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Abstract. We define and construct holomorphic C-existence families and holomorphic integrated
semigroups and discuss their relationships with holomorphic C-semigroups and each other. We prove simple
Hille-Yosida type theorems, involving the rate of growth of $\Vert(w-A)^{-1}\Vert$ or $\Vert(w-A)^{-1}C\Vert$ in a sector, for an
operator to generate any of these families of operators.

I. Introduction.

Some generalizations of strongly continuous semigroups, integrated semigroups
(Definition 2.1), C-semigroups (Definition 2.2) and, most recently, C-existence families
(Definition 2.3) have recently appeared. They have a relationship to the abstract Cauchy
problem

$u^{\prime}(t, x)=A(u(t, x))$ $(t\geq 0)$ , $u(O, x)=x$ , (1.1)

that generalizes the well-known correspondence between $A$ being a generator of a
strongly continuous semigroup and (1.1) having a unique solution for all $x$ in the domain
of $A$ (see Proposition 2.4).

The most comprehensive of these concepts is C-existence families. In this paper,
we define holomorphic C-existence families (Definition 3.5) so as to generalize
holomorphic strongly continuous semigroups, a class of semigroups that has found
wide applicability. We generalize the Hille-Yosida type characterizations of densely
defined generators of holomorphic strongly continuous semigroups (section IV). We
give similar simple sufficient conditions for operators, that may not be densely defined,
to have a holomorphic C-existence family (section V). Unlike generators of strongly
continuous semigroups, generators of C-semigroups or integrated semigroups may not
be densely defined.

As corollaries, we obtain Hille-Yosida type conditions for operators to generate
holomorphic C-semigroups or integrated semigroups (sections IV and V).

In all proofs, we explicitly construct the desired family of operators.
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Our main results in sections IV and V may be summarized as follows. For an
operator, $A$ , to generate an exponentially bounded holomorphic k-times integrated
semigroup, it is sufficient that the spectrum be contained in a sector of angle less than
$\pi/2$ , with $\Vert(w-A)^{-1}\Vert O(w^{k-1-\epsilon})$ outside that sector, for some positive $\epsilon$ (Theorem 4.6).

If $A$ is densely defined, it is necessary and sufficient that $\Vert(w-A)^{-1}\Vert$ be $O(w^{k-1})$

(Theorem 5.4). In order that there exist an exponentially bounded holomorphic
C-existence family for $A$ , it is sufficient that $\Vert A(w-A)^{-1}C\Vert$ be $O(1/w^{t})$ , for some
positive $\epsilon$ (Theorems 4.1 and 4.2). If $A$ is densely defined and $CA\subseteq AC$ (this is auto-
matically true when $A$ generates a C-semigroup), it is necessary and sufficient that
$\Vert(A(w-A)^{-1}C\Vert$ be bounded (Theorems 5.1 and 5.2).

Section II contains preliminary material about C-existence families, C-semigroups,
integrated semigroups and (1.1). In section III, we define holomorphic versions of
these families of operators, and describe the relationships between them. Section VI
contains stability results for holomorphic C-semigroups. We give examples in section VII.

All operators are linear, on a Banach space, X. $C$ will always be a bounded operator.
We will write $D(A)$ for the domain of the operator $A,$ $\rho(A)$ for the resolvent set of $A$ .
We will write $B(X)$ for the set of all bounded operators from $X$ into itself, ${\rm Im}(C)$ for
the image of $C$ .

II. Preliminaries.

N-times integrated semigroups were introduced, for $N=1$ , in [1], and extended to
arbitrary $N$ in [22] (see also [2], [3], [9], [16], [18], [23] and [30]). C-semigroups
were introduced, independently, in [4] and [7]; the generality of this paper is in [8]

(see also [5], [9], [10], [17], [18], [19], [24], [28] and [29]). C-existence families were
introduced in [11].

DEFINITION 2.1. The strongly continuous family of bounded operators $\{S(t)\}_{t\geq 0}$

is an exponentially bounded n-times integrated semigroup, generated by $A$ , if there exists
$w\geq 0$ such that $(w, \infty)\subseteq\rho(A),$ $\{S(t)\}$ is $O(e^{wt}),$ $S(O)=0$ , and

$t^{\gamma-A)^{-1}x=r\int_{o}^{\infty}e^{-n}S(t)xdt}$ , $\forall r>w$ , $x\in X$ .

