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Global Solutions for the Heat Convection Equations
in an Exterior Domain

Toshiaki HISHIDA and Yoshio YAMADA*

Waseda University

Abstract. A nonstationary problem of convection in the exterior domain to a heated sphere is studied.
In the Boussinesq approximation, convection phenomena are governed by the system of the Navier-Stokes
and heat equations. We find sufficient conditions on boundary and initial data to ensure the global existence
of LP-solutions for this system.

1. Introduction.

We consider the 3-dimensional laminar convection flow of a viscous incompressible
fluid past a heated object. As a typical situation, we treat the case that the heat-source
is a sphere of radius R>0. When its conducting surface is sufficiently warm compared
with the ambient fluid maintained at a uniform temperature 7, (>0, constant), the
buoyant forces against the acceleration due to gravity g(x)=gV(l/|x|)= —gx/|x|?
(g>0, gravitation constant) overcome the stabilizing effect of viscous forces and
actually derive the convective motion.

Physically, early in this century, Bénard made various experiments on thermal
instability of a horizontal layer of fluid heated from below. One can refer to
Chandrasekhar [3; Chapter II], Drazin and Reid [5; Chapter 2] and Joseph [15;
Chapter VIII] for comprehensive introduction to the Bénard-type convection problem.

By v(x, )= (v'(x, 1), v3(x, 1), v3(x, 1)), O(x, t) and n(x, 1), we respectively denote the
velocity field, temperature and pressure. As is well known, the equation of momentum
is given by the Navier-Stokes equation:

p{v,+ (v V)v}=pg—Vr+uAv, |x|>R, t>0, (1.1)

where p denotes the density; the viscosity u is assumed to be a positive constant. In
the convection problem, the density variations are produced mainly by temperature
and not by pressure. In what follows we assume that the equation of state is given by
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dp

p=p(9)=pm+[ﬁ] O0—Te)=pu—2p(0—T,), (1.2)
0=Tc :

namely, the density is linear with respect to temperature, where p_=p(T,) is the
ambient density and y= —[(d/d0) log p(6)]o=r_ >0 represents the volume expansion
coefficient at the ambient temperature T,. However, since y is very small, we set
pP=p, not only in (1.1) but also in equations of continuity and energy; see (1.4) and
(1.5) below. But there is one important exception. In the gravitational term pg which
represents the buoyant force (per unit volume of fluid), we cannot neglect the density
variations because g is quite large near the conducting surface. Such an approximation
is called the Boussinesq approximation; see [3], [5] and [15]. Then (1.1) and (1.2)
imply that

v
0,4+ @ Vo={1—30—T,)}g———+vAv, |x|>R, t>0, (1.3)

> ]

where v=pu/p, denotes the kinematic viscosity. The equations of continuity and
energy are, respectively, given by

V-o=0, |x|>R, 1>0, (1.4)
0,+(v-V)0=xA8, |x|>R, t>0, (1.5)

where the thermal conductivity x is assumed to be a positive constant. We suppleme_nt.
(1.3), (1.4) and (1.5) with boundary conditions

v=0, 60=T,()>T,, |x|=R, t>0, (1.6)
v—-0, 0T, as |[x|->o, >0,
and initial ones
v(x, 0)=1v4(x), 0(x,0)=0,(x), |x|>R. a.n
We now make the following change of variables and functions:
x=Rx*, t=R?*t*/v, v=vww*/R,
0—T,=v*0*/yRg and m—p g/|x|=p,v’n*/R>.

By omitting the asterisks (for notational simplicity), (1.3){1.7) are reduced to the
following nondimensional form:

v,+ (' V)v=0e—Vn+Av, |x|>1, t>0,
V.v=0, lx|>1, t=0,
‘ 1
(7) ‘V)6=—A0, x|>1, t>0,
c+ (V) Pr | x| ®)
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v=0, 0=TXQ, |x|=1, t>0,
v—0, 6-0 as |x|—»o0, t>0,
v(x, 0)=v8(x), 0O(x,0)=03(x), lx|>1,

where e(x)=x/|x|3, Pr=v/k (Prandtl number); the boundary and initial data are
given by

T30 =xRG{T(R1) =T }v*,  v8(x)=Roo(Rx)/v,

(1.8)
3(x)=xRg{0o(Rx)— T }/v*.

