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§1. Introduction.

Let X be a non-singular projective variety of dimension n over an algebraically
closed field k of characteristic zero.

DEeFINITION. A Cartier divisor T is called numerically trivial if (T, C)x =0 for every
curve C on X. A Cartier divisor D is called nef if (D, C)x20 for every curve C on X.

Ando [1] has shown the following results:
1) Assume that the canonical divisor Ky is nef and big, and that n=4, 5. Then there
exists a positive integer m(n) depending only on dim X such that the rational map @k, |

associated with |mKjy | is a birational map onto its image for every m=m(n). Here m(n)
is given as follows:

md)=16, m(5)=29.

2) Assume that — Ky is nef and big, and that n<4. Then &,_ .k, is birational for,
m=1(n), where I(n) is given by /(2)=3, I(3)=5, I(4)=12

We now improve Ando’s argument by using Reider’s result [8] and Matsuki’s
argument [5], and show the following result:

MAIN THEOREM. (1) Assume that Ky is nef and big and that n=4, 5. Then @k,
is birational for mZm(n), where m(n) is given by m(4)=12, m(5)=18.

(2) Assume that Ky is numerically trivial and that n=3,4,5. Let D be a nef and
big divisor on X. Then ®,,,p, is birational for m2k(n), where k(n) is given by k(3)=6,
k(4)=10, k(5)=17.

(3) Assume that — Ky is nef and big and that n=3, 4. Then ®|_ x| is birational
for m=1(n), where I(n) is given by 1(3)=4, l(4)=11.
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In Section 4, we present a function m(n) for n=8.

We use the notation of Ando [1].

The author would like to thank Prof. S. Mukai, who taught him Reider’s result,
for his advices.

§2. Key Lemma.

Improving Ando’s argument [1, Theorem 5] by using Reider’s result [8] and
Matsuki’s argument [5, Corollary 9], we obtain the following “Key Lemma”.

KEY LEMMA. Let X be a non-singular projective variety of dimension n, R a nef and
big divisor and T a numerically trivial divisor. We assume:

(1) For each i with 1<i<n—2, there exists a natural number r; such that
dim @, z(X) 2.

(2) there exists an integer ro=4 such that every integer r=r, satl.sﬁes
HOX, rR+ Ky + T)#0.
Then @k, \ mr+1) is birational for all mZro+(ry+ - - +r,_,).

LEMMA 1 (See Tankeev [9, Lemma 2]). Let .# be a linear pencil free from base
points, and let D be an effective divisor. Let M be a divisor with M e #. If, for a general
member Y of M, the rational map ®:=®, . p, is birational on Y, then ® is birational.

PROOF. Assuming that @ is not birational, we shall derive a contradiction. We
may assume that Supp(D) does not include Y. Let U= X — Supp(D) and choose a general
point xe U Y. There exists a point ye U such that y#x and &(x)=®(y). Since | M|
is base point free, x and y belong to the same effective divisor of |M+ D]|. So
x, yeSupp(Y + D). Thus ye Y. Thus @ is not birational on Y. This is a contradiction.

Q.E.D.

LEMMA 2 (Reider [8, Corollary 2]). Let S be a non-singular projective surface and
L a nef and big divisor on S such that (L*)=10. If D\ +1| is not birational, then S
contains a base point free pencil E' with (L, E')=1 or (L, E")=2.

ProoF oF KEy LeEMMA. We prove this by induction on n. We put m=
ro+(ry+ - +r,_,). If n=2, the result follows from Lemma 2.

We assume n=3. Let &£ be a subpencil of the complete linear system |r;R|. We
consider the following commutative diagram:

X i . W
fl \ Js
X o > P!
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where f is a succession of blowing-ups with non-singular centers such that g:=® 4o f
is a morphism, and g=so A is the Stein factorization.

Let R’ be f*R, S be a general fiber of 4, H be a general point on P!, and a:=deg(s).
Then S is a smooth (n— 1)-fold. Note that g*H is a disjoint union of S;’s (1= <a),
each of which is of the same kind as S. In order to prove that the rational map @, + mr+7|
is birational, it suffices to show that @, a5+ m-ryr + s+ 18 birational.