We will say O-times integrated semigroup to mean a strongly continuous semigroup.

DEFINITION 2.2. Suppose $C$ is injective. The strongly continuous family of
bounded operators $\{W(t)\}_{t\geq 0}$ is a C-semigroup if $W(O)=C$, and $W(t)W(s)=CW(t+s)$,
for all $s,$

$t\geq 0$. The operator A generates $\{W(t)\}_{t\geq 0}$ if

$Ax=C^{-1}(\lim_{1\rightarrow 0}[\frac{1}{t}(W(t)x-Cx)])$ ,

with $ D(A)\equiv$ {$x|$ limit exists and is in ${\rm Im}(C)$ }.
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DEFINITION 2.3. Suppose $A$ is closed. The strongly continuous family of bounded
operators $\{W(t)\}_{t\geq 0}$ is an exponentially bounded mild C-existence family for $A$ if there
exists $w>0$ such that $\Vert W(t)\Vert$ is $O(e^{wt})$ , with

(1) $\int_{0}^{t}W(s)xds\in D(A),$ $\forall t>0,$ $x\in X$ and the map $t\vdash\rightarrow A(\int_{0}^{t}W(s)xds)$ continuous.
(2) $(r-A)(\int_{0}^{\infty}e^{-n}W(t)xdt)=Cx,$ $\forall r>w,$ $x\in X$.
Note that (1), and the fact that $A$ is closed, implies that $\int_{0}^{\infty}e$

“‘ $W(t)xdt=$
$r\int_{0}^{\infty}e^{-n}(\int_{0}^{t}W(s)xds)dt\in D(A),$ $\forall x\in X,$ $r>w$ .

The effect of these families of operators on (1.1) is in the next proposition. By a
solution of (1.1) we mean $u\in C([O, \infty),$ $[D(A)])\cap C^{1}([O, \infty),$ $X$), satisfying (1.1). By a
mild solution we mean $u\in C([0, \infty),$ $X$) such that $\int_{0}^{t}u(s, x)ds\in D(A),$ $\forall t\geq 0$ , satisfying
$u(t, x)=A(\int_{0}^{t}u(s, x)ds)+x,$ $\forall t\geq 0$ .

PROPOSITION 2.4. (see [8], [22], and [11])
(a) If A generates an exponentially bounded n-times integrated semigroup, then

(1.1) has a unique solution, $\forall x\in D(A^{n+1})$ . There exists $M,$ $w>0$ such that $\Vert u(t, x)\Vert\leq$

$Me^{wt}\sum_{k=0}^{n}\Vert A^{k}x\Vert,$ $\forall t\geq 0,$ $x\in D(A^{n+1})$ .
(b) If an extension ofA generates a C-semigroup, $W(t)$, that leaves $D(A)$ invariant,

then (1.1) has a unique solution, $\forall x\in C(D(A))$ , with $\Vert u(t, x)\Vert\leq\Vert W(t)\Vert\Vert C^{-1}x\Vert,$ $\forall t>0$ ,
$x\in C(D(A))$ .

(c) If there exists an exponentially bounded mild C-existence family for $A$ , then
(1.1) has a unique exponentially bounded mild solution, $\forall x\in C(D(A))$ . There exists $M$,
$w>0$ such that $\Vert u(t, Cx)\Vert\leqq Me^{wt}\Vert x\Vert,$ $\forall x\in X$.

The relationship between integrated semigroups and C-semigroups is the following
(see also [18]).

PROPOSITION 2.5. (Theorem 2.5 in [9]) The following are equivalent.
(a) A generates an exponentially bounded n-times integrated semigroup.
(b) There exists $w>0$ such that $(w, \infty)\subseteq\rho(A)$ , and A generates an exponentially

bounded $(A-r)^{-n}$-semigroup, $\forall r>w$ .

PROPOSITION 2.6. (from [8]) If A generates a C-semigroup, then
(a) $A$ is closed.
(b) $\forall x\in D(A)$ , $W(t)x$ is a differentiable function of $t$, $W(t)x\in D(A)$ , with

$(d/dt)W(t)x=AW(t)x=W(t)Ax,$ $\forall t\geq 0$ .
(c) $\forall x\in X,$ $t>0,$ $\int_{0}^{t}W(s)xds\in D(A)$ , with $A(\int_{0}^{t}W(s)xds)=W(t)x-Cx$ .
In general, the generator of an exponentially bounded C-semigroup may have

empty resolvent set. But it will have nontrivial C-resolvent set.

