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1. Introduction.

In this paper we shall consider smooth perturbations of the formal self-adjoint
operator |A|¥? in L*(R"), where A=) 7" 0*/0x;>. We shall first recall some notations
in the theory of smooth perturbations.

Let H be a selfadjoint operator in a separable Hilbert space H with its resolvent
denoted by R({)=(H—{)~1, Im {#0. A densely defined closed linear operator A is said
to be smooth with respect to H, H-smooth for short, if

+ oo
1.1 J |ARA +ieyul2di<c?|ull>, wueH, >0,

- 00

where ¢, is a constant independent of u and ¢>0. Each of the following conditions
(1.2) and (1.3) is equivalent to (1.1) (cf. T. Kato [2]):

(1.2) | Im(R()A*u, A*u)| <c3ful?, ueD(A*), Im{#0;

+ oo
(1.3) f | Ae™*Hy|2dt < c3|u|?, ucH .
Here ¢, >0 and c; >0 are constants independent of u and {. {€"¥},_g is a unitary group
generated by H, and it is understood that | 4de” *Hu| = oo if e”*Hu¢ D(A). For more
details, see T. Kato [2]. A4 is said to be supersmooth with respect to H, H-supersmooth
for short, if

(1.4) |(R)A*u, A*w)|<cilull*, ueD(4*), Im(#0,

where ¢, is a constant independent of u and Im { #0. This terminology was introduced
by T. Kato and K. Yajima [3], but the notion itself appeared in T. Kato [2].

T. Kato and K. Yajima proved in [2] that 4=|x| 4 V|'# with 1/2<f<1 is
— A-supersmooth. The —A-smoothness was also proved by other simple methods (see
M. Ben-Artzi and S. Klainerman [1], B. Simon [8]) and was extended to the Schrédinger
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operator with a potential ([1]). In the previous version of this work [12] we also showed,
among other things, that the smoothness alone can be proved by a method which is
rather simple. There is some overlap between the results of [1], [8] and ours, but the
method is different and we shall present our result here. In what follows we first prove
the smoothness somewhat generally for 4= f(x)| V|’ and H=|A|*? with suitable a, &
and f (Theorems 1 and 2). For another proof, see [1]. We also observe that for
f(x)=|x|~? we can calculate the best constant in (1.3) (Corollary 4). For H= —A and
f(x)=|x|"1, this best constant is given in [8]. An immediate generalization of Theorem
1 to the case H= P(| V|) will be mentioned in Remark at the end of the section 3. As
to the supersmoothness we shall prove an immediate generalization of Theorem 1 of
T. Kato and K. Yajima [3] to the case of the | A|*-supersmoothness of A=|x|"| V|
following their method. As byproducts of our work we shall give: 1) an example of a
potential V(x), xe R?, which is —A-smooth but not — A-supersmooth; 2) a decay
estimate for the solution of the free Schrodinger operator (Proposition 5).

2. Theorems.

We begin with giving precise definitions. Let H= L%(R™) with its inner product and
norm denoted by (,) and | - ||. We use the following notations. & is the space of rapidly
decreasing functions and &’ is its dual space. & is the Fourier transform from &’ to
&’. We also write #&)=(Fu){) when Fu is a function. F is the restriction of # to
L*(R™). H*(R™) is the Sobolev space of order «>1. We use the notation | x| to denote
the operator of multiplication by |x| in H. |A|¥? is an operator in H which is the
multiplication operator in the Fourier space and is defined as

|A|"2=|V[*=F"!||*F.
In particular, D(| A |¥?)= H*R™). We put
C3R™=CF(R™\{0}) .
Throughout the rest of the present paper we put
H=|A|%?, a>1.

As 1s well-known

(=) (e~ "Hu)(x)= (L)mn fﬁ(é)e—m gl+itxge
2n

Our main results are now stated as follows.

THEOREM 1. Let a#0, m>1. Let f be in L*(R™) and g be a measurable function
on R*. Assume that

@ g(EDIEI™~2 is bounded,
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(b) there exists a dense subset 2 in H such that g(|V|)f(xyveH if ve D.
Let A be the operator defined as
A=f(x)g(V),  D(A)=CGR?).
Then A is closable and any closed extension of A is H-smooth.