Since

0 — Ox(Ky +(m—r )R + f*T)
—— Ox Ky +(m—r)R'+ f*T+g*H)
— @;_—_1 @s,-(Ks,'*'(m"H)R'Is,-+f*T|s,)—" 0
is exact, and since H'(X',Ky +(m—r)R' + f*T)=0 by the Kawamata-Viehweg
vanishing theorem ([3], [10]), we have that
HOX', Ox Ky +(m—r,)R' + f*T+g*H))
— Doy H(S;, O5(Ks;+(m —rl)Rlls,- +/* T|s,~))
is surjective. Therefore in order to prove the claim, it suffices to show that

(D|Ksj+(m_,l,R,|sj+f.T|sj| is birational. Actually by (2) we have H%(X", Ky.+(m—r;)R’ +
f*T)#0, hence we can apply Lemma 1.

Letting rg:=rg, ri:=ry, -+ ,Fhn_3:=rF,_,, we shall check that S, R’|sj, f*TIs,,
r1, -+, ri_, and rg satisfy the conditions (1) and (2). If this is done, then by induction,

we conclude that q)lxs,+(m—n)R'|sj+ £Tls,l is birational and complete the proof of the
claim.

(1) Since H is general,
Gim @, (S)ZAM B, o (X) =121 for izl
(2) Let r=r,. By assumption, |rR’+ Ky + f*T|#* (. Since S; is a fiber of A, S,-|sj

is linearly equivalent to 0. So Kx'|s,- is linearly equivalent to Ks,. Since H is general,
| PR |s,+ Ks,+ [*Tls,| # D QE.D.

§3. Proof of Main Theorem.

PROPOSITION (Matsusaka [6], Machara [4]). Let R be a nef and big divisor and
dim X =n. If h°(mR)>m"R"+r, then dim @,z (X)>r.

Mi1YAOKA’S INEQUALITY ([7]). Let X be a non-singular projective variety with Ky
nef. Then 3c,(X)— K% is pseudo-effective.

LeMMA A (Ando [1, Lemma 7']). Assume dim X=4 and suppose that Ky is nef
and big. Then

(1) AI%X,mKy)=2, for m=3.
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Q) dim @, g, (X)22, for m=4.

LEMMA B (Ando [1, Lemma 8'7]). Assume dim X=5 and suppose that Ky is nef
and big. Then .

(1) AKX, mKy)=2, if m=3.

(2) dim P,x, (X)22, if m=4.

3) dim Pk, (X)=3, if m=6.

PROOF. Let a=K?>, b=(K?, c,(X))/12, c= —2x(0y). Let P(m):=h%mKy). Then

P(m)=m(m—1)}2m—1)3m?* —3m—1)a/720
+m(m—1)2m—1)b/12+(2m—1)c/2 for m=2.

Miyaoka’s inequality implies b = a/36. Since P(2)= 0, it follows that a/24 + b/2 + 3¢/2 =0.
Thus

(%) P(m)=(2m—1){(3m* — 6m® + 2m? + m — 10)a/720 + (m? — m— 2)b/12}
= a(2m— 1) 9m* — 18m> + 11m? —2m —40)/2160 .

Let Q(m):=a(2m— 1}9m* —18m3 + 11m? —2m—40)/2160. Then P(m)=Q(m). Note that
a is a positive even integer, because 7a/2+35y(0x)= P(4)— 14P(2)e Z. The proof is
completed in view of the following inequalities in the following cases. (Use the above
proposition.)

(1) P(m)=2 for m=3, because by (*) P(m)=Q(3)>0.6a.

(2) Pm)>ma+1 for mz5, because by (x) P(m)—(ma+1)=Q(5)—(5a+1)=
10a—1. P(4)—(4a+1)= Q(4)—4a—1>0.14a— 1. Thus P(4)—(@da+1)>0, if a=8.

If a=2, 4 or 6, then (K3, c;)2 18, because a/24+ (K3, c,)/24—3x(0x)=PQ)e Z.
Thus b=3/2. P(4)—(4a+1)>(3.9a+35b/6)—(4a+1)=(3.9a+8.75)—(4a+ 1)= —0.1a+
7.75>0. ,

(3) P(m)>m?a+2 for m=6, because by (*) P(m)—(m2a+2)=Q(6)—(36a+2)>
5.3a—-2. Q.E.D.

