weW, 0\leqq k<h(w)\}$ and extend the $\sigma$-algebra structure
and the measure to $X$ in the natural way; we denote these by the same
letters $\mathscr{G}$ and $m$ , respectively. Finally, on the measure space (X, $\ovalbox{\tt\small REJECT},$ $m$)
we define the transformation $T:X\rightarrow X$ by

$T(w, k)=\left\{\begin{array}{ll}(w, k+1) & if k+1<h(w)\\(T_{W}w, 0) & if k+1=h(w).\end{array}\right.$

Then $T$ is an e.m. $p$ transformation defined on the measure space (X, $\mathscr{P},$ $m$),

with Wan exh. w.w. set for $T$ under the sequence $A$ . In fact, $T$ is iso-
morphic to the transformation constructed in [4] for the sequence $A$ . A
similar construction produces the dual e.m. $p$ . transformation $S$ defined on
the measure space $(Y, c\mathscr{F}\mu)$ and the exh. w.w. set $V$ for $S$ under $B$, with
$\mu(V)=1$ .

A further important property of the transformation $T$ is,

$m(T^{n}W\cap W)>0$ if and only if $neB-B$ ;

or equivalently,

$ T^{n}W\cap W=\emptyset$ if and only if $n\not\in B-B$ .
A similar property holds for the transformation $S$ , the set $V$, and the
sequence $A$ . From this it follows that
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$(T\times S)^{n}(W\times V)\cap(W\times V)=(T^{n}W\cap W)\times(S^{n}V\cap V)=\emptyset$ for all $n>0$ .
This means that the set $W\times V$ is a wandering set for the transformation
$T\times S$ defined on the measure space $(X\times Y, \mathscr{B}\times \mathscr{G}^{-}m\times\mu)$ . For $k\in Z$ we
let $W_{k}=T^{k}W$ and $V_{k}=S^{k}V$; the same argument as above shows that the
sets $W_{k}\times V$ and $W\times V_{k}$ are also wandering for the transformation $T\times S$.
We note that, as was observed in Remark 3 above, $\Delta(T)=\Delta(S)$ for these
transformations; however, using the facts mentioned above, we prove the
following:

THEOREM 2. For a direct sum decomposition of the non-negative
integers $N,$ $A\oplus B=N$, consider the transformations $T$ and $S$ as described
above. Then $T$ and $S$ are not similar (in the sense of J. Aaronson [2].)

PROOF. Suppose $T$ defined on the measure space (X, $\mathscr{G},$ $m$) and $S$

defined on the measure space $(Y, \mathscr{G}^{-}\mu)$ are similar, then there exists a
$\sigma- finite$ measure $\nu$ defined on $(X\times Y, \mathscr{B}\times_{\sim}\mathscr{F}m\times\mu)$ with the following
properties: $\nu(\pi_{1}^{-1}E)=m(E)$ for all $ E\in$ ta, and $\nu(\pi_{2}^{-1}F)=\mu(F)$ for all $F\in \mathscr{G}^{-}$

and the transformation $T\times S$ is a conservative e.m. $p$ . with respect to $\nu$ ,
where $\pi_{1}:X\times Y\rightarrow X$ and $\pi_{2}:X\times Y\rightarrow Y$ are the coordinate projections. This
implies that $T\times S$ cannot have any wandering sets of positive measure,
and thus $\nu(W\times S^{k}V)=0$ for all $k$ . But then

$0<m(W)=\nu(\pi_{1}^{-1}W)=\nu(W\times Y)\leqq\sum_{k}\nu(W\times S^{k}V)=0$ ,

a contradiction. $\square $

REMARK 4. It is not known if there exist e.m. $p$ . transformations of
finite type which admit only exh. w.w. sequences of finite type. For the
above class in general, and in particular for the transformation $T$ described
above, which is of finite type, we ob8erve that $T$ possesses an exh. w.w.
sequence of infinite type as well.

We let $A_{1}$ be the IP set generated by the sequence

$\{0, MM_{7}\frac{3’ 3}{n_{4}-1time8},\frac{77}{n_{8}-1t1m68}, \cdots, M_{1}\frac{4n-1M4n-1M4n-}{n_{4r}-1tlmes}, \cdots\}$
,

and let $A_{2}$ be the IP set generated by the sequence

$\{0,\frac{M_{1},M_{1},\cdots,M}{n_{2}-1times}1\frac{M_{b},M_{b},\cdots,M}{n_{t}-1t1m\circ 8}f M\frac{4n+1’ M4n+1’\frac{\cdot\cdot\cdot,M_{4n+}}{68}}{*4+2-1tlm}1 \}$
.

