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Introduction.

Let $\ovalbox{\tt\small REJECT}$ be the upper half-plane $\{\tau\in C|{\rm Im}\tau>0\}$ and $\tau\in\ovalbox{\tt\small REJECT}$ . Let $\wp(u, \tau)$ denote the
Weierstrass $\wp$ -function with fundamental periods $(\tau, 1)$, (in more usual notation, it

should be written $\wp(u;\tau, 1)$ or $\wp(u,$ $\left(\begin{array}{l}\tau\\ 1\end{array}\right))$). As is well known, $\wp(u, \tau)$ is a holomorphic

function of two complex variables $u,$ $\tau$ in a suitable regionc $C\times\ovalbox{\tt\small REJECT}$ , and the theorem
ofimplicit function shows that, given a suitable region $D\subset\ovalbox{\tt\small REJECT}$ , there exists a holomorphic
function $u_{D}(\tau)$ of $\tau\in D$ such that $\wp(u_{D}(\tau), \tau)=0$ on $D$ . This $u_{D}(\tau)$ is not uniquely determined
by $D$ . We shall show in this paper that there exists a unique analytic function $u$ in $\ovalbox{\tt\small REJECT}$ ,
called “

$\wp$-zero value function”, such that every $u_{D}(\tau)$ are its branch on $D$ (Theorem 1).
This function $u$ is a “many-valued modular form” in a sense to be indicated below. We
shall show also in this paper the existence of another function $\mathfrak{p}_{N}$ of the same kind for
an integer $N$ greater than 1, which will be called $ N^{th}\wp$ -zero division value function”
(Theorem 2), and which is expected to have interesting arithmetical applications.

$AcKNOWLEDGEMENT$ . The author wishes to thank Professors T. Mitsui and
S. Iyanaga for their warm guidance and encouragement. He also wishes to thank Dr.
K. Okutsu for his kind advice.

NOTATIONS AND TERMINOLOGIES. In this paper, the symbol $‘‘:=$ means that the
expression on the right is the definition of that on the left. We put

$\Gamma:=SL_{2}(Z)$ , $U:=\left(\begin{array}{ll}1 & 1\\0 & 1\end{array}\right)$ , $T:=\left(\begin{array}{ll}0 & -1\\1 & 0\end{array}\right)$ , $I;=\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ .

Furthermore, for $z\in C,$ $ S=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\Gamma$ , we set

$Sz:=\frac{az+b}{cz+d}$ , $S:z;=cz+d$ .
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For an integer $k$, Se $\Gamma$ and a function $f$ defined in a neighborhood of $\tau_{0}e\ovalbox{\tt\small REJECT}$ , we define
$f|_{k}S$ as the function defined in the neighborhood of $S^{-}‘\tau_{0}$ as follows:

$(f|_{k}SX\tau):=(S:\tau)^{-k}f(S\tau)$ .
A function element is a pair $(f, D)$ such that $D$ is a region in $C$ and $f$ is a

holomorphic function in $D$ . An analytic function on $\ovalbox{\tt\small REJECT}$ means a set of function elements
$(f, D)$ , called branches of the analytic function, such that $D\subset\ovalbox{\tt\small REJECT}$ and for any two
function elements $(f_{1}, D_{1}),$ $(f_{2}, D_{2})$ in the set there exists a curve $\gamma$ in $\ovalbox{\tt\small REJECT}$ such that
$(f_{2}, D_{2})$ is an analytic continuation of $(f_{1}, D_{1})$ along $\gamma$ , the union of all $D’ s$ in the set
coinciding with $\ovalbox{\tt\small REJECT}$ except for a discrete set, and that this set is maximal in the sense
that every function element satisfying the above condition belongs to the set.

\S 1. Deflnition of the $\mathcal{N}^{h}\wp$-zero division value functions.

In this section, we assume that $\omega_{1},\omega_{2}\in C,$ $\omega_{1}/\omega_{2},$ $\tau\in\ovalbox{\tt\small REJECT}$ and $N$ is a positive integer.
We define as usual, for $z\in C$,

$\wp(z,$
$\left(\begin{array}{l}\omega_{1}\\\omega_{2}\end{array}\right));=\frac{1}{z^{2}}+\sum_{\omega\neq 0}\omega eZo_{1}+Z\omega_{2}\{\frac{11}{(z-\omega)^{2}\omega^{2}}\}$

$\sigma(z,$
$\left(\begin{array}{l}\omega_{1}\\\omega_{2}\end{array}\right)):=z\prod_{\omega\neq 0}\omega eZa_{1}+Z\omega_{2}(1-\frac{z}{\omega})\exp(\frac{z}{\omega}+\frac{z^{2}}{2\omega^{2}})$ .

We write simply $\wp(z, \tau),$ $\sigma(z, \tau)$ instead of $\wp(z,$ $\left(\begin{array}{l}\tau\\ 1\end{array}\right)),$ $\sigma(z,$ $\left(\begin{array}{l}\tau\\ 1\end{array}\right))$ respectively. We set

$\wp^{\prime}(z, \tau):=(\partial/\partial z)\wp(z, \tau)$ . $(\wp(z, \tau)$ is the same expression that was already given in the
Introduction.)

DEFINITION. We define two functions on $C\times\ovalbox{\tt\small REJECT}$ as follows:
$\Lambda_{N}(z, \tau):=\sigma(Nz, \tau)^{2}/\sigma(z, \tau)^{2N^{2}}$ ,

$\Phi_{N}(z, \tau):=\wp(Nz, \tau)\Lambda_{N}(z, \tau)$ .
We know that $\Lambda_{N}(z, \tau),$ $\Phi_{N}(z, \tau)\in Z[15G_{4}(\tau), 35G_{6}(\tau)][\wp(z, \tau)]$ , where

$G_{4}(\tau):=\sum_{\omega eZ\tau+Z}\frac{1}{\omega^{4}}$ , $G_{6}(\tau):=\sum_{\omega eZc+Z}\frac{1}{\omega^{6}}$ .