LEMMA C. Assume dim X =3, and that Ky is numerically trivial. Let D be a nef
and big divisor on X. Then

PROOF. h°(mD)= y(mD)=m>D3/6 + m(D, c,)/12 for m=1. Miyaoka’s inequality
implies (D, ¢,)=20. Thus A%mD)=m>3D?3/6 for m=1. Q.E.D.

LeMMA D. Assume dim X =4, and that Ky is numerically trivial. Let D be a nef
and big divisor on X. Then

PROOF. Let a=(D?2 c,), b=x(0x). Let P(m):=h°mD). Then P(m)=m*D*/24+
m?a/24 + b. Miyaoka’s inequality implies 2> 0. Since P(1)=0, D*/24 +a/24+ b =0. Thus
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P(m) = (m* — 1)D*/24 +(m? — 1)a/24 = (m* — 1)D*/24. The proof is completed in view of
the following inequalities.

P(m)— (mD*+ 1) = (4*— 1)D*/24—(4D*+1)>6.6D*—1>0 for m=4. If D*z4,
P(3)—(3D*+1)24/3—1>0.

If D*=1, 2, or 3, then a=21, because D*/24+a/24+b=P(1)e Z. Thus P(3)=
(3*—1)D*24+(3% — 1)a/24 2 80/24+21/3> 10 = 3D* + 1. Q.E.D.

LEMMA E. Assume dim X=35, and that Ky is numerically trivial. Let D be a nef
and big divisor on X. Then

(1) dim®,p(X)21 if m=3.

(2 dim®,,(X)22 if m=4.

3) dim®,p(X)23 if m=6.

ProOF. Let a=D3, b=(D3,¢,), c=(D,3c%—c,). Let P(m):=h%mD). Then,
P(m)=am?®/120 + bm?|72 4+ cm/720. Miyaoka’s inequality implies 5= 0. Since P(1)20, it
follows that a/120+b/72+¢/72020. Thus

(*) P(m) = am(m* — 1)/120 + bm(m? — 1)72 2 am(m* — 1)/120 .

Let Q(m):=am(m*—1)/120. Then P(m)=Q(m). The proof is completed in view of the
following inequalities in the following cases.

(1) P(m)=2 for m=3, because P(m)=Q(3)=2a=2 by (*).

(2) P(m)>am+1 for m=4, because P(m)—(am+1)=Q(4)—4a+1)=4.5a—1>0
by (*).

(3) P(m)>am?+2 for m=6, because P(m)—(am>+2)2 Q(6)—(36a+2)=28.75a—
2>0 by (*). _ Q.E.D.

LemMAa F (Ando [1, Proof of Theorem 9]). Assume dim X=3 and suppose that
— Ky is nef and big. Then

(X, —mKyx)=2, for mz=1.

LEMMA G (Ando [1, Proof of Theorem 9]). Assume dim X' =4 and suppose that
— Ky is nef and big. Then

(1) KX, —mKy)=1, for m=3.

2) dim®|_ 4k, (X)22.

PROOF OF MAIN THEOREM. (1) Assume that Ky is nef and big. We apply Key
Lemma, where R=Ky and T=0.

When dim X =4, by Lemma A we put ro=4, ry =3, r,=4.

When dim X=5, by Lemma B we put ro=4, r;=3, r,=4, r3==6.

(2) Assume that Ky is numerically trivial. Let D be a nef and big divisor on X.
We apply Key Lemma, where R=D and T= —Kj.

When dim X =3, by Lemma C we put ro=4, r; =2.

When dim X =4, by Lemma D we put ro=4, ry =3, r,=3.
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When dim X=35, by Lemma E we put ro=4, r, =3, r,=4, r;=6.

(3) Assume that — Ky is nef and big. We apply Key Lemma, where R= — K, and
T=0.

When dim X'=3, by Lemma F we put ro=4, r, =1.

When dim X=4, by Lemma G we put ro=4, r, =4, r,=4. Q.E.D.

REMARK. THEOREM (Matsuki [5]): Assume dim X=3 and that Ky is nef and big.
Then ®,,,x, is birational for m=1.

