Smooth Perturbations of the Self-adjoint Operator $|\Delta|^{\alpha/2}$

Kazuo WATANABE

Gakushuin University
(Communicated by S.T. Kuroda)

1. Introduction.

In this paper we shall consider smooth perturbations of the formal self-adjoint operator $|\Delta|^{\alpha/2}$ in $L^2(\mathbb{R}^n)$, where $\Delta = \sum_{i=1}^m \partial^2/\partial x_i^2$. We shall first recall some notations in the theory of smooth perturbations.

Let H be a selfadjoint operator in a separable Hilbert space H with its resolvent denoted by $R(\zeta) = (H - \zeta)^{-1}$, Im $\zeta \neq 0$. A densely defined closed linear operator A is said to be smooth with respect to H, H-smooth for short, if

(1.1)
$$\int_{-\infty}^{+\infty} ||AR(\lambda \pm i\varepsilon)u||^2 d\lambda \le c_1^2 ||u||^2, \quad u \in H, \quad \varepsilon > 0,$$

where c_1 is a constant independent of u and $\varepsilon > 0$. Each of the following conditions (1.2) and (1.3) is equivalent to (1.1) (cf. T. Kato [2]):

(1.2)
$$|\operatorname{Im}(R(\zeta)A^*u, A^*u)| \le c_2^2 ||u||^2, \quad u \in D(A^*), \quad \operatorname{Im} \zeta \ne 0;$$

(1.3)
$$\int_{-\infty}^{+\infty} ||Ae^{-itH}u||^2 dt \le c_3^2 ||u||^2, \qquad u \in H.$$

Here $c_2 > 0$ and $c_3 > 0$ are constants independent of u and ζ . $\{e^{itH}\}_{t \in \mathbb{R}}$ is a unitary group generated by H, and it is understood that $||Ae^{-itH}u|| = \infty$ if $e^{-itH}u \notin D(A)$. For more details, see T. Kato [2]. A is said to be supersmooth with respect to H, H-supersmooth for short, if

$$(1.4) |(R(\zeta)A^*u, A^*u)| \le c_A^2 ||u||^2, u \in D(A^*), \text{Im } \zeta \ne 0,$$

where c_4 is a constant independent of u and $\text{Im } \zeta \neq 0$. This terminology was introduced by T. Kato and K. Yajima [3], but the notion itself appeared in T. Kato [2].

T. Kato and K. Yajima proved in [2] that $A = |x|^{-\beta} |\nabla|^{1-\beta}$ with $1/2 < \beta \le 1$ is $-\Delta$ -supersmooth. The $-\Delta$ -smoothness was also proved by other simple methods (see M. Ben-Artzi and S. Klainerman [1], B. Simon [8]) and was extended to the Schrödinger

operator with a potential ([1]). In the previous version of this work [12] we also showed, among other things, that the smoothness alone can be proved by a method which is rather simple. There is some overlap between the results of [1], [8] and ours, but the method is different and we shall present our result here. In what follows we first prove the smoothness somewhat generally for $A = f(x)|\nabla|^{\delta}$ and $H = |\Delta|^{\alpha/2}$ with suitable α , δ and f (Theorems 1 and 2). For another proof, see [1]. We also observe that for $f(x) = |x|^{-\beta}$ we can calculate the best constant in (1.3) (Corollary 4). For $H = -\Delta$ and $f(x) = |x|^{-1}$, this best constant is given in [8]. An immediate generalization of Theorem 1 to the case $H = P(|\nabla|)$ will be mentioned in Remark at the end of the section 3. As to the supersmoothness we shall prove an immediate generalization of Theorem 1 of T. Kato and K. Yajima [3] to the case of the $|\Delta|^{\alpha}$ -supersmoothness of $A = |x|^{\gamma}|\nabla|^{\delta}$ following their method. As byproducts of our work we shall give: 1) an example of a potential V(x), $x \in \mathbb{R}^2$, which is $-\Delta$ -smooth but not $-\Delta$ -supersmooth; 2) a decay estimate for the solution of the free Schrödinger operator (Proposition 5).

2. Theorems.

We begin with giving precise definitions. Let $H = L^2(\mathbb{R}^m)$ with its inner product and norm denoted by (,) and $\|\cdot\|$. We use the following notations. $\mathscr S$ is the space of rapidly decreasing functions and $\mathscr S'$ is its dual space. $\mathscr F$ is the Fourier transform from $\mathscr S'$ to $\mathscr S'$. We also write $\hat u(\xi) = (\mathscr F u)(\xi)$ when $\mathscr F u$ is a function. F is the restriction of $\mathscr F$ to $L^2(\mathbb{R}^m)$. $H^\alpha(\mathbb{R}^m)$ is the Sobolev space of order $\alpha \ge 1$. We use the notation |x| to denote the operator of multiplication by |x| in H. $|\Delta|^{\alpha/2}$ is an operator in H which is the multiplication operator in the Fourier space and is defined as

$$|\Delta|^{\alpha/2} = |\nabla|^{\alpha} = F^{-1}|\xi|^{\alpha}F.$$

In particular, $D(|\Delta|^{\alpha/2}) = H^{\alpha}(\mathbb{R}^m)$. We put

$$C_{0\star}^{\infty}(\mathbf{R}^m) = C_0^{\infty}(\mathbf{R}^m \setminus \{0\})$$
.

