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Let C* be the space of pairs (2, z,) of complex numbers with the

standard flat Kahler metric. Let p be a posxtlve integer and q,, 9 ‘be
27zl/

integers relatively prime to p. Put z=exp =="—— and define an isometry

g of C* by
9: (o, 2,) — (2992, 212,) .

Then g generates a cyclic subgroup G={g*},,,...,-, of the unitary group
U(2) and the elements g* act on the unit sphere

S ={(=,, 2,) € C* 2,7,+22,=1}

without fixed point. The differentiable manifold S®/G has a unique
riemannian metric so that the covering projection ¢: S*—S3/G gives a
local isometry of S°® onto S°/G. This riemannian manifold S*/G is called
a lens space and is denoted by L(p; q,, q.).

The following theorem on lens spaces is well known. (See Cohen

[31)

THEOREM. The following assertions are equivalent:

(1) L(p; 90 q.) 8 isometric to L(p; G, q.)-

(2) L(p; ¢ q) 18 diffeomorphic to L(p; qo, 7.)-

(8) L(p; q, q) 8 homeomorphic to L(p; q,, q.).

(4) There are integers | and e, €{—1, 1} (¢=0,1) such that (20, 9V
18 a permutation of (elq,, elq,).

Since ¢* is also a generator of G, the lens space L(p;kq,, kq,) is
identical to L(p;q, q.). Hence, choosing a suitable generator for G, we
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18 KIYOSHI KATASE

may assume that ¢,=1 and we denote L(p; 1, q) simply by L(p; q). The
above theorem is now restated as

COROLLARY. Two 3-dimensional lens spaces L(p; q) and L(p;q) are
isometric if and only if

g=+q modulop or 9= +1 modulo p .

Note that the positive (resp. negative) signs on the above equations
correspond to the orientation preserving (resp. reversing) isometry. Also

note that we have only to consider the case qé[-g-:‘ by this corollary.

A. Ikeda and Y. Yamamoto [5] studied the eigenvalues and their
multiplicities, %.e., the spectrum of the Laplace operator A acting on
the space of smooth functions on the lens space and showed that if two
3-dimensional lens spaces are isospectral in the sense of A then they are
isometric. That is to say, the spectrum of A determines the geometric
structure of 3-dimensional lens space. In the preceding papers ([6], [7]
and [8]) we studied the spectrum of the operator A= (xd—d*), 1.e.,
square root of A, acting on the space A°(S®) of even forms on S*® and
the eta-invariant

7(; 9= ——= 3, cot -7 cot - L (p-1)@pe—3p—q+3)-2 5 [-’“—BT
P i=t P P 3p D k=1L ¢q

for the 3-dimensional lens space L(p; ¢) which is a spectral invariant of

the operator A. Since the isospectrality in the sense of A implies that

of A, the aim at that time was to study to what extent the eta-invariants

explain the isometric structure of 3-dimensional lens spaces. We showed

that if 7(p; ¢)=7(p;q) then the equation

(@—9)(@g—1)=0  modulo p

holds so that we get L(p; 9)=L(p; §) (= denotes the orientation preserving
isometry) when we restrict p to be of the form kp’, where p’ is a prime
and k=1 or 2 or 3. When p is a general composite number, we first

evaluated the Dedekind sum ZZ:I[-IE;’—T (as stated in Theorem 1.1) taking

into account the length of the sequence of remainders in euclidean
algorithm for calculating the greatest common divisor of » and q. Using
this evaluation, we obtained Theorem 1.6 which states that the eta-
invariant is an “almost complete” (orientation preserving) isometric in-
variant. That is, some exceptional cases were left for classifying lens
spaces by these eta-invariants.
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In this paper, we study the eta-invariant

7@ @)= —1'S cot L cot Mz cos 22% 1
b i=t D VY D

which corresponds to the irreducible unitary representation « of
7, (L(p; 9))=Z/pZ. First, we represent this cotangent sum by a gener-

alized Dedekind sum "i[_’ﬁf‘.’i&—_@_}z in Lemma 2.2 and then we evaluate
k=0

this generalized Dedekind sum as a polynomial of p, ¢, s=p—« and some
recursively defined terms », and s,. The result is

