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Abstract. We define and construct holomorphic C-existence families and holomorphic integrated
semigroups and discuss their relationships with holomorphic C-semigroups and each other. We prove simple
Hille-Yosida type theorems, involving the rate of growth of [(w—A)~!| or |(w—A4)"1C |l in a sector, for an
operator to generate any of these families of operators.

I. Introduction.

Some generalizations of strongly continuous semigroups, integrated semigroups
(Definition 2.1), C-semigroups (Definition 2.2) and, most recently, C-existence families
(Definition 2.3) have recently appeared. They have a relationship to the abstract Cauchy
problem

u'(t, x)= A(u(t, x)) =0, u0 x)=x, (1.1

that generalizes the well-known correspondence between A4 being a generator of a
strongly continuous semigroup and (1.1) having a unique solution for all x in the domain
of A (see Proposition 2.4).

The most comprehensive of these concepts is C-existence families. In this paper,
we define holomorphic C-existence families (Definition 3.5) so as to generalize
holomorphic strongly continuous semigroups, a class of semigroups that has found
wide applicability. We generalize the Hille-Yosida type characterizations of densely
defined generators of holomorphic strongly continuous semigroups (section IV). We
give similar simple sufficient conditions for operators, that may not be densely defined,
to have a holomorphic C-existence family (section V). Unlike generators of strongly
continuous semigroups, generators of C-semigroups or integrated semigroups may not
be densely defined.

As corollaries, we obtain Hille-Yosida type conditions for operators to generate
holomorphic C-semigroups or integrated semigroups (sections IV and V).

In all proofs, we explicitly construct the desired family of operators.
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Our main results in sections IV and V may be summarized as follows. For an
operator, A, to generate an exponentially bounded holomorphic k-times integrated
semigroup, it is sufficient that the spectrum be contained in a sector of angle less than
/2, with [|[(w— A) ™| O(w*~ ! ~®) outside that sector, for some positive ¢ (Theorem 4.6).
If A is densely defined, it is necessary and sufficient that [(w—A4)~1| be oW1
(Theorem 5.4). In order that there exist an exponentially bounded holomorphic
C-existence family for A4, it is sufficient that |A(w—A)"'C| be O(1/w"), for some
positive ¢ (Theorems 4.1 and 4.2). If A4 is densely defined and CA< AC (this is auto-
matically true when A4 generates a C-semigroup), it is necessary and sufficient that
|(4(w—A)~1C| be bounded (Theorems 5.1 and 5.2).

Section II contains preliminary material about C-existence families, C-semigroups,
integrated semigroups and (1.1). In section III, we define holomorphic versions of
these families of operators, and describe the relationships between them. Section VI
contains stability results for holomorphic C-semigroups. We give examples in section VII.

All operators are linear, on a Banach space, X. C will always be a bounded operator.
We will write D(A4) for the domain of the operator 4, p(4) for the resolvent set of 4.
We will write B(X) for the set of all bounded operators from X into itself, Im(C) for
the image of C. '

II. Preliminaries.

N-times integrated semigroups were introduced, for N=1, in [1], and extended to
arbitrary N in [22] (see also [2], [3], [9], [16], [18], [23] and [30]). C-semigroups
were introduced, independently, in [4] and [7]; the generality of this paper is in [8]
(see also [5], [9], [10], [17], [18], [19], [24], [28] and [29]). C-existence families were
introduced in [11].

DEerFINITION 2.1. The strongly continuous family of bounded operators {S(t)}, 0
is an exponentially bounded n-times integrated semigroup, generated by A, if there exists
w>0 such that (w, )<= p(4), {S()} is O(e**), S(0)=0, and

oo}

(r—A)_1x=r"f e "S(t)xdt , Vr>w, xeX.
0

We will say 0-times integrated semigroup to mean a strongly continuous semigroup.

DEFINITION 2.2. Suppose C is injective. The strongly continuous family of
bounded operators {WAt)},.0 is a C-semigroup if W(0)=C, and W()W(s)=CW(t+5s),
for all s, t>0. The operator A generates {W(t)},- o if

Ax=C"? (ling [% (W (t)x— Cx):D s

with D(A4)={x | limit exists and is in Im(C)}.
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DEFINITION 2.3. Suppose A4 is closed. The strongly continuous family of bounded
operators { WA(t)},- o is an exponentially bounded mild C-existence family for A if there
exists w> 0 such that | W(¢t)|| is O(e™"), with

(1) [oW(s)xdse D(A), Vt>0, xe X and the map ¢ A([} W(s)xds) continuous.

2 r—A( e "W(t)xdt)=Cx, Vr>w, xeX.

Note that (1), and the fact that 4 is closed, implies that jg" e "W(t)xdt=
rfge "(J W(s)xds)dte D(A), Vxe X, r>w.

The effect of these families of operators on (1.1) is in the next proposition. By a
solution of (1.1) we mean ue C([0, o0), [D(A)]NC ([0, ), X), satisfying (1.1). By a
mild solution we mean ue C([0, ), X) such that :)u(s, x)ds e D(A), Yt=>0, satisfying
u(t, x)=A(| yu(s, x)ds)+ x, ¥t > 0.

PROPOSITION 2.4. (see [8], [22], and [11])

(@) If A generates an exponentially bounded n-times integrated semigroup, then
(1.1) has a unique solution, Vxe D(A"*'). There exists M, w>0 such that |u(t, x)| <
Me™'yr_ |l 4*x|, Vt=0, xe D(4"*1). ‘

(b) If an extension of A generates a C-semigroup, W(t), that leaves D(A) invariant,
then (1.1) has a unique solution, Vxe C(D(A)), with |u(t, x)|| < |W®IIC™ ‘x|, V>0,
x € C(D(A)).

(c) If there exists an exponentially bounded mild C-existence family for A, then
(1.1) has a unique exponentially bounded mild solution, ¥x e C(D(A)). There exists M,
w>0 such that ||u(t, Cx)| < Me*'|| x|, Vxe X.

The relationship between integrated semigroups and C-semigroups is the following
(see also [18]).

PROPOSITION 2.5. (Theorem 2.5 in [9]) The following are equivalent.

(a) A generates an exponentially bounded n-times integrated semigroup.

(b) There exists w>0 such that (w, 0)< p(A), and A generates an exponentially
bounded (A —r) ™ "-semigroup, Vr>w.