In the previous work [11] the first author has discussed the L?-theory for a
similar convection problem in a bounded domain. Many mathematicians have studied
the convection phenomena from several points of view; see, e.g., Foias, Manley and
Temam [6], Galdi and Padula [7], Joseph [14], Kirchgédssner and Kielhéfer [17],

~ Morimoto [21,22], Oeda [23, 24, 25], Rabinowitz [26] and the references therein.
Among these, in [7] stability analysis for the exterior problem has been done although

existence of solutions has not been discussed. In [12] the first author has recently
shown the global existence of solutions for (P) with values in L2 and derived some
decay properties of such solutions when T is independent of time and small.

It is the aim of this paper to construct global strong solutions for (P) with values
in L? (contrary to [12]) and to study large time behavior of such solutions. We are
interested in the class of initial data which decay too slowly as |x|—o to be
square-summable. We also intend to investigate the influence of the presence of T.X(?)
on the global existence of solutions. Roughly speaking, our result shows that a unique
strong LP-solution exists globally in time when the initial data are small in a sense and
TX(?) tends to zero as t— oo (but this rate may be slow so that T7%(¢) is not summable
over (0, 0c0)). Our main tools are LP-L? estimates for semigroups which are due to
Borchers and Miyakawa [1], Giga and Sohr [10] and Iwashita [13].

The content of this paper is as follows. In section 2 we introduce the function
spaces, operators and LP-L? estimates for semigroups generated by them. In section 3
we state our main results: Theorem 1 (Global existence) and Theorem 2 (Decay
property). In section 4 the crucial lemmas in deriving a priori estimates are presented.
Theorems 1 and 2 are proved in sections 5 and 6, respectively.

2. Preliminaries.

We set Q={xeR?; |x|>1} and let W"P(Q) (I=0,1,2; 1<p<co) be the usual
Sobolev space over the domain Q such that W% ?(Q)=L?(2). We denote by | * ||, the
norm of LP(R2) and that of L?(Q)3. Define the operator B in LP(Q2) by B=—(1/Pr)A
with domain D (B)=W?P(Q2) n W} P(Q) for 1<p<o. Let C3,(£2) be the set of all
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C™-real vector fields v with compact support in Q such that V-v=0. By L2(Q) we
denote the completion of C(2) in LP(Q)3. Then the Helmholtz decomposition
LP(Q2)° = LYQ) @ G"(2) holds for 1<p<oo with GP(Q)={VneL!(Q)?; neLL(D)};
see Miyakawa [20; Theorem 1.6]. Let P be the bounded projection from L?(Q)? onto
L%(€2) associated with this decomposition. We introduce the Stokes operator A in
Li(2) by A= — PA with domain D, (4)=D(B)*>n L%(Q) for 1<p< . Due to Giga
[8; Theorem 1’ in p.327], the Stokes operator generates an analytic semigroup
{e™*; 1=0} of class (Co) on all L%(RQ) for 1 < p< oo (see also Deuring [4]). Moreover,
Borchers and Sohr [2] have proved the boundedness property on all L?(€2) of this
semigroup; that is, ||[e™* || p-p<C,p uniformly for all >0, where|| - || p—q denotes the
operator norm from L(£2) to L(£2). The following LP-L? estimates for this semigroup
have been investigated by Borchers and Miyakawa [1; Corollary 4.6], Giga and Sohr
[10; (1.7) in p. 105] and Iwashita [13; Theorems 1.2 and 1.3]:

le™*),.,<Ct™*, >0, @D
IVe™*4|,.,<Ct™*" 12 >0, 2

with a=3(1/p—1/9)/2 and a positive constant C= C(p, q) independent of ¢. Estimate
(2.1) holds for 1 <p<g< o, while (2.2) for 1 < p<g<3; see [13]. According to [10],
(2.2) also holds for 1<p<3/2,0<a<lor 1<p<2, 0<a<1/2. On the other hand, it
should be noted that both (2.1) and (2.2) are valid for 1 < p<qg< o if we replace e ™4
by e 2, which denotes the semigroup generated by — B.