Let $\lambda_{N}(X, \tau),$ $\phi_{N}(X, \tau)eZ[15G_{4}(\tau), 35G_{6}(\tau)][X]$ such that

$\lambda_{N_{I}}(\wp(z, \tau),$ $\tau$) $=\Lambda_{N}(z, \tau)$ , $\phi_{N}(\wp(z, \tau),$ $\tau$) $=\Phi_{N}(z, \tau)$ .
$\lambda_{N},$ $\phi_{N}$ have the degrees $N^{2}-1,$ $N^{2}$ in $X$, respectively. Moreover, we know that $N^{2}-1$

roots of $\lambda_{N}$ are
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$\{\wp(\frac{1}{N}(a, b)\left(\begin{array}{l}\tau\\ 1\end{array}\right),$ $\tau)|a,$ $beZ,$ $0\leqq a,$ $b<N,$ $(a, b)\neq(0,0)\}$

(cf. Cassels [1]).
The following two lemmas follow easily from the well known properties of

$\wp$-function and $\sigma$-function.

LEMMA 1. We fix $\tau e\ovalbox{\tt\small REJECT}$ . Let $\Delta_{\tau}$ $:=\{\mu_{1}\tau+\mu_{2}|0\leqq\mu_{1}, \mu_{2}<1\}$ . Then the function
$z->\Phi_{N}(z, \tau)$ is an elliptic function of order $2N^{2}$ with fundamental periods $(\tau, 1)$ and

$\{\frac{1}{N}(\alpha+a, \beta+b)\left(\begin{array}{l}\tau\\ 1\end{array}\right),$ $\frac{1}{N}(\alpha^{\prime}+a^{\prime}, \beta^{\prime}+b^{\prime})\left(\begin{array}{l}\tau\\ 1\end{array}\right)|_{0\leqq a,b,a^{\prime},b’<N}^{a,b,a^{\prime},b^{\prime}eZ}\}$

is the set of all zeros of $\Phi_{N}$ in $\Delta_{\tau}$ where $\alpha\tau+\beta,$ $\alpha^{\prime}\tau+\beta^{\prime}$ are two zeros of $\wp(z, \tau)$ in $\Delta_{\tau}$

$(0\leqq\alpha, \beta, \alpha^{\prime}, \beta^{\prime}<1)$ .
LEMMA 2. Wefix $\tau\in\ovalbox{\tt\small REJECT}$ . Let $\alpha,$ $\beta\in R$ such that $\wp(\alpha\tau+\beta, \tau)=0$ . Then the following

$N^{2}$ elements are all roots of the polynomial $\phi_{N}(X, \tau)$ in $X$:

$\wp(\frac{1}{N}(\alpha+a, \beta+b)\left(\begin{array}{l}\tau\\ 1\end{array}\right),$ $\tau)$ , $a,$ $b\in Z$ , $0\leqq a,$ $b<N$ .

Hereafter, we assume $N>1$ .
Let $D(\phi_{N}X\tau)$ be the discriminant of the polynomial $\phi_{N}(X, \tau)$ in $X$. Take $\tau_{0}\in\ovalbox{\tt\small REJECT}$ and

choose $\alpha,$ $\beta\in R$ such that $\wp(\alpha\tau_{0}+\beta, \tau_{0})=0$ . It is easy to see that $D(\phi_{N}X\tau_{0})=0$ is equivalent
to $2\alpha,$ $2\beta\in Z$. On the other hand, we have $\lambda_{2}(X, \tau_{0})=4X^{3}-60G_{4}(\tau_{0})X-140G_{6}(\tau_{0})$ , and
so we find $\tau_{O}e\Gamma\sqrt{-1}$ if and only if $2\alpha,$ $2\beta\in Z$ since $\tau_{0}\in\Gamma\sqrt{-1}$ if and only if $G_{6}(\tau_{0})=0$ .
Therefore $\tau_{0}\in\Gamma\sqrt{-1}$ is equivalent to $D(\phi_{N}X\tau_{0})=0$ . Hence, from the implicit function
theorem, there exists an analytic function on $\ovalbox{\tt\small REJECT}$ such that $\phi_{N}(g(\tau), \tau)=0$ on $D$ for a
branch $(g, D)$ ofit. Moreover, by above arguments, we can express $\phi_{N}(X, \tau)$ at $\tau_{0}\in\Gamma\sqrt{-1}$

as

$(\#)$ $\phi_{N}(X, \tau_{0})=\left\{\begin{array}{ll}X\prod_{i=1}^{\langle N^{2}-1)/2}(X-\alpha_{\tau_{O},i}^{\langle N)})^{2} & (for odd N)\\\prod_{i=1}^{N^{2}/2}(X-\alpha_{\tau_{O},i}^{(N)})^{2} & (for even N)\end{array}\right.$

( $\alpha_{\tau_{O},i}^{\langle N)}\neq 0$ , $\alpha_{\tau_{O},i}^{\langle N)}\neq\alpha_{\tau_{O},j}^{\langle N)}$ for $t\neq j$).

Now, for $(a, b)eZ^{2}$ and $(a, b)\not\equiv(O, 0)mod N$, the function

$\wp_{N,(a,b)}(\tau):=\wp(\frac{1}{N}(a, b)\left(\begin{array}{l}\tau\\ 1\end{array}\right),$ $\tau)$

is an entire modular form of weight 2 for $\Gamma[N]$ , where
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$\Gamma[N]:=$ { $S\in\Gamma|S\equiv Imod N$ or $S\equiv-Imod N$}.
$\wp_{N.\{a,b)}$ is called the $ N^{th}\wp$-division value. It is a value of $\wp(z, \tau)$ for $z=an$ “N-division
point of a pole of $\wp(z, \tau)$ . In analogy, we shall consider $ N^{th}\wp$-zero division value
function” defined as folows:

DEFINITION. We call an analytic function on $\ovalbox{\tt\small REJECT}$ such that $\phi_{N}(g(\tau), \tau)=0$ on $D$ for
a branch $(g, D)$ of it as $ N^{th}\wp$-zero division value function, and denote it by $\mathfrak{p}_{N}$ .