PrOPOSITION 2.6. (from [8]) If A generates a C-semigroup, then

(@) A is closed.

(b) VxeD(A), W(t)x is a differentiable function of t, W(t)xe D(A), with
(d/dt)yW(t)x = AW(t)x= W(t)Ax, YVt >0.

(©) VxeX, >0, [ W(s)xdse D(A), with A([,W(s)xds)= W(t)x—Cx.

In general, the generator of an exponentially bounded C-semigroup may have
empty resolvent set. But it will have nontrivial C-resolvent set.

DEerFINITION 2.7. We will say that re pc(A4), the C-resolvent set of A, if (r— A) is
injective and Im(C) < Im(r — 4).
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ProPOSITION 2.8. (from [8]) If A generates a O(e*) C-semigroup, then
{r | Re(r)>w} = p(A).

PROPOSITION 2.9. (from[24]) Suppose Cisinjective,we R, {W(t)}, o is astrongly
continuous O(e™) family of bounded operators and (w, )< pc(A). Then the following are
equivalent.

(@) Vs>w, (s—A) 1C*=C(s—A)"'C and

[¢ o]
(s—A) Cx= J e  “W(t)xdt ,
o
VxeX.
(b) WAp) is a C-semigroup generated by an extension of A.

The next corollary, giving the relationship between C-semigroups and mild C-
existence families, follows from Proposition 2.9 and 2.6 (c).

COROLLARY 2.10. Suppose A is closed, C is injective, weR, (w, )< pc(A),
(s—A)"1C?*=C(s—A)'C, Vs>w, {W(t)};»0S=B(X) is O(e™) and [ W(s)xdse D(A),
Vxe X. Then the following are equivalent.

(@) WAt) is a C-semigroup generated by an extension of A.

(b) WAt) is a mild C-existence family for A.

A partial converse of Proposition 2.6 (b) is the following.

PROPOSITION 2.11. (Theorem 2.6 from [8]) Suppose {W(t)},5 ¢ is a strongly con-
tinuous family of bounded operators and A is an operator whose domain is invariant
under W(t), such that Vxe D(A), t=>0, W(t)Ax= AW(t)x, and

W(t)x=Cx+ Jﬂ W(s)Axds .
o

Then WAt) is a C-semigroup, generated by an extension of A, if either
(a) D(A) is dense, or
(b) p(A) is nonempty.

The following is essentially Theorem 3.6, from [11].

PROPOSITION 2.12. Suppose A is closed, and there exists w>0 such that (w, ©0)<
pc(A) and {W(t)},. o is an exponentially bounded strongly continuous family of bounded
operators. Then the following are equivalent.

(@) WAt) is a mild C-existence family for A.

(b) [\ W(s)xdse D(A), with A(J W(s)xds)= W(t)x—Cx, VxeX.

PROPOSITION 2.13. (Proposition 2.9 from [10]) Suppose an extension of A gener-
ates a C-semigroup and p(A) is nonempty. Then A generates the C-semigroup.
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III. Holomorphic exponentially bounded C-existence families, C-semigroups and
integrated semigroups.

In this section, we present holomorphic versions of our families of operators, and
the relationships between them that will be needed to unify our results.

DEFINITION 3.1. Sg={re’®|r>0,|¢|<0}, Vo={re’*|r>0,|¢|<6}.

The following, when the domain of its generator is dense, may be shown ([29],
Theorem 2) to be equivalent to ‘“holomorphic semigroups of class (H,)’ ([26]); see also

[25].

DEeFINITION 3.2. Suppose 7#/2>©>0. Then an n-times integrated semigroup
{S(®)};»0 is a holomorphic n-times integrated semigroup of angle © if it extends to a
family of bounded operators {S(z)},.s, satisfying

(1) The map z+ S(2), from Sy into B(X), is holomorphic.

(2) {(d/dz2)"S(2)},cs, is @ semigroup.

(3) For all y <O, {S(2)} is strongly continuous on S,,.

The following first appeared in [4].

DEFINITION 3.3. Suppose n/2>© >0. The C-semigroup {W(t)},»0 is a holomor-
phic C-semigroup of angle @ if it extends to a family of bounded operators { W(2)},.s,
satisfying .

(1) The map z+— W(z), from Sy into B(X), is holomorphic.

(2) WE)Ww)=CW(z+w), for all z, we S,.

(3) For all y <@, {W(z)} is strongly continuous on S,.

DEerFINITION 3.4. The family of operators in Definition 3.2 (3.3) is exponentially
bounded if, for all Y < @, there exists finite M,, w,, such that || S@2)||(|| W(2)l]) < M,e*+?!,
for all ze S,.

When w,, =0, for all <@, then the family of operators is bounded. Note that M,
may get arbitrarily large as y gets close to ©.

DEefFINITION 3.5. Suppose 7n/2>®>0. The exponentially bounded mild C-
existence family {W(t)},., is an exponentially bounded holomorphic C-existence family
of angle @ for A if it extends to a family of bounded operators { W(2)},.s, satisfying

(1) The map z+— W(z), from Sy into B(X), is holomorphic.

(2) Whenever | ¢ | <O, {W(te'?)},. , is an exponentially bounded mild C-existence
family for €'®4.

(3) For all y <@, {W(z)} is strongly continuous on S,,.

If || W(z)|| is bounded on S_,‘,, for all <O, then {W(2)},.5s, is @ bounded holomorphic
mild C-existence family.

LEMMA 3.6. Suppose {W(2)},.s, is an exponentially bounded holomorphic C-
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semigroup of angle © generated by A and xe X. Then W(z)x € D(4%), for k=0,1,2, - - -,
2€ Sy, with AAW(z)x =(d/dz)*W(2)x.

PrOOF. We will show this by induction. It is clearly true when k=0. Suppose the
assertions of the theorem are true, for a fixed k. Then

1 . X 1 d \* d \* :
— (W A*W(2)x)— C(A*W(2)x))=C [——- ((—) Wit +z)x— (—) W(z)x)] ,
t t dz dz

which converges to C(d/dz)** ! W(z)x, as t—0. Thus, A*W(z)x € D(A), with A(4*W(z)x)=
(d/dz)** ! W(z)x, completing the induction. W

PROPOSITION 3.7. Suppose n/2>0>0, and |¢|<O.

