Tokyo J. MATH. ,
VoL. 14, No. 1, 1991

On the p-Zero Value Function and the p-Zero Division
Value Functions

Hiroshi OHTA

Gakushuin University
(Communicated by K. Katase)

Introduction.

Let 5# be the upper half-plane {re C| Im t>0} and te . Let p(u, ) denote the
Weierstrass g-function with fundamental periods (z, 1), (in more usual notation, it

should be written gp(y; 7, 1) or go(u, (;))) As is well known, g@(u, t) is a holomorphic

function of two complex variables u, 7 in a suitable regionc= C x #, and the theorem
of implicit function shows that, given a suitable region D = 5#, there exists a holomorphic
function uy(t) of T € D such that gp(up(t), T)=0 on D. This up(t) is not uniquely determined
by D. We shall show in this paper that there exists a unique analytic function u in ¢,
called “gp-zero value function’, such that every up(t) are its branch on D (Theorem 1).
This function u is a “many-valued modular form” in a sense to be indicated below. We
shall show also in this paper the existence of another function py of the same kind for
an integer N greater than 1, which will be called “N'™® p-zero division value function”
(Theorem 2), and which is expected to have interesting arithmetical applications.
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NOTATIONS AND TERMINOLOGIES. In this paper, the symbol ‘“:="" means that the
expression on the right is the definition of that on the left. We put

. (11 (0 —1 (10
remsta, oY), 7e(® 7). 1m(1 ).

Furthcrmofe, for zeC, S =<a b)eF, we set
c
Sz:=az+b, S:z:=cz+d.
cz+d
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For an integer k, SeI” and a function f defined in a neighborhood of 17, € 3, we define
f |kS as the function defined in the neighborhood of S~ 1z, as follows:

(f|eSKT) : =(S : D) *f(S7).

A function element is a pair (f, D) such that D is a region in C and f is a
holomorphic function in D. An analytic function on 5 means a set of function elements
(f, D), called branches of the analytic function, such that Dc s and for any two
function elements (f;, D,), (f2, D,) in the set there exists a curve y in 5 such that
(f2> D;) is an analytic continuation of (f;, D,) along y, the union of all D’s in the set
coinciding with J# except for a discrete set, and that this set is maximal in the sense
that every function element satisfying the above condition belongs to the set.

§1. Definition of the N'® g-zero division value functions.

In this section, we assume that w,, w, € C, 0,/w,, T € ) and Nis a positive integer.
We define as usual, for ze C,

w 1 1 1
(D) z weZwi+Zo;y (Z—(D) ()]
0#0
al z, =z ] 1—— Jexpl —+-— ).
W, weZm;le-Bsz w w 2w

We write simply g(z, 7), o(z, t) instead of go(z, ( : )), a(z, ( : )) respectively. We set

#'(z, 1):=(9/02)p(z, 7). (9(2, T) is the same expression that was already given in the
Introduction.)

DEerFINITION. We define two functions on Cx 5# as follows:
An(z, 1) : =06(Nz, 1)%/0(z, T)?N*,
Dp(z, T) :=p(Nz, 1)A\(2, T) .
We know that Ax(z, 1), Pz, T) € Z[15G (1), 35G4(t)][ (2, ©)], where

' @#0 @#0
Let Ax(X, 1), da(X, 7)€ Z[15G 4(z), 35G(z)][X] such that
An(9(z, 1), )=Apz, 7) , dn(p(z, 1), T)=Dp(z, 1) .

An» ¢ have the degrees N>—1, N? in X, respectively. Moreover, we know that N2 —1
roots of Ay are
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ool

(cf. Cassels [1]).
The following two lemmas follow easily from the well known properties of
g-function and o-function. '

a,beZ 0<a,b<N,(a, b)#(0, O)}

- LeMMA 1. We fix te#. Let A,:={p;t+p, |0=py, u,<1}. Then the function
z+> Dp(z, T) is an elliptic function of order 2N? with fundamental periods (t, 1) and

1 T 1 T a,ba,beZ
T , b , — ’ r, ’ br > ™ 2
{N(a_+a B+ )(1) N(oz +a', B + )(1) }

0<Za,b,a’,b’<N
is the set of all zeros of ®y in A, where at+ B, a't+ B’ are two zeros of 9(z, 1) in 4,
O0=Za, B, a, B <1).