S e T Lo—1y-n-Lpw-0 -1+ 2 a-3-(-1) +sm-1)+0,

k=0

+2 5 (_1){_"«_—1_}3% e L Y ol . +[_§_¢_]) ,
6 i=o r; 6 =0 r,_.r 1=0 Va7 -
which is stated in Theorem 3.3.
Using the exact value of 7,(p; q), we obtain the following theorem
which is an improvement of Donnelly’s proposition for 3-dimensional case
(cf. Donnelly [4], Prop. 4.3).

THEOREM 4.3. Let q and @ (g[lz)—:l) be positive integers relatively

prime to p. Then two lens spaces L(p;q) and L(p; @) are (orientation
preservingly) isometric to each other, i.e., the equation qG=1 modulo P
holds if and only if their eta-invariants satisfy the equations:

(1) (o )=nP;q) and ,(p;q)=2:p;q)
or
(2) P )=7®D;7) and 9D )=7.(0;7),

where q* 18 a positive integer less than p/2 defined by the equation
99*=1 modulo p.

§1. Eta-invariants for L(p; Q.

In this section, we rearrange the result and the argument of the
preceding paper [8]. However, notations are slightly different.

Let p be an integer greater than 2, and ¢ (<p) be a positive integer
relatively prime to p and [x] denote the greatest integer less than or
equal to the real number x. The eta-invariant for L(p; q) is given by
the explicit formula
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-1 . .
N(p; Q)= ——lpz cot Lreot 4,
pETp P

and this cotangent sum is represented as

. =_]___ _ . _ ——ﬂ-—l _’_C£2
7P; )= @ 1)Pa—3p =g+ pz[q]

(see, for example, Donnelly [4] Prop. 4.1 and Katase [8] Th. 4). Hence
we know that 8p7(p; ¢) is an integer and we are able to treat in integral
category for given integers » and ¢q. By definition, the eta-invariant
7(p; ¢) is an orientation preservingly isometric invariant. In fact, if
q3=1 modulo p, for example, then we get

- . . - . .
7(p; @)= __,,Z cot 14 7 cot 1997 = -1 pZ cot 27 cot J—x=77(p; q) .
p i=t y Y y Y p i=t Yy p

On the other hand, to study whether the eta-invariant 7(p;q) is a

complete invariant for the isometric class of 3-dimensional lens spaces
qg—1 2

or not, we evaluate the Dedekind sum 1‘2_‘,[%2-] by P, q, and some re-

cursively defined terms. Let r_,=p, r,=¢q, and 7, (1=1, 2, ---) be positive
integers defined by

Since p and ¢ are relatively prime, r,=1 for some integer »n (=1). Also
let a_,=1, ao=[—?—], and a; (=1, 2, -+, n—1) be positive integers defined
q

inductively by the relation
p=a57'5+ai_17'j+1 .
Since the integer a,_, satisfies the equation

(=1'@n, _ Z:. (=1)

p =0 PP

for some positive integer a{,, we get the equation ga,_,=(—1)" modulo
p. Note that the integer a,_, (1=<a,_,<p/2) is uniquely obtained by this
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property for given p and gq.
The following theorem is a result from the rec1proc1ty formula for
Dedekind sums. :

THEOREM 1.1 ([8] Th. 3). ?[—%LT 18 evaluated as a polymomial of
=1
Sfewer terms:

5|2 (=2 o-1a-D-L@-0+ L3~ 1))——6—
+2. 35 (-1 T e - Dran
COROLLARY 1.2.

397(p; @) =2 (L+ (~1p—q—p 3} (D T |- (~1ra, . .