(a) If A generates an exponentially bounded holomorphic n-times integrated semi-
group of angle ©, {S(2)}.cs,> then e'® A generates an exponentially bounded n-times inte-
grated semigroup {e”"*S(te'®)},. 0.

(b) If A generates an exponentially bounded holomorphic C-semigroup of angle ©,
{W(2)},esq> then an extension of €'®A generates an exponentially bounded C-semigroup

{ W(tei¢)}t2 o-
ProOF. (a) There exists finite M, w such that ||S(z)|| < Me*!?), for all ze S,. It
is well known (see [22]) that {z | Re(z) >w} = p(4), with

[ o]

(z—A) " x=z" f e~ #S(t)xdt ,
0

when xe X, Re(z)>w. Thus, for r>w, (r—e'?4)~! exists, with

(r—e®A) " 'x=e (e *—A)"'x
=e ¥(re )y J e~ "t S(t)xdt

]

=e"'4’(re""’)”j e *S(z)xdz ,
ei®[0, )
by a calculus of residues argument, since the integrand is holomorphic and exponen-
tially decaying in S,, '
a0
=e “¥(re” “”)"j e " S(te'?)x(e'*dr)
o

= r"f e (e~ i’“"’S(te""’)x)‘dt .
0

By Definition 2.1, this concludes the proof of (a).
(b) It is clear from Definition 3.3 that {WAte'®)},., is a C-semigroup. For
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xeD(A), since W(t)Ax=AW(t)x, for all t>0, and W(z)x is a holomorphic function
of z, it follows that W(z)Ax=AW(2)x, for all ze Sg. By Lemma 3.6, (d/dt)W(te'?)x =
W(te'?)(e'® Ax), for all xe D(A), t=>0. This implies that an extension of A generates
{(W(te'”)} 0o W

COROLLARY 3.8. Suppose n/2=0>0. If {S(2)},cso i a holomorphic n-times
integrated semigroup of angle ©, and y < ®, then

(1) If0<k<n, and xe D(A"), then (d|dz)*S(z)x converges to 0, as z converges to
0 in S,

(2) If xe D(A"), then (d/dz)"S(z)x converges to x, as z converges to 0 in 3’;.

PrOOF. By Proposition 3.3, in [2], and Proposition 3.7 above, we have, for
0<k<n, xe D(4"), ze‘:SI,

a kS = S(z)A4* S
(Z) (2)x=S(z) x+j§1 n—j)

As z—0 in S_,,, S(z)A*x converges to 0, by Definition 3.2 (3) and the fact that S(0)=0.
Thus (*) yields both (1) and (2). W

znJ

A*ix ™

THEOREM 3.9. Suppose A is closed, n/2= 0 >0, S+ x/2)S pc(A), C is injective and
commutes with (w—A)"1C, YwepdA) and {W(2)}..s, is a subset of B(X). Then the
following are equivalent.

(@) {W(2)},es, is an exponentially bounded holomorphic C-semigroup of angle ©
generated by an extension of A.

(b) {W(2)},es, is an exponentially bounded holomorphic mild C-existence family of
angle O for A.

PROOF. (a)—(b). This will follow from Corollary 2.10 and Proposition 3.7 (b),
once we verify that [ W(se'*)xdse D(A), Vxe X, |$|<O. For ¢>0, Lemma 3.6 and the
fact that A is closed guarantees that ['W(se)xdseD(A), with A(f,W(se'®)xds)=
Wi(te'*)x — W(ee'®)x. The fact that 4 is closed and s+ W(se'®)x is continuous now gives
the desired conclusion.

(b)—(a). By Definition 3.5 (2) and Proposition 2.9, {W(te'®)},~ o is a C-semigroup,
generated by an extension of ¢4, whenever | ¢ | < ©. The exponential boundedness in
sectors, as in Definition 3.4, follows from (2) of Definition 3.5 and the fact that —S_,‘,
equals the convex span of e¥[0, co)ue ™ ¥[0, o).

All that remains is to verify (2) of Definition 3.3. For all x € D(A), (d/dt)W(te'®)x =
e'* AW(te'®)x = Wite'*)e'* Ax, so that (d/dz)W(z)x = AW(z)x = W(z)Ax. Thus, for z, we
Se, x € D(A), (d/dw)W(z—w)W(w)x=0, so that CW(z+w)x= W(z)W(w)x. For arbitrary
xeX, choose repdA). Then (r—A) 'CxeD(A), thus (r—A) 'C[CW(z+w)x]=
CW(z +w)(r— A)~*Cx) = W(Z)Ww)(r— A)~ 1 Cx)=(r— A) "' C[W(z)W(w)x], which im-
plies (2) of Definition 3.3, since (r—4)~'C is injective. W
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THEOREM 3.10. Suppose there exists real r such that [r, ©0)< p(A), and n/2> 6 >0.
Then the following are equivalent.
(@) A generates an exponentially bounded holomorphzc n-times mtegrated semigroup
{S(2)};es4> Of angle 6.
(b) A generates an exponentially bounded holomorphic (A—r)~ "-sengroup,
{W(D}es,, of angle O.
() There exists a holomorphic semigroup {T(2)},.s, satisfying
(1) If zeSg and xe D(A), then T(z)x € D(A), with (d/dz)T(z)x=AT(z)x =T (z)Ax.
(@) If Yy <O and xe D(A"), then T(z)x converges to x, as z—0 in Se.
(3) Forally < O, there exists finite M, w,, such that || T(z)x|| < M,e*¥!?!|| (A —r)"x||,
for all xe D(A"), z€ Sg.
We then have (d/dz)'S(z)=T(z), W(z)=(A—r)""T(z), for z€ S,.

PrROOF. (c)—(b). Let W(0)=(A—r)~", and, for ze Sy, let W(z)=(A—r)""T(2).
Using the facts that T(z)Ax= AT(z)x, for all xe D(A) and T(z) is a semigroup, a short
calculation shows that W(z)W(w)=(4A—r)""W(z+w), for all z, weS,. Strong con-
tinuity follows from (2), and the fact that (4 —r) "xe D(4"), for all xe X. Condition
(3) implies that W{(z) is exponentially bounded. It is also clear, since (4 —r)™ " is bound-
ed, that the map z+» W/(z) is holomorphic, for ze S,.