DEFINITION 2.7. We will say that $r\in\rho_{C}(A)$ , the C-resolvent set of $A$ , if $(r-A)$ is
injective and ${\rm Im}(C)\subseteq{\rm Im}(r-A)$ .
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PROPOSITION 2.8. (from [8]) If A generates a $O(e^{wt})$ C-semigroup, then
$\{r|{\rm Re}(r)>w\}\subseteq\rho_{C}(A)$ .

PROPOSmON 2.9. (from [24]) Suppose $C$ is injective, $w\in R,$ $\{W(t)\}_{2\geq 0}$ is a strongly
continuous $O(e^{wt})$ family ofbounded operators and $(w, \infty)\subseteq\rho_{C}(A)$ . Then thefollowing are
equivalent.

(a) $\forall s>w,$ $(s-A)^{-1}C^{2}=C(s-A)^{-1}C$ and

$(s-A)^{-1}Cx=\int_{0}^{\infty}e^{-st}W(t)xdt$ ,

$\forall x\in X$.
(b) $W(t)$ is a C-semigroup generated by an extension of $A$ .
The next corollary, giving the relationship between C-semigroups and mild C-

existence families, follows from Proposition 2.9 and 2.6 (c).

COROLLARY 2.10. Suppose $A$ is closed, $C$ is injective, $w\in R,$ $(w, \infty)\subseteq\rho_{C}(A)$ ,
$(s-A)^{-1}C^{2}=C(s-A)^{-1}C,$ $\forall s>w,$ $\{W(t)\}_{t\geq 0}\subseteq B(X)$ is $O(e^{wt})$ and $\int_{0}^{t}W(s)xds\in D(A)$ ,
$\forall x\in X$. Then the following are equivalent.

(a) $W(t)$ is a C-semigroup generated by an extension of $A$ .
(b) $W(t)$ isa mild C-existencefamilyfor A.

A partial converse of Proposition 2.6 (b) is the following.

PROPOSmON 2.11. (Theorem 2.6 from [8]) Suppose $\{W(t)\}_{t\geq 0}$ is a strongly con-
tinuous family of bounded operators and $A$ is an operator whose domain is invariant
under $W(t)$ , such that $\forall x\in D(A),$ $t\geq 0,$ $W(t)Ax=AW(t)x$, and

$W(t)x=Cx+\int_{0}^{t}W(s)Axds$ .

Then $W(t)$ is a C-semigroup, generated by an extension of $A$ , if either
(a) $D(A)$ is dense, $or$

(b) $\rho(A)$ is nonempty.

The following is essentially Theorem 3.6, from [11].

PROPOSmON 2.12. Suppose $A$ is closed, and there exists $w>0$ such that $(w, \infty)\subseteq$

$\rho_{C}(A)$ and $\{W(t)\}_{t\geq 0}$ is an exponentially bounded strongly continuous family of bounded
operators. Then the following are equivalent.

(a) $W(t)$ isa mild C-existence familyfor A.
(b) $\int_{0}^{t}W(s)xds\in D(A)$ , with $A(\int_{0}^{t}W(s)xds)=W(t)x-Cx,$ $\forall x\in X$.

PROPOSmON 2.13. (Proposition 2.9 from [10]) Suppose an extension ofA gener-
ates a C-semigroup and $\rho(A)$ is nonempty. Then A generates the C-semigroup.
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III. Holomorphic exponentially bounded C-existence families, C-semigroups and
integrated semigroups.

In this section, we present holomorphic versions of our families of operators, and
the relationships between them that will be needed to unify our results.

DEFINITION 3.1. $S_{O}\equiv\{re^{i\phi}|r>0, |\phi|<\Theta\},$ $V_{O}\equiv\{re^{i\phi}|r>0, |\phi|\leq\Theta\}$ .
The following, when the domain of its generator is dense, may be shown ([29],

Theorem 2) to be equivalent to ”holomorphic semigroups of class $(H_{n})$ ([26]); see also
[25].