3. Results.

To start with, we introduce an auxiliary function ¢(x, f) defined by

¢,=LA¢, [x|>1, >0,
Pr

¢=Tx{), lx|=1, t>0, 3.1
¢—0 as |x|—o0 and ¢(-,0)=0.
Setting =60 — ¢, we can formulate (P) to the abstract Cauchy problem of the form:
dv/dt+ Av=F(v, 0)+ Ppe, >0 ; v(0)=0}, cP)
db/dt+ B8 = G(v, 0) , t>0; 6(0)=0%,

where

F(v, 8)= — P(v-V)v+ Ple,
G, B)= —(v-V)i—(v-V)¢ .
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' We study (CP) via the following system of integral equations:

v(0) =v°() + j e~ ¢TI K(v, 5)(s)ds , >0,
0 ap)
~ t ~
6(H)=06°1)+ J e~ C79BG(v, B)(s)ds , >0,
0
where

vo(H)=e " HoF+ fte ~@=94( Pe)(s)ds ,

(o]

0°(t) =e~'B0% .
We now put the following hypotheses on the data given by (1.8):
(H1) {v¥, 0%} e L3(Q) x L™(Q) for some 1<m<3.

(H2) T*eC'**(R.;R,) for some t>0; {’T*(?) is bounded from above in
t>0 for some & satisfying max{1/2, 3/2m—1/2} <é <min{1, 3/2m}.

From now on, we set [7*]=5uUpPg< <o L2 T*(). It follows from TkeC'** that
(3.1) has a unique solution of class C*(R, ; L?(R)), which is explicitly given by (4.6)
below. Therefore, by the same manner as in [11; Section 5.1], it is seen that any
solution of (IP) becomes a strong solution to (CP) in a suitable L?-topology. We thus
state results on global existence and decay of solutions to (IP).

THEOREM 1. Suppose that (H1) and (H2) hold. Then there exists a positive
constant ¢ depending only on m and é such that if

loglls+1681m+[TH]<e,

then (IP) has a unique solution {v, (~9} on [0, 00) with the following properties (# denotes
the class of bounded continuous functions):

{132y | 30/m=10/25) € ([0, 00) ; LE(R2) x LYR2))

3.2
m<q<myg if 1<m<3/2, )
for 3<p<oo and
m<qg<oo if 32<m<3,
{112V, Pa/m=1/0/2+1/2y5} e ([0, ) ; L3(2)° x LYR)?) 33

for m<q<m,,

where all the functions vanish at t=0 except when {p, q}={3, m} in (3.2), for which
{v(0), 6(0)} ={v&, 03}. Also, m; (i=0, 1) are defined by 1/m;=1/m—(2—i)/3 (mg=00
if m=3/2).

COROLLARY 1. Let 0 be the solution in Theorem 1. Let q satisfy 3<q<oo (resp.
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3<q<myg)in case 3/2<m<3 (resp. 1 <m<3/2). Then the temperature 0 =0+ ¢ satisfies .

le@l,<Cce™®, =1,

R P
2\m ¢ : 3—-2mé
o=

3m
3—-2mé’

with

o—n if q=
where n>0 is an arbitrary small number.
THEOREM 2. There exists a constant ¢, € (0, €] such that if
log1ls+ 103w+ [TH]<e,

then the solution {v, 8} in Theorem 1 enjoys the following decay properties:

,li'f, le(®Oll3=0, (3.9
lim ||8(5)||,,=0 . 3.5)

COROLLARY 2. The solution {v, B} in Theorem 2 satisfies

lim £1=32 [5(7)], =0, 3.6)
t— oo
lim 3(t/m~1/a)2 ||§(t)||q=0 , 3.7
t— o0

Jor the same {p, q} as in (3.2).