THEOREM 2. Let m>2, a>1, a—28>0 and 1/2<B<m/2. Let feS' n L%, and
assume that

(@ |f1?es;

() F( fI1*)&) is a measurable functzon,

© F(VI" | £ =] & (7 PO e L™;

(d) there exists a dense subset 2 in H such that |V |* 2P2fveH if ve 9.
Let A be the operator defined as

A=f)| V|22 D(4)=C§,(RY).
Then A is a closable operator in H and any closed extension of A is H-smooth.

THEOREM 3. Leta>1,a—2f>0 and 1/2<p<m/2. Let A be the operator defined

A=|x|7A|V|e72D2 = D(A)=Cg(R?) .
Then, A is closable and any closed extension of A is H-supersmooth.

ExAMPLE. In Theorem 2 we can choose | x| # as f(x) (see E. M. Stein [9],
p. 116-p. 121). And clearly f €% satisfies the conditions (a)—~(d).
For an H-smooth operator 4, we denote by || 4|5 the smallest number ¢; >0 for
which (1.3) is true. We set || 4| g = oo if 4 is not H-smooth Then we obtain the following
corollary from the proof of Theorem 2.

COROLLARY 4. Suppose that f(x)=|x|"* in Theorem 2. Then the best value of c3
in (1.3) is

2I (m—2p)/2)m?b+1-mi2 J dw
oI (B) sm-1|o—a' " 287

where I' is the I'-function and dw is the Lebesgue measure on S™~ 1= {xeR™: |x|=1}.

(2.1) ci=

The following proposition is crucial in the proof. The space H*(R™) and its norm
are defined by

HR™)={ueH : |4 HY, |ullgp=||&1a| .

PROPOSITION 5. Let a#0 be real and let u, be in H™2(R™). Then
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2
f io(rw)e™*dw| r*™*"1dr
sm- 1

2.2) jw Ie_i'"uo(x)lzdt=cmjvoo

V]

— ©
- 2
Scal sm1 |||uo” Hm-a2, Q.. X,
where c,=|o|”*(1/2n)"~* and | S™~ | is the surface area of S™ .

REMARK. In (2.2) the middle member is bounded continuous function of x (see
the proof of Proposition 5). The left hand side has the meaning if e~ “Hy(x) is chosen
to be measurable in two variables x and ¢. Such a choice is possible and the proposition
asserts that (2.2) is true for all such choices. We also remark that it suffices to prove
(2.2) for one measurable choice.

In section 3 we shall first prove Proposition 5 and then Theorems 1 and 2. As to
the proof of Theorem 3 we shall only give in section 4 an extension of Lemma 2.4 in
T. Kato and K. Yajima [3]. Before ending this section we shall make two observa-
tions.

Firstly, the following Theorem 6 is found in C. E. Kenig, G. Ponce and L. Vega [4].
THEOREM 6 ([4], Theorem 4.1). Let uye H*~**R™) and R>0. Then we have

(2.3) j j | e~ *Hug(x) |>dtdx < CRlluo || Fyes - a2 »
|x|<RJ —@

where C is independent of R and u,.
By Proposition 5, Theorem 6 and interpolation we have the following corollary.

COROLLARY 7. Let R>0. Then we have

(2.4) f j | e~ "Hug(x) |*dtdx < CR* gl Fyia-arr2 »
|]x|<RJ -

where s=0+(1—0m, 0<60<1.

Secondly, as a consequence of (2.2), we can give a concrete example of 4 which
is H-smooth, but not H-supersmooth.

EXAMPLE. Let m=2 and a=2. Let V be a negative real function in C?(R?) which
is not identically zero. Then the operator —A+ A}V has a negative eigenvalue for all
A>0. (See M. Reed and B. Simon [7] Theorem XIII.11). This means that the operator
A=(—V)? is not (— A)-supersmooth, because the H-supersmoothness of 4 would
imply the unitary equivalence of (—A) and — A+ AV for small A>0. (See T. Kato [2]).

On the other hand it follows from (2.2) that

j lde™Hupll?dt<cllAl*luoll®>,  uoe LAR?).

— a0
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Hence A4 is H-smooth.

3. H-smoothness.

PROOF OF PROPOSITION 5. We denote the middle member of (2.2) by ¢(x; uo).
For uy,e H™~“/2(R™) we can easily see by Schwarz inequality that

3.1 B(x; o) < €l 8™ l| o || rom- a2 -

In a similar way we can prove the continuity of ¢ in x.

For iipe CS(R™ we substitute () into (2.2), then by the Plancherel theorem
applied to the t-variable we have (2.2) (see [4] and L. Vega [11]).