Hence, if we assume 7(p; q)=7(p; §), then
- 3p7(p; @) —3pN(D; =7 —q+(—1) a5, — (—1)a,_, |
+p( S =1 (=1 = D)+ 35 (- Tt |- 35 (- L= ) =0
2 1 =0 . ’I',

and we get the following simultaneous equations:
1.1) §d—q+(—1'a;_,—(—1)a,_,=8p

and

A2 G-I =1 (DD 5 (-0 T |- S (- e =

3
where s=0 or +1.
Multiplying qg to both sides of the equation (1.1), and using the
relations ga,_,=(—1)" modulo » and q@;_,=(—1)" modulo p, we obtain
the equation

(1.3) (@—9)(@@—1)=0  modulo p .
In general, we can not conclude from this equation that
q=q or 97 =1 modulo p .

However, we obtain the following

O
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THEOREM 1.3 ([8] Th. 5). Let p be a prime number or p=kp’ where
p 18 a prime number and k=2 or 3. Then two lens spaces L(p; q)
and L(p; @) are (ortentation preservingly) isometric to each other (i.e.,
L(p; 9)=L(p; 7)) if and only if n(p; Q)=71(p; ).

REMARK 1.4. This theorem does not hold when p=>5p’" where p’ is
a prime number greater than or equal to 5. In fact, we know that
L(65; 8) is not isometric to L(65; 18) although 7(65; 8) =7(65; 18). However,
we can prove that Theorem 1.3 holds if p=5p’ (p’=7) and

g=g==+1 modulo 5

when 7(p; ¢)=7(p; §. (In case p'=5, there is a counter-example: L(25; 4)
is not isometric to L(25;9) although 7(25; 4)=7(25; 9).)

When p is a composite number p{1p:--- pi*, where p,’s are prime and
e,’s are non-negative integers, it follows, in general, from the equation
(1.3) that

qg—G@=la and qg—1=mb

for some factors @ and b of p and for some integers ! and m. Hence
we need further study on the exact value of 7(p; ¢) or the simultaneous
equations (1.1) and (1.2). By analyzing the properties of the integers
a,, we obtain the following lemma concerning the isometric equivalence
condition for two lens spaces and the length of the sequence of remainders
in the euclidean algorithm for calculating the greatest common divisor.

LEmMMA 1.5 ([8] Th. 8).
(1) If q+3=p and ¢<p/2, then n=n+1.
(2) If q@=(—1)" modulo p for q and g<p/2, then n=mn.

Note that, taking this lemma and the equation 7(p; q)=—7(p; P—q)
into account, we have only to consider the case: 1=gq, ¢ §[12’-] The

main result obtained in the preceding paper is the following

THEOREM 1.6 ([8] Th. 12). Let q and § (g+#Qq) be positive integers
relatively prime to p satisfying the equations r,=7:=1 and 7(p; ¢)=
7(p; T)-

(1) If n=7% are even, them, for givem q, L(p;q)=L(p:q) holds
for §=a,_, only; L(p; @)#L(p; §) for any integer g other than @, ,. (If
n=n=2, there exists no such an integer § other than a, that satisfies
the assumption.)
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(2) If n#n or n=n are odd, then L(p; @) #L(p;q) for any q.

§2. Eta-invariants with unitary representations.

For any unitary representation a of =,(L(p;q)=Z/pZ, the eta-
invariant 7,(p; ¢) associated to « is given by the explicit formula
a(D; @)= — - >: cot . 7 cot 2L 1 cos 22
D P vy D

(see Donnelly [4], Prop. 4.1). Note that the usual eta-invariant 7(p;q)
corresponds to the trivial representation a=0. One of the result con-
cerning the classification of lens spaces by this eta-invariant is the
following theorem obtained by H. Donnelly ([4], Prop. 4.3).

THEOREM 2.1 (Donnelly). Let p be a positive integer, q and @
<1<q, q<-2~) be integers relatively prime to p, and suppose that, for

each 1irreducible unitary representation a of G=Z|pZ, there exists a
unitary representation S (=la modulo p for some positive imteger | less
than p) such that the equation 7,(p; qQ)=n:(p; q) holds. Then L(p;q) and
L(p; Q) are (orientation preservingly) isometric to each other.