DEFINITION 3.2. Suppose $\pi/2\geq\Theta>0$ . Then an n-times integrated semigroup
$\{S\langle t)\}_{t\geq 0}$ is a holomorphic n-times integrated semigroup of angle $\Theta$ if it extends to a
family of bounded operators $\{S(z)\}..s$. satisfying

(1) The map $z\vdash\rightarrow S(z)$ , from $S_{\partial}$ into $B(X)$ , is holomorphic.
(2) $\{(d/dz)^{n}S(z)\}_{zeS_{O}}$ is a semigroup.
(3) For all $\psi<\Theta,$ $\{S(z)\}$ is strongly continuous on $\overline{S_{\psi}}$ .

The following first appeared in [4].

DEFINITION 3.3. Suppose $\pi/2\geq\Theta>0$ . The C-semigroup $\{W(t)\}_{t\geq 0}$ is a holomor-
phic C-semigroup of angle $\Theta$ if it extends to a family of bounded operators $\{W(z)\}_{z\epsilon S\circ}$

satisfying
(1) $Themapz\vdash\rightarrow W(z),$ $fromS_{O}intoB(X)$ , is holomorphic.
(2) $W(z)W(w)=CW(z+w)$ , for all $z,$ $w\in S_{9}$ .
(3) For all $\psi<\Theta,$ $\{W(z)\}$ is strongly continuous on $\overline{S_{\psi}}$ .
DEFINITION 3.4. The family of operators in Definition 3.2 (3.3) is exponentially

bounded if, for all $\psi^{-}<\Theta$ , there exists finite $M_{\psi},$ $w_{\psi}$ , such that $\Vert S(z)\Vert(\Vert W(z)\Vert)\leq M_{\psi}e^{w\psi|z|}$ ,
for all $z\in S_{\psi}$ .

When $w_{\psi}=0$, for all $\psi<\Theta$ , then the family of operators is bounded. Note that $M_{\psi}$

may get arbitrarily large as $\psi$ gets close to $\Theta$ .
DEFINITION 3.5. Suppose $\pi/2\geq\Theta>0$ . The exponentially bounded mild C-

existence family $\{W(t)\}_{t\geq 0}$ is an exponentially bounded holomorphic C-existence family
of angle $\Theta$ for $A$ if it extends to a family of bounded operators $\{W(z)\}_{zeS_{O}}$ satisfying

(1) $Themapz\mapsto W(z),$ $fromS_{O}intoB(X)$ , is holomorphic.
(2) Whenever $|\phi|<\Theta,$ $\{W(te^{i\phi})\}_{t\geq 0}$ is an exponentially bounded mild C-existence

family for $e^{i\phi}A$ .
(3) For all $\psi<\Theta,$ $\{W(z)\}$ is strongly continuous on $\overline{S_{\psi}}$ .
If $\Vert W(z)\Vert$ is bounded on $\overline{S_{\psi}}$, for all $\psi<\Theta$ , then $\{W(z)\}_{z\in S_{9}}$ is a bounded holomorphic

mild C-existence family.

LEMMA 3.6. Suppose $\{W(z)\}_{zeS_{O}}$ is an exponentially bounded holomorphic C-
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semigroup of angle $\Theta$ generated by $A$ and $x\in X.$ Then $W(z)x\in D(A^{k})$ , for $k=0,1,2,$ $\cdots$ ,
$z\in S_{O}$ , with $A^{k}W(z)x=(d/dz)^{k}W(z)x$ .

PROOF. We will show this by induction. It is clearly true when $k=0$ . Suppose the
assertions of the theorem are true, for a fixed $k$ . Then

$\frac{1}{t}(W(\iota XA^{k}W(z)x)-C(A^{k}W(z)x))=c[\frac{1}{t}((\frac{d}{dz})^{k}W(t+z)x-(\frac{d}{dz})^{k}W(z)x)]$ ,

which converges to $C(d/dz)^{k+1}W(z)x$ , as $t\rightarrow 0$ . Thus, $A^{k}W(z)x\in D(A)$ , with $A(A^{k}W(z)x)=$

$(d/dz)^{k+1}W(z)x$ , completing the induction. $\blacksquare$

PROPOSITION 3.7. Suppose $\pi/2\geq\Theta>0,$ $ and|\phi|<\Theta$ .
(a) If A generates an exponentially bounded holomorphic n-times integrated semi-

group of angle $\Theta,$ $\{S(z)\}_{z\epsilon S_{9}}$ , then $e^{i\phi}A$ generates an exponentially bounded n-times inte-
grated semigroup $\{e^{-\ddagger n\phi}S(te^{i\phi})\}_{t\geq 0}$ .