We notice that at present it is not clear that $\mathfrak{p}_{N}$ is uniquely determined: we shall
show later that it is. Lemma 2 shows that it is appropriate to call $\mathfrak{p}_{N}$ as $N^{th}$ p-zero
division value function.

$r$

\S 2. The zeros of the Weierstrass $\wp$-function.

Since $\tau_{0}\in\Gamma\sqrt{-1}$ is equivalent to $\alpha\emptyset_{N}X\tau_{0}$) $=0$ , the set of all ramification points of
$\mathfrak{p}_{N}$ is contained in $\Gamma\sqrt{-1}$ . Moreover, noticing $(\#)$ , we obtain the following lemma:

LEMMA 3. The degree of ramification of $\mathfrak{p}_{N}$ at $\tau_{0}\in\Gamma\sqrt{-1}$ is at most 1.

Now we consider the case $N=2$ . Let $\tau_{0}e\Gamma\sqrt{-1}$ and $D$ be a neighborhood of $\tau_{O}$ .
By the above lemma, we can develop an “algebraic element” $g$ of $p_{2}$ around $\tau_{O}$ in
fractional power series as follows in $D$ ;

$ g(\tau)=c_{0}+c_{1}(\tau-\tau_{O})^{d_{1}}+\cdots+c_{n}(\tau-\tau_{0})^{d_{n}}+\cdots$

($2d_{n}\in Z$, $d_{n}>0$ , $d_{n}<d_{m}$ for $n<m$ , $c_{0}\neq 0$).

Since $\phi_{2}(g(\tau), \tau)=0$ on $D$ , substituting the development of $g$ and

$ G_{4}(\tau)=a_{O}+a_{1}(\tau-\tau_{0})+\cdots$ $(a_{0}\neq 0)$ ,

$G_{6}(\tau)=$ $ b_{1}(\tau-\tau_{0})+\cdots$ $(b_{1}\neq 0)$

in

$\phi_{2}(X, \tau)=(X^{2}+15G_{4}(\tau))^{2}+280G_{6}(\tau)X$ ,

we have $d_{1}=1/2$ . Thus we obtain the following lemma:

LEMMA 4. For any $\tau_{0}e\Gamma\sqrt{-1}$ and any branch $g$ of $\mathfrak{p}_{N},$ $g$ ramifies at $\tau_{0}$ .
Let $z_{O}\in C,$ $\tau_{O}\in\ovalbox{\tt\small REJECT}$ and $\wp(z_{O}, \tau_{O})=0$ . Since $\wp^{\prime}(z, \tau)^{2}=\Lambda_{2}(z, \tau),$ $\wp^{\prime}(z_{O}, \tau_{0})=0$ is

equivalent to $\tau_{0}\in\Gamma\sqrt{-1}$ . Therefore any function element $(u_{D}, D)$ such that $D\subset\ovalbox{\tt\small REJECT}$ and
$\wp(u_{D}(\tau), \tau)=0$ on $D$ can be continued analytically along a curve $\subset\ovalbox{\tt\small REJECT}-\Gamma\sqrt{-1}$ with an
initial point in $D$ . Hence there exists an analytic function $u$ on $\ovalbox{\tt\small REJECT}$ such that $\wp(u_{1}(\tau), \tau)=0$

on $D_{1}$ for any branch $(u_{1}, D_{1})$ of $u$ . We fix such a function $u$ .
The following proposition gives a precision of an argument found in Eichler, Zagier

[2].
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PROPOSITION 5. (1) The set of all ramification points of $u$ is $\Gamma\sqrt{-1}$ . Particularly,
any branch of $u$ ramifies at $\tau_{0}\in\Gamma\sqrt{-1}$ .

(2) $Let\tau_{0}\in\Gamma\sqrt{-1}and(u_{1}, D_{1})beabranchofusuchthatD_{1}\cap\Gamma\sqrt{}\overline{-1}=\emptyset and$

$\tau_{0}e\overline{D_{1}}$ where $\overline{D_{1}}$ is the closure of $D_{1}$ in $\ovalbox{\tt\small REJECT}$ . And let $l_{1},$ $l_{2}\in R$ such that

$\tau eD_{1}^{O}\lim_{\tau\rightarrow\tau}u_{1}(\tau)=\frac{l_{1}}{2}\tau_{0}+\frac{l_{2}}{2}$

(Hereafter we write simply $u_{1}(\tau_{0})$ instead of $\lim_{\tau\rightarrow\tau ,\tau\in D_{1}^{O}}u_{1}(\tau)$). Then $\tau_{0}\in\Gamma[2]\sqrt{-1}$ ifand only

if $l_{1},$ $l_{2}$ are odd integers, $\tau_{0}\in\Gamma[2](\sqrt{-1}+1)$ if and only if $l_{1}$ is odd and $l_{2}$ is even, and
$\tau_{0}\in\Gamma[2](\sqrt{-1}-1)/2$ ifand only if $l_{1}$ is even and $l_{2}$ is odd. Moreover let $\tau_{1}\in D_{1}$ sufficiently
close to $\tau_{0}$ , and $\gamma$ be the circle of center $\tau_{0}$ through $\tau_{1}$ . Then, considering $\gamma$ as a simple
closed curve with the initial point $\tau_{1}$ , the branch $(u_{1}(\tau), D_{1})$ is continued analytically to
the function element $(-u_{1}(\tau)+l_{1}\tau+l_{2}, D_{1})$ along $\gamma$ , and $\tau_{0}$ is an algebraic singularity of
$u$ with the degree of ramification 1.

PROOF. It is clear that $\Gamma\sqrt{-1}$ contains all ramification points of $u$ . Suppose that
$u$ does not ramify at some $\tau_{O}e\Gamma\sqrt{-1}$ . By assumption, there exists a branch $(u_{2}, D_{2})$

of $u$ such that $\tau_{0}\in D_{2}$ . Then

$\phi_{2}(X, \tau)=(X-\wp(\frac{u_{2}(\tau)}{2},$ $\tau))(X-\wp(\frac{u_{2}(\tau)+\tau}{2},$ $\tau))$

$\times(X-\wp(\frac{u_{2}(\tau)+1}{2},$ $\tau))(X-\wp(\frac{u_{2}(\tau)+\tau+1}{2},$ $\tau))$

on $D_{2}$ by Lemma 2. Therefore $\mathfrak{p}_{2}$ does not ramify at $\tau_{0}$ . This contradicts Lemma 4.
Henoe (1) holds.

