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\S 1. Introduction.

Let Conf$(M, g)$ and Isom$(M, g)$ be the conformal transformation group and the
isometry group of a Riemannian n-manifold $(M, g)$ , respectively. It is obvious that
Isom$(M, g)\subset Conf(M, g)$ and if $g^{\prime}$ is conformal to $g$ then Conf$(M, g^{\prime})=Conf(M, g)$ . In
late $1950’ s$ , conformal transformation groups of Einstein manifolds and Riemannian
manifolds with parallel Ricci tensor were studied by Yano, Nagano, and Tanaka, and
their results are stated as follows:

(1) If $Isom_{0}(M, g)\neq Conf_{0}(M, g)$ holds for a compact connected Einstein n-
manifold $(M, g),$ $n\geqq 3$ , then $(M, g)$ is isometric to $a$ Euclidean n-sphere, where
$Conf_{0}(M, g)$ (resp. $Isom_{0}(M,$ $g)$) denotes the connected component of the identity of
Conf$(M, g)$ (resp. Isom$(M,$ $g)$) (Yano-Nagano [12]).

(2) If Isom$(M, g)\neq Conf(M, g)$ holds for a compact connected Riemannian n-
manifold $(M, g),$ $n\geqq 3$ , with parallel Ricci tensor, then $(M, g)$ is isometric to $a$ Euclidean
n-sphere (Tanaka [10], Nagano [7]).

(1) is also true if we replace the condition $Conf_{0}(M, g)\neq Isom_{0}(M, g)$ by
Conf$(M, g)\neq Isom(M, g)$ (see (2) or [9] Proposition 6.2). On the other hand, Yamabe’s
theorem ([11]), which has been called the Yamabe problem later, says that every
compact connected Riemannian n-manifold $(n\geqq 3)$ is conformal to a Riemannian
manifold with constant scalar curvature. Then it is natural to ask whether the same
conclusion as (1) and (2) holds for Riemannian manifolds satisfying Conf$(M, g)\neq$

$Isom(M, g)$ with constant scalar curvature. There are many results concerning this
question and the above results (see [3], [8], [9] and their references). Ejiri, however
in [3], gave a negative answer to this question. He proved that certain warped prod-
ucts of $S^{1}$ and Riemannian manifolds with positive constant scalar curvature satisfy
Conf$(M, g)\neq Isom(M, g)$ and have constant scalar curvature. Note that the above
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warped products are rewritten in the form of what are obtained by deforming product
metrics conformally with positive functions depending only on $S^{1}$ . Then this result is
explained as follows;

We can deform product metrics conformally with non-constant functions so that
resulting metrics have constant scalar curvature. Then the natural isometric $S^{1}$ -action
with respect to product metrics tums out to be non-isometric but conformal with
respect to resulting metrics.

Combined with an existence theorem for a solution of a certain nonlinear partial
differential equation, this observation gives the following natural extension of Ejiri’s
result. As a consequence of our result, we get examples of compact simply connected
Riemannian manifolds satisfying Conf$(M, g)\neq Isom(M, g)$ with constant scalar
curvature (see Remark 4).

THEOREM. Let $(M_{1}, g_{1})$ be a compact connected homogeneous Riemannian
$m_{1}$ -manifold and $(M_{2}, g_{2})$ a Riemannian $m_{2}$-manifold with positive constant scalar
curvature $(m_{1}\geqq 1, m_{2}\geqq 2)$ . Then on the product $M=M_{1}\times M_{2}$ there exists a Riemannian
metric $g$ with constant scalar curvature such that Conf$(M, g)\neq Isom(M, g)$ .

REMARK 1. It should be noticed that neither the compactness nor the con-
nectedness is assumed for $M_{2}$ in the theorem.

REMARK 2. The metric $g$ in the theorem is conformal to the product metric
$g_{1}+\epsilon^{2}g_{2}$ for some positive real number $\epsilon$ . In case $m_{1}=1,$ $M_{1}$ must be $S^{1}$ and the
theorem coinsides with Ejiri’s.

REMARK 3. If $(M_{2}, g_{2})$ is a compact connected homogeneous Riemannian
manifold with positive scalar curvature then the scalar curvature of $g_{2}$ is constant by
homogeneity. The theorem in this case has been shown by O. Kobayashi in [4].