(b) IfA generates an exponentially bounded holomorphic C-semigroup of angle $\Theta$ ,
$\{W(z)\}_{z\epsilon Se}$ , then an extension of $e^{i\phi}A$ generates an exponentially bounded C-semigroup
$\{W(te^{i\phi})\}_{t\geq 0}$ .

PROOF. (a) There exists finite $M,$ $w$ such that $\Vert S(z)\Vert\leq Me^{w|z|}$ , for all $z\in\overline{S_{\phi}}$ . It
is well known (see [22]) that $\{z|{\rm Re}(z)>w\}\subseteq\rho(A)$ , with

$(z-A)^{-1}x=z^{n}\int_{0}^{\infty}e^{-zt}S(t)xdt$ ,

when $x\in X,$ ${\rm Re}(z)>w$ . Thus, for $r>w,$ $(r-e^{i\phi}A)^{-1}$ exists, with

$(r-e^{i\phi}A)^{-1}x=e^{-i\phi}(re^{-i\phi}-A)^{-1_{X}}$

$=e^{-i\phi}(re^{-i\phi})^{n}\int_{o}^{\infty}e^{-re^{-i\prime}}{}^{t}S(t)xdt$

$=e^{-i\phi}(re^{-i\phi})^{n}\int_{el0,\infty)}:\phi e^{-rze^{-}}{}^{t}S(z)xdz$ ,

by a calculus of residues argument, since the integrand is holomorphic and exponen-
tially decaying in $S_{\phi}$ ,

$=e^{-i\phi}(re^{-i\phi})^{n}\int_{0}^{\infty}e^{-rt}S(te^{i\phi})x(e^{i\phi}dt)$

$=F\int_{0}^{\infty}e^{-n}(e^{-in\phi}S(te^{i\phi})x)dt$ .

By Definition 2.1, this concludes the proof of (a).
(b) It is clear from Definition 3.3 that $\{W(te^{i\phi})\}_{t\geq 0}$ is a C-semigroup. For
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$x\in D(A)$ , since $W(t)Ax=AW(t)x$ , for all $t\geq 0$ , and $W(z)x$ is a holomorphic function
of $z$ , it follows that $W(z)Ax=AW(z)x$ , for all $z\in S_{\partial}$ . By Lemma 3.6, $(d/dt)W(te^{i\phi})x=$

$W(te^{i\phi})(e^{i\phi}Ax)$ , for all $x\in D(A),$ $t\geq 0$ . This implies that an extension of $e^{i\phi}A$ generates
$\{W(te^{i\phi})\}_{t\geq 0}$ . $\blacksquare$

COROLLARY 3.8. Suppose $\pi/2\geq\Theta>0$ . If $\{S(z)\}..s$. is a holomorphic n-times
integrated semigroup of angle $\Theta$ , and $\psi<\Theta$ , then

(1) If $0\leq k\leq n$ , and $x\in D(A^{k})$ , then $(d/dz)^{k}S(z)x$ converges to $0$ , as $z$ converges to
$0$ in $\overline{S_{\psi}}$ .

(2) If $x\in D(A^{n})$ , then $(d/dz)^{n}S(z)x$ converges to $x$ , as $z$ converges to $0$ in $\overline{S_{\psi}}$ .

PROOF. By Proposition 3.3, in [2], and Proposition 3.7 above, we have, for
$0\leq k\leq n,$ $x\in D(A^{k}),$ $z\in\overline{S_{\psi}}$,

$(\frac{d}{dz})^{k}S(z)x=S(z)A^{k}x+\sum_{j=1}^{k}\frac{z^{n-j}}{(n-j)!}A^{k-j_{X}}$ . $(^{*})$

As $z\rightarrow 0$ in $\overline{S_{\psi}},$ $S(z)A^{k}x$ converges to $0$ , by Definition 3.2 (3) and the fact that $S(O)=0$.
Thus $(^{*})$ yields both (1) and (2). $\blacksquare$

THEOREM 3.9. Suppose $A$ is closed, $\pi/2\geq\Theta>0,$ $S_{(O+\pi/2)}\subseteq\rho_{C}(A),$ $C$ is injective and
commutes with $(w-A)^{-1}C,$ $\forall w\in\rho_{C}(A)$ and $\{W(z)\}_{zeS_{O}}$ is a subset of $B(X)$ . Then the
following are equivalent.