LEMMA 2. Wefix t€ . Let a, f€ R such that p(at+ B, ©)=0. Then the following
N2 elements are all roots of the polynomial ¢ (X, t) in X:

1
p(N(a+a,ﬁ+b)(:>,r>,' abeZ, 0<Za,b<N.

Hereafter, we assume N> 1.

Let D(¢y)(7) be the discriminant of the polynomial ¢n(X, 7) in X. Take 7,€ 5 and
choose «, f € R such that p(aty + B, 70)=0. It is easy to see that D(¢y)(to) =0 is equivalent
to 2a, 2B Z. On the other hand, we have 1,(X, 1) =4X>—60G 4(1o)X — 140G(7,), and
so we find 7oe I'\/—1 if and only if 20, 2B € Z since 1o I'\/— 1 if and only if Gg(to)=0.
Therefore 1o’ \/:T is equivalent to D(¢yX1o)=0. Hence, from the implicit function
theorem, there exists an analytic function on J# such that ¢x(g(z), 7)=0 on D for a
branch (g, D) of it. Moreover, by above arguments, we can express ¢n(X, 1) at o€l \/ —1
as

(N2—-1)/2
X [l x—a®)?  (for odd N)
i=1
(#) ¢N(X9 ‘EO) = N2
IT (x—a)? (for even N)
i=1 ;

N N N N
@™, #0, a®#al’; for i#j).

Now, for (a, b)e Z? and (a, b)# (0, 0) mod N, the function

| sON,(a,b)(T) = SO(—]I\—’(CI, b)( ; >’ T)

is an entire modular form of weight 2 for I'CN], where
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I'[N]:={Sel'| S=Imod N or S=—Imod N} .

$N.@.p) is called the N*® p-division value. It is a value of g(z, 7) for z = an “N-division
point of a pole of p(z, 7). In analogy, we shall consider “N'™ gp-zero division value
function” defined as follows:

DEFINITION. We call an analytic function on 3¢ such that ¢(g(z), t)=0 on D for
a branch (g, D) of it as N*™* p-zero division value function, and denote it by py.

We notice that at present it is not clear that py is uniquely determined: we shall
show later that it is. Lemma 2 shows that it is appropriate to call py as N p-zero
division value function.

¢

§2. The zeros of the Weierstrass gp-function.

Since 1€ I'\/—1 is equivalent to D(¢x)N7)=0, the set of all ramification points of
px is contained in I'\/ — 1. Moreover, noticing (¥), we obtain the following lemma:

LEMMA 3. The degree of ramification of py at toeI'\/—1 is at most 1.

Now we consider the case N=2. Let t,€ I"\/—_l and D be a neighborhood of To-
By the above lemma, we can develop an ‘‘algebraic element” g of p, around 7, in .
fractional power series as follows in D:
g@)=co+ci(t—1o)"' + - +c (t—10)" + -
2d,eZ, d,>0, d,<d, forn<m, c,#0).
Since ¢,(g(z), 7)=0 on D, substituting the development of g and
Gir)=ao+ai(t—19)+ - (ao#0),
Ge(r)= bi(t—1o)+ - by #0)
in
(X, 1)=(X2+ 15G,(1))*> +280G4(1)X ,
we have d; =1/2. Thus we obtain the following lemma:

LeMMA 4. For any 1€l \/—_1 and any branch g of py, g ramifies at 7.

Let zo,eC, to€# and (2o, To)=0. Since p'(z, 1)>=A,(z, 1), P'(20, T0)=0 is
equivalent to 75 € I“\/—_l. Therefore any function element (u;, D) such that D < ¥ and
#(up(1), T)=0 on D can be continued analytically along a curve < o# — FJ—_I with an
initial point in D. Hence there exists an analytic function # on 3 such that o(u,(z), 7)=0
on D, for any branch (u,, D,) of u. We fix such a function u.