To see that 4 generates W(z), suppose x € D(A). By (1) and the fact that (4—r)~"
is bounded, (d/dz) W(z)x = AW(z)x = W(z)Ax, for all ze Sg. Since W(t)Ax is a continuous
function of ¢, we have, for ¢ nonnegative,

Wit)x=(A—r)""x+ I W(s)Axds .
o

By Proposition 2.13, 4 generates { W(t)}.

(b)—(c). By Lemma 3.6, W(z)xe D(A"), for all xe X, ze€ Sg. Let T(z)=(A—r)"W(2).
T(z) is clearly a semigroup, since W(z) is an (4 —r) "-semigroup. By Lemma 3.6,
T(z)=(d/dz—r)"W(z), thus T(z) is holomorphic.

If xe D(A), then (d/dz)T(z)x=(d/dz){d/dz—r)*W(z)x =(d/dz —r)"(d/dz)W(z)x=(A —
ry'AW(z)x=AT(z)x = T(z)Ax, establishing (1). Conditions (2) and (3) are almost im-
mediate, as in (c)—(b).

(@a)—=(b). In [9], it is shown that A generates an exponentially bounded
(A —r)~"-semigroup, { W(t)},> o, given by W(t)x =(d/dt)"S(tXA —r) "x. For ze Sg, x€ X,
define W(z)x =(d/dz)"S(z(A —r) "x. Since S(z) is holomorphic and (4 —r)~" is bounded,
W(z)x =(A —r)~"(d/dz)"S(z)x, and is holomorphic. Since (d/dz)"S(z) is a semigroup, a
short calculation implies (2) of Definition 3.3. Corollary 3.8 (2) implies (3) of Definition
3.3.

(b)—(a). For arbitrary continuous vector-valued functions, f, on [0, c©), define

If by
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) =f(O)—r j (s)ds.
(]

In [9], it is shown that 4 generates an exponentially bounded n-times integrated
semigroup

S=1 (W—h,"i1 E,L(A—r)f—") , *)
ji=o0 j!

where p;(t)=t/, h(t)=€".

For 0<y <O, f holomorphic and exponentially bounded on §,, continuous on
-S_w’ If may be extended uniquely to an exponentially bounded holomorphic function
on §,, continuous on E,, Thus, {S(?)},-, may be extended to a holomorphic operator
valued function {S(z)},.s,, defined by (*) with z replacing z.

Conditions (1) and (3) of Definition 3.2 clearly follow from the corresponding
conditions in Definition 3.3. Also by [9], W(z) equals (d/dz)"S(zA —r) ™", which equals
(A—7)""(d/dz)"S(z), since S(z) is holomorphic and (4—r)™" is bounded. Thus
(d/dz)"S(z)=(A—r)"W(z), which is a semigroup, since W{(z) is an (4 —r)~ "-semigroup.
This establishes (2) of Definition 3.2. W

IV. Saufficient conditions.

Theorems 4.1 and 4.2 provide sufficient conditions for an operator to have an
exponentially bounded holomorphic mild C-existence family. A nonholomorphic version
of Theorem 4.2 (b) is in [11]. Sufficient conditions for an extension of 4 to generate
an exponentially bounded holomorphic C-semigroup that leaves D(A) invariant (this
is sufficient for the abstract Cauchy problem—see Proposition 2.4) follow almost
immediately from Theorem 3.9 and Theorem 4.2 (Corollaries 4.3 and 4.4). Theorem
4.6 provides sufficient conditions for an operator to generate an exponentially bounded
holomorphic n-times integrated semigroup. A nonholomorphic version of Theorem 4.6
(b) is in [3].

Corollaries 4.3 (a) and 4.4 (a), under some additional hypotheses, are in [5] and
[29].

THEOREM 4.1. Suppose A is closed and there exists n > >n/2 such that V, < p(A),
and wi(w—A)"1C, from V, into B(X), is holomorphic. Then there exists a bounded

" holomorphic mild C-existence family of angle (y —n/2) for A if either

(@) {xeD(AC) | ACx eIm(C)} is dense and | A(w— A)~'C|| is bounded in V,, or
(b) There exists ¢>0 such that | A(w—A)~*C|| is bounded and O(|w|™®) in V.

THEOREM 4.2. Suppose A is closed and there exist n>y>mn/2, k>0 such that
(k+Vy)<=pdA), and ws (w— A)~ 1C, from (k+V,) into B(X), is holomorphic. Then there
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exists an exponentially bounded holomorphic mild C-existence family of angle (Y —m/2)
for A if either _ :

(@) {xeD(AC) | ACxeIm(C)} is dense and || A(w— A)~ 1 C|| is bounded in (k + V),
or

(b) There exists >0 such that |A(w—A)~'C| is O(Iw|™®) in (k+ V).

COROLLARY 4.3. Suppose A is closed and there exists m>y>mn/2 such that
V< pAA), the map wi— (w— A)~'C is holomorphic and C is injective and commutes with
(w—A)~'C, for all weV,. Then an extension of A generates a bounded holomorphic
C-semigroup of angle (y —n/2) that leaves D(A) invariant if either

(@) D(A) is dense and | A(w— A)~'C|| is bounded in V; or

(b) There exists >0 such that |A(w— A)~'C|| is bounded and O(|w|™*) in V,,.

COROLLARY 4.4. Suppose A is closed and there exist n >y >mn/2, k>0, such that
(k+ Vy) = pclA), the map w—s (w— A)~'C is holomorphic and C is injective and commutes
with(w— A)~'C, for all we V. Then an extension of A generates an exponentially bounded
holomorphic C-semigroup of angle (Y —nt/2) that leaves D(A) invariant if either

(@) D(A) is dense and | A(w— A)~'C|| is bounded in (k+V,); or

(b) There exists €>0 such that | Aw—A)"'C| is O(|w|™®) in (k+ V).

REMARK 4.5. In the preceding results, in order that the mapwr— (w—A4)"1C,
from ¥V, into B(X), be holomorphic, it is sufficient to have 4 closed and Im(C)<
Im((w— A)?), for we V,,, with ||(w—A)~'(r— A)~'(s— A)~ ' C|| locally bounded. This may
be shown with the identity (r —A) " !C—(s—A) " 1C=(s—r)r—A)"(s—A)"'C.