Then it is easy to see that $A=A_{1}\oplus A_{2}$ ; from this it follows that if we
let
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$W^{*}=\bigcup_{ke\Lambda_{2}}T^{k}W$
,

then $ m(W^{*})=\infty$ , and $W^{*}$ is exh. and w.w. for $T$ under $A_{1}$ . This says
that $A_{1}$ is an exh. w.w. sequence of infinite type for $T$. A similar
argument can be repeated for the dual transformation $S$ .

Finally, we consider the $L^{\infty}$-point spectrum of the transformation $T$.
We say that a number $\lambda$ belongs to $\Lambda(T)$ , the $L^{\infty}$-point spectrum of

an e.m. $p$ . transformation $T$ on (X, $\mathscr{B},$ $m$), if there exists a function $fe$

$L^{\infty}(X, \ovalbox{\tt\small REJECT}, m)$ , not identically equal to $0$ , such that $f(Tx)=e^{2\pi i\lambda}f(x)$ , a.e.
It is easy to see that $\Lambda(T)$ is an additive subgroup of $[0,1$ ) $(mod 1)$ ,

and it can be shown that it is a Borel subset of $[0,1$ ) and has Lebesgue

measure $0$ . If $ m(X)<\infty$ , then $\Lambda(T)$ coincides with the set of all eigen-
values of the unitary operator $U_{T}$ on $L^{2}(X, \ovalbox{\tt\small REJECT} m)$ defined by $U_{T}f(x)=$

$f(Tx)$ , and therefore, it is at most countable. However, in case $ m(X)=\infty$ ,
$\Lambda(T)$ can be uncountable; in fact, it can even have any arbitrary Hausdorff
dimension $\beta(0\leqq\beta\leqq 1)$ , see [1], [9]. We will show in what follows that
if the integers $\{m_{l}|i\geqq 1\}$ associated with the decomposition $A\oplus B=N$ are
bounded, then for the corresponding transformations $T$ and $S$ constructed
as above, the sets $\Lambda(T)$ and $\Lambda(S)$ coincide and are countable.

In order to determine $\Lambda(T)$ for the transformation $T$ constructed
above, we note that from the results in [9], [12] it follows that a number
$\lambda\in[0,1)$ belongs to $\Lambda(T)$ if and only if

(3.4) $\sum_{n=1}^{\infty}Var(\langle xZ_{n}\rangle)<\infty$ ,

where $Z_{n}$ is the random variable defined in (3.3), Var means the variance
of a random variable, and for a real number $\mu$

$\langle\mu\rangle=\left\{\begin{array}{ll}\{\mu\} & if \{\mu\} ( =the fractional part of \mu) <1/2\\\{\mu\}-1 & if \{\mu\}>1/2.\end{array}\right.$

If we now assume that the integers $m_{l}’ s$ are bounded so that $\min_{i\geqq 1}\mu_{i}(0)>$

$0$ , then we can easily show that the condition (3.4) is equivalent to

(3.5) $\sum_{n=1}^{\infty}\sum_{i=1}^{n_{2n-1}-1}\Vert xz_{n}(i)||^{2}\mu_{n}(i)<\infty$ ,

where the $z_{n}(i)s$ are the numbers defined in (3.1), and for a real number $\mu$

$\Vert\mu||=|\langle\mu\rangle|=\min\{|\mu-k| ; k\in Z\}$ .
Substituting the values of $z_{n}(i)$ and $\mu_{n}(i)$ into (3.5), we obtain
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(3.6) $xe\Lambda(T)$ if and only if $\sum_{n=1}^{\infty}\frac{1}{m_{2n-1}}\sum_{i=1}^{n_{2n-1}-1}||x\dot{j}M_{2n-2}||^{g}<\infty$ .
It i8 well known that any number $xe[0,1$) has an expansion of the
form