The following proposition gives a precision of an argument found in Eichler, Zagier

[2].
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PROPOSITION 5. (1) The set of all ramification points of u is I \/———T Particularly,
any branch of u ramifies at toe I'\/ —1. -
(2) Let tgeI'\/—1 and (u,, D,) be a branch of u such that D, "I'\/—1= and
To€ D, where D, is the closure of D, in #. And let l,, I, € R such that
/ l
lim u,(t)=?lto +2

T—*7T0 2
teD;

(Hereafter we write simply u,(t,) instead of lim _,, u,(t)). Then o€’ [2]\/ —1 if and only
teD,

if l,, 1, are odd integers, toeF[2](\/——1+ 1) if and only if 1, is odd and 1, is even, and
To€l’ [2](\/——1— 1)/2 if and only if |, is even and 1, is odd. Moreover let t, € D, sufficiently
close to 1, and y be the circle of center t, through t,. Then, considering y as a simple
closed curve with the initial point t,, the branch (u (1), D,) is continued analytically to
the function element (—uy(t)+ 1,1 +1,, D,) along y, and 1, is an algebraic singularity of
u with the degree of ramification 1.

PrOOF. It is clear that I'\/—1 contains all ramification points of u. Suppose that
u does not ramify at some t,€I'\/—1. By assumption, there exists a branch (u,, D,)
of u such that 7,e D,. Then

(2o (42°)
(s rn(300)

on D, by Lemma 2. Therefore p, does not ramify at t,. This contradicts Lemma 4.
Hence (1) holds.

Next, we shall prove (2). Let te o, AeT. If we choose a, B, a’, B’ € R satisfying
g(at+ B, ©)=0 and

(@, B)=(,pHA" ! or —(a, ))A"! mod Z,
then
P At+p’, At)=(A : )2 p(at+ B, 1),

therefore gp(x'A7 + p’, At)=0. Consequently, noticing that the constant term of 1,(X, 1)
as a polynomial in X is —140G(1), Ge(y/ —1)=0 and that g is an elliptic func-
tion of order 2, we get p((1/2),/—1+1/2, \/—1)=0. Moreover \/—1+1=U/—1
and (1/2, 1/2)U~*=(1/2, 0), therefore p((1/2)(\/ —1+1), \/—1+1)=0. Similarly, since
«/—1-1)/2=TU/—Tand (1/2, 1/2) (TU)™*=(0, 1/2), we obtain p(1/2, (/—1—1)/2)=
0. Moreover
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for SeI'[2]. Hence the first part of (2) is proved.
| Let N be odd. In virtue of (#), there exist a, be Z such that

: .
SO(W (uy(to) +ary +b), To) =0.
Since u,(to)=(/,/2)to+1,/2 and
1
F(lﬁ(‘ro) +aty+b)=uy(te) or —uy(ty) mod Z7,+ Z,
we obtain
Iy )

(a, b)= 7(N—l),?(N—l) mod N .
Hence
‘ (7):= (l (u ('L')+l1 (N 1)1:+l2 (N—-1) r)
g1) =g N\ > > >
| does not ramify at t, for g(t,) is a simple root of ¢y(X, 15). Now let (u,, D) be a
function element such that (u,, D,) is continued analytically to (u,, D,) along y as above,
and let o,(7), B,(1), 25(7), Bo(r) be real valued functions defined in D; such that

uy(t)=0a,(t)t + B,(1), u5(t) = a5(t)r + B,(7r) on D,. Since g does not ramify at t,, we obtain

(al(r)+’7‘(1v— 1), ﬁ;(t)+%’(N— 1))
, I, I,
s(az(r)+3(1v— 1), Ba0)+ 2 (N— 1))

or —(az(t)+—12—1—(N—— 1), B;(r)+~123—(N— 1)) mod N

for any te D,. Assume that there exists 7, € D; such that the set of all odd numbers
N satisfying
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(al(r2)+’7‘(N— 1), Bl(rz)+’72(1v— 1))

f

—(a2(12)+%(N— 1), ﬁ2(12)+l?2(N— 1)) mod N

is finite. Then, for this 7,, the set of all odd numbers satisfying

(a1(72), B1(z2)) =(5(12), B,(12)) mod N

is infinite. Therefore (x,(t,), f1(t,)) =(x,(7,), B2(1,)), and hence u,(r,)=u,(t,). Moreover
#'(uy(t,), T,)#0 because u,(r,) is not a 2-division point of 7, for 7,¢I/—1.
Consequently, from uniqueness part of the implicit function theorem, u,(t)=u,(t) on
D,. This contradicts the fact that u, ramifies at t,. Thus, for any Te D, the set of
all odd numbers N satisfying

L l
(“1(1)+—2—(N— 1), ﬂ1(T)+?(N— 1))