REMARK 4. $M$ may be simply connected. In fact, for example we can take
$M_{1}=M_{2}=S^{m}(m\geqq 2)$ .

REMARK 5. In contrast to the theorem, Obata ([9]) and Lelong-Ferrand
([5], [6]) proved the following theorem.

(3) Let $(M, g)$ be a compact connected Riemannian n-manifold $(n\geqq 3)$ . If
Isom$(M, g)\neq Conf(M, g)$ holds for any Riemannian metric $g^{\prime}$ which is conformal to $g$

then $(M, g)$ is conformally equivalent to $a$ Euclidean n-sphere ([5], [6], [9]). Furthermore
if the scalar curvature of $g$ is constant then $(M, g)$ is isometric to $a$ Euclidean
n-sphere ([9]).

Thus there exists a Riemannian metric $g^{\prime}$ , which is conformal to $g$ in the theorem,
such that Conf$(M, g)=Conf(M, g^{\prime})=Isom(M, g^{\prime})$ .
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2. Preliminary.

The essential difference between the Ejiri’s result and ours comes from that
between an ODE and a PDE. To prove the theorem we need an existence theorem for
a solution of a certain nonlinear PDE.

Let $(N, h)$ be a compact connected Riemannian n-manifold. $C^{\infty}(N)$ denotes the
space of smooth functions on $N$. The first non-zero eigenvalue of the Laplacian
$\Delta_{h}=-\nabla^{i}\nabla_{i}$ ofh is denoted by $\lambda_{1}(\Delta_{h}),$ $andthevolumeelementofhisdenotedbydV_{h}$ .

LEMMA (cf. [11], [1] 16.37). For arbitrary real numbers $k>0,$ $A$ and $q>2$ with
$q<2n/(n-2)$ (if $n\geqq 3$) or $ q<\infty$ (if $n=1,2$), there exists a positive $C^{\infty}$ solution $u$ of (2.1)

with $\int_{N}|u|^{q}dV_{h}=1$ :

(2.1) $(q-2)k\Delta_{h}u+Au=\mu u^{q-1}$

where

$(q-2)k\int_{N}|df|^{2}dV_{h}+A\int_{N}f^{2}dV_{\hslash}$

(2.2)
$\mu=infI(f)=\inf\overline{(\int_{N}|f|^{q}dV_{h})^{2/q}}$

and the infimum is taken over all positive $C^{\infty}$ functions. Moreover if $\lambda_{1}(\Delta_{h})<A/k$ then
the solution $u$ of (2.1) is a non-constant function.

In case $n\geqq 3$ , the first part of the lemma was proved by Yamabe ([11]). For the
case $n=1,2$ , it can be shown similarly (or more easily) by using a variational method
and a maximum principle. If we assume $u=constant$ , a computation of the second
variation of $I$ at $u$ gives $\lambda_{1}(\Delta_{h})\geqq A/k$ . Thus we obtain the second part of the lemma.

3. Proof of Theorem.

Define a Riemannian metric $g_{\epsilon}$ on $M_{1}\times M_{2}$ by $g_{\epsilon}=g_{1}+\epsilon^{2}g_{2}$ for $\epsilon>0$ . Then
the scalar curvature $R_{g_{\epsilon}}$ of $g_{\epsilon}$ is constant and equal to $R_{g_{1}}+\epsilon^{-2}R_{g_{2}}$ . The scalar
curvature $R_{g}$ of

$g=v^{4/\langle n-2)}g_{\epsilon}$ , $v\in C^{\infty}(M_{1}\times M_{2})$ , $v>0$

is given by the following formula (see for example [1] 1. 161).

(3.1) 4 $\frac{n-1}{n-2}\Delta_{g_{\epsilon}}v+R_{g_{\epsilon}}v=R_{g}v^{\langle n+2)/\langle n-2)}$ ,

where $n=m_{1}+m_{2}$ .
First we show that for suitable $\epsilon>0$ there exists a metric $g=u^{4/\langle n-2)}g_{\epsilon}$ with
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constant scalar curvature where $u>0$ is a non-constant $C^{\infty}$ function and depends onl
on $M_{1}$ . The basic idea of the proof of this claim is the same as what Derdzinski h2
used in [2] to find a metric with harmonic curvature and non-parallel Ricci tense
(see also [1] 16.35).