We next consider a general u,e H™ */2(R™). We can take a sequence {a,} of
CZ,(R™ such that |u,—uel—0 and |lu,—ul| fron-=2—0 as n—oco. Let K< R™ be an
arbitrary compact set and let Fy be the characteristic function of K. Then we have

(3.2) J | Fxe™ ", —u)l >dt

— oo

=ro J | e~ "5 (u, — w)(x) | *dxdt

K

= J f | e~ " (u, —u)(x) |*dtdx
KJ —

Scalsm_ll‘[ ”un_ul"i'[(m—a)/ldx—)o: n,[—o0 .
K

Hence Fyxe  "Hu, converges to g(t) in L*(R; L*R™)). Since Fye™ *Hu,—Fge™*Hu, for all
te R, we have g(t)=Fge *Hu,. On the other hand, by bounded convergence theorem
we see that

(3.3) J o(x; u,,)dx—-»j d(x; ug)dx , n—oo .
K K
We thus obtain
(3.9 | J | Fgxe ™ *Hu,l|>dt = lim | Fxe ™ *Hu,||%dt

=lim | ¢(x; u,)dx

n—»oo K

= J P(x; uo)dx .

If (e "*Hu,)(x) is chosen to be (x, f)-measurable, we can use the Fubini theorem on the
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right side of (3.4). Then (2.2) follows from (3.4).
LEMMA 2.1. Let A be the operator in Theorem 1. Then A is closable.

PrOOF. From the assumption on f and g we see immediately that A4 is well-defined
on Cg,(R™). And from the assumption (b) A* is densely defined. Hence A is closable.

PRrROOF OF THEOREM 1. We shall prove that any extension of 4 is H-smooth. First
let u, e D(A). By Proposition S applied to g(| V |)u, in place of u,, we have

(3.5 j . I /(g1 V De™ *Huq || *dt

= o0

- f | () [2dx f " e Hg( Y Duolx) [2dr
R™ — o0

_ J | £ () 2x; g V Dao)dx
.

< CUAI21g( V Dol From- a2
< G,If 12012 = C,ll FlIlluoll?

which proves (1.3) for u, e D(A). In general, for a closed operator A4, (1.3) holds for all
ue H if it holds for u belonging to a dense subset. Thus Theorem 1 is proved.

PROOF OF THEOREM 2.

Step 1: A= f(x)| V|©®~2P/2 js closable.

Let y be a nonnegative number and ue D(4). Then we know by assumption (a)
that | f(x) |?| V|"u(x) is in &’. Furthermore, |V |"u(x) is in &. Hence we obtain

(3.6) IACIV "ull?=(f) IV "4, |V ") < 00

which implies that f(x)|V|’ue H. Thus, A4 is well-defined as an operator in H. Assump-
tion (d) implies that 2 « D(4*) so that 4* is densely defined. Hence A4 is closable.
Step 2: [A] is H-smooth.
Let ue D(A). Put y=(x—2p)/2. Using the Fourier transformation, we see that

3.7 1AV *e™*Huj®
=(f) PPV Ie™ " u, | V™" u)

= (T D) =1 EPe 181", | & re="41g)

=c JI (7 PXE— )\ m i)l & i)~ H0m1=~1€19 g iy
R2m

= f f =t Y DAt etoeay
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= cfj‘g(l \vJ |m— 2ﬂ|f |2)(é _ ) | r,l l;u(n)llfl lyzlsg) —lt(l’ll““|§|¢)dédﬂ-

We shall later prove that

© 5 Yi)eitl €15 = 1n1%)
(3.8) lim | e~*tdr f I’é'”(f)l'g'“(rzfu dedn<Clul?, ueD(A),
el oo o /]

where

dow’

C=(n/a) =T

sm—llw—a)

Since Z(|V|"~?#| f|*)e L and ite C,(R™), it follows from (3.8) that (1.3) holds for
ue D(A) with c; independent of u. This shows that 4 is H-smooth because we can
easily deduce (1.3) for a general ue H from (1.3) for ue D(A) exactly in the same way
as in the proof of Theorem 1.

Let P, be the Poisson kernel for the half plane, i.e.,

&
s(X) n-x—’z:—z-, XER, e>0.