(a) $\{W(z)\}_{zeS\circ}$ is an exponentially bounded holomorphic C-semigroup of angle $\Theta$

generated by an extension of $A$ .
(b) $\{W(z)\}_{zeSe}$ is an exponentially bounded holomorphic mild C-existence family of

angle $\Theta$ for $A$ .
PROOF. $(a)\rightarrow(b)$ . This will follow from Corollary2.10and Proposition3.7 (b),

once we verify that $\int_{0}^{t}W(se^{i\phi})xds\in D(A),$ $\forall x\in X,$ $|\phi|<\Theta$ . For $\epsilon>0$ , Lemma 3.6 and the
fact that $A$ is closed guarantees that $\int_{\epsilon}^{t}W(se^{i\phi})xds\in D(A)$, with $A(\int_{\epsilon}^{t}W(se^{i\phi})xds)=$

$W(te^{i\phi})x-W(\epsilon e^{i\phi})x$ . The fact that $A$ is closed and $s\mapsto W(se^{i\phi})x$ is continuous now gives
the desired conclusion.

$(b)\rightarrow(a)$ . By Definition 3.5 (2) and Proposition 2.9, $\{W(te^{i\phi})\}_{t\geq 0}$ is a C-semigroup,
generated by an extension of $e^{i\phi}A$ , whenever $|\phi|<\Theta$ . The exponential boundedness in
sectors, as in Definition 3.4, follows from (2) of Definition 3.5 and the fact that $S_{\psi}$

equals the convex span of $ e^{i\psi}[O, \infty$ ) $\cup e^{-i\psi}[O, \infty$ ).
All that remains is to verify (2) of Definition 3.3. For all $x\in D(A),$ $(d/dt)W(te^{i\phi})x=$

$e^{i\phi}AW(te^{i\phi})x=W(te^{i\phi})e^{i\phi}Ax$ , so that $(d/dz)W(z)x=AW(z)x=W(z)Ax$ . Thus, for $z,$ $ w\in$

$S_{Q},$ $x\in D(A),$ $(d/dw)W(z-w)W(w)x=0$ , so that $CW(z+w)x=W(z)W(w)x$ . For arbitrary
$x\in X$, choose $r\in\rho_{C}(A)$ . Then $(r-A)^{-1}Cx\in D(A)$, thus $(r-A)^{-1}C[CW(z+w)x]=$

$CW(z+w)((r-A)^{-1}Cx)=W(z)W(w)((r-A)^{-1}Cx)=(r-A)^{-1}C[W(z)W(w)x]$ , which im-
plies (2) of Definition 3.3, since $(r-A)^{-}C$ is injective. $\blacksquare$
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THEOREM 3.10. Suppose there exists real $r$ such that $[r, \infty$ ) $\subseteq\rho(A)$, and $\pi/2\geq\Theta>0$ .
Then the following are equivalent.

(a) A generates an exponentially bounded holomorphic n-times integrated semigroup
$\{S(z)\}_{z\epsilon S\circ}$ , of angle $\Theta$ .

(b) A generates an exponentially bounded holomorphic $(A-r)^{-n}$-semigroup,
$\{W(z)\}_{zeS_{O}}$ , of angle $\Theta$ .