COROLLARY 3. Let 0 be the solution in Theorem 2. Then the temperature =0+ ¢
satisfies

lim #|6(2)]|, =0,
t— oo

for the same q and o as in Corollary 1.

REMARK 1. For initial datain L3 x L', only the local solution can be constructed
(even if T} is independent of time). According to [11; Theorem 1], the local solvability
with data in L3 x L' is critical for the interior problem in R3. However, employing
LP-L? estimates, one can give an affirmative answer to it. In general, the L?-19
estimates work better than the estimates in fractional powers spaces which are used in
[11] when we intend to derive the solvability for data in the marginal class. ‘
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REMARK 2. It is expected that the steady conductive state (motionless state) is
stable when T¥* is independent of time and small. However, Theorem 1 gives no
answer to it. For this purpose, we need to investigate the linearized operator around
such state. This has been done in [7] and [12] within the framework of L?-theory.

4. Lemmas.

In this section we show two lemmas which are crucial in deriving a priori
estimates for (IP). From now on, the same letter C denotes various positive constants
which may change from line to line. The first lemma is

LEMMA 4.1. Let l<p<oo, 1<g<oo, 1<r<oo and 1/r<1/p+1/q<1. Then
le~ B V)f I, <Ct #7120l I fll,, >0, 4.1)
Ve B(0-V) fll,<Ct P~ ol Il fll,, >0, 4.2)

hold with B=3(1/p+1/g—1/r)/2 and a constant C=C(p, q, r) independent of veLg(Q),
feLY(Q) and t>0.

Proor. It suffices to show (4.1) and (4.2) for ve C{(2) and fe C°(9). Let
U(x,y, t) be the fundamental solution associated with e~ *%; then, since V-v=0,
we obtain ‘

[e (- V)f1®), |x|>1, >0,
=f UGx, y, DL(0-V,)f10)dy
[o]

-

= J U(x, y, )[V, (o )](»)dy
Q

= —f V,U(x, y, ) (of )(y)dy . 4.3)
ol

Here we note that‘
[V,U(x,y, ) |<W(x—y, 1), 4.4

where

s |x|?
W(x,t)=Ct™ “expq — Ct ;

see, e.g., LadyZenskaja, Solonnikov and Ural’ceva [19; Theorem 16.3 in Chapter IV].
Since W(x, t) satisfies

IWC, Dllromsy< Com 20~ o2 =12
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for ro>1, it follows from (4.3) and Hausdorff-Young’s inequality that

le™ (- V)1, <

j W( -y, 1)) dy
Q

r

e S TR TR
with 1+1/r=1/ro+1/p+1/q; so,
lle™(0-V)fll,<Ce=3p+1a=1mz=1i2)jp| | £1],.

Estimate (4.2) is derived in the same way as above, by making use of

—wl2

Thus we have proved Lemma 4.1. Q.E.D.

We next derive the decay estimate for the auxiliary function ¢(x, ) defined
by (3.1):

LEMMA 4.2. For every 0<n<1 and 3<p< oo,
lo®l,<CITIJe2*"2?, >0, 4.5
holds with a constant C= C(d, n, p) independent of t>0.

ProOOF. With use of the fundamental solution U(x, y, f) associated with e '8, it is
possible to write down the function ¢(x, ¢) by the following exact formula:

1 [t G,

¢(x, t)= _——J‘ J. U(x, Y I""S)dSyT‘:(S)dS ’ (4°6)
PrloJopon, =

where 0Q2 is the unit spherical surface, dS is the ysual surface element on 6Q and d/on

is the outward normal derivative to dQ. By virtug of

0
Ulx, y, t
Ian (x,», 1)

y

=|V,U(x, y, 1) n,|

|x—yl|?
Ct

( lx—yP,. Ctl _(le—l)z}_ {_(|x|+12)}]
f agexp{ Ct }ds’— | x| I:Cxp{ Ct exp Ct

_1\2
sﬂexp{_ﬂﬂ_ﬂ_},
| x| - Ct

<Ct~2 exp{ — } (see (4.4))

and
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we get

p

0
U('yya I—S)ds
J;Q an_v Y

p

_1)2
<CP(t—s)"P _L_ exp{_p_(lil_l)_}dx
alxl?