Throughout the rest of the present paper we put

$$H=|\Delta|^{\alpha/2}$$
, $\alpha \geq 1$.

As is well-known

$$(*) \qquad (e^{-itH}u)(x) = \left(\frac{1}{2\pi}\right)^{m/2} \int \hat{u}(\xi)e^{-it|\xi|^{\alpha} + i\xi x}d\xi.$$

Our main results are now stated as follows.

THEOREM 1. Let $\alpha \neq 0$, $m \geq 1$. Let f be in $L^2(\mathbb{R}^m)$ and g be a measurable function on \mathbb{R}^+ . Assume that

(a)
$$g(|\xi|)|\xi|^{(m-\alpha)/2}$$
 is bounded;

(b) there exists a dense subset \mathcal{D} in \mathbf{H} such that $g(|\nabla|)f(x)v \in \mathbf{H}$ if $v \in \mathcal{D}$. Let A be the operator defined as

$$A = f(x)g(|\nabla|), \qquad D(A) = C_{0\star}^{\infty}(\mathbf{R}_{\varepsilon}^{m}).$$

Then A is closable and any closed extension of A is H-smooth.

THEOREM 2. Let $m \ge 2$, $\alpha > 1$, $\alpha - 2\beta \ge 0$ and $1/2 < \beta < m/2$. Let $f \in \mathcal{S}' \cap L^2_{loc}$ and assume that

- (a) $|f|^2 \in \mathcal{S}'$;
- (b) $\mathcal{F}(|f|^2)(\xi)$ is a measurable function;
- (c) $\mathscr{F}(|\nabla|^{m-2\beta}|f|^2)(\xi) = |\xi|^{m-2\beta}(|\widehat{f}|^2)(\xi) \in L^{\infty};$
- (d) there exists a dense subset \mathcal{D} in \mathbf{H} such that $|\nabla|^{(\alpha-2\beta)/2} f v \in \mathbf{H}$ if $v \in \mathcal{D}$.

Let A be the operator defined as

$$A = f(x) |\nabla|^{(\alpha - 2\beta)/2}, \qquad D(A) = C_{0*}^{\infty}(\mathbf{R}_{\xi}^{m}).$$

Then A is a closable operator in H and any closed extension of A is H-smooth.

THEOREM 3. Let $\alpha > 1$, $\alpha - 2\beta \ge 0$ and $1/2 < \beta < m/2$. Let A be the operator defined as

$$A = |x|^{-\beta} |\nabla|^{(\alpha-2\beta)/2}, \qquad D(A) = C_{0*}^{\infty}(\mathbf{R}_{\xi}^{m}).$$

Then, A is closable and any closed extension of A is H-supersmooth.

EXAMPLE. In Theorem 2 we can choose $|x|^{-\beta}$ as f(x) (see E. M. Stein [9], p. 116-p. 121). And clearly $f \in \mathcal{S}$ satisfies the conditions (a)-(d).

For an *H*-smooth operator A, we denote by $||A||_H$ the smallest number $c_3 > 0$ for which (1.3) is true. We set $||A||_H = \infty$ if A is not H-smooth. Then we obtain the following corollary from the proof of Theorem 2.

COROLLARY 4. Suppose that $f(x) = |x|^{-\beta}$ in Theorem 2. Then the best value of c_3^2 in (1.3) is

(2.1)
$$c_3^2 = \frac{2\Gamma((m-2\beta)/2)\pi^{2\beta+1-m/2}}{\alpha\Gamma(\beta)} \int_{S_{m-1}} \frac{d\omega}{|\omega-\omega'|^{m-2\beta}},$$

where Γ is the Γ -function and $d\omega$ is the Lebesgue measure on $S^{m-1} = \{x \in \mathbb{R}^m : |x| = 1\}$.

The following proposition is crucial in the proof. The space $\dot{H}^s(R^m)$ and its norm are defined by

$$\dot{H}^{s}(\mathbf{R}^{m}) = \{ u \in \mathbf{H} : |\xi|^{s/2} \hat{u} \in \mathbf{H} \}, \quad ||u||_{\dot{H}^{s}} = |||\xi|^{s/2} \hat{u}||.$$

PROPOSITION 5. Let $\alpha \neq 0$ be real and let u_0 be in $\dot{H}^{(m-\alpha)/2}(\mathbb{R}^m)$. Then

(2.2)
$$\int_{-\infty}^{\infty} |e^{-itH}u_0(x)|^2 dt = c_{\alpha} \int_{0}^{\infty} \left| \int_{S^{m-1}} \hat{u}_0(r\omega) e^{ir\omega x} d\omega \right|^2 r^{2m-\alpha-1} dr$$
$$\leq c_{\alpha} |S^{m-1}| ||u_0||_{\dot{H}(m-\alpha)/2}^2, \quad a.e. \quad x,$$

where $c_{\alpha} = |\alpha|^{-1} (1/2\pi)^{m-1}$ and $|S^{m-1}|$ is the surface area of S^{m-1} .