THEOREM 4.6. Suppose there exist n>y>mn/2, k>0, such that (k+S,)<p(A).
Then A generates an exponentially bounded holomorphic n-times integrated semigroup
of angle (Y —n/2) if either

(@) D(A) is dense and |(w—A)~ || is O(w|""?) in (k+S_,,,); or

(b) There exists e>0 such that |[(w—A)~ | is O(w|"~17%) in (k+—5$).

PrOOF OF THEOREM 4.1. Note that, since A(w—A)"'C=w(w—A)~"1C—C, either
(b) or (a) imply that there exists finite M such that

_ M
|(w—A) ICHSI_W_I’ VweV, . ™

For r>0, let I',={se*"¥|s>r}u{re’’ |-y <0<y}, oriented counterclockwise.
Define, for z€ Sy, _ /2,
W(Z)E_f eM(w—A)~ ICd—w. .
r. 27i
By Cauchy’s theorem, this definition is independent of r>0.
Condition (1) of Definition 3.5 is clearly satisfied. We will verify that { W(z)}

zeSwy-n/2)
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is bounded in the sense of Definition 3.5.
Fix ¢ <(y —mn/2), zeS,. Letting r=1/|z|, then making the change of variables

y=|z|w, we have
zy -1 d
j em(l—A) c?
o \zl 2

1
sj oty
ry |yl
dx

<2M J exeos@+0 27 | oy Me .
X
1

2| W(2)|l =

by (*),

Since (¢ + ) > /2, this is finite, so that {W(z)},.s, _..,, is bounded, as in Definition
3.5.
To establish (3) of Definition 3.5, we need to consider

2ni(W(z)x — Cx) = [ e"”((w—A)"lC—LC)xdw,
w

Jr,

by a calculus of residues argument,

[ d
= e’“’A(w—A)“le——vi.
w

vyr,

If (b) holds, then, since
IlwfA(w—A)~'C]|| is bounded in S, **)

dominated convergence implies that, for ze S, _/,,

. d
2ni lim (W(z)x — Cx)= j Aw—A4)~ 1Cx—w .
z—0 r, w
The following calculus of residues argument shows that this integral equals zero.
For any N>r, let Oy={weT,||w|<N}uyy, where yy={Ne’’ | —y <0<y}. By (**),
limy_, o f AW —A4)" 1Cx(1/w)dw=0. Thus,

. d
J Aw—A)-1Cx P — lim Aw—A)~1cx 2L
r, w N=eo ON— YN w
. _y AW
= lim Aw—A) "' Cx—=0,
N—- o on w

by Cauchy’s theorem.
This establishes (3) of Definition 3.5, under hypothesis (b).
Suppose (a) holds and xe 2 ={xe D(AC) | ACxeIm(C)}. The same argument,
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using (*) in place of (**) and the fact that Aw—A) " 'Cx=(w—A4)"*ACx=(w—A)"'Cy,
for some y e X, shows that W(z)x converges to Cx, as z—0 in S —n=/2)- Since 9D is dense,
the fact that {#(2)},s, _., is bounded in the sense of Definition 3.5 now implies that
the same is true for all xe X.

All that remains is to verify (2) of Definition 3.5. Suppose | ¢ | < 8. By what we have
previously shown, {W(te'?)},,, is bounded and strongly continuous, when W(0)=C.
We will apply Proposition 2.12. Note that, for xe X, >0,

2mi f W(se'*)xds = J I:f e *vds
(] - T, 0

:I(w—A)‘Idew
- f (€** — 1) w— A)~'Cx
ry

aw

etw

Under hypotbhesis (b), since 4 is closed, (**) implies that [ W(se*®)xds e D(4), with

t . o . d
2niA ( J‘ W(se“”)xds) =| ("*"—1DAw—A4)"'Cx i:)
o Jr, ew
[ d
= e“’““’A(w—A)"‘Cxﬂv—— Aw—A)"1Cx id
Jr, ew J. etw
i d
=| e A—w+whw—A)1Cx
g ety

r,
since, as argued previously, the second integral is zero,
dw

b
e

d
f e“’““’Cx—i;)—+ j e (w—A)"1Cx
r w )L

r

=2mie ” Y(W(te'*)x — Cx) ,

again by calculus of residues.

By Proposition 2.12, { W(te'®)},. o is a bounded mild C-existence family for &4 A4,
as desired.

Under hypothesis (a), the same argument, for x € D(A), using (*) and the fact that
A(w—A)"'Cx=(w—A)"1CAx, implies that

(***)

%4 ( Jq W(se"")xd.§) = W(te'*)x —Cx .
0

Now let xe X be arbitrary. Choose {x,} =D(A) such that x=lim,_ ,x, Then
W(se'*)x, converges uniformly to W(se'*)x, on [0, £], thus, since A4 is closed, (***) is
valid, for all xe X, so that, again by Proposition 2.12, (2) of Definition 3.5 is verified,
concluding the proof. 1
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PROOF OF THEOREM 4.2. Let B=(A—k). A short calculation shows that

B(w—B)"C=A(w+k——A)“1C—( k - (C+AWw+k—A)"1C), *)

w+k)
for we V.

If (a) holds, then, since k>0, k/(w+ k) is bounded on V,, so that (*) implies that
|B(w—B)~!C| is bounded on V,,. By Theorem 4.1, there exists a bounded holomorphic
mild C-existence family, W(z), of angle ( —/2), for B, so that e** W(z) is an exponentially
bounded holomorphic mild C-existence family, of angle ( —n/2), for 4.

If (b) holds, then, as argued above, (*) implies that || B(w—B)~'C| is bounded and
O(|w+k|™® in V,. Since k>0, w/(w+k) is bounded on V,, thus |B(w—B)~C|| is
O(lw|™% in V,. Theorem 4.1 again yields the desired result.

PROOF OF COROLLARIES 4.3 and 4.4.. By Theorem 3.9, all that needs to be shown
is that D(A) is left invariant by W(z). Since A4 is closed, this is clear from the definition
of W(z). M

To prove Theorem 4.6, we will first need the following lemma.

Lemma 4.7. Suppose k and r are nonnegative,  >mn/2, (k+$)§p(A), |arg(z) | <
(Y —7/2), and n is a nonnegative integer. Let I', , =k +I',, where I, is defined in the proof
of Theorem 4.1. Then, for xe€ D(A"),

nlJ

d
J‘ ezw(w—A)‘lxdw=f e’“’(w—A)‘lA"xl+2m > ——A’x
I'rk ) w" Jj= 0.]