Next, we shall prove (2). Let $\tau\in\ovalbox{\tt\small REJECT},$ $ A\in\Gamma$ . If we choose $\alpha,$
$\beta,$ $\alpha^{\prime},$ $\beta^{\prime}\in R$ satisfying

$\wp(\alpha\tau+\beta, \tau)=0$ and

$(\alpha^{\prime}, \beta^{\prime})\equiv(\alpha, \beta)A^{-1}$ or $-(\alpha, \beta)A^{-1}$ $mod Z$ ,

then

$\wp(\alpha^{\prime}A\tau+\beta^{\prime}, A\tau)=(A : \tau)^{2}\wp(\alpha\tau+\beta, \tau)$ ,

therefore $\wp(\alpha^{\prime}A\tau+\beta^{\prime}, A\tau)=0$ . Consequently, noticing that the constant term of $\lambda_{2}(X, \tau)$

as a polynomial in $X$ is $-140G_{6}(\tau),$ $G_{6}(\sqrt{-1})=0$ and that $\wp$ is an elliptic func-
tion of order 2, we get $\wp((1/2)\sqrt{-1}+1/2, \sqrt{-1})=0$ . Moreover $\sqrt{-1}+1=U\sqrt{-1}$

and $(1/2, 1/2)U^{-}‘$ $=(1/2,0)$ , therefore $\wp((1/2)(\sqrt{-1}+1), \sqrt{-1}+1)=0$ . Similarly, since
$(\sqrt{-1}-1)/2=TU\sqrt{-1}$ and (1/2, 1/2) $($ TU$)^{-1}=(0,1/2)$, we obtain $\wp(1/2, (\sqrt{-1}-1)/2)=$

$0$ . Moreover
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$(\frac{1}{2},$ $\frac{1}{2})S^{-1}\equiv(\frac{1}{2},$ $\frac{1}{2})$ $mod Z$ ,

$(\frac{1}{2}0)S^{-1}\equiv(\frac{1}{2},0)$ $mod Z$ ,

( $0$ , $\frac{1}{2}$) $S^{-1}\equiv(0,$ $\frac{1}{2})$ $mod Z$

for $S\in\Gamma[2]$ . Hence the first part of (2) is proved.
Let $N$ be odd. In virtue of $(\#)$ , there exist $a,$ $beZ$ such that

$\wp(\frac{1}{N}(u_{1}(\tau_{0})+a\tau_{0}+b),$ $\tau_{0})=0$ .

Since $u_{1}(\tau_{0})=(l_{1}/2)\tau_{0}+l_{2}/2$ and

$\frac{1}{N}(u_{1}(\tau_{0})+a\tau_{0}+b)\equiv u_{1}(\tau_{0})$ or $-u_{1}(\tau_{0})$ $mod Z\tau_{0}+Z$ ,

we obtain

$(a, b)\equiv(\frac{l_{1}}{2}(N-1),$ $\frac{l_{2}}{2}(N-1))$ $mod N$ .

Hence

$g(\tau):=\wp(\frac{1}{N}(u_{1}(\tau)+\frac{l_{1}}{2}(N-1)\tau+\frac{l_{2}}{2}(N-1)),$ $\tau)$

does not ramify at $\tau_{O}$ for $g(\tau_{0})$ is a simple root of $\phi_{N}(X, \tau_{O})$ . Now let $(u_{2}, D_{1})$ be a
function element such that $(u_{1}, D_{1})$ is continued analytically to $(u_{2}, D_{1})$ along $\gamma$ as above,
and let $\alpha_{1}(\tau),$ $\beta_{1}(\tau),$ $\alpha_{2}(\tau),$ $\beta_{2}(\tau)$ be real valued functions defined in $D_{1}$ such that
$u_{1}(\tau)=\alpha_{1}(\tau)\tau+\beta_{1}(\tau),$ $u_{2}(\tau)=\alpha_{2}(\tau)\tau+\beta_{2}(\tau)$ on $D_{1}$ . Since $g$ does not ramify at $\tau_{0}$ , we obtain

$(\alpha_{1}(\tau)+\frac{l_{1}}{2}(N-1),$ $\beta_{1}(\tau)+\frac{l_{2}}{2}(N-1))$

$\equiv(\alpha_{2}(\tau)+\frac{l_{1}}{2}(N-1),$ $\beta_{2}(\tau)+\frac{l_{2}}{2}(N-1))$

or $-(\alpha_{2}(\tau)+\frac{l_{1}}{2}(N-1),$ $\beta_{2}(\tau)+\frac{l_{2}}{2}(N-1))$ $mod N$

for any $\tau\in D_{1}$ . Assume that there exists $\tau_{2}\in D_{1}$ such that the set of all odd numbers
$N$ satisfying
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$(\alpha_{1}(\tau_{2})+\frac{l_{1}}{2}(N-1),$ $\beta_{1}(\tau_{2})+\frac{l_{2}}{2}(N-1))$

$\equiv-(\alpha_{2}(\tau_{2})+\frac{l_{1}}{2}(N-1),$ $\beta_{2}(\tau_{2})+\frac{l_{2}}{2}(N-1))$ $mod N$

is finite. Then, for this $\tau_{2}$ , the set of all odd numbers satisfying

$(\alpha_{1}(\tau_{2}), \beta_{1}(\tau_{2}))\equiv(\alpha_{2}(\tau_{2}), \beta_{2}(\tau_{2}))$ $mod N$

is infinite. Therefore $(\alpha_{1}(\tau_{2}), \beta_{1}(\tau_{2}))=(\alpha_{2}(\tau_{2}), \beta_{2}(\tau_{2}))$ , and hence $u_{1}(\tau_{2})=u_{2}(\tau_{2})$ . Moreover
$\wp^{\prime}(u_{1}(\tau_{2}), \tau_{2})\neq 0$ because $u_{1}(\tau_{2})$ is not a 2-division point of $\tau_{2}$ for $\tau_{2}\not\in\Gamma\sqrt{-1}$ .
Consequently, from uniqueness part of the implicit function theorem, $u_{1}(\tau)=u_{2}(\tau)$ on
$D_{1}$ . This contradicts the fact that $u_{1}$ ramifies at $\tau_{O}$ . Thus, for any $\tau eD_{1}$ the set of
all odd numbers $N$ satisfying