= _<“2(T)+%(N— 1, Bz(T)‘-“%Z(N"‘ 1)) mod N

is infinite. By a similar argument, we obtain

(@2(7), B2 =(—0ay(0)+ 11, —B1(1)+1)
on D,. Hence u,(t)= —u,(t)+/,7+/,on D,. W

§3. The main theorem on the zeros of g-function.
Our main theorem on the zeros of g-function states as follows:

THEOREM 1. Let D,, D, be two regions in # and (uy, D,), (u,, D,) be function
elements such that @(u(t), 7)=0 on D, and gp(u,(t), ©)=0 on D,. Then (u,, D,) can be
continued analytically to (u,, D,) in #. And, for any SeT, (ull_lS, S™1D,) is another
Jfunction element which can be continued analytically to (u,, D,) in #.

Notice that since go((ull_ 19)7), 1)=(S: 1) %p(u(St), St) for all eSS 'D,,
(44]-1S, S7'D,) is a function element such that p((u;|_,SXz),7)=0 on S~!D,, and
hence the latter part of Theorem 1 follows from the first part.

In order to prove Theorem 1, we show the following 4 lemmas.

LEMMA 6. LetD,, D, be two regionsin # and(u,, D,),(u,, D,) be function elements

such that g(u,(t), ©)=0 on D, and @(u,(t), ©)=0 on D,. Then the following propositions
hold: :

(1) If DynD,# B, then there exist uniquely ee€{+1}, m, neZ such that
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u(t)y=euy(t)+mr+n for all te D, N D,.

(2) Let y be a curve with an initial point in D, and a terminal point in D,, and
y< —TI'\/—1. Then there exist uniquely ec{+1}, m, ne Z such that (u,(z), D,) is
continued analytically to (eu,(t)+mt+n, D,) along y.

Proor. (1) Since D, nI'\/—1= and D, nI'\/—1=F by Proposition 5 (1),
#'(u(z), ©)#0 for all te D, and gp'(u,(1), ) #0 for all te D,. Therefore we can easily see
(1) from the properties of g-function and uniqueness part of the implicit function
theorem.

(2) Let (u;3, D;) be a function element such that D, contains the terminal point of
y and (u,, D,) is continued analytically to (u;, D;) along y. Since yc# —I'\/—1,
@(u3(7), ©)=0 on D; by the theorem of invariance of analytic relations. Therefore from
(1), we have (2). B

We put o, :={te# |Imt>1} and &, :={re# |Imt21}.
The following lemma is due to Professor D. Zagier [4].

LEMMA 7. There exists a unique function u, satisfying the following conditions:

(7.1) u is continuous on | and holomorphic on ¥, ,
(7.2) Puy(t), 1)=0  forall teH,,
(7.3) uo(t+1)=uy(ty forall teH,,
— 1 — 1
(7.4) uo( —1)=7 _‘1+?.
PROOF. Let

A(7) :=exp(2n/ —17) ﬁ (1 —exp(2nn./ —11))%*,
n=1

Eg(7): —gﬂéGG(T),
and put
uo(r):=i (1°g(5+2‘/_) 144 \/‘j (t—1 )E‘z(glz ),/—1 (te#),

where the integral is to be taken over the vertical line t=t+,/—1R, in #
(R, :={BeR | B>0}). The following theorem is given by Eichler, Zagier [2].

“The zeros of ¢(z, 1) (te H#, ze C) are given by z= tuy(t)+mt+n (m,ne Z)”

Thus it is clear that u, satisfies the condition (7.2) and it is easy to see that u, satisfies
the condition (7.1), (7.3), therefore we have only to show uy(/—1)=(1 /2)\/ —14+1/2.
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Let z(s) : =uo(s/ — 1s) and

_ log(5+2\/— ) A/ —19)
B(s) : = +144n./ 6 f (t— S)Es( NS T dt

Then z(s)=(1/2)+ﬂ(s)\/—_1 on {seR|s>0}, and B(s) is a real, positive, monotone

- decreasing and continuous function on {seR|s=1}. Here, notice that “gp(zo, 7)=0

implies reI‘\/ 1” if and only if z,e(1/2)Z+(1/2)Z. As gp(z(1), \/— 1)=0, there is a
positive 1nteger N0 such that B(1)= N,/2. Assume N,> 1. Since f(s)/s is continuous on
{seR|s=1}, lim,,,B(s)/s=0 and pB(1)/1=N,/2, there exists so>1 such that
B(so)/so=1/2. For this s, we have (son/—1/2+1/2, 50/ —1)=0. Therefore
so/ —1€TI'\/—1. This contradicts s,> 1. Hence No=1 and we obtain ue(,/ —1)=z(1)=
1/2/-1+1/2. A