Proor. This follows by induction, from the following calculation, where all
integrals are taken over I',; and 0<j<n.

dw
Wj+1

o dw
N

zl dw
=(2m)j—!A’x+J Mw—A)"14it 1 x TR n

J (w—A)~ 1Afx(fv—w fe‘W(w—A)‘lA"(w—A+A)x

PROOF OF THEOREM 4.6. With I',, as in Lemma 4.7, xe X, define

T(z)x= I er(w—A)~! xiui
ros 27rz

r,

for |arg(2)| < (Y —7/2), r>0.
We will show the following.
(1) VxeD(A), z€Sy_ 2 (d/dz)T(z)x AT (2)x=T(z)Ax.
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(2) Vo< (¥ —mn/2), 3 finite M, such that
I T(2)x | < Mye®* DV =l|(A—ky'x]|
Vze Sy, xe D(A™).

(3) Vé<(—n/2), xe D(A"), T(z)x converges to x, as z converges to 0, in Ss-

To prove (1), note that, since the integrand is a holomorphic function of both z
and w that decays exponentially, we may differentiate T'(z) as follows, where all integrals
are taken over I', ;.

2ni Zd— T(2)x= fe"’w(w — A)" xdw
1z

= ( fe‘“’dw) x+ f e(w—A) " Axdw

=2niT(2)Ax =2niAT(z)x ,

by calculus of residues and the fact that A4 is closed.
To prove (2), we need some more notation. Let @, = {se*¥ | s>r}, F,={re®| —y <
¢<y}. (Note that I',=6,UF,.)
Fix positive ¢ < (¥ —n/2). For ze S, and x € D(A"), we will apply Lemma 4.7. First,
we will obtain an upper bound for the norm of the integral in Lemma 4.7.
dw “ I dy

f eM(w—A)" 1A == e(y+k—A)" 14"
Iy

le™*] n
w" Jr, (y+k)

[ 3

Izl

by Cauchy’s theorem,
n—1 dl w l

s[[ ewlew- gt W
6, lz|

+f eK
Fy

for some constant K, by hypothesis (a) or (b),

n—1
Y ik —M—] 4],
H
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=K||A"xl|(f eiwicosw—o)__AWL_
o, Iw+k|z||
diwl )
e Wtk zl]
snA"xn—f—(J e"”‘°°s""“‘”d|wl+2e:/1);
W)

note that the quantities in parentheses are finite, since ¥ <, and (Y — ¢)>n/2.
We also have

n—1 ,j
Z Z—A’x

ji=o0 J!

<e|2| Sup051<n“A x“

Since (A —k) is invertible, ||(4—k)"x| and (supo<;<.ll4’x|) are equivalent norms on
D(A™. Thus, our estimates above, combined with Lemma 4.7, yield assertion (2).

To prove assertion (3), first suppose we are under hypothesis (b). Lemma 4.7 implies
that, for xe D(A"),

| dw n_l zi
2ni(T(z)x — x)= J eY(w—A)~ 1A"x——”— +2mi Y —A’x
w i=1 Jj!

Since | r,,k||(W—A)_1"(1/|W|")d |w]| is finite, the same arguments used in the proof of
Theorem 4.1 show that, for z€ S,

lim ezw(w——A)‘lA"x—dX=J (w—A)“lA"xd—w=O.
=0 Jp w" r w"
Clearly, limz_,oz;';:(z"/j!)Afx equals zero. Thus, as z converges to zero in S,, T(z)x
converges to x, under hypothesis (b).

Under hypothesis (a), use Lemma 4.7 again, for xe D(4"*1'):

2ni(T(z)x — x) = e¥w—A)" 14" 1x j 2": Z_—Jij .
Ty =17

Since | rlw—A4)7 H/lwi**Y)d|w| is finite, the same arguments show that 7'(z)x
converges to zero, as z converges to zero in S, for xeD(A"Y).

This is saying that, for all xe D(A), (A—k) "T(z)x converges to (4—k) "x, as z
converges to zero in S,. By (2), [(4—k)™"T(z)|| is bounded, for z near zero, in S,. Thus,
since D(A) is dense, (4 —k)~"T(z)x converges to (4—k) "x, as z converges to zero in
S, for all xe X, which is equivalent to (3).

This establishes assertions (1)—(3).

Assertions (1) and (3) imply that, for all xe D(A"), z, we Sy _,/2, T(2)T(W)x=
T(z+w)x. If xeX, then, since (A—k) " "xe D(A"), (A—k)""T(2)T(w)x=T(z)T(WNA—
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k)" "x=T(z+wlA—k) "x=(A—k)""T(z+w)x, so that T(2)T(w)x=T(z+ w)x, that is,
T(z) is a holomorphic semigroup on S, _,/,.

By Theorem 3.10 and assertions (1)«3), 4 generates an exponentially bounded
holomorphic n-times integrated semigroup of angle (Y —=z/2). W

V. Characterization.

Theorem 5.4 (a) <> (b) is essentially in [26], where semigroups of class (H,) are
considered (see [29], Theorem 2).

THEOREM 5.1.  Suppose A is closed, {x e D(AC) | ACx € Im(C)} is dense, n/2> O >0
and S ;2 + 0)< PAA). Then the following are equivalent.

(@) There exists a bounded holomorphic mild C-existence family of angle O for A.

(b) VY <(n/2+0), |A(w—A)"'C| is bounded in S,,.

THEOREM 5.2. Suppose A is closed, {x e D(AC) l ACxeIm(C)} is dense, n/2> 60 >0
and N <(n/2+ O), there exists k, € R such that (k,+ S,) < p{A). Then the following are
equivalent.

(a) There exists an exponentially bounded holomorphic mild C-existence family of
angle O for A. '

(b) VY <(n/2+0), || Aw—A)~*C| is bounded in (k,+S,,).

REMARK 5.3. The preceding theorems, along with Theorem 3.9, may be used to
obtain characterization theorems for holomorphic C-semigroups, since C4A = AC, when
A generates a C-semigroup. Under the additional hypothesis that Im(C) is dense, similar
characterizations appear in [5] and [29].