$(\alpha_{1}(\tau)+\frac{l_{1}}{2}(N-1),$ $\beta_{1}(\tau)+\frac{l_{2}}{2}(N-1))$

$\equiv-(\alpha_{2}(\tau)+\frac{l_{1}}{2}(N-1),$ $\beta_{2}(\tau)+\frac{l_{2}}{2}(N-1))$ $mod N$

is infinite. By a similar argument, we obtain

$(\alpha_{2}(\tau), \beta_{2}(\tau))=(-\alpha_{1}(\tau)+l_{1}, -\beta_{1}(\tau)+l_{2})$

on $D_{1}$ . Hence $u_{2}(\tau)=-u_{1}(\tau)+l_{1}\tau+l_{2}$ on $D_{1}$ . $\blacksquare$

\S 3. The main theorem on the zeros of $\wp$ -function.

Our main theorem on the zeros of $\wp$ -function states as follows:

THEOREM 1. Let $D_{1},$ $D_{2}$ be two regions in $\ovalbox{\tt\small REJECT}$ and $(u_{1}, D_{1}),$ $(u_{2}, D_{2})$ be function
elements such that $\wp(u_{1}(\tau), \tau)=0$ on $D_{1}$ and $\wp(u_{2}(\tau), \tau)=0$ on $D_{2}$ . Then $(u_{1}, D_{1})$ can be
continued analytically to $(u_{2}, D_{2})$ in $\ovalbox{\tt\small REJECT}$ . And, for any $S\in\Gamma,$ $(u_{1}|_{-1}S, S^{-1}D_{1})$ is another
function element which $can\backslash $ be continued analytically to $(u_{1}, D_{1})$ in $\ovalbox{\tt\small REJECT}$ .

Notice that since $\wp((u_{1}|_{-1}S)(\tau), \tau)=(S:\tau)^{-2}\wp(u(S\tau), S\tau)$ for all $\tau\in S^{-1}D_{1}$ ,
$(u_{1}|_{-1}S, S^{-1}D_{1})$ is a function element such that $\wp((u_{1}|_{-1}SX\tau), \tau)=0$ on $S^{-1}D_{1}$ , and
hence the latter part of Theorem 1 follows from the first part.

In order to prove Theorem 1, we show the following 4 lemmas.

LEMMA 6. Let $D_{1},$ $D_{2}$ be two regions in $\ovalbox{\tt\small REJECT}$ and $(u_{1}, D_{1}),$ $(u_{2}, D_{2})$ befunction elements
such that $\wp(u_{1}(\tau), \tau)=0$ on $D_{1}$ and $\wp(u_{2}(\tau), \tau)=0$ on $D_{2}$ . Then the following propositions
hold:

(1) If $ D_{1}\cap D_{2}\neq\emptyset$ , then there exist uniquely $\epsilon\in\{\pm 1\},$ $m,$ $n\in Z$ such that
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$u_{1}(\tau)=\epsilon u_{2}(\tau)+m\tau+n$ for all $\tau\in D_{1}\cap D_{2}$ .
(2) Let $\gamma$ be a curve with an initial point in $D_{1}$ and a terminal point in $D_{2}$ , and

$\gamma\subset\ovalbox{\tt\small REJECT}-\Gamma\sqrt{-1}$ . Then there exist uniquely $\epsilon\in\{\pm 1\},$ $m,$ $n\in Z$ such that $(u_{1}(\tau), D_{1})$ is
continued analytically to $(\epsilon u_{2}(\tau)+m\tau+n, D_{2})$ along $\gamma$ .

$PR\infty F$ . (1) Since $ D_{1}\cap\Gamma\sqrt{-1}=\emptyset$ and $ D_{2}\cap\Gamma\sqrt{-1}=\otimes$ by Proposition 5 (1),
$\wp^{\prime}(u_{1}(\tau), \tau)\neq 0$ for all $\tau\in D_{1}$ and $\wp^{\prime}(u_{2}(\tau), \tau)\neq 0$ for all $\tau\in D_{2}$ . Therefore we can easily see
(1) from the properties of $\wp$-function and uniqueness part of the implicit function
theorem.

(2) Let $(u_{3}, D_{3})$ be a function element such that $D_{3}$ contains the terminal point of
$\gamma$ and $(u_{1}, D_{1})$ is continued analytically to $(u_{3}, D_{3})$ along $\gamma$ . Since $\gamma\subset\ovalbox{\tt\small REJECT}-\Gamma\sqrt{-1}$,
$\wp(u_{3}(\tau), \tau)=0$ on $D_{3}$ by the theorem of invariance of analytic relations. Therefore from
(1), we have (2). $\blacksquare$

We put $\ovalbox{\tt\small REJECT}_{1}$ $:=\{\tau e\ovalbox{\tt\small REJECT}|{\rm Im}\tau>1\}$ and $\overline{\ovalbox{\tt\small REJECT}_{1}}$ $:=\{\tau\in\ovalbox{\tt\small REJECT}|{\rm Im}\tau\geqq 1\}$ .
The following lemma is due to Professor D. Zagier [4].

LEMMA 7. There exists a unique function $u_{O}$ satisfying the following conditions:

(7.1) $u_{0}$ is continuous $on\overline{\ovalbox{\tt\small REJECT}_{1}}$ and holomorphic on $\ovalbox{\tt\small REJECT}_{1}$ ,

(7.2) $\wp(u_{0}(\tau), \tau)=0$ for all $\tau\in\overline{\ovalbox{\tt\small REJECT}_{1}}$ ,

(7.3) $u_{0}(\tau+1)=u_{0}(\tau)$ for all $\tau\in\overline{\ovalbox{\tt\small REJECT}_{1}}$ ,

(7.4) $u_{O}(\sqrt{-1})=\frac{1}{2}\sqrt{-1}+\frac{1}{2}$ .