C(t—ys)

=4nCP(t—s)"?/ C(t—s)/p J {/ Ct—s)/p t+1}7P+2e "dr . 4.7
(o]
Let 0<n<1 and 3<p<oo be arbitrarily fixed. Since

{(V Ct=s)p t+1}77"2<{{/ Ct—9)[p ©}"7 1,
the right-hand side of (4.7) is bounded from above by

©

C, p)(t—S)“’*"/Zf T e dr=C(n, )L (n/2)(t—5) TP,
0

where I'(+) denotes the gamma function. Hence by (4.6),

160N, < f ’ T(s)ds
(o]

p

17,
—U(-, y, t—5)dS
Lna” .y ) Y

SC(W,P)[Tﬁ]f(I—S)_I+"’2ps“’ds
0

=C(n, p)B(n/2p, 1 — [T ¥t~ 2+n/?P

where B(-, ) denotes the beta function. This completes the proof of Lemma 4.2.
Q.E.D.

5. Proof of Theorem 1.

To solve (IP), we carry out the iteration procedure (which is almost similar to
[11; Section 4]; see also Giga and Miyakawa [9]). Consider the successive sequences
{v", 6"} defined by

" IO =0v°()+ Jte““‘s"F(v", 0™ (s)ds ,

o
t
o+ 1(t)=0°(t)+f e CTIBG(v", 0™)(s)ds , n=0,1,2, .
o ,
We will divide the proof of Theorem 1 into five steps (1)—(v).
(i) For notational convenience, we set ¢=3/m; then, 1<o<3 and max{1/2,
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(0—1)/2} <d<min{l, ¢/2}. Let 0<n<1 be a fixed number so small that

n<3 min{l—a+26, 20-1 }

o—1
With use of such #, we define 8 by
(1 —=n/3)(c—28)=0—265.
Then, because of (5.1), 8 also satisfies
max{1/2, (6 —1)/2} <6 <min{l, 6/2} .

(5.1

(5.2)

(5.3)

Since 0 <6 —26 < 1, we can use Lemma 4.2 with 7 fixed above and p=3/(6—23). Then,

by virtue of (5.2), we get

IdO3je-25<CLT2It™%, >0,
with a constant C=C(o, J, ).

5.4

(i) Combining estimates (2.1), (2.2) and (4.1) (f=6, ¢) with Holder’s inequality,
one can formally get the following estimates (y is a positive parameter determined

later):

o™+ (D)3 3< C1@~ 2 ||0¥,

t
+Cllells s —a)f (t— 5)3(3 U2 g(s)l| 3/(c— 2335

V]

t .
+C| (t=9)72[0"(s) 331 V" (5) 3ds
o

t
+ C"ens/(s—a)J' (t—s)(a+3_7_3)/2 16"(s) | 3/,ds
)
IV (@) s < Ct™ 12| v |5

t
+Cllell 3/ —a)f (t"s)s_ 32\ p()l 3/(c — 23)@S
0
t .
+ Cj (1—5)" @+ 2)p7(s)| 331V ()|l 3ds
o .

t
+ Cllell 33 —a)f —5)C T30 s)|| 3/y4S ,
0
16" 1)l 3/, < CtO= 2|63

t
+C| (t—5)"CH V2| 57(5)|3,510°(5) || 3,

(V]

5.5

(5.6)
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+CJ‘ (t—s)(s—aﬂ_1)/2””"(5)” 351 () 3/ - 23)4s - 5.7
0

Note that e(x)=x/|x|>e L33~ (Q)* because of 0<3—o<2. We choose and fix y
such that

{6—-6—1}*<y<o—1. (5.8)

Then it follows from a delicate verification that by (5.3) and (5.8), we can actually
employ (2.1), (2.2) and (4.1); moreover, the integrability of each term is also ensured.
(iii) It is important to establish