PrOOF. Let P(m):=ho%X, mKy)=(2m—1){mm—1)K3/12— —x(0x)} for m=2. By
Miyaoka’s mequahty, x(Ox)= —(Ky, ¢,)/24< —K}%/72<0. Thus P(m)>(2m—1)m-
(m—1)K3/12>0 for m=2. PQ2)>K3/2. K} is a positive even integer, because
—K3/2+20(0,) = 1(Ox(Kx)) + x(Ox(— Ky)) € Z. Thus P(2)=2. We apply Key Lemma,

‘where R=Ky and T=0. We put ro=4, r, =2. Q.ED.

§4. Appendix (based on Ando’s idea).

LeMMA 3 (See Tankeev [9, Lemma 2]). Let .# be a linear pencil free from base
points, and let D be an effective divisor. Let M be a member of .# and let ® be the
rational map @y . p|. Let p be a natural number. If, for a general member Y of M,
dim <D|Y(Y)>p, then dim &(X)=p+1.

PROOF. Assuming that dim &(X)=p, we shall derive a contradiction. We may
assume that Supp(D) does not include any irreducible component of Y. Let E be an
irreducible component of Y such that dim <1>| e(E)=p. Let U= X—Supp(D) and choose
a general point xe Un E. Then dim(®|y)” '(®(x))=n—p and dim(®|y.y)~ (S(x)=
n—1—p. Thus there exists a point ye U—Y such that &(x)=®(y). Since | M| is base
point free, x and y belong to the same effective divisor of | M+ D|. So x, y € Supp(Y + D).
Thus ye Y. This is a contradiction. Q.E.D.

LEMMA 4 (based on Ando’s idea). Let p be a natural number. Let X be a
non-singular projective variety of dimension nZp, R a nef and big divisor and T a
numerically trivial divisor. We assume:

(1) For each i with 1<i<p—1, there exists a natural number r, such that
dim @, g (X)=i.

(2) There exists an mteger ro such that evey integer r 2 ry, satisfies Ho(X, rR+ K +
T)+#0.

(3) There exists an integer | such that every integer r 21 satisfies H(X,rR)#0.
Then dm @ g, , r+7(X)2Zp for m2n—p+1+ry+i+(ry+ - +r,_q)

PrROOF. 'We prove this by induction on p. We put m2n—p+1+ro+I1+(r, +

+r,_1).
Case p=1. We define a polynomial P(x) by P(r)=y(Kx+rR+T). For reN,
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P(r)=h(X, Kx+rR+T). P(r)=1 for re[ry, + o) N. P(x)is a polynomial of degree n.
Thus there exists an integer mq € [rp, ro+n] such that P(mg)=2. So h°(Kxy+mR+T)=2
for m=ry+1+n (=2my+1).

Case p=2. Let . be asubpencil of the complete linear system | 7; R|. We consider
the following commutative diagram:

h
Xﬂ WI
T |
X —————————————— - Pl
27

where f is a succession of blowing-ups with non-singular centers such that g:=®go f
is a morphism, and g=s- A is the Stein factorization.

Let R’ be f*R, S be a general fiber of 4, H be a general point on P!, and a:=deg(s).
Then S is a smooth (n— 1)-fold. Note that g*H is a disjoint union of S;’s (1=i=<a),
each of which is of the same kind as S. In order to prove that dim @, +mr+r(X) 2P,
it suffices to show that dim @| g, , + gsgr+ m—ryr + s7|(X) ZP-

Since

0 —— Ox(Kx +(m—r)R'+ f*T)
—— Ox(Ky-+(m—r )R+ f*T+g*H)
— (‘B;=1 (Dsj(Ks,-"*'(m—rl)Rllsj+f*T|s,)——" 0

is exact, and since HY X', Ky.+(m—r )R+ f*T)=0 by the Kawamata-Viehweg
vanishing theorem ([3], [10]), we have that
HO(X', Ox{Ky.-+(m—r,)R'+ f*T+g*H))
— DI HS;, Os (Ks,+(m —"1)R'|s,- +/* Tls,-))

is surjective. Therefore in order to prove the claim, it suffices to show that
dim cD‘Ks +m—r)R' |5, + f*T|s, (S =p— 1. Actually by (2) we have HX’, Ky.+(m—ry)R' +
f*T)#0, 'hence we can apply Lemma 3.