We fix now 1, sufficiently close to ./—1 such that Imt, >1 and Ret, >0, and put
t,=Trt,. Let 8, 0 be closed curves with initial points 7,, T, respectively as shown in the
figures:

H
5( ! P
I e WAL J1
\éy \/ 2
TH#,
0 1 0

Let u, be the function of Lemma 7.
LEMMA 8. wuy(7) is continued analytically to uy(t)+1 along é.

PrOOF. We split 4 into 4 curves §,, 8,, 93, 5, as shown in the figure:

9,
0, _ N
04
(6=61 +5z +53+64)

First we consider the curve §,. Since uo(y/ —1)=(1/2)/— 1+ 1/2, ux(7) is continued
analytically to —uy(t)+t+1 along 8, by Proposition 5 (2). Next since wuy(z) is
holomorphic on #;, —uy(1)+ 1+ 1 is continued analytically to —uy(t)+ 7+ 1 along J,.
Furthermore since uo(t+ 1)=uy(t) for all 1€ #,, uo(/—1+1)=(1/20/—1+1)+0/2,
and hence, again by Proposition 5 (2), —uy(t)+ 7+ 1 is continued analytically to uy(7)+ 1



38 HIROSHI OHTA

along J,. Finally, by the same reason as for 6,, uy(r)+ 1 is continued analytically to
uy(t)+ 1 along J,. This completes the proof of the lemma. W

LEMMA 9. There exists a closed curve y in 3 with the initial point t, such that
uy(t) is continued analytically to uy(t)+1t along yx.

PROOF. Let uy(t) :=(o| - ; TX7). Then (uy, T3 ,) is the function element satisfying
P(uy(1), )=0 on Tof;. Since uy(\/—1)=(1/2)y/—1—1/2 and u(/—1-1)/2)=
(0/2)((Jj— 1)/2) —1/2, we see, in a similar way as in the proof of Lemma 8, that u,(1)
is continued analytically to u,(t)+t along 6. Now, let 8, be a curve with the initial
point 7, and the terminal point 7,, and 0, c ¢ —I“\/—_l. Then, by Lemma 6 (2), there
exist uniquely e € { +- 1}, m, ne Z such that u(7) is continued analytically to eu,(t) +mt +n
along 6,. Thus, putting y : =0, +0+(—0,), u(r) is continued analytically to uy(t)+1
along y. This y satisfies the conditions of the lemma. W

PrROOF OF THEOREM 1. Let y, be a curve with an initial point in D, and the
terminal point 7,, and let y, be a curve with an initial point in D, and the terminal
point 7,. Let x be a curve satisfying the conditions of Lemma 9. By Lemma 6 (2), there
exist uniquely &,, ¢, € {+ 1}, my, m,, n,, n, € Z such that u,(z) is continued analytically
to &,uo(t)+m,;t+n, along y, and u,(7) is continued analytically to e,uq(t)+m,T+n,
along y,. Let 6, be the closed curve in the proof of Lemma 8. Replacing y, by y, + 9,
if necessary, we may assume ¢, =1 by Proposition 5 (2), and we may assume ¢,=1 by
the same reason. Thus, putting y : =y, +(n, —n,)é + (m, —m,)x +(—7,), u,(t)is continued
analytically to u,(7) along y.

COROLLARY 10. There exists a unique analytic function u on ¥ such that
#(uy(t), ©)=0 on D, for a branch (u,, D,) of u.

This analytic function u will be called ““the g-zero value function”, it is many-valued
with countably infinitely many values. The latter part of Theorem 1 shows its “modular
invariance”. In this sense it is called a “many-valued modular form™.

§4. The main theorem on the gp-zero division value functions.