REMARK. In (2.2) the middle member is bounded continuous function of x (see the proof of Proposition 5). The left hand side has the meaning if $e^{-itH}u_0(x)$ is chosen to be measurable in two variables x and t. Such a choice is possible and the proposition asserts that (2.2) is true for all such choices. We also remark that it suffices to prove (2.2) for one measurable choice.

In section 3 we shall first prove Proposition 5 and then Theorems 1 and 2. As to the proof of Theorem 3 we shall only give in section 4 an extension of Lemma 2.4 in T. Kato and K. Yajima [3]. Before ending this section we shall make two observations.

Firstly, the following Theorem 6 is found in C. E. Kenig, G. Ponce and L. Vega [4].

THEOREM 6 ([4], Theorem 4.1). Let $u_0 \in \dot{H}^{(1-\alpha)/2}(\mathbb{R}^m)$ and R > 0. Then we have

(2.3)
$$\int_{|x| < R} \int_{-\infty}^{\infty} |e^{-itH}u_0(x)|^2 dt dx \le CR \|u_0\|_{\dot{H}^{(1-\alpha)/2}}^2,$$

where C is independent of R and u_0 .

By Proposition 5, Theorem 6 and interpolation we have the following corollary.

COROLLARY 7. Let R > 0. Then we have

(2.4)
$$\int_{|x| < R} \int_{-\infty}^{\infty} |e^{-itH}u_0(x)|^2 dt dx \le CR^s ||u_0||^2_{\dot{H}^{(s-\alpha)/2}},$$

where $s = \theta + (1 - \theta)m$, $0 \le \theta \le 1$.

Secondly, as a consequence of (2.2), we can give a concrete example of A which is H-smooth, but not H-supersmooth.

EXAMPLE. Let m=2 and $\alpha=2$. Let V be a negative real function in $C_0^{\infty}(\mathbb{R}^2)$ which is not identically zero. Then the operator $-\Delta + \lambda V$ has a negative eigenvalue for all $\lambda>0$. (See M. Reed and B. Simon [7] Theorem XIII.11). This means that the operator $A=(-V)^{1/2}$ is not $(-\Delta)$ -supersmooth, because the H-supersmoothness of A would imply the unitary equivalence of $(-\Delta)$ and $-\Delta + \lambda V$ for small $\lambda>0$. (See T. Kato [2]).

On the other hand it follows from (2.2) that

$$\int_{-\infty}^{\infty} \|Ae^{-itH}u_0\|^2 dt \le c\|A\|^2 \|u_0\|^2 , \qquad u_0 \in L^2(\mathbb{R}^2) .$$

Hence A is H-smooth.

3. *H*-smoothness.

PROOF OF PROPOSITION 5. We denote the middle member of (2.2) by $\phi(x; u_0)$. For $u_0 \in \dot{H}^{(m-\alpha)/2}(\mathbb{R}^m)$ we can easily see by Schwarz inequality that

(3.1)
$$\phi(x; u_0) \le c_{\alpha} |S^{m-1}| ||u_0||_{\dot{H}^{(m-\alpha)/2}}^2.$$

In a similar way we can prove the continuity of ϕ in x.

For $\hat{u}_0 \in C_{0*}^{\infty}(\mathbb{R}^m)$ we substitute (*) into (2.2), then by the Plancherel theorem applied to the t-variable we have (2.2) (see [4] and L. Vega [11]).

We next consider a general $u_0 \in \dot{H}^{(m-\alpha)/2}(\mathbb{R}^m)$. We can take a sequence $\{\hat{u}_n\}$ of $C_{0*}^{\infty}(\mathbb{R}^m)$ such that $\|u_n - u_0\| \to 0$ and $\|u_n - u_0\|_{\dot{H}^{(m-\alpha)/2}} \to 0$ as $n \to \infty$. Let $K \subset \mathbb{R}^m$ be an arbitrary compact set and let F_K be the characteristic function of K. Then we have

(3.2)
$$\int_{-\infty}^{\infty} \|F_{K}e^{-itH}(u_{n}-u_{l})\|^{2} dt$$

$$= \int_{-\infty}^{\infty} \int_{K} |e^{-itH}(u_{n}-u_{l})(x)|^{2} dx dt$$

$$= \int_{K}^{\infty} \int_{-\infty}^{\infty} |e^{-itH}(u_{n}-u_{l})(x)|^{2} dt dx$$

$$\leq c_{\alpha} |S^{m-1}| \int_{K} \|u_{n}-u_{l}\|_{\dot{H}^{(m-\alpha)/2}}^{2} dx \to 0, \qquad n, l \to \infty.$$