PrROOF. Here we give an elementary proof of this theorem which is

essentially the same as Donnelly’s. Multiplying cos 2kt T (1=2k=p-—1)
D
to 7.(p; @) and summing them from a=0 to p—1, we have
—1 -1 N
p}_‘, 7.(D; q)cos 2ka o ——Z cot X rc cot XL (pZ cos 212 1 ooy 2kt 71:)
a=0 p p = p a0 p p
= Z cot Lz cot 2 (,, 1 (cos 2tk n+cosMn>> .
2p i= P P \a p P
Since |
- 2ma p if pim
cos =
= i {o if pim,
we have

—1
pZ 7.(D; q)cos Zkar T= ———1—<cot -lf-n cot kg 2 i cot 2= —k Z——mcot - (p—Fk)g )
a=0 D 2 P P P p
= —cot —k’—n: cot k_qn_
p p
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On the other hand, we have

pX—.l 7,(p; g)cos 2ka T= ”Z cot Lz cot 2L (Z cos -2l 1 ooy 2k )
a=0 p i=1 D D p p

= —.l_pz: cot_J_yr cot & jq (2 cos 2(‘7l+k)a7z+cos 2(.71—10)057:))
2p = p p P p

= ——l—(cot Je 7 cot Iz + cot Ie=k7 cot ‘7”—"(771.')
2 p p p p

= —cot J& 7 cot 49 T
P P
where the integer 7, (1<,7,‘<p 1) is defined by the equation jl=k
modulo .

Thus the G eta-invariants cot p p. »
D
the cover S® of L(p;q) and L(p;q) coincide and the conclusion follows.

(See, Atiyah and Bott [2] or Wall [16], p. 215. Also see Katase [11],
Th. 1.1, where this property is proved elementarily). 1

—’?-ncot quc and cot ‘7"7rcot 3.9 ~kd 7 of

As we have proved by using a proposition concerning the G eta-
invariant, the assumption in Theorem 2.1 seems to be too strong. To
weaken this assumption, we reduce 7.(p; ) given by the trigonometric

sum to a sum using Gauss symbols.

2m/ =1 k 1+42*

Put z=exp 2™ —-. Then we get " —1 cot == . and hence
D p -

703 Q)——:;-Re(: e L)
(5 (-2
- R(E( m (-2)0-F
T )
s g (-2
LR B e

Won 5 (-2)a-%)- 5 (1-2)a-)

?l(h+gk+a) pr{h+-gk+a)

’8|H
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- g (-B)-2)-15-2)0-2)

Pl(h+qk+a)

B0,

P! (h+qk+a)

Now assume a=0 throughout this section. Let s=p—a, and p,
(0<p,<p) be the integer defined by the equation qp,——s modulo p, and
consider the sum

h+k¢ 8 p )

Since we must exclude the points (h, k):(O, p,) and (s, 0), we get

S, 1=p-2, 3, h———lp(p—l)——s, and >} k=lp(p—1)—p.-
hik 2 2

h+kg=e h+kg=s
h+s h+s

U]

As for the sum containing hk, consider the lattice points (k, k)
satisfying h+kg=s+np (»=0,1,---,¢) and 1=h, k=sp—1. The resulting
pairs (h, k) for the case ¢<s (also effective for ¢>s) are as follows.

n=0: (s—q, 1), (s—24,2), -+, 8_[_{]% [%]
n=1: (p—}-s——(li :\+1 q,[ :\+1) p+s [p+s] [p-l—s])’
P “(;;”1')',;;;"t{q"iqiioliéj"'[klz"i')ms])
n=g (qp+s—([M(q*1;p+s ]+1)q, .[——————(q"lg” +’8]+1) :
----- , (@p+s—(p—1)g, p—1) .