By carrying out the integration with respect to ¢ in (3.8), we obtain

P& F =10 E VS| n i)
3.9 déd
G2 sm” (&= o

Y ¥ 4
=ch J J riro)yire’) rm=*=ldrdwdw’
Sm-1xgm-1

o lro—ro’'|™” 2"

=CJJ f ______u(rw)u/(rai Z 5 r™~ ldrdwdw’
sm-1xg§m=-1 0 |(D—CO |m

2
J j f | #ro)| ——— dwdw'r" " dr,
s§Mm—-1x gm-— 1,60 w ‘m 2”

where c=1/a. At the last inequality we used Schwarz inequality with respect to dwdw’.
We integrate the right hand side first over @’. We know that

dw’
fsm-lm<oo’ B>1/2.

‘This proves (3.8) and finishes the proof of Theorem 2.

PROOF OF CORoLLARY 4. 1If 4 is a radial function, the equality holds in the last
inequality of (3.9). To prove (2.1), we use the Riesz potentials I;. (See E. M. Stein [9],
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p. 116-—p. 121.) For u,ve ¥,

. 1 u(y)
3.10 I - P
(3-10) U= ) gmim—y 3 Y
(3.11) f (Lu)x)(x)dx =(2m)~* j | E|~PHEKE)E
R™ Rm
where
rg/2)
=qm22f 17
WD) =2 m=B)2)

Using (3.10) and (3.11), we can easily calculate the best constant c¢2. In fact, putting
y=(ax—2p)/2, we have

x| =PV {7e™ "y

=I |x 1722V "e™ *Hu(x))| V e ™ u(x))dx
R™

=(2m)** ”(27tl x )72V e " Hu(x)X| V e~ *Hu(x))dx

=(2n)* | Lg(-[e™ "t a)&)| ™ e~ ME4(E)de
_en¥f f |7 72| ) g
v(2B) J Jram 1E—n|""28

After multiplying e™%!*!, we integrate both sides over te R. From the above equality
and (3.8) we obtain (2.1).

'“"”'"’dfdn .

REMARK. In the proof of Theorem 1 we used the fact that |A|¥? is a radial
function }n\ the Fourier space, and in the proof of Theorem 2 the condition that
| £|m~26(| f|?)e L*. Keeping this in mind, we can extend Theorem 1 as follows; Let P
- and Q be real-valued functions in C*(0, o0) and C(0, o), respectively. We assume that
P'(r)>0 and P’(0)=0 and that

Q*(r)
P'(r)

Let f be in L>(R™) such that A= f(x)Q(I V|) with D(4)=Cg(RY) is a densely defined
closable linear operator. Then any closed extension of 4 is P(|V|)-smooth, i.e.,

rm-ll<C.

Jw I F()QUV ) exp(—itP(V ul*dt<Cllull*,  ueH.

— Q0
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The relation corresponding to (2.2) takes the following form;

f " Jexp(— itP( V Dyu(x) [2dt

o — 0

=Cmf
0

and can be found in [4].

2 .2m—-2

P'(r)

ar, ue Cg (R™,

j i(rw)e™*dw
sm-1

4. H-supersmoothness.

The weighted Sobolev space Hi(R™) and its norm are defined by
HYR™={ues" : |(1+x*)¥*(1 —A)"*u|| < 0} for s,reR,
llaall g = (1 + x2)2(1 — Ay 2w .

The proof of Theorem 3 is based on the following lemma (the case 0 <s<1 was used

in [3]).
LEMMA 4.1. For 0<s<m/2,
4.1) |x|"*e B(H, H; "(R™) N B(HL (R™), H) .

Proor. It is sufficient to prove that | x|™° is B(H*. (R™), H), since B(H;(R™), H)
is the dual of B(H, H°_ (R™)). For 0 <s<m/2, we use that

(4.2) x| ull <Cllullgs,  ueH(R™)

(cf. P. I. Lizorkin [5], V. G. Maz’ya and T. O. Shaposhnikova [6] and H. Triebel
[10]). Let ue H. (R™) and R>0. We take a function y; e CZ(R™) such that 0<y, <1,
x1=1,if | x|<R, and x, =0, if | x|>2R. Put y,=1—y,. By (4.2), we have

1 =5ull < CQl x|~ *qull + 1 x|~ 55ul)
< C(L+4RY ||| x|75(1 +x2) ™2y ul + C||(1 + x2)~2u|
< CN(1+x2)"2u| g + ClI(1 +x2) " ?u||
< CI(1 =AY+ x3)~52u|| + C (1 — AY3(1 + x2) ™ 2u||
< CI(1+x2)752(1 — A)*2u|
=Cllulge
The rest of the proof refers to the proof of Theorem 1 of [3]. We shall make a

sketch of proof.
For s>1/2 and re R, a B(H(R™), X)-valued function y(k) is defined by
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Wk)g(@)=k™~V2jkw),  geHYR™), keR™.