(2 o(0) |33 < T, (5.9)

2|Vl <J,, (5.10)

1O2)0Y O3y < K, (5.11)

for all n=0,1,2, --- and 0<t<oo with some positive constants J,, J, and K, which

are independent of ¢. Indeed, it follows from (5.4)—(5.7) that (5.9)(5.11) hold true
with J,, J, and K, determined by

Jor1=Jo+CB(1/2,8/2)J,J,

+CB((c+8—y—1)/2, (y—0+2)/2)K,, (5.12)
Joi1=Jo+CB(1-8)/2, 8/2)J,J,

+CB((c—y—1)/2, (y—06+2)/2)K, , (5.13)
K, 1=Ko+CB(1-6)/2, 8—0c+y+1)/2)J.K,

+ C[T*¥1B(6—o+7y+1)/2, 1 —=38)/2)J,, (5.19)

with
Jo=Cllo§ll3+CLT¥1B((36—-1)/2,1-9),
Jo=Cllv§lls+CLT1BG—1/2,1-9),
Ko=C |68, -
By (5.12)«(5.14), there exists a positive constant g, such that if
E(vg, 05, T3) : = |01l 3+ 1105 |, + [T] <&
then
max{J,, J,, K,} < CE(v%, 0%, T*),

with a constant C independent of n. We next consider the differences of the successive
sequences; then one can inductively deduce
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f1=8)2) 1 N—v(t ,

lo™* () ()"3’3}3@“@3, £ THL (5.15)
12| Vot () — Vo' (D)l
12"+ (1) — 9"(D)||3,, < CE (v}, 0%, T}IM,, (5.16)

for all » and 0 << oo, where L, and M, are determined by

[Ln+1:| C[E(vga 3’ T‘t) 1 :I[Ln]
M,,, E(v%, 08, T E(v3, 035 THIM, ]’

with Lo=M,=1. Thus, if E(v§, 03, T¥)<e, for some ¢, €(0, ¢,], then there exists
{v, 8} which solves (IP) for 0 <7< 0.

(iv) In order to see (3.2) and (3.3), we go back to equations in (IP) and evaluate
them by various || - || ,-norms with use of (2.1), (4.1), (4.2), (5.4) and

12 (1) 15,5
12| Vu(t) |5 <CE(v§, 0%, TY) . (5.17)
£e=218(8)|l5,,

Indeed, for each 3 < p< oo, we obtain

({1 -3/p)/2 lo()ll , < Clivg |l

t
+ C 132 llell 3/(3 —a)j ( —S)(ZS_ 3+3/p)2 o)l 3/(0 — 28)ds
0

t
L Ci-amn f (t—5) @+ 130002 u(5) |5 V() | s
(V]

t

C+C13PI2| g 3,(3_,)j (t—s) 717 33PN B(s5) | 3,ds
0

<C|lvdll;+ CLT*1B((25—1+3/p)/2,1-0)
+ CE(v%, 0%, T*)*B((1—5+3/p)/2, 8/2)
+ CE(v§, 68, T5)B((o —y—1+3/p)/2, (v —0 +2)/2)
< CE(v}, 0%, T%). (5.18)

Next, for each ¢ given by (3.2) and (3.3), we can choose p;, p; (=3;i=0,1) such
that

c—y—1<3/p;<3/q—y+1—i, 28—1<3/p;<3/g+26—ac+1 —i.
Then by (4.1) and (4.2) together with (5.18),
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(eri=32 Vi),  i=0,1,

t
<Cll63ll»+ Ct“’“"s"”’zf (t—s)(T7 71330012 o) |, 1 B(s) 3,6l
o

t
(o +i—3/q)/2 26-0—1-i—3/p
+Crlorima f (1= 5)(@3 === E= 3032 () [ $(5) 30 - 25
0

<C||0§l,+ CE(®S, 0§, T%)B((—y+1—i—3/p;+3/9)/2, (v —o+1+3/p)/2)
+C[TX1E®v8, 05, TX)B(25— 0+ 1—i—3/p;+3/q)/2, (1 —25+3/p))/2)
<CE@§, 0%, T . (5.19)

Corollary 1 immediately follows from (5.19) and Lemma 4.2.