Since $g_{\epsilon}$ is a product metric and $R_{g_{t}}$ is constant, for any $v\in C^{\infty}(M_{1})\subset C^{\infty}(M_{1}\times M$

(i.e., $v$ depends only on $M_{1}$ ),

4 $\frac{n-1}{n-2}\Delta_{g_{l}}v+R_{g_{e}}v=4\frac{n-1}{n-2}\Delta_{g_{1}}v+R_{g_{\epsilon}}v$ ,

and we can consider that the right hand side is defined on $M_{1}$ . Then (3.1) is reduce
to the following formula defined on $M_{1}$ .

(3.2) 4 $\frac{n-1}{n-2}\Delta_{g_{1}}v+R_{g_{C}}v=R_{g}v^{(n+2)/(n-2)}$ .

Thus to show the claim above we have to prove that there exists a non-constant positii
$C^{\infty}$ solution $u$ of the equation (3.2) with $R_{g}=constant$ . To see this, take sufficient
small $\epsilon>0$ so that $\lambda_{1}(\Delta_{g_{1}})<R_{g_{\epsilon}}/(n-1)$ , and put $A=R_{g_{\iota}},$ $k=n-1$ and $q=2n/(n-2)l$

(2.1) (note that $2n/(n-2)<2m_{1}/(m_{1}-2)$ , or $\infty$ ). Then we can apply the lemma to tl
equation (3.2) with $ R_{g}\equiv\mu$ , and the claim follows.

Now, assume that Conf$(M_{1}\times M_{2}, g)=Isom(M_{1}\times M_{2}, g)$ . For any $\varphi\in Isom(M_{1},$ $gl$

we can define $\tilde{\varphi}\in Isom(M_{1}xM_{2}, g_{\epsilon})$ by $\tilde{\varphi}(p, x)=(\varphi(p), x)$ where $p\in M_{1},$ $x\in M$

Hence Isom$(M_{1}\times M_{2}, g)=Conf(M_{1}\times M_{2}, g)=Conf(M_{1}\times M_{2}, g_{\epsilon})\supset Isom(M_{1},$ $g_{1}$

Therefore the action of Isom$(M_{1}, g_{1})$ leaves $g$ invariant. Let us denote $g$ at $(p, x)$

$M_{1}\times M_{2}$ by $g(p, x)$ and put $f-=u^{4/\langle n-2)}$ If $\varphi(p)=q$ for $\varphi\in Isom(M_{1}, g_{1})$ and $p,$ $q\in k$

then
$(\tilde{\varphi}^{*}g)(p, x)=\tilde{\varphi}^{*}\{f(q)g_{\epsilon}(q, x)\}=f(q)\{\varphi^{*}(g_{1}(q))+\epsilon^{2}g_{2}(x)\}$

$=f(q)\{g_{1}(p)+\epsilon^{2}g_{2}(x)\}=f(q)g_{\epsilon}(p, x)$

$=g(p, x)=f(p)g_{\epsilon}(p, x)$

holds for any $x\in M_{2}$ , where $\tilde{\varphi}^{*}g$ (resp. $\varphi^{*}g_{1}$ ) is the pull-back of $g$ (resp. $g_{1}$ ) by $\tilde{\varphi}(res$

$\varphi)$ . Thus $f(p)=f(q)$ . Since Isom$(M_{1}, g_{1})$ acts transitively pn $M_{1}$ and $f$depends only $($

$M_{1},$ $f$ must be a ponstant function. That is, $u$ is a constant function, a contradictio
Thus Conf$(M_{1}\times M_{2}, g)\neq Isom(M_{1}\times M_{2}, g)$ . This completes the proof.

REMARK. Let $Y$ be a gradient vector field of $u$ on $M_{1}$ with respect to $g_{1}$ and tal
$p\in M_{1}$ such that $Y\neq 0$ at $p$ . Since Isom$(M_{1}, g_{1})$ acts transitively on $M_{1}$ , there exists
Killing vector field $X$ of $(M_{1}, g_{1})$ such that $X=Y$ at $p$ . This vector field $X$ can be lifte
to a Killing vector field of $(M_{1}\times M_{2}, g_{\epsilon})$ and it is easy to see that $X$ is not a Killir
vector field of $(M_{1}\times M_{2}, g)$ . That is, $(M_{1}\times M_{2}, g)$ admits a non-isometric conform
vector field.
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