Hence $F_K e^{-itH} u_n$ converges to g(t) in $L^2(\mathbf{R}; L^2(\mathbf{R}^m))$. Since $F_K e^{-itH} u_n \to F_K e^{-itH} u_0$ for all $t \in \mathbf{R}$, we have $g(t) = F_K e^{-itH} u_0$. On the other hand, by bounded convergence theorem we see that

(3.3)
$$\int_{K} \phi(x; u_{n}) dx \to \int_{K} \phi(x; u_{0}) dx, \qquad n \to \infty.$$

We thus obtain

(3.4)
$$\int_{-\infty}^{\infty} \|F_{K}e^{-itH}u_{0}\|^{2}dt = \lim_{n \to \infty} \int_{-\infty}^{\infty} \|F_{K}e^{-itH}u_{n}\|^{2}dt$$
$$= \lim_{n \to \infty} \int_{K} \phi(x; u_{n})dx$$
$$= \int_{K} \phi(x; u_{0})dx.$$

If $(e^{-itH}u_0)(x)$ is chosen to be (x, t)-measurable, we can use the Fubini theorem on the

right side of (3.4). Then (2.2) follows from (3.4).

LEMMA 2.1. Let A be the operator in Theorem 1. Then A is closable.

PROOF. From the assumption on f and g we see immediately that A is well-defined on $C_{0*}^{\infty}(\mathbb{R}^m)$. And from the assumption (b) A^* is densely defined. Hence A is closable.

PROOF OF THEOREM 1. We shall prove that any extension of A is H-smooth. First let $u_0 \in D(A)$. By Proposition 5 applied to $g(|\nabla|)u_0$ in place of u_0 , we have

(3.5)
$$\int_{-\infty}^{\infty} \|f(x)g(|\nabla|)e^{-itH}u_0\|^2 dt$$

$$= \int_{\mathbb{R}^m} |f(x)|^2 dx \int_{-\infty}^{\infty} |e^{-itH}g(|\nabla|)u_0(x)|^2 dt$$

$$= \int_{\mathbb{R}^m} |f(x)|^2 \phi(x; g(|\nabla|)u_0) dx$$

$$\leq C \|f\|^2 \|g(|\nabla|)u_0\|_{\dot{H}^{(m-\alpha)/2}}^2$$

$$\leq C_g \|f\|^2 \|\hat{u}_0\|^2 = C_g \|f\|^2 \|u_0\|^2,$$

which proves (1.3) for $u_0 \in D(A)$. In general, for a closed operator A, (1.3) holds for all $u \in H$ if it holds for u belonging to a dense subset. Thus Theorem 1 is proved.

PROOF OF THEOREM 2.

Step 1: $A = f(x) |\nabla|^{(\alpha - 2\beta)/2}$ is closable.

Let γ be a nonnegative number and $u \in D(A)$. Then we know by assumption (a) that $|f(x)|^2 |\nabla|^{\gamma} u(x)$ is in \mathscr{S}' . Furthermore, $|\nabla|^{\gamma} u(x)$ is in \mathscr{S} . Hence we obtain

(3.6)
$$||f(x)|\nabla|^{\gamma}u||^{2} = (|f(x)|^{2}|\nabla|^{\gamma}u, |\nabla|^{\gamma}u) < \infty$$

which implies that $f(x)|\nabla|^{\gamma}u \in H$. Thus, A is well-defined as an operator in H. Assumption (d) implies that $\mathcal{D} \subset D(A^*)$ so that A^* is densely defined. Hence A is closable.

Step 2: [A] is H-smooth.

Let $u \in D(A)$. Put $\gamma = (\alpha - 2\beta)/2$. Using the Fourier transformation, we see that

$$=c\!\int\!\int\!\mathcal{F}(|\nabla|^{m-2\beta}|f|^2)(\xi-\eta)\frac{|\eta|^{\gamma}\hat{u}(\eta)|\xi|^{\gamma}\overline{\hat{u}(\xi)}}{|\xi-\eta|^{m-2\beta}}e^{-it(|\eta|^{\alpha}-|\xi|^{\alpha})}d\xi d\eta.$$

We shall later prove that

$$(3.8) \quad \lim_{\varepsilon \downarrow \infty} \int_{-\infty}^{\infty} e^{-\varepsilon |t|} dt \int \int \frac{|\xi|^{\gamma} \hat{u}(\xi)|\eta|^{\gamma} \overline{\hat{u}(\eta)} e^{it(|\xi|^{\alpha} - |\eta|^{\alpha})}}{|\xi - \eta|^{m - 2\beta}} d\xi d\eta \le C ||u||^{2}, \qquad u \in D(A),$$

where

$$C = (\pi/\alpha) \int_{\mathbb{S}^{m-1}} \frac{d\omega'}{|\omega - \omega'|^{m-2\beta}}.$$

Since $\mathscr{F}(|\nabla|^{m-2\beta}|f|^2) \in L^{\infty}$ and $\hat{u} \in C^{\infty}_{0*}(\mathbb{R}^m)$, it follows from (3.8) that (1.3) holds for $u \in D(A)$ with c_3 independent of u. This shows that A is H-smooth because we can easily deduce (1.3) for a general $u \in H$ from (1.3) for $u \in D(A)$ exactly in the same way as in the proof of Theorem 1.