To see the continuity at =0 of the functions in (3.2) and (3.3), we have only to
note that the left hand sides of (5.9)—(5.11) with n=0 tend to zero as t—0 and,
therefore, the left hand sides of (5.17) have the same property (cf. [11; Section 4.3]).

(v) The uniqueness part is derived by the following proposition which presents

the continuous dependence of {v¥, 8%} —{v, 8} from L3(Q)x L™(Q) to ([0, c0);
L3(Q) x L™(£2)):

PROPOSITION 5.1.  Suppose that {v}§ ;, 0% ;} (i=1, 2) and T¥(¢) satisfy (H1) and (H2).
Then there exists a constant e€(0, e,] such that if E(v§ ;, 08 ;, T.¥)<e, global solutions

{v;, 5,-}, which correspond to {v§ ;, 0% ;} and are of class (3.2)(3.3), satisfy the following
inequality:

lv1() —v,(0) |l s+ 18,()— 82Dl m < C{llv}, 1 — 08 213+ 108, 1 — 0. 21l m} >
with a constant C independent of t.

PROOF. Set

W(®); =max{ sup s~ 2|19, () — 02()l /3 »

<s<t

sup s'/? IVo,(s)—Vv,(9)ll 3,

O0<s<t

sup sle—/2 "61(3) — 52(5) " 3/y} .

0<s<t

Then, by almost the same calculation as in showing (5.15) and (5.1l6) (see also [11;
Section 4.4]), we get

Y@< C{llv§,1 —v§ 2l + 1108, — 05, 21Im}
+C{E(v3,1,08,1, T3)+ E(v§ 2, 08,2, TH}() .

Therefore, if E(v§ ;, 0% ;, TX)<e for some £€(0,¢,], then
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YO <C{||v§, 1 —v§ 213+ 68,108 21|} - :
We go back to equations in (IP) to complete the proof. Q.E.D.

6. Proof of Theorem 2.

We start with the following proposition:

PROPOSITION 6.1. Suppose that (H1) and (H2) hold. Let p satisfy 1<p<
min{2, o, 3—26}, where § is defined by (5.2) and 6 =3/m. Assume that

vk e L3(Q) N L3P(Q)?
0% e L™(Q) A L3¥®+o=1(Q) .

Then there exists a constant g, €(0, €] such that if E(v§, 0%, T*)<e,, the solution {v, 5}
in Theorem 1 satisfies

{tP= D12y fo- 1)/26} € ([0, ) ; L3(Q) x L™(R)) . (6.2)
PROOF. Set

6.1)

V(1):= sup s~ V2|p(s)|,,
O0<s<t

O,(t):= sup sCTICD2|6(s)| 5, ,
O0<s<t

where w (<p+o0—1) is a positive parameter. Then, by virtue of (6.1), it follows from
(2.1), (5.4) and (5.17) that

12~V o(r)|| 5

<Clvl 3t Cie~ V2 llell 3)(2 +p—a)J::(t - s)(25-p— D2 o) 3= zs)ds

+ Ct"’"1”2ft(t—s)_”zllv(s)"sNVv(S)llst

0
+Cre~ V12 llell 3/(3—a)f'(t—s)(d_w— 2z “6(3) I 3/wds
o
<C|v§lls,+CL[TX)e~ 1’/2J.‘(t——s)‘23"" 2534
o
+ CE(v¥, 6%, THV(H)1*~ 1)/2‘['(t —s5) " 25~ pl2ds
o

t .
+CO (D1~ 1)/2f (t—s)e— @~ Di2go—p-a+)2gg
0
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Note that e(x)=x/| x|*> € L3?*?~9(Q)3 because of 0 <2+ p—oc<2. If w satisfies
{p+0-3}"<w<o,
thén
V()< C|lvglls, + CLT*¥1B((26—p+1)/2,1-6)
+CE(v8, 65, Tw)B(1/2, 1 —p/2)V(2)
+CB(0—w)2, (0—p—0c+3)/2)0,0), t>0. (6.3)