Note that h appears up to the last pair on the row n=q-— 1. if

q+s=p, because [_(g__{)]ﬂ-ﬁ] [p p— 8]— [p 8] 1 when pqs is

not an integer.
If g+s=p, for example, we get from the above result that

hmqf'hk=p<1>< ([-(‘;-]+1)+ el x[_p_;lﬁ.}uzx (\:-2;—3}1)

+ ..+2X[2Pq+8]+ ...... +(q_1)><([_(_‘_1:_%)_p_ﬂ]+1)
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+eee+(@—1)x [—(q;lb)—’—”ﬁ]) ———é—qp(p— 1)2p—1) +%sp(p —1)

—pE K l:kp+s ]([ kp+s ]+1 _l[_(k—13p+s]([(k—lgpﬂ]“))

gp(p—1)2p— 1)+-2sp(p 1)
=%<'>:‘ O R (= (2

+k2=l(k[kp+s] (e— 1)[(10 1)p+s1 [(k—lq)p+s]))

——6—-qp(p——1)(2p—1)+—2—sp(p——1)

=2 (@-p[la=Dpte T [(k—lq)p+s:|“’

i (e—Dp+s| S (k—Dp+s
+g-p[{a=tpts ST (e-Upie])
——%qp(p-—l)(2p—1)+%sp(p——1)

=2—((p—-1)2(q——1) _g[kp+8]z+[(q—1;p+sjr

+®—1)g—1) - z['@ﬂ] l:(q—l;p—i-s])

— —qp(p —-1D(2p-1) +—2—sp(p -1

g-1

=~—p(p 1)(2pg—q+3)+-Lep(p—2)— [Ep +8] :
2 2 k=o q

Here we have used the equation 5__‘, I:kp +3] 1 (p—1)(g—1)+s. Note that

the above equation holds whether q+s> P or not.
Thus we have obtained the following

LEMMA 2.2. The eta-invariant associated to the unitary represen-
tation a (+0) is reduced as follows:

Na(D; q)=$(2p2q—3p2—3pq+3p+q—3)+%(p~a)(p——1)

+2p, 2% [yzﬂo_—a] ,
p p = q
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Note that, considering the procedure of the case a=0 (t.e., s=p), we
must add 1 on the right-hand side of the above equation and the resulting
invariant 7,(p; ¢) coincides with 7(p; 9). Also note that 3p%.(p;q) is an

integer for any a (0=<a<p) and we may argue in integral category.

§3. Generalized Dedekind sums.

At first, we show a reciprocity formula for generalized Dedekind
sums (cf. Knuth [13]).

‘ LEMMA 3.1. Let p and q be relatively prime positive integers and
s be a positive integer less than p. Then we have the reciprocity re-

lations:
-1

e pE[2=2 g B[ [~ Lr-DEr-Da-DE-D

h=0
+8(p—q—1+8)+2qp,
and

P—1

82 pE[MErT g[8 [=lp-nEp- D@D

h=0

—s(p—-q—l-—s)—2pq+2pp_.—2pq[——f1—] .

ProoOF. Since the numbers kp—}—s—[-@;——s-]q for k=0,1,.--,q9—1 are

simply the numbers 0, 1,-:+, ¢—1 in some order, we have

s (kp+s-—[£p;8 ]q)2=%q(q—~1)(2q—1) :

k=0
The left-hand side of this equation is equal to
) q—1
—é—pzq(q—l)&q—l) +8pg(g—1)+8’q—2pq k% k[icp—;—s—:l
-1 q-—1 2
_zsqqz: Lkp+3 ]+q2 Z [kp+8 :|
k=0 q k=0 q
q—1 q—-1 2

~ 1 protq—D@a—1) +sala—1—9)—2pa 5 { KX ¢ B[ L2 T

Now using the simple trick of expanding [«] a8 3ocks. 1 (ef. Zagier
[17]. Another method will be found in Katase [12]), we have
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Skl Sy 5 1)

k=0 shs”“

= S, Ic—-iq(q 1)
—8shg—eskpsp(g—1)-
p—'g(l:.] z 1
= k——a(@—1)
"Z“" L kg1 2
-2 .., [

= 3 (8- 5 k)+[————‘”’;}“’ -1

h=0

-3
s B e ()

o[}

8

(Note that the inequality [ -p ; ]Zp, always holds, for if we assume

then the integer z,= 90:=8 ghould be equal
p

to ¢—1 and hence we have the equation p,=p—P—8 4 contradiction.)
q

the inequality [p

If p—8=<gq, the above equation reduces to

;pq(q—l) —«2[’“’ 3]—— Lip—1)g—1)—s ["”- ]—- Lo@-1)
_ _1 hg—s T 1 q0,—8
——(p 1)(g—1)(2¢—1) 2[ . IE 2s+[ - ]