Let (u,, D,) be a branch of our g-zero value function ». For a positive integer N
and integers a, b, we put

1
IN,@n(D) = @(W (“1(“)"’(“, b)( : )), T) .

Then, for any (a, b), (@', b)e Z?, (u,(z), D,) can be continued analytically to <u1(1:)+

(@—a,b’ —b)( ; ), Dl) in ¢ by Theorem 1, therefore the function element (gy, (.5, D1)
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can be also continued analytically to (gy, .5 D1) in . And we have @p(gy, 4,5 (7), 7)=0
for all te D, by Lemma 2. Moreover, for SeT’, since

(#%) (9N, @,b) |2S)(T) =(S:1)" 28"(']1;/" (u1(ST) +(a, b)(Sl'T)), ST)

- so(% ((u1|_lsxf)+(a, b)S( ' )) r)

for all teS™!D, and go((u1|_1S)(r), 7)=0 on S~ !D,, the function element
(N, @ p)|2S> S™1D;) can be continued analytically to (g, @,zs, D1) in H#.
Therefore we obtain the following theorem.

THEOREM 2. Let N be an integer greater than 1. Then an N™ g@-zero division value
function py is uniquely determined and it is an N*-valued analytic function of # . Moreover,
for a branch (g, D) of py and SeI, another function element (g.|2S, S™ID) is also a
branch of py.

This theorem shows that py is another “many-valued modular form’ like u.

COROLLARY 11. Let N be an integer greater than 1. Then ¢p(X, t) is an irreducible
polynomial in Z[15G (1), 35G¢(t)][X].

PROOF. Since any root of ¢,(X, 7) is expressed by a branch of py, this follows
from Theorem 2. W

COROLLARY 12. Let p be a prime number, and (g,, D), - * *, (g2, D) be p* branches
of pp. Let ay, - - -, a,,€C. Then ' ‘

oig;+  +0,2g,:=0 on D

if and only if a, = - - - =a,.. Therefore p*—1 distinct branches of p, with the same region
are linearly independent over C.

PrOOF. Since the second term of the polynomial ¢(X, 7) in X vanishes (cf. Cassels
[1D), we get a9, + - - +0peg,2=0if a;=- - =0a.
As shown in the first part of this section,
{g(a,b) I 0<a,b<p,a beZ} Gan: =gp,(a,b))

is the set of all branches of p, on D,. Therefore it suffices to show that
%19¢0,0) a;g(o,1,+ “ o+ 0gp-1,p-1y=00n Dy implies oy =+ - - =0t,.. Weset F: =Z/pZ
and G :=SL,(F). G acts on F*—{(0,0)} by (S, (@ b)) (a, b)S where a:=amod p,
and this action is transitive. We know that G consists of p(p?—1) elements. Let G be

a subset of I' such that
~ a b
G= eG
G 2IC 2l

Q)
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and G consists of p(p*>—1) elements. Assume that (p —l)a ;éz, 1,i¢;% for some j
(1=/=<p?. By Theorem 2, we may assume j=1, i.e. (p*>— 1)a; #Y 7. ,%. For any SeG,
we have that
%19(0,0|25 + %290, 1)| 25+ - - - + %p2G(p—1,p-1)|25=0
on S~'D,. By Theorem 1, there exists a curve ys such that (u, |, S, S™!D,) is continued
analytically to (u,, D,) along ys. Then, by (##), for all integers a, b, (g(,,',,,|ZS, S~ D))
is continued analytically to (g, s, D) along ys, and hence
190,05 +%290,1)s+ " ** +%p2Gp-1,p-1)s=0

on D,. Therefore we obtain
(¥%%) % ) Jo.ostaz ), Jons+ o ) do-1.p-1s=0
SeG SeG SeG

on D;. We can easily see that the stabilizer of (0, T) consists of p elements and for
(a, b), (@', b')e Z* if (a, b)=(a’, b’) mod p, then g p=gw.p» On D;. Thus, by g0+
do.nt " +9dp-1,,-n=0o0n D,,

Z 9a.ns=P90.1n+ """ +9p-1,p-1)
SeG

=(—P)0.0)
on D, for (a, b)#(0, 0) mod p. Hence, by (###),

0= ("CJ.P(P2 -1)— ii‘.z aip) 9g0,0)

on D, noticing that ) ¢_.d.0s=P(P*—1)g0.0) On D,. Thus d0,00=0 on D,. This
contradicts the fact that (g,o) D;) is @ branch of the p?-valued analytic function Py
Therefore (p?—1)a;= le 1i#;% for any j (1=<j<p?). This leads to a; =" - =a,.. W
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