Let M=|x|% 1/2<s<m/2. Then a B(H, X)-valued function ¥Y(k) defined by

4.3) Y(k)=yk)M , keR*

is locally Holder continuous. In particular one has the following inequalities:
Ck*~12|g], 112<s5<3/2

4.4) I W(k)gnxs{ Ckllogk|ligll, s=3/2
Cklgll , s>3/2,

for sufficiently small ke R™*.
Let E(4) be a spectral decomposition of H. Put M=| x| %. For 4, e C§ (R™) and
Im {#0 we have

| £ 1" 2(FMuYEXFMuX?)
dé .
1 €1*—¢
We take 4 and K such that 0<d« 1< K. Let 26 <Re{ < K. Splitting the integral of (4.5)
into three parts | £|*<d, 6<|&|*<2K and | ¢£|*> 2K, we have that

(R(0)A*u, A*v)=(AR(Q)E(2K, 0))A*u, v)
/e (2K)1/= -28
| +< j N f )k“ (PR, PE)

0 PIve k*—¢
Under the assumptions of Theorem 3 we can see that A(1+|A|¥?) ™12, (1+|A|¥?)~ /2
and A(1+|A|[¥?)”'A4* are in B(H). The first term of the right hand side is

[4AR()E((2K, o))4*]
=[A(1+| A7) 2IREN1 +| A M) E(2K, o))[(1+|A¥2)7124%] .

Therefore the first term of the right hand side is in B(H), and that is analytic in
d<Re! < K. We shall estimate the remainder terms. Let {=A+is. Since P(k)*¥P(k)e

B(H), it is sufficient to prove that the following limits exist with respect to the operator
norm of B(H) when & tends to 0:

31/ (2K)V/= —2p *
(4.6) lim (I + )ka ?(kl O e .
elo 0 Sl/= k*—ATFie

@.5) (RO A, A*0)= f
R™

By the change of variable k*=p, (4.6) is equal to

é 2K 1-28)/a 1/a\ % 1/a
llim(j +J )” LGt (G
aelo\Jo Js u—A¥Fie

Since u(! ~ 2Py l/=* (/%) is locally Hlder continuous on R*, by Privalov’s theorem,
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the second term converges in B(H) and the limit operator is locally Hélder continuous.
To estimate the first term, we handle the following three cases separately; 1/2 < <3/2,
p=3/2 and f>3/2. We use (4.4).

Case 1. 1/2<f<3)2.

|t~ 2B (e liny|| < Cptt =200y 200B-1/2) _ C
Case 2. f=3/2. We take 0<s<1. Then we have
™21 (u ey P 9] < Cp™ 25470 log etV 2

=Cp™*(w’|log p''*|?)
<Cu~%.

Case 3. B>3/2.

st 72O ey P ()| < Cut ~ 2P0ep 2
=Cp3-28)a

Since a>1 and a—2>0, we know that (3—28)/a> —1.
Consequently for § <A< K, the limit of the first term exists in all cases as ¢} 0.
When A=0, as is known, &% € B(H(R™), H}(R™)). Therefore

@47 I(AR(iiS)A*u,u)le |E17 2| (FMu)() *dE
Rm
= | MFMu|?
<Cllu®.

When 1<0, it follows from (4.7) that
(4.8 | (AR(A+ ie)A*u, u)| < C|lu||® .

In particular we obtain for {= +1+ie

4.9 sup |[[AR(+ 1+ig)4A*]|| <0 .
e#+0

The uniform boundedness (1.4) follows by scaling argument. (cf. T. Kato and K. Yajima
[2].) We define S(p) by

(4.10) Sp)fx)=p™2f(px),  p>0.
S(p) is unitary on H, S(p)D(A*)=D(A*) and
(4.11) [S(p)AS(p)™']1=p"?[4],

(4.12) SEN A2 =0)71S(p) " =p*( A2 —p*) 7" .



250 KAZUO WATANABE

Combining (4.8)—(4.12), we have that

4.13) sup . ILAR(A+ie)A*]|

A#0,e#
=sup [|[[S( 4]~ ") ARA+ie)A*S(| A |'")]]|

=sup |[[AR(+ 1+ ie)A*]|| < o0 .
e+ 0

By (4.7) and (4.13) we obtain that [4] is H-supersmooth.
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