Let P_{ε} be the Poisson kernel for the half plane, i.e.,

$$P_{\varepsilon}(x) = \frac{1}{\pi} \frac{\varepsilon}{x^2 + \varepsilon^2}, \quad x \in \mathbb{R}, \quad \varepsilon > 0.$$

By carrying out the integration with respect to t in (3.8), we obtain

(3.9)
$$\lim_{\varepsilon \downarrow \infty} \iint \frac{P_{\varepsilon}(|\xi|^{\alpha} - |\eta|^{\alpha})|\xi|^{\gamma} \hat{u}(\xi)|\eta|^{\gamma} \hat{u}(\eta)}{|\xi - \eta|^{m-2\beta}} d\xi d\eta$$

$$= c \iint_{S^{m-1} \times S^{m-1}} \int_{0}^{\infty} \frac{r^{\gamma} \hat{u}(r\omega)r^{\gamma} \hat{u}(r\omega')}{|r\omega - r\omega'|^{m-2\beta}} r^{2m-\alpha-1} dr d\omega d\omega'$$

$$= c \iint_{S^{m-1} \times S^{m-1}} \int_{0}^{\infty} \frac{\hat{u}(r\omega) \hat{u}(r\omega')}{|\omega - \omega'|^{m-2\beta}} r^{m-1} dr d\omega d\omega'$$

$$\leq c \int_{0}^{\infty} \iint_{S^{m-1} \times S^{m-1}} \frac{|\hat{u}(r\omega)|^{2}}{|\omega - \omega'|^{m-2\beta}} d\omega d\omega' r^{m-1} dr,$$

where $c = 1/\alpha$. At the last inequality we used Schwarz inequality with respect to $d\omega d\omega'$. We integrate the right hand side first over ω' . We know that

$$\int_{S^{m-1}} \frac{d\omega'}{|\omega-\omega'|^{m-2\beta}} < \infty , \qquad \beta > 1/2 .$$

This proves (3.8) and finishes the proof of Theorem 2.

PROOF OF COROLLARY 4. If \hat{u} is a radial function, the equality holds in the last inequality of (3.9). To prove (2.1), we use the Riesz potentials I_{β} . (See E. M. Stein [9],

p. 116–p. 121.) For $u, v \in \mathcal{S}$,

(3.10)
$$(I_{\beta}u)(x) = \frac{1}{\gamma(\beta)} \int_{\mathbb{R}^m} \frac{u(y)}{|x-y|^{m-\beta}} dy ,$$

(3.11)
$$\int_{\mathbb{R}^m} (I_{\beta}u)(x)\overline{v(x)}dx = (2\pi)^{-\beta} \int_{\mathbb{R}^m} |\xi|^{-\beta}\hat{u}(\xi)\overline{\hat{v}(\xi)}d\xi,$$

where

$$\gamma(\beta) = \pi^{m/2} 2^{\beta} \frac{\Gamma(\beta/2)}{\Gamma((m-\beta)/2)}.$$

Using (3.10) and (3.11), we can easily calculate the best constant c_3^2 . In fact, putting $\gamma = (\alpha - 2\beta)/2$, we have

$$\begin{split} &\| \|x\|^{-\beta} \|\nabla\|^{\gamma} e^{-itH} u \|^{2} \\ &= \int_{\mathbb{R}^{m}} |x|^{-2\beta} (\|\nabla\|^{\gamma} e^{-itH} u(x)) \overline{(\|\nabla\|^{\gamma} e^{-itH} u(x))} dx \\ &= (2\pi)^{2\beta} \int (2\pi |x|)^{-2\beta} (\|\nabla\|^{\gamma} e^{-itH} u(x)) \overline{(\|\nabla\|^{\gamma} e^{-itH} u(x))} dx \\ &= (2\pi)^{2\beta} \int I_{2\beta} (\|\cdot\|^{\gamma} e^{-it\|\cdot\|^{\alpha}} \widehat{u}) (\xi) \|^{m} \|^{\gamma} \overline{e^{-it\|\xi\|^{\alpha}} \widehat{u}(\xi)} d\xi \\ &= \frac{(2\pi)^{2\beta}}{\gamma (2\beta)} \int \int_{\mathbb{R}^{2m}} \frac{|\eta|^{\gamma} \widehat{u}(\eta) |\xi|^{\gamma} \overline{\widehat{u}(\xi)}}{|\xi-\eta|^{m-2\beta}} e^{it(|\xi|^{\alpha}-|\eta|^{\alpha})} d\xi d\eta \ . \end{split}$$

After multiplying $e^{-\varepsilon |t|}$, we integrate both sides over $t \in \mathbb{R}$. From the above equality and (3.8) we obtain (2.1).