When A generates a bounded holomorphic C-semigroup of angle ©, then
Sr/2 +8 S pc(A); this may be seen using Proposition 2.8 and the proof of Lemma 5.5 (b).
When there exists a bounded holomorphic mild C-existence family of angle @ for A,
then it may be shown that Im(C) S Im(w— A4), Vwe S,; ;6.

THEOREM 5.4. Suppose D(A) is dense. Then the following are equivalent.

(a) A generates an exponentially bounded n-times integrated semigroup of angle ©.

(b) V¢ <(m/2+ O), there exists ky, >0 such that (k,+ S,) < p(A) and ||(A—r) " "A(w—
A)~ | is bounded in (ky +S,), for some re p(A).

(©) VY <(n/2+ O), there exists k, >0 such that (k,+ S,)< p(A) and ||(w—A) || is
o(w|"™ Y in (k¢,+S,,,)

We will need the followmg lemma
LEMMA 5.5. Suppose O <m/2.
(@) If A generates an exponentially bounded n-times integrated semigroup, then

there exists k>0 such that (k+Sg) < p(A4) and |[(w—A)~ || is O(w|"™ ) in (k+Sg).
(b) If there exists a bounded mild C-existence family for A and Sgq< pc(A), then
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| A(w—A)"'C|| is bounded on Sg.

PROOF. (a) Let S(t) be the n-times integrated semigroup generated by A. By
hypothesis, there exist finite, positive M, s so that || S(t)|| < Me®, V¢>0. It is wellknown
(see [22]) that {w | Re(w) > s} = p(4), with

w—A4)"x= j w"e ™ ™' S(t)xdt ,
0
when x € X, Re(w)>s, so that

(D) l(w—A)"/w"| < M/(Re(w)—s), for Re(w)>s.
If we(s+Se), then we may write w=s+re’®, where r>0, |¢|<O. Thus, |w—s/
(Re(w)—s)=r/rcos(¢), so that

(2) [(w—9)/(Re(w)—s)|<1/cos(@), for we(s+ Sy).
Finally, choose any k> s. There exists finite ¢ such that

(3) |w/w—s)|<c, for we(k+Sg).

Putting (1), (2) and (3) together gives

w—4A4)"1! ( Mc )1
S )
cos(@)/ w
for we(k+Sg).

(b) Let W1¢) be the bounded mild C-existence family for 4, M =sup,, o/ W(t)|. The
same argument as that given in the proof of Theorem 3.6, in [11], shows that

w

(w—A)"1Cx=j e "'W(t)xdt , VweSqg, xeX.
0
Thus, we have, as in the proof of (a),
4) (w—A4)"'C||<M/Re(w),
(5) |w/Re(w)|<1/cos(®),
for we Sg, so that

lAw—A4)"1C|=|ww—A4)"'C—-C]|| S( M + IICII) ;
cos(O)

for weSe. B

PROOF OF THEOREM 5.1. (a)—(b). Fix ¥ <(n/2+®). Choose ¢>0 such that
(Y —m/2)<¢p <O. There exist bounded mild C-existence families for both e¢4 and
e™ 4. Since (Y —¢)<m/2, Lemma 5.5 implies that ||A(eX*y—A)~1C|=|A(y—
e*®4)™1C| is bounded, for y € S, _ . Since S, is the union of €Sy _gyWithe @S, _ .
this implies that || 4(w—A4)~'C|| is bounded, for we S,,.

(b)—(a) follows from Theorem 4.1 (a). W
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PrROOF OF THEOREM 5.2. (a)—(b). Fixy <(m/2+ @).Choose ¢ so that (Y —n/2) <
¢ <O. Let W(z) be the mild C-existence family for A. There exists positive k and M
such that |W(z)| <M|é|, VzeS,. Let B=(A—k). Then e **W(z) is a bounded
holomorphic mild C-existence family of angle ¢, for B. By Theorem 5.1, since
Yy<@/2+¢), I(y—B) 'Cll=(1/lyDIC+B(y—B)~'C| is O(1/|yl), for yeS,. This is
saying that ||(w— 4)~!C| is O(1/|w—k|), for we (k+S,). Let k, = (k+ 1). Since |w/(w — k) |
is bounded in (k, + S,), |(w—A4)~'C| is O(1/|w]) in (ky + S), so that | A(w—A4)~ 1IC|=
|w(w— A4)~*C—C|| bounded in (k,+S,), as desired.

(b)—(a) follows from Theorem 4.2(a). W

PrOOF OF THEOREM 5.4. (c)—(a) follows from Theorem 4.6 (a).

(@)—(c). Fix ¢y <(n/2+ @). Choose ¢ >0 such that (Y —n/2) < ¢ <O. By Proposi-
tion 3.7 (a), both ¢4 and e **A generate exponentially bounded n-times integrated
semigroups.

Since (Y —¢)<n/2, Lemma 5.5 implies that there exists k>0 such that
ety —A)~ || =[(y—eE®A4)~ 1| is O(yI"™ "), for ye(k+Sy_4). There exists k, so
that (k,+S,) is contained in the union of e*(k+ S, _,) with e”**(k, + Sy, -4). Thus,
l(w—B)~1| is O(w|"~ 1), for we(k,+S,), as desired.

(@a)—(). Fix y<@/2+O). As in (a)—(c), there exists k,>0 such that
(ky+Sy)=p(4). By Theorem 3.10, there exists r>k, such that A4 generates an
exponentially bounded holomorphic (4 —r)~"-semigroup of angle ©. Theorems 5.2 and
3.9 now imply (b).

(b)—(a). By Theorems 5.2, 3.9 and 2.13, 4 generates an exponentially bounded
holomorphic (4 —r)~"-semigroup of angle @. Theorem 3.10 thus implies (a). W

VI. Stability.

For a bounded holomorphic C-semigroup generated by A to be stable it is sufficient
that the range of A be dense (Corollary 6.2). When the range of C is dense, it is also
necessary (Theorem 6.6). This is equivalent to the solutions of the corresponding abstract
Cauchy problem (6.3) being stable.

THEOREM 6.1. Suppose WAt) is a bounded holomorphic C-semigroup generated by
A. Then lim,_, , W(t)x=0, Vx e Im(A).