Letting ro : —ro, I":=1, F{:=ry -+, ry_p:=r,_,, we shall check that Sj, R's,,
f* T|SJ ri, -+, rh_, r§and !” satisfy the condition (1), (2) and (3). If this is done, then
by induction, we conclude that dim @, Ks,+(m-r)R'|s,+ f.n"sj,(Sj) =p—1 and complete the

proof of the claim.
(1) Since H is general,

dim @, g Is, (S)2dim D,z (X)—121 for i=1.

(2) Letr=rp. By assumption, |rR’+ Ky + f*T|# &. Since S; 1saﬁber of h, S,]Sj
is linearly equivalent to 0. So Ky |s,. is linearly equivalent to K. Since H is
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general, |rR'|s + Kg,+ f*T|s,|# D.
(3) Let r=/. By assumption, |rR’|# (. Since H is general, |rR’'|s,|# . Q.E.D.

Lemma 5 (Ando [1, Proposition 2]}). If Ky is nef and big and n=6, then |mKy | #
& for any m=2[n/2]—2.
THEOREM. Assume that Ky is nef and big and n=6. Then ®,,x, | is birational for
m=m(n), where m(n) is given by
m(6)=204, m(7)=444 ,
m(n)=2""2+(n+4[n/2] —5)—2[n/2]+1 for n=8.
Proor. We apply Lemma 4 and Key Lemma, where R= Ky and T=0. By Lemma
5, we put ro=2[n/2]—3 and /=2[n/2]—2. By Lemma 4, we put
ri=n+1l+ro+l, ro=n+ro+i+ry, - , Fpoy=n—n=3)+ro+l+r,+---
+r_y, rp=n—Mn—=2)+ro+l+ri+--+r,_,.
Sor,=2"1+(n+ro+0)+1 for pz1. Thus
V4ro+(ry+ra+ - Fr_)=1+4r,_,—1-3=2""2(n+ro+1)—1—1
=2""2-(n+4[n/2]—5)—2[n/2]+1.
When n=6,7, we put ro=ro+1=4. When n=8, we put ro=r,. Then we put
mn)=14ro+ (ry+r,+ - +r,_»). Q.E.D.

ACKNOWLEDGEMENT. Lemma 4 is based on Prof. Ando’s letter to the author
which tells him that the method of the proof of Key Lemma is usefull to get good r;
(i=1). The author would like to express his gratitude to Prof. Ando for his advice.

§5. Further appendix.

LEMMA 6. If —Kjy is nef and big, then | m(— Kx)|# & for any m=2[n/2].

PrROOF. We define a polynomial P(x) by P(m)=y(m(— K)). Let r be the number
of integral roots of P(x) in x> —1/2 counting the multiplicity precisely and
cx=max{er|x> —1/2, P(x)=0}. By the Serre duality, P(x)=(—1)"P(—x—1). Thus
r<[n/2]. Since H{(X, m(—Ky))=0 for i=1 and m=0, we have P(m)=0 for integers
m=0. By the same argument as in (I) in the proof of Proposition 2 of Ando’s paper
[1], we conclude that a <2r—1. Q.E.D.

THEOREM. Assume that — Ky is nef and big and nZS. Then ®,_,.x, | is birational
Jor m=1(n), where l(n) is given by

I(n)=2""2-(n+4[n/2]1—1)—2[n/2]—1.
PrOOF. We apply Lemma 4 and Key Lemma, where R= —K, and T=0. By
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Lemma 6, we put ro=2[n/2]+1 and /=2[n/2]. By Lemma 4, we put r,=
n—p+ro+i+ri+---+r,_ forpz1.S0r,=2""1+(n+ro+/—-2)+1for p=1. We put
r0=r/0. Thus

—14ro+(ry+ra+ - +r,_5)= —14r,_,—1—1=2""2-(n+4[n/2]—1)—-2[n/2]-1.
Q.E.D.

REMARK. Oguiso proved the following result in his preprint “On polarized
Calabi-Yau 3-folds™:

When X is Calabi-Yau 3-fold, for any ample divisor L on X, ®|,, is birational if
mz=5.

ACKNOWLEDGEMENT. This section is based on the referee’s comments on the
manuscript. The author would like to thank the referee for his kindness.
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