If p—s8>gq, the equation also reduces to

R B L T (C )

- 5 [P (2] Lo

i =2
=%pq<qf1>——;-[pqs]q(q D-g & 22 - 2(2e-16-1-)
+—;—(p—1—-(p—-[pq_s ])+1)(q—1)q+[qp;)“s]—%q(q-—1)
=4P—Da—DEg-1)- [’“’ s+ —;—s+[ﬂ-‘i;—s]

Substituting
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g—1 Pp—1 —_ 2 —_
S krrs]o L ng-nee-1-§ 5 [ B [ Far[ 222 ],
k=0 q 4 2 =0 P 2 P

we obtain the reciprocity formula (3.1).
The formula (8.2) follows similarly. O

We next show a recursive formula for generalized Dedekind sums.
Substituting qo=|:—7qq—|—'r1 to the second sum term on the left-hand
q ‘ ‘

side of the equation (3.1), we have
= hq—s8 = kr,+s|

6pr, "Z:,(’[ p +6qu§’[~————q ]
=(p—1)(2p—1)<q—1)(2q—1)fr1—[l’-]q«z——1)(2q—1>pr1+[—§]q(q—1><2q—1>

—6ps8(q—1—s8)+6psr,—12sr,+12qp,r,
— p(g—1)2g—1)(r,~1)@r,— 1)+ par.(g—1)(2q— 1)[—-]

—6ps(g—r,—1—8)+12r,(90,—3) ,

so that

%g[’bqp—s] 1“[’"‘1“] 61 (q»l)(zq 1)(r,—1)(2r,—1)

++@-Dea-D| 2 ~1-9+Zo.—9) -

Similarly, we get from the equation (3.2) that

15 hare T 28] nm 2] = o @ D@D —DEn—1)

2 8
+—6-(q—1)(2q-—1)[71+%s(q—r1—1+s)—2+E(qp_,ﬂ)—z[—?] :

Put sl-:s—l:—s—]q. Then we get

2;.[’“”1*3] [’”’1‘”’1]{ J@-e—veEr-nx2e)+[ 2 a.

Hence we get

(AT [ 2 B g e )
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=;3—1—(«1—1)(2q—1)<r1——1>(2n—1)+3-(q—1><2q—1)[1l]

qu—_ "] [ ] 2+~(p,+p_,) 2[_?]

—1><2r,—1)+-3-(q—1)(2q—1>[;]+%—2[—%] .

Here, of course, p,+p0_,=p. From this equation we obtain the following.

- 3qr1

LEMMA 3.2. Let 8,=s8 and s,=st_1—-[‘f"“-]'ri_l (t=1,:--,m) be mon-
i—1
negative integers. Then there exist recursive relations:

_}_"‘i—l (l: h’)"¢+8 ] +[ hr, i| )+ 1 riz_f ([ krg,+s., :]2—{—': kry,—s., ]2>
r, = r,_ o k=0 7, r:

Tit1
= D@D~ D@r— 1)+-—<fri —1)@r,— 1)[ Ti ]
i i+1 i
+__2_3i_+1___2[__8_f_]
i, r;

for i=0,1,+--, n—1.

Note that the last two terms should be omitted for i=m if s,=0
for some m (=n—1).

Multiplying (—1)* to both sides of this equation and then summing
from 7=0 to n—1, we get

o N e b S R

=5 D (g (= D@ = D~ D@r D+ = D(2r— 1 Lt )
= 3raia

+2 3 (— 1) (Ee [——a

"'i"'t+1
=& (DG DD =D~ — — (=D —1)
(= D, (e =D+ —(r— 1) — 1)
3ririn T Tit1
gD =D+ = D =) + = D)
3r, 3

+2 3 (- [ ])

T+ T,
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=§<p—1><q-1>——-§—<q—1><r1—1>+—l—(q—1>2<r1—1>+—1-<q—1>2(p—r1)
q 3q