Similarly, we get the following estimate by using (4.1), (5.4) and (5.19) (A is a
positive parameter determined later):

1+ o= o= DI21B(8) 3,

t
<Cl083/0+0-1)F Ct“’”"“"”’zj (t—=5) @422 o(s)[| 31 0() | 3,2
(V]

t
+ Cloto—o- 1)/2J (t—s)(w-a+23—2)/2 Il o(s) |31l @() Il 3/ 23y
0
. t
<C0§ll3/p+0-1)+ CE@S, 0%, THV()1*o~ 2 1)/2J (t—s) @A D2gA=p=ati2gg
0

t
+C[T;’,‘] V(t)t(p»ra—w—l)/zj (t_s)(w—a+23—2)/2s(1—p—23)/2ds )
0

For each w satisfying
c—20<w<p+o—1,
we take A such that
p+o—3<i<w and A<o. (6.4)
Then we obtain
O ()< C6813/0+0-1)+ CE(v8, 08, T)B(w—1)/2, (A—p~—0+3)/2)V(2)
+ C[T¥1B(w—0+26)/2, 3—p—28)/2)V (1), t>0. 6.5)

We are now ready to show the uniform boundedness of V(¢) and @,(7). We first
fix w such that 6 —23 <w <o and choose A satisfying (6.4). Then by (6.3) and (6.5),
there exists a constant ¢, € (0, €] such that, if E(v§, 0, T*)<e,, then

V)< C{liv§ll3, + 1081 3/p+0~1y+[Th1} t>0. (6.6)

To accomplish the proof of (6.2), we next take w=g¢ in (6.5) and choose A satisfying
p+0o—3<A<ao; then (6.6) yields
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@a(t)—g C{”v(’.): "3/p + "93 "3/(p+a— 1) + [Tw*]} ’ t>0 ’
which completes the proof of Proposition 6.1. Q.E.D.

PROOF OF THEOREM 2. Proposition 6.1 enables us to show the decay property in
L3(2) x L™(R) of solutions along the same idea as in Kato [16; Noted added in p. 480]
(see also Kozono [18]); we give the proof for completeness. For {v}, 6%} € L3(2) x L™(Q)
satisfying E(v¥, 0%, T*)<e,, let {v, 8} be the corresponding solution in Theorem 1.
For any (>0, we take {v}§, 0%, such that it satisfies (6.1) and |v} ¢— 08l +
108..—68ll.. <{. By taking { small enough, E(v§ ., 6§ ., T.¥) <e, holds; so, Theorem 1
and Proposition 6.1 assert that for {v} ., 6%}, there exists a global solution {v, ,}
which enjoys (6.2). By virtue of Proposition 5.1, we get

19113+ 18(D)llm < CL+ oD 13+ 18D 1 m
<CL+Ctt~o2

Hence
limsup{||o(2)ll5 + 16} <CC,

which implies (3.4) and (3.5). Q.E.D.

PROOF OF COROLLARIES 2 AND 3. For each 3<p< oo, we combine (3.4) with
(5.18) to get

(1P (o), < () 327 {022~ Dn(s)] 5,5} 7027
<C,E(v, 08, TX)' ~3*7|o(0)|3/**-0  as t—-o0,
which implies (3.6). Similarly, for each ¢ given by (3.2), we fix g, € (g, m,) arbitrarily
(we may take g, = oo if 3/2 <m <3). With use of Be(0, 1) satisfying g=pm+ (1 — B)q,.,
it follows from (3.5) and (5.19) that
30 /m—1/q)/2 "5(0 "q <| a(t)Ilﬂ"'/“{t:“”"" 1/20)/2) §(t) "qo}(l —B)aolq
<C,E(v}, 05, T3) ~P1|f(1)|4m9—-0  as t—oo,

which implies (3.7). Corollary 3 is an immediate consequence of Corollary 2 and
Lemma 4.2. Q.E.D.
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