(3.7) $x=\sum_{k=1}^{\infty}\frac{\epsilon_{k}}{M_{k}}=\sum_{k=1}^{\infty}\frac{\epsilon_{k}}{m_{1}m_{2}\cdots m_{k}}$ ,

where for each $k,$ $0\leqq\epsilon_{k}\leqq m_{k}-1$ . We call a number $\lambda\{m_{k}\}$-adic rational
if it ha8 an expansion of the form (3.7) with $\epsilon_{k}=0$ for all $k\geqq p$ , for
some $p$ . All $\{m_{k}\}$-adic rational numbers have another expansion of the
form (3.7) with $\epsilon_{k}=m_{k}-1$ for all $k\geqq q$ , for some $q$ , but for all other
numbers the expansion of. the form (3.7) is unique. Whenever $h$ is an
$\{m_{k}\}$-adic rational, we adopt the expansion of the form (3.7) with $\epsilon_{k}=0$

for all $k\geqq p$, for some $p$ . When $xe[0,1$) is expanded in the form (3.7),

we have for all $i(1\leqq i\leqq m_{2n-1}-1)$ ,

$||xiM_{tn-2}||=\Vert\sum_{k=2n-1}^{\infty}\frac{i\epsilon_{k}}{m_{2n-1}m_{2n}\cdots m_{k}}\Vert$ ,

8ince

$xiM_{2n-2}=integer+\sum_{k=2n-1}^{\infty}\frac{i\epsilon_{k}M_{2n-2}}{M_{k}}$ .
Therefore, if $\lambda$ is an $\{m_{k}\}$-adic rational, then for all sufficiently large $n$ ,
$||xiM_{2n-2}||=0$ for all $i(1\leqq i\leqq m_{2n-1}-1)$ ; thus by (3.6), such a $\lambda$ belongs to
the set $A(T)$ .

If, on the other hand, $\epsilon_{k}=\epsilon_{k}(\lambda)\neq 0$ for infinitely many $k’ s$ in the ex-
pansion of $\lambda$ in the form (3.7), then one of the following three cases
must occur:
(i) $\epsilon_{2n-1}\neq 0,$ $\epsilon_{2n}\neq m_{2n}-1$ for infinitely many $n’ s$ .
(ii) $\epsilon_{2n-1}\neq 0,$ $\epsilon_{2n}=m_{2n}-1,$ $\epsilon_{2n+1}\neq m_{2n+1}-1$ for infinitely many $n’ s$ .
(iii) $\epsilon_{2n-1}=0,$ $\epsilon_{2n}\neq 0,$ $\epsilon_{2n+1}=0$ for infinitely many $n’ s$ .

We can show that $||\sum_{k=2n-1}^{\infty}\epsilon_{k}/(m_{2n-1}m_{2n}\cdots m_{k})||$ is bounded below by
$1/(m_{2n-1}m_{2n})$ for infinitely many $n’ s$ in the case (i) or (iii), and bounded
below by $1/(m_{2n-1}m_{2n}m_{2n+1})$ for infinitely many $n’ s$ in case (ii).

Therefore, if we denote by $K$ an upper bound for $\{m_{k}\}$ , then we have
in the sum appearing in the condition (3.6) infinitely many terms which
are at least $1/K^{7}$ , whenever $\lambda$ is not an $\{m_{k}\}$-adic rational number. We
conclude that any of these numbers does not belong to $\Lambda(T)$ .

We summarize this in the following theorem.
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THEOREM 3. For a direct sum decomposition of the non-negative
integers $N,$ $A\oplus B=N$, let $T$ be the $transformat\cdot ion$ constructed as above.
Assume that the set of integers $\{m_{i}|i\geqq 1\}$ characterizing the decomposition
is bounded. Then the set $\Lambda(T)$ , the $L^{\infty}$-point spectrum of $T$, is precisely
the set of all $\{m_{k}\}$-adic rationals in $[0,1$).

Thus, all such transformations $T$ have countable $L^{\infty}$-point spectrum.
Arguments similar to the one used above show that for the dual trans-
formation $S$ associated with the decomposition $A\oplus B=N,$ $\Lambda(S)$ is also
precisely the set of all $\{m_{k}\}$-adic rationals in $[0,1$), and therefore,
$\Lambda(T)=\Lambda(S)$ .

This shows that dissimilar transformations can have identical $L^{\infty}-$

point spectrum. We note that the dissimilarity of the transformations
$T$ and $S$ precludes the existence of isomorphism between $T$ and $S$.

Finally, we note that when $m_{i}=2$ for all $i\geqq 1$ , the transformation $T$

is the one constructed by A. Hajian and S. Kakutani in [7], and for this
$T$ the $L^{\infty}$-point spectrum $\Lambda(T)$ is precisely the set of all dyadic rationals
in $[0,1$).
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