1y 15y 1 1, 1+(— 1)t
La—n—(~Dr)+ 3 B (D] [ 5 AP

__1'_(7]’-__{_ (=1 )+ ; :ﬂ (=1) +22( 1) 8 \:

3 T O TTina TV
1 1 1+( 1)"
2

-1(® +<—1)"-1) 3 1)[ =5

=—§1-—(p 1)(g—1)(2q— 1)—3—(q 1)(r,— 1)————(q ”‘;)‘*‘
‘ q
3 i=0 7,

+2 3 (—1( e [

T+

Since we have

k—s, 1 _(—1 if k=0,---,8,—1
(- ]# {0 otherwise
and
k+s, | 1 if k=r,_,—8,,++*, Thoi—1
_;,:—:\_ {0 otherwise ,
we obtain the equation:

ey F([2eke [ [2s ) Lp-1@-1@-D-Fe-Dn-D

Lg—r)+L lﬂz——ll- L4 (=1)q)+(—1)2gs,

3
+L3 1)‘[9;’; + 2D g3 (e[ - :—:])

izo 3 i=0 rr,, T

On the other hand, we have

gt g [opure T-gle=Ree [ T ]-{er ]
e R
oL o4
=(p—l)(q—1)2—2(Q—l)zg:[%i]+g:[-’ﬁ?—]z~2[“—p'qp"s 1

so that we have
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:(l: hq; 8] [‘}%;ijlz)’—‘z(@—l)s—r,) .

Here we have used the relations p,g=7,p+s. It follows from this result
and the equation (38.3) that

'e

»
I

B[ 2 [=to-De-Dea—D-2a-1e-)-La—r)

e Dm0+ (1 + L E (1 2]

6 2 6 i=o Piia
n—1 — 1 n-—1 2
+ LS LD g B (e ~[-——8——]) —s(g—D)+z,
6 =0 ror., i=0 T T,

=- P—-1@—-D2¢—-1+= (Q 1)——~¢12+— -(1+3( 1)")

p_a

+—6p-+ oot (—Dras,—L 3 (— 1)[“1]

i

6
— L5 B (e —[—%])——s(q—l)w..

=0 T TTia

Hence we get

5[ e T= 2 (- DEp-Dia—D2g—D+sp—g—1+9
| | +29p,— pZ[hq 3])

1/1 1 1 1 1
= —=—(p—1)2 —1)(29—1)—— —1 — 24 Sy — M =
q(e(p )(g—1)(29—1) 610(q )+6pq+6p 610 5

~FLA+8-(~11) +a(p—q—1+8)+8p(a—1) —7.p+20p,)

~(~1rps,+ 2 3 (—1)1[%1_}_2 $ (-
_p:g:(__l)t 811 _I:_ 8, :I)

" T;

—é—(p 1)*(q— 1>———p(p q)——-+-—(1 —8-(—1)")

+L(s(p—gq+8)+aplg—1)+q .)+p 2_‘.( 1)‘["‘ ‘]

q
p . ( l)t —_ si+1 — n
+2 3 ICSWEL TR B ] —(—1)ps, .

=0 P, 7 TTina
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Thus we obtain the following

THEOREM 3.3. The generalized Dedekind sum :Z_l[kp +s
=0

2
] 18 evalu-
q

ated as follows:

5| B2 [ 201~ D— L0 -0~ L+ 213 (— 1)) +sr-D) o,

3
pRen{f] g e -]

7 6 =0 P 17y 7

Note that the values of the generalized Dedekind sums Z [hq+s:|
P

and §[kpi]2 are obtained by Lemma 3.1 and the equation (3.3).

§4. Main theorem.

As we have obtained the exact value of the generalized Dedekind
sum, the next theorem follows from Lemma 2.2 and Theorem 3.3.

THEOREM 4.1. The eta-invariant with the unzta/ry representation «
18 reduced as follows:

397,05 )= 4~ 5 U —(=1))—p 3, (~ 1| L=t |~ (~1ya, ,

—6p 3} (— D) -2 ])

Ti 7y 7

=3pn@; =39 —6p 5 (-] -2 ),

where s=p—a<p.