PROOF. Let

$\Delta(\tau):=\exp(2\pi\sqrt{-1}\tau)\prod_{n=1}^{\infty}(1-\exp(2n\pi\sqrt{-1}\tau))^{24}$ ,

$E_{6}(\tau):=\frac{945}{2\pi^{6}}G_{6}(\tau)$ ,

and put

$u_{0}(\tau):=\frac{1}{2}+(\frac{\log(5+2\sqrt{6})}{2\pi}144\pi\sqrt{6}\int_{\tau}^{i\infty}(t-\tau)\frac{\Delta(t)}{E_{6}(t)^{3/2}}dt)\sqrt{-1}$ $(\tau e\ovalbox{\tt\small REJECT})$ ,

where the integral is to be taken over the vertical line $t=\tau+\sqrt{-1}R_{+}$ in $\ovalbox{\tt\small REJECT}$

$(R_{+} : =\{\beta eR|\beta>0\})$ . The following theorem is given by Eichler, Zagier [2].

”The zeros of $\wp(z, \tau)(\tau\in\ovalbox{\tt\small REJECT}, z\in C)$ are given by $z=\pm u_{O}(\tau)+m\tau+n(m, neZ)$

Thus it is clear that $u_{O}$ satisfies the condition (7.2) and it is easy to see that $u_{O}$ satisfies
the condition (7.1), (7.3), therefore we have only to show $u_{0}(\sqrt{-1})=(1/2)\sqrt{-1}+1/2$ .
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Let $z(s):=u_{0}(\sqrt{}\overline{-1}s)$ and

$\beta(s):=\frac{\log(5+2\sqrt{6})}{2\pi}+144\pi\sqrt{6}\int_{s}^{\infty}(t-s)\frac{\Delta(\sqrt{-1}t)}{E_{6}(\sqrt{-1}t)^{3/2}}dt$ .

Then $z(s)=(1/2)+\beta(s)\sqrt{-1}$ on $\{s\in R|s>0\}$ , and $\beta(s)$ is a real, positive, monotone
decreasing and continuous function on $\{s\in R|s\geqq 1\}$ . Here, notice that $\wp(z_{0}, \tau)=0$

implies $\tau\in\Gamma\sqrt{-1’}$ if and only if $z_{0}e(\tau/2)Z+(1/2)Z$. As $\wp(z(1), \sqrt{-1})=0$ , there is a
positive integer $N_{0}$ such that $\beta(1)=N_{0}/2$ . Assume $N_{0}>1$ . Since $\beta(s)/s$ is continuous on
$\{s\in R|s\geqq 1\}$ , $\lim_{s\rightarrow\infty}\beta(s)/s=0$ and $\beta(1)/1=N_{0}/2$ , there exists $s_{0}>1$ such that
$\beta(s_{0})/s_{0}=1/2$ . For this $s_{0}$ , we have $\wp(s_{0}\sqrt{-1}/2+1\prime 2, s_{O}\sqrt{-1})=0$ . Therefore
$s_{0}\sqrt{-1}\in\Gamma\sqrt{-1}$ . This contradicts $s_{0}>1$ . Hence $N_{0}=1$ and we obtain $u_{0}(\sqrt{-1})=z(1)=$

$(1/2)\sqrt{-1}+1/2$ . $\blacksquare$

We fix now $\tau_{1}$ sufficiently close to $\sqrt{-1}$ such that ${\rm Im}\tau_{1}>1$ and ${\rm Re}\tau_{1}>0$, and put
$\tau_{2}=T\tau_{1}$ . Let $\delta,$ $\theta$ be closed curves with initial points $\tau_{1},$ $\tau_{2}$ respectively as shown in the
figures:

Let $u_{0}$ be the function of Lemma 7.

LEMMA 8. $u_{0}(\tau)$ is continued analytically to $u_{0}(\tau)+1$ along $\delta$ .
$PR\infty F$ . We split $\delta$ into 4 curves $\delta_{1},$

$\delta_{2_{\backslash }},$
$\delta_{3},$ $\delta_{4}$ as shown in the figure:

$(\delta=\delta_{1}+\delta_{2}+\delta_{3}+\delta_{4})$

First we consider the curve $\delta_{1}$ . Since $u_{0}(\sqrt{-1})=(1/2)\sqrt{-1}+1/2,$ $u_{O}(\tau)$ is continued
analytically to $-u_{0}(\tau)+\tau+1$ along $\delta_{1}$ by Proposition 5 (2). Next since $u_{0}(\tau)$ is
holomorphic on $\ovalbox{\tt\small REJECT}_{1},$ $-u_{0}(\tau)+\tau+1$ is continued analytically to $-u_{0}(\tau)+\tau+1$ along $\delta_{2}$ .
Furthermore since $u_{0}(\tau+1)=u_{0}(\tau)$ for all $\tau\in\overline{\ovalbox{\tt\small REJECT}_{1}},$ $u_{0}(\sqrt{-1}+1)=(1/2X\sqrt{-1}+1)+0/2$ ,
and hence, again by Proposition 5 (2), $-u_{0}(\tau)+\tau+1$ is continued analytically to $u_{0}(\tau)+1$
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along $\delta_{3}$ . Finally, by the same reason as for $\delta_{2},$ $u_{0}(\tau)+1$ is continued analytically to
$u_{0}(\tau)+1$ along $\delta_{4}$ . This completes the proof of the lemma. $\blacksquare$

LEMMA 9. There exists a closed curve $\chi$ in $\ovalbox{\tt\small REJECT}$ with the initial point $\tau_{1}$ such that
$u_{0}(\tau)$ is continued analytically to $ u_{0}(\tau)+\tau$ along $\chi$ .