REMARK. In the proof of Theorem 1 we used the fact that $|\Delta|^{\alpha/2}$ is a radial function in the Fourier space, and in the proof of Theorem 2 the condition that $|\xi|^{m-2\beta}(|f|^2) \in L^{\infty}$. Keeping this in mind, we can extend Theorem 1 as follows; Let P and Q be real-valued functions in $C^1(0, \infty)$ and $C(0, \infty)$, respectively. We assume that P'(r) > 0 and P'(0) = 0 and that

$$\left|\frac{Q^2(r)}{P'(r)}r^{m-1}\right| \leq C.$$

Let f be in $L^2(\mathbb{R}^m)$ such that $A = f(x)Q(|\nabla|)$ with $D(A) = C_{0*}^{\infty}(\mathbb{R}^m)$ is a densely defined closable linear operator. Then any closed extension of A is $P(|\nabla|)$ -smooth, i.e.,

$$\int_{-\infty}^{\infty} \|f(x)Q(|\nabla|) \exp(-itP(|\nabla|))u\|^2 dt \le C \|u\|^2, \qquad u \in \mathbf{H}.$$

The relation corresponding to (2.2) takes the following form;

$$\int_{-\infty}^{\infty} |\exp(-itP(|\nabla|))u(x)|^2 dt$$

$$= C_m \int_{0}^{\infty} \left| \int_{S^{m-1}} \hat{u}(r\omega)e^{ir\omega x} d\omega \right|^2 \frac{r^{2m-2}}{P'(r)} dr , \qquad u \in C_{0*}^{\infty}(\mathbb{R}^m) ,$$

and can be found in [4].

4. *H*-supersmoothness.

The weighted Sobolev space $H_s^r(\mathbb{R}^m)$ and its norm are defined by

$$H_s^r(\mathbf{R}^m) = \{ u \in \mathcal{S}' : \| (1+x^2)^{s/2} (1-\Delta)^{r/2} u \| < \infty \} \quad \text{for} \quad s, r \in \mathbf{R} ,$$

$$\| u \|_{H_s^r} = \| (1+x^2)^{s/2} (1-\Delta)^{r/2} u \| .$$

The proof of Theorem 3 is based on the following lemma (the case $0 \le s \le 1$ was used in [3]).

LEMMA 4.1. For $0 \le s < m/2$,

$$|x|^{-s} \in B(H, H_s^{-s}(\mathbf{R}^m)) \cap B(H_{-s}^s(\mathbf{R}^m), H).$$

PROOF. It is sufficient to prove that $|x|^{-s}$ is $B(H_{-s}^s(\mathbb{R}^m), \mathbb{H})$, since $B(H_s^{-s}(\mathbb{R}^m), \mathbb{H})$ is the dual of $B(\mathbb{H}, H_{-s}^s(\mathbb{R}^m))$. For $0 \le s < m/2$, we use that

$$(4.2) || |x|^{-s}u|| \le C||u||_{H^s}, u \in H^s(\mathbf{R}^m)$$

(cf. P. I. Lizorkin [5], V. G. Maz'ya and T. O. Shaposhnikova [6] and H. Triebel [10]). Let $u \in H^s_{-s}(\mathbb{R}^m)$ and R > 0. We take a function $\chi_1 \in C_0^{\infty}(\mathbb{R}^m)$ such that $0 \le \chi_1 \le 1$, $\chi_1 = 1$, if |x| < R, and $\chi_1 = 0$, if |x| > 2R. Put $\chi_2 = 1 - \chi_1$. By (4.2), we have

$$\begin{aligned} \| \|x\|^{-s}u \| &\leq C(\| \|x\|^{-s}\chi_{1}u \| + \| \|x\|^{-s}\chi_{2}u \|) \\ &\leq C(1 + 4R^{2})^{s/2} \| \|x\|^{-s}(1 + x^{2})^{-s/2}\chi_{1}u \| + C\|(1 + x^{2})^{-s/2}u \| \\ &\leq C\|(1 + x^{2})^{-s/2}u \|_{H^{s}} + C\|(1 + x^{2})^{-s/2}u \| \\ &\leq C\|(1 - \Delta)^{s/2}(1 + x^{2})^{-s/2}u \| + C\|(1 - \Delta)^{s/2}(1 + x^{2})^{-s/2}u \| \\ &\leq C\|(1 + x^{2})^{-s/2}(1 - \Delta)^{s/2}u \| \\ &\leq C\|u\|_{H^{s}_{-s}} \end{aligned}$$

The rest of the proof refers to the proof of Theorem 1 of [3]. We shall make a sketch of proof.