COROLLARY 6.2. Suppose Im(A) is dense and W(t) is a bounded holomorphic
C-semigroup generated by A. Then lim,_, ,W(t)x=0, Vxe X.

This immediately yields information about the following stable abstract Cauchy
problem.

w'(t, x)=A(u(t, x)) (¢=0), Lm Ju(, x)|=0. (6.3)
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COROLLARY 6.4. Suppose Im(A) is dense and A generates a bounded holomorphic
C-semigroup. Then (6.3) has a unique solution, Vx e C(D(A)).

THEOREM 6.5. Suppose W(t) is a C-semigroup generated by A and lim,_, ,W(t)x=0,
Vxe D(A). Then C(D(A))<Im(A).

THEOREM 6.6. Suppose Im(C) is dense and W(t) is a bounded holomorphic
C-semigroup generated by A. Then the following are equivalent.

(@) lim,, W(t)x=0, VxeX.

(b) lim,.  W(t)x=0, Vx e D(A).

(¢) Im(A) is dense. _

(d) (6.3) has a unique solution, ¥x e C(D(A)).

PROOF OF THEOREM 6.1. [Exactly as with strongly continuous holomorphic semi-
groups (see [27], Theorem 5.2), one may use the analyticity of WA(t) to show that
AW(t) is bounded, V¢>0, and |AWAY)| = |(d/de)W(t)| is O(1/t), as t—oo. Thus,
lim,, , W(t)x =0, VxeIm(A4). Since W(t) is bounded, the same is true, VxeIm(4). W

PROOF OF COROLLARY 6.4. Since A generates a C-semigroup, W(t), (6.3), without
the stability condition, has the unique solution u(t, Cx)= W(t)x, when x € D(A)
(Proposition 2.4). Corollary 6.2 now implies that this is a solution of 63. m

PROOF OF THEOREM 6.5. Suppose ¢e€X* annihilates Im(4). Then, Vx e D(A),
120, 0=(d/dt)p(W(t)x). Thus H(W(t)x)=@(Cx), V1>0, so that ¢(Cx)=0, that is, ¢
annihilates C(D(4)). W

PROOF OF THEOREM 6.6. (b)—(c). By Proposition 2.6 (c), VxeX, t>0,
(1/2) [, WA(s)xds € D(A). Since lim,_, ,C((1/7) { o W(s)xds)= C?x, C(D(A)) is dense in Im(C?),
which is dense, since Im(C) is dense. Thus C(D(A4)) is dense, so that, by Theorem 6.5,
Im(A) is dense.

(c)—(a) is Corollary 6.2.

(d)«>(b). Since A4 generates a C-semigroup, W(t), without the stability condition,
has the unique solution u(t, Cx)= W(t)x, Vxe D(A). B

VII. Examples.

We apply section IV to matrices of operators, acting on the products of (possibly
different) Banach spaces,

Ay Ay o Ay,

on xj_,X;, where 4;; maps a subspace of X, into X;. Another approach to (1.1), with
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such an 4, may be found in [12], [13], [14], [20] and [21].

LEMMA 7.1. (Lemma 7.4 from [11]) Suppose B is an injective operator, from X
into X,, and for i=1, 2, there exists injective D;e B(X;) such that D,B and D,B~! are
bounded. Then B is closable and B is injective.

EXAMPLE 7.2. Suppose n, me NUO0, se€ p(G,)np(G,),

[Gl B ] , D(A)=D(G,) x [(B)nD(G,)],
0 G,

where
(1) G, generates a strongly continuous holomorphic semigroup, for i=1, 2.
(2) (s—Gy)"™B is bounded.

(3) D(G3)=D(B).
(4) B is closed.
Then A is closable and there exists an exponentially bounded holomorphic mild C-existence

family for A, where
CE[ I 0 ] .
0 (S— (;2)—'l

ProoF. By (3) and (4), [B(s—G,) 1€ B(X,, X,). For re p(G,)np(G,), (r— A) is

(s—Gy) 0 :I, for i=1,2, A is closable,

injective. By Lemma 7.1, with D,-EI: _
0 (s—-Gy)™"

and (r — A) is injective. Since
( _1[1 0 ]_[(r—Gx)'l (r_Gl)_1[B(S_G2)—”](r—G2)_l]
r—A) 1= _ _ >
0 (s—G)™" 0 r—Gy)) 's—Gy)"

| A(r— A)~'C|| is bounded in a sector (k+ V), for some k>0, ¥ >m/2. It is also not
hard to see that D(G,) x D(G,)<= {xe D(AC) | ACxeIm(C)}. Thus the result follows
from Theorem 4.2 (a). W

EXAMPLE 7.3. Suppose N,, - N, M,, -, M,_,eN,

G, By, - By,
AE 9 G2 : s

. . Bn—l,n

0 vee 0 Gn

D(A)=D(G,) X DG},
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where
(1) D(G})<=D(B,)), for 1 <j<n.
(2) G, generates a strongly continuous holomorphic semigroup, for 1 <i<n.
(3) There exists se C such that (s—G)V'B, ;(s—G)) " e B(X}, X)), for 1 <i<j<n.

(N, =0)

(4) There exists se C such that (s— G;)"MB, ;(s— G ™’ is bounded, for 1 <i<j<n.
Then A is closable and there exists an exponentially bounded holomorphic (s— A)~* C-
existence family for A, where

I 0 0
0 (s—G,)™ ™ 0
c=| " ( 2)
0

0o - 0 (s—Gp)™

PrOOF. As in Example 7.9, in [11], it may be shown that A4 is closable,
MNe=1P(G) S pAA) and ||(r—A)~*C|| is O(1/|r|) in a sector (k+V,), for some k>0,
¥ >m/2, so that this follows from Theorem 4.2 (b). W

EXAMPLE 7.4. As argued in Example 7.11, in [11], we may choose, in Examples
7.2 and 7.3, X;= LP(R") (1<p< ), G; equal to a constant coefficient differential oper-
ator p;y(D), where D=(i(0/0x,), - - -, i(0/0x,)), p; is an elliptic nonconstant polynomial
such that {p;(x) | xeR"} =(k— V), for some ke R, 0<¢ <mn/2 (such as G; equal to the
Laplacian), and B, ; equal to a linear partial differential operator, B; ;=) |, <my, Pai D%
of arbitrary order, where A, ; ; is infinitely differentiable with bounded derivatives.
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