PROOF. Let $u_{4}(\tau):=(u_{0}|_{-1}TX\tau)$ . Then $(u_{4}, T\ovalbox{\tt\small REJECT}_{1})$ is the function element satisfying
$\wp(u_{4}(\tau), \tau)=0$ on $T\ovalbox{\tt\small REJECT}_{1}$ . Sinoe $u_{4}(\sqrt{-1})=(1/2)\sqrt{-1}-1/2$ and $u_{4}((\sqrt{-1}-1)/2)=$

$(0/2)((\sqrt{-1}-1)/2)-1/2$ , we see, in a similar way as in the proof of Lemma 8, that $u_{4}(\tau)$

is continued analytically to $ u_{4}(\tau)+\tau$ along $\theta$ . Now, let $\theta_{1}$ be a curve with the initial
point $\tau_{1}$ and the terminal point $\tau_{2}$ , and $\theta_{1}\subset\ovalbox{\tt\small REJECT}-\Gamma\sqrt{-1}$ . Then, by Lemma 6 (2), there
exist uniquely $\epsilon e\{\pm 1\},$ $m,$ $n\in Z$ such that $u_{0}(\tau)$ is continued analytically to $\epsilon u_{4}(\tau)+m\tau+n$

along $\theta_{1}$ . Thus, putting $\chi:=\theta_{1}+\theta+(-\theta_{1}),$ $u_{0}(\tau)$ is continued analytically to $ u_{0}(\tau)+\tau$

along $\chi$ . This $\chi$ satisfies the conditions of the lemma. $\blacksquare$

PROOF OF THEOREM 1. Let $\gamma_{1}$ be a curve with an initial point in $D_{1}$ and the
terminal point $\tau_{1}$ , and let $\gamma_{2}$ be a curve with an initial point in $D_{2}$ and the terminal
point $\tau_{1}$ . Let $\chi$ be a curve satisfying the conditions of Lemma 9. By Lemma 6 (2), there
exist uniquely $\epsilon_{1},$

$\epsilon_{2}\in\{\pm 1\},$ $m_{1},$ $m_{2},$ $n_{1},$ $n_{2}eZ$ such that $u_{1}(\tau)$ is continued analytically
to $\epsilon_{1}u_{0}(\tau)+m_{1}\tau+n_{1}$ along $\gamma_{1}$ and $u_{2}(\tau)$ is continued analytically to $\epsilon_{2}u_{0}(\tau)+m_{2}\tau+n_{2}$

along $\gamma_{2}$ . Let $\delta_{1}$ be the closed curve in the proof of Lemma 8. Replacing $\gamma_{1}$ by $\gamma_{1}+\delta_{1}$

if necessary, we may assume $\epsilon_{1}=1$ by Proposition 5 (2), and we may assume $\epsilon_{2}=1$ by
the same reason. Thus, putting $\gamma:=\gamma_{1}+(n_{2}-n_{1})\delta+(m_{2}-m_{1})\chi+(-\gamma_{2}),$ $u_{1}(\tau)$ is continued
analytically to $u_{2}(\tau)$ along $\gamma$ . $\blacksquare$

COROLLARY 10. There exists a unique analytic function $u$ on $\ovalbox{\tt\small REJECT}$ such that
$\wp(u_{1}(\tau), \tau)=0$ on $D_{1}$ for a branch $(u_{1}, D_{1})$ of $u$ .

This analytic function $u$ will be called “the $\wp$-zero valuefunction”, it is many-valued
with countably infinitely many values. The latter part of Theorem 1 shows its “modular
invariance”. In this sense it is called a “many-valued modular form”.

\S 4. The main theorem on the $\wp$-zero division value functions.

Let $(u_{1}, D_{1})$ be a branch of our $\wp$-zero value function $u$ . For a positive integer $N$

and integers $a,$
$b$, we put

$g_{N.\{a.b)}(\tau):=\wp(\frac{1}{N}(u_{1}(\tau)+(a, b)\left(\begin{array}{l}\tau\\ 1\end{array}\right)),$ $\tau)$ .

Then, for any $(a, b),$ $(a^{\prime}, b^{\prime})\in Z^{2},$ $(u_{1}(\tau), D_{1})$ can be continued analytically to $(u_{1}(\tau)+$

$(a^{\prime}-a, b^{\prime}-b)\left(\begin{array}{l}\tau\\l\end{array}\right),$ $D_{1})$ in $\ovalbox{\tt\small REJECT}$ by Theorem 1, therefore the function element $(g_{N,\langle a,b)}, D_{1})$
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can be also continued analytically to $(g_{N,\langle a’’ b’)}, D_{1})$ in $\ovalbox{\tt\small REJECT}$ . And we have $\phi_{N}(g_{N,\langle a,b)}(\tau), \tau)=0$

for all $\tau\in D_{1}$ by Lemma 2. Moreover, for $ S\in\Gamma$ , since

$1\#\#)$ $(g_{N,\langle a,b)}|_{2}S)(\tau)=(S:\tau)^{-2}\wp(\frac{1}{N}(u_{1}(S\tau)+(a, b)\left(\begin{array}{l}S\tau\\ 1\end{array}\right)),$ $s_{T})$

$=\wp(\frac{1}{N}((u_{1}|_{-1}sX\tau)+(a, b)S\left(\begin{array}{l}\tau\\ 1\end{array}\right)),$ $\tau)$

for all $\tau\in S^{-1}D_{1}$ and $\wp((u_{1}|_{-1}SX\tau), \tau)=0$ on $S^{-1}D_{1}$ , the function element
$(g_{N,\langle a,b)}|_{2}S, S^{-1}D_{1})$ can be continued analytically to $(g_{N,\langle a,b)S}, D_{1})$ in $\ovalbox{\tt\small REJECT}$ .

Therefore we obtain the following theorem.

THEOREM 2. Let $N$ be an integer greater than 1. Then an $ N^{th}\wp$ -zero division value

function $\mathfrak{p}_{N}$ is uniquely determinedand it is an $N^{2}$-valued analyticfunction of $\ovalbox{\tt\small REJECT}$ . Moreover,

for a branch $(g, D)$ of $\mathfrak{p}_{N}$ and $ S\in\Gamma$ , another function element $(g.|_{2}S, S^{-1}D)$ is also a
branch of $\mathfrak{p}_{N}$ .