For s > 1/2 and $r \in \mathbb{R}$, a $B(H_s^r(\mathbb{R}^m), \Sigma)$ -valued function $\gamma(k)$ is defined by

$$\gamma(k)g(\omega) = k^{(m-1)/2}\hat{g}(k\omega)$$
, $g \in H_s^r(\mathbb{R}^m)$, $k \in \mathbb{R}^+$.

Let $M = |x|^{-s}$, 1/2 < s < m/2. Then a $B(H, \Sigma)$ -valued function $\Psi(k)$ defined by

$$\Psi(k) = \gamma(k)M, \qquad k \in \mathbb{R}^+$$

is locally Hölder continuous. In particular one has the following inequalities:

(4.4)
$$\|\Psi(k)g\|_{\Sigma} \leq \begin{cases} Ck^{s-1/2} \|g\|, & 1/2 < s < 3/2 \\ Ck|\log k|\|g\|, & s = 3/2 \\ Ck\|g\|, & s > 3/2, \end{cases}$$

for sufficiently small $k \in \mathbb{R}^+$.

Let $E(\lambda)$ be a spectral decomposition of H. Put $M = |x|^{-\beta}$. For $\hat{u}, \hat{v} \in C_{0*}^{\infty}(\mathbb{R}^m)$ and $\text{Im } \zeta \neq 0$ we have

$$(4.5) (R(\zeta)A^*u, A^*v) = \int_{\mathbb{R}^m} \frac{|\xi|^{\alpha-2\beta} (FMu)(\xi)(\overline{FMv})(\xi)}{|\xi|^{\alpha} - \zeta} d\xi.$$

We take δ and K such that $0 < \delta \ll 1 < K$. Let $2\delta < \text{Re } \zeta < K$. Splitting the integral of (4.5) into three parts $|\xi|^{\alpha} \le \delta$, $\delta < |\xi|^{\alpha} \le 2K$ and $|\xi|^{\alpha} > 2K$, we have that

$$(R(\zeta)A^*u, A^*v) = (AR(\zeta)E((2K, \infty))A^*u, v) + \left(\int_0^{\delta^{1/\alpha}} + \int_{\lambda^{1/\alpha}}^{(2K)^{1/\alpha}} \frac{k^{\alpha-2\beta}(\Psi(k)u, \Psi(k)v)}{k^{\alpha}-\zeta} dk\right).$$

Under the assumptions of Theorem 3 we can see that $A(1+|\Delta|^{\alpha/2})^{-1/2}$, $(1+|\Delta|^{\alpha/2})^{-1/2}$ and $A(1+|\Delta|^{\alpha/2})^{-1}A^*$ are in B(H). The first term of the right hand side is

$$[AR(\zeta)E((2K, \infty))A^*]$$
= $[A(1+|\Delta|^{\alpha/2})^{-1/2}]R(\zeta)(1+|\Delta|^{\alpha/2})E((2K, \infty))[(1+|\Delta|^{\alpha/2})^{-1/2}A^*].$

Therefore the first term of the right hand side is in B(H), and that is analytic in $\delta < \text{Re } \zeta < K$. We shall estimate the remainder terms. Let $\zeta = \lambda \pm i\varepsilon$. Since $\Psi(k)^*\Psi(k) \in B(H)$, it is sufficient to prove that the following limits exist with respect to the operator norm of B(H) when ε tends to 0:

(4.6)
$$\lim_{\varepsilon \downarrow 0} \left(\int_0^{\delta^{1/\alpha}} + \int_{\delta^{1/\alpha}}^{(2K)^{1/\alpha}} \right) \frac{k^{\alpha - 2\beta} \Psi(k)^* \Psi(k)}{k^{\alpha} - \lambda \mp i\varepsilon} dk .$$

By the change of variable $k^{\alpha} = \mu$, (4.6) is equal to

$$\frac{1}{\alpha} \lim_{\varepsilon \downarrow 0} \left(\int_0^{\delta} + \int_{\delta}^{2K} \frac{\mu^{(1-2\beta)/\alpha} \Psi(\mu^{1/\alpha})^* \Psi(\mu^{1/\alpha})}{\mu - \lambda \mp i\varepsilon} d\mu \right).$$

Since $\mu^{(1-2\beta)/\alpha}\Psi(\mu^{1/\alpha})^*\Psi(\mu^{1/\alpha})$ is locally Hölder continuous on \mathbb{R}^+ , by Privalov's theorem,

the second term converges in B(H) and the limit operator is locally Hölder continuous. To estimate the first term, we handle the following three cases separately; $1/2 < \beta < 3/2$, $\beta = 3/2$ and $\beta > 3/2$. We use (4.4).