Since 7,_.(p; @) =7.(p; @), we may write the right-hand side of this
equation as 3p7,(p; q).
Now let us study the sum term on the above equation. Put

Ek‘,(—l)‘ s (D% o k=0,1,---,n
i=0 T pr

Then the integers ¢&,’s satisfy the equations

&=8, &= 32[—5{] —p(s+ 31)[:(31_] yoceyoand gt T=Ds; .
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Calculating further, we obtain the following lemma which will be
proved inductively.

LEMMA 4.2. Let the integers al®, be defined by the equations

i ('—1)‘ — (—1)"’a.,1(;lf—)1 for k=0, 1’ ey n .
i=k P,_ T, Ti—1

Then &, is represented as follows:
En=80,_,— p((s + sl)[-—s—]aifll + (s, + sz)l:j'l— a4+ (8at s,.)[f":‘— ]a,‘.'21> .
q Irl ‘J Irn—-l

Note that a{®, coincides with a,_, which was introduced in Theorem
1.1 and the positive integer a'®, << T’é“-) is uniquely determined by the

equation r.a®,=(—1)"** modulo r,_,.
As a corollary to this lemma, we obtain the following

THEOREM 4.3. Let q and @ (<12) ) be positive integers relatively

prime to p. Then two lems spaces L(p; q) and L(p; @) are (orientation
preservingly) isometric to each other, i.e., the equation q@d=1 modulo p
holds if and only if their eta-invariants satisfy the equations:

(1) 7(®; Q)=0®; q) and 7,(p; Q)=7(D; @
or
(2) NP Q=n®; ) and N(D; Q)=7:D; ) ,

where q* is a positive integer less than p/2 defined by the equation
9q9*=1 modulo p.

PrOOF. The “only if” part is trivial; we have only to substitute
4G modulo p or jq* modulo p for ¢ in the defining cotangent sums of
eta-invariants. So we prove “if” part.

(1) Let n (respectively %) be the length of the remainders for
calculating the ged(p, ¢) (respectively ged(p, §)). By assumption, the
equation

T,

holds for s=1 and §=¢g. In particular, since §,=..-=5§,=0, we have
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so that

However, since a,_, and q are positive integers less than p/2, the above
equation holds only when 7 is an even integer and therefore we have
d=a, ,=q%*, 1.e., q¢=1 modulo p.

(2) Similarly, we have

L _1yg, —1FCED" 1 gyer 1 —1y] 48
S Vo= O =L S o~ L,

where ¢’s are defined from ¢* and 7,’s, so that
(=Dra,_,=(—1)"&, modulo p .
Since &;=q**@,_, modulo p, we have

(—)"¢*@,_,=(—1)"qa,_, modulo p
=1 modulo p

so that ¢*=q, t.e., q¢=1 modulo p. Il

Note that even though the integers » and # do not appear in the
statement of Theorem 4.3, they are necessarily even and coincide by
Lemma 1.5. (Compare Theorem 1.6.)

REMARK 4.4. (1) The condition 7(p; ¢@)=%(p; §) is necessary. In
fact, when p=68, ¢=11, and ¢=21, we have 72,(68; 11)=7,,(68; 21) and
7(68; 11)%=7(68; 21). Of course, L(68; 11)# L(68; 21).

(2) The equations 7(p; 9)=7(p; q) and 7,(p; @)=7:(»; 7) may hold
for some 5 (1=5<p) different from g even though L(p; q)#*L(p; q); for
example, two non-isometric lens spaces L(161; 37) and L(161;51) satisfy
the equations 7(161; 37)=»(161; 51) and 7,(161; 37)=7,(161; 51). However,
7,(161; 37) #7,,,(161; 51) =7,,(161; 51) in this example. Note that, in these
cases, ¢ and ¢ satisfy the equations

g—q=1a for some integer 7 (0<|7|<bd)
and

q§—1=3b modulo p for some integer 7 (0<j<a),
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where p=ab (see [8] p. 347), and § is of the form §=+ka for some integer
k. Also note that the integer ! appeared in Theorem 2.1 should be g.
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