This theorem shows that $\mathfrak{p}_{N}$ is another “many-valued modular form” like $u$ .
COROLLARY 11. Let $N$ be an integer greater than 1. Then $\phi_{N}(X, \tau)$ is an irreducible

polynomial in $Z[15G_{4}(\tau), 35G_{6}(\tau)][X]$ .
$PR\infty F$ . Since any root of $\phi_{N}(X, \tau)$ is expressed by a branch of $\mathfrak{p}_{N}$ , this follows

from Theorem 2. $\blacksquare$

COROLLARY 12. Let $p$ be a prime number, and $(g_{1}, D),$ $\cdots,$ $(g_{p^{2}}, D)$ be $p^{2}$ branches
of $\mathfrak{p}_{p}$ . Let $\alpha_{1},$ $\cdots,$ $\alpha_{p^{2}}e$ C. Then

$\alpha_{1}g_{1}+\cdots+\alpha_{p^{2}}g_{p^{2}}=0$ on $D$

ifand only if $\alpha_{1}=\cdots=\alpha_{p^{2}}$ . Therefore $p^{2}-1$ distinct branches of $\mathfrak{p}_{p}$ with the same region
are linearly independent over $C$.

PROOF. Since the second term of the polynomial $\phi_{N}(X, \tau)$ in $X$ vanishes (cf. Cassels
[1]), we get $\alpha_{1}g_{1}+\cdots+\alpha_{p^{2}}g_{p^{2}}=0$ if $\alpha_{1}=\cdots=\alpha_{p^{2}}$ .

As shown in the first part of this section,

$\{g_{\langle a.b)}|0\leqq a, b<p, a, b\in Z\}$ $(g_{\langle a,b)} : =g_{p,\langle a.b)})$

is the set of all branches of $\mathfrak{p}_{p}$ on $D_{1}$ . Therefore it suffices to show that
$\alpha_{1}g_{\{0,0)}+\alpha_{2}g_{(0.1)}+\cdots+\alpha_{p^{2}}g_{\{p-1.p-1)}=0$ on $D_{1}$ implies $\alpha_{1}=\cdots=\alpha_{p^{2}}$ . We set $F:=Z/pZ$
and $\hat{G}:=SL_{2}(F).\hat{G}$ acts on $F^{2}-\{(6,0)\}$ by $(S, (\overline{a}, 5))-\rangle$ $(\overline{a}, 5)S$ where $\overline{a}:=amod p$ ,

and this action is transitive. We know that $\hat{G}$ consists of $p(p^{2}-1)$ elements. Let $G$ be
a subset of $\Gamma$ such that

$\hat{G}=\{\left(\begin{array}{ll}\overline{a} & 5\\\overline{c} & d\end{array}\right)|\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in c\}$
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and $G$ consists of $Ap^{2}-1$ ) elements. Assume that $(p^{2}-1)\alpha_{j}\neq\sum_{i=1,i\neq j}^{p^{2}}\alpha_{i}$ for some $j$

$(1\leqq j\leqq p^{2})$ . By Theorem 2, we may assume $j=1$ , i.e. $(p^{2}-1)\alpha_{1}\neq\sum_{i=2}^{p^{2}}\alpha_{i}$ . For any Se $G$,
we have that

$\alpha_{1}g_{(O,0)}|_{2}S+\alpha_{2}g_{\langle O.1)}|_{2}S+\cdots+\alpha_{p^{2}}g_{\langle p-1,p-1)}|_{2}S=0$

on $S^{-1}D_{1}$ . By Theorem 1, there exists a curve $\gamma_{S}$ such that $(u_{1}|_{-1}S, S^{-1}D_{1})$ is continued
analytically to $(u_{1}, D_{1})$ along $\gamma_{S}$ . Then, by $(\#\#)$ , for all integers $a,$ $b,$ $(g_{\langle a,b)}|_{2}S, S^{-1}D_{1})$

is continued analytically to $(g_{(a.b)S}, D_{1})$ along $\gamma_{S}$ , and henoe

$\alpha_{1}g_{\langle 0,0)S}+\alpha_{2}g_{(0.1)S}+\cdots+\alpha_{p^{2}}g_{\langle p-1.p-1)S}=0$

on $D_{1}$ . Therefore we obtain

$(\#\#\#)$
$\alpha_{1}\sum_{SeG}g_{\langle 0,0)s+\alpha_{2}\sum_{SeG}g_{\langle 0.1)S}+\cdots+\alpha_{p^{2}}\sum_{SeG}g_{(p-1.p-1)S}=0}$

on $D_{1}$ . We can easily see that the stabilizer of $(0, T)$ consists of $p$ elements and for
$(a, b),$ $(a^{\prime}, b^{\prime})\in Z^{2}$ if $(a, b)\equiv(a^{\prime}, b^{\prime})mod p$, then $g_{(a,b)}=g_{(a’.b’)}$ on $D_{1}$ . Thus, by $g_{\langle 0.0)}+$

$g_{\{0,1)}+\cdots+g_{(p-1.p-1)}=0$ on $D_{1}$ ,

$\sum_{SeG}g_{\langle a.b)S}=Ag_{\langle 0.1)}+\cdots+g_{(p-1.p-1)})$

$=(-p)g_{\langle 0.0)}$

on $D_{1}$ for $(a, b)\not\equiv(O, 0)mod p$ . Hence, by $(\#\#\#)$,

$0=(\alpha dp^{2}-])-\iota=2$

on $D_{1}$ noticing that $\sum_{SeG}g_{(0.0)S}=Ap^{2}-1$ )$g_{(0,0)}$ on $D_{1}$ . Thus $g_{\langle 0.O)}=0$ on $D_{1}$ . This
contradicts the fact that $(g_{\langle O.O)}, D_{1})$ is a branch of the $p^{2}$-valued analytic function $\mathfrak{p}_{p}$ .
Therefore $(p^{2}-1)\alpha_{j}=\sum_{i=1.i\neq j}^{p^{2}}\alpha_{i}foranyj(1\leqq j\leqq p^{2})$ . This leads to $\alpha_{1}=\cdots=\alpha_{p^{2}}$ . $\blacksquare$
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