Case 1. $1/2 < \beta < 3/2$.

$$\|\mu^{(1-2\beta)/\alpha}\Psi(\mu^{1/\alpha})^*\Psi(\mu^{1/\alpha})\| \le C\mu^{(1-2\beta)/\alpha}\mu^{2/\alpha(\beta-1/2)} = C.$$

Case 2. $\beta = 3/2$. We take 0 < s < 1. Then we have

$$\|\mu^{-2/\alpha}\Psi(\mu^{1/\alpha})^*\Psi(\mu^{-1/\alpha})\| \le C\mu^{-2/\alpha}\mu^{2/\alpha}|\log \mu^{1/\alpha}|^2$$

$$= C\mu^{-s}(\mu^{s}|\log \mu^{1/\alpha}|^2)$$

$$\le C\mu^{-s}.$$

Case 3. $\beta > 3/2$.

$$\|\mu^{(1-2\beta)/\alpha}\Psi(\mu^{1/\alpha})^*\Psi(\mu^{1/\alpha})\| \le C\mu^{(1-2\beta)/\alpha}\mu^{2/\alpha}$$
$$= C\mu^{(3-2\beta)/\alpha}.$$

Since $\alpha \ge 1$ and $\alpha - 2\beta \ge 0$, we know that $(3 - 2\beta)/\alpha > -1$.

Consequently for $\delta < \lambda < K$, the limit of the first term exists in all cases as $\varepsilon \downarrow 0$. When $\lambda = 0$, as is known, $\mathscr{F} \in B(H_s^r(\mathbb{R}^m), H_s^s(\mathbb{R}^m))$. Therefore

$$|(AR(\pm i\varepsilon)A^*u, u)| \le \int_{\mathbb{R}^m} |\xi|^{-2\beta} |(FMu)(\xi)|^2 d\xi$$

$$= ||MFMu||^2$$

$$\le C||u||^2.$$

When $\lambda < 0$, it follows from (4.7) that

$$|(AR(\lambda \pm i\varepsilon)A^*u, u)| \le C||u||^2.$$

In particular we obtain for $\zeta = \pm 1 + i\varepsilon$

(4.9)
$$\sup_{\varepsilon \neq 0} \| [AR(\pm 1 + i\varepsilon)A^*] \| < \infty.$$

The uniform boundedness (1.4) follows by scaling argument. (cf. T. Kato and K. Yajima [2].) We define $S(\rho)$ by

(4.10)
$$S(\rho)f(x) = \rho^{m/2}f(\rho x), \qquad \rho > 0.$$

 $S(\rho)$ is unitary on H, $S(\rho)D(A^*)=D(A^*)$ and

(4.11)
$$[S(\rho)AS(\rho)^{-1}] = \rho^{m/2}[A],$$

(4.12)
$$S(\rho)(|\Delta|^{\alpha/2} - \zeta)^{-1}S(\rho)^{-1} = \rho^{\alpha}(|\Delta|^{\alpha/2} - \rho^{\alpha}\zeta)^{-1}.$$

Combining (4.8)–(4.12), we have that

(4.13)
$$\sup_{\lambda \neq 0, \epsilon \neq 0} \| [AR(\lambda + i\epsilon)A^*] \|$$

$$= \sup_{\alpha \neq 0} \| [S(|\lambda|^{-1/\alpha})AR(\lambda + i\epsilon)A^*S(|\lambda|^{1/\alpha})] \|$$

$$= \sup_{\alpha \neq 0} \| [AR(\pm 1 + i\epsilon)A^*] \| < \infty.$$

By (4.7) and (4.13) we obtain that [A] is H-supersmooth.

ACKNOWLEDGEMENT. The author would like to thank Professor K. Yajima and Professor S. Nakamura for valuable discussions. He also would like to thank Professor S.T. Kuroda for his encouragement and advices.

References

- [1] M. BEN-ARTZI and S. KLAINERMAN, Decay and regularity for the Schrödinger equation, preprint.
- [2] T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann., 162 (1966), 258-279.
- [3] T. Kato and K. Yajima, Some examples of smooth operators and associated smoothing effect, Rev. Math. Phys., 1 (1989), 481–496.
- [4] C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, preprint.
- [5] P. I. LIZORKIN, On a functional characterization of the interpolation spaces $(L_p(\Omega), W_p^1(\Omega))_{\theta,p}$, Proc. Steklov Inst. Math., 134 (1975), 203–227.
- [6] V. G. MAZ'YA and T. O. SHAPOSHNIKOVA, Theory of Multipliers in Spaces of Differentiable Functions, Monographs Stud. Math., 23, Pitman, 1985.
- [7] M. REED and B. SIMON, Methods of Modern Mathematical Physics IV, Analysis of Operators, Academic Press, 1978.
- [8] B. Simon, Best constants in some operator smoothness estimates, preprint.
- [9] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
- [10] H. TRIEBEL, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, 1978.
- [11] L. VEGA, Schrödinger equations: Pointwise convergence to initial data, Proc. Amer. Math. Soc., 102 (1988), 874–878.
- [12] K. WATANABE, Smooth perturbations of the self-adjoint operator $|\Delta|^{\alpha/2}$, (in Japanese), Master Thesis, Gakushuin Univ., 1990.

Present Address:

DEPARTMENT OF MATHEMATICS, GAKUSHUIN UNIVERSITY MEJIRO, TOSHIMA-KU, TOKYO 171, JAPAN