(c) There exists a holomorphic semigroup $\{T(z)\}_{zeS_{O}}$ satisfying
(1) If $z\in S_{O}$ and $x\in D(A)$, then $T(z)x\in D(A)$, with $(d/dz)T(z)x=AT(z)x=T(z)Ax$ .
(2) If $\psi<\Theta$ and $x\in D(A^{n})$, then $T(z)x$ converges to $x$, as $z\rightarrow 0$ in $\overline{S_{Q}}$ .
(3) For all $\psi<\Theta$ , there existsfinite $M_{\psi},$ $w_{\psi}$ , such that $\Vert T(z)x\Vert\leq M,e^{w\psi|z|}\Vert(A-r)^{n}x\Vert$ ,

for all $x\in D(A^{n}),$ $z\in S_{O}$ .
We then have $(d/dz)^{n}S(z)=T(z),$ $W(z)=(A-r)^{-n}T(z)$, for $z\in S_{O}$ .
$PR\infty F$ . $(c)\rightarrow(b)$ . Let $W(O)\equiv(A-r)^{-n}$ , and, for $z\in S_{O}$ , let $W(z)\equiv(A-r)^{-n}T(z)$.

Using the facts that $T(z)Ax=AT(z)x$, for all $x\in D(A)$ and $T(z)$ is a semigroup, a short
calculation shows that $W(z)W(w)=(A-r)^{-n}W(z+w)$, for all $z,$ $w\in S_{\partial}$ . Strong con-
tinuity follows from (2), and the fact that $(A-r)^{-n}x\in D(A^{n})$ , for all $x\in X$. Condition
(3) implies that $W(z)$ is exponentially bounded. It is also clear, since $(A-r)^{-n}$ is bound-
ed, that the map $z\leftarrow>W(z)$ is holomorphic, for $z\in S_{\partial}$ .

To see that $A$ generates $W(z)$, suppose $x\in D(A)$. By (1) and the fact that $(A-r)^{-n}$

is bounded, $(d/dz)W(z)x=AW(z)x=W(z)Ax$, for all $z\in S_{O}$ . Since $W(t)Ax$ is a continuous
function of $t$ , we have, for $t$ nonnegative,

$W(t)x=(A-r)^{-n}x+\int_{0}^{t}W(s)Axds$ .

By Proposition 2.13, $A$ generates $\{W(t)\}$ .
$(b)\rightarrow(c)$ . By Lemma 3.6, $W(z)x\in D(A^{n})$ , for all $x\in X,$ $z\in S_{\partial}$ . Let $T(z)\equiv(A-r)^{n}W(z)$ .

$T(z)$ is clearly a semigroup, since $W(z)$ is an $(A-r)^{-n}$-semigroup. By Lemma 3.6,
$T(z)=(d/dz-r)^{n}W(z)$, thus $T(z)$ is holomorphic.

If $x\in D(A)$, then $(d/dz)T(z)x=(d/dzXd/dz-r)^{n}W(z)x=(d/dz-r)^{n}(d/dz)W(z)x=(A-$

$r)^{n}AW(z)x=AT(z)x=T(z)Ax$, establishing (1). Conditions (2) and (3) are almost im-
mediate, as in $(c)\rightarrow(b)$ .

$(a)\rightarrow(b)$ . In [9], it is shown that $A$ generates an exponentially bounded
$(A-r)^{-n}$-semigroup, $\{W(t)\}_{t\geq 0}$ , given by $W(t)x\equiv(d/dt)^{n}S(tXA-r)^{-n}x$ . For $z\in S_{O},$ $x\in X$,

define $W(z)x\equiv(d/dz)^{n}S(zXA-r)^{-n}x$ . Since $S(z)$ is holomorphic and $(A-r)^{-n}$ is bounded,
$W(z)x=(A-r)^{-n}(d/dz)^{n}S(z)x$, and is holomorphic. Since $(d/dz)^{n}S(z)$ is a semigroup, a
short calculation implies (2) of Definition 3.3. Corollary 3.8 (2) implies (3) of Definition
3.3.

$(b)\rightarrow(a)$ . For arbitrary continuous vector-valued functions, $f$, on $[0, \infty$ ), define

If by
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$(IfXt)\equiv f(t)-r\int_{0}^{t}f(s)ds$ .

In [9], it is shown that $A$ generates an exponentially bounded n-times integrated
semlgroup

$S\equiv I^{n}(W-h_{r}\sum_{j=0}^{n-1}\frac{p_{j}}{j!}(A-r)^{j-n})$ , $(^{*})$

where $p_{j}(t)\equiv t^{j},$ $h_{r}(t)\equiv e^{n}$ .
For $0\leq\psi<\Theta,$ $f$ holomorphic and exponentially bounded on $S_{\psi}$ , continuous on

$\overline{S_{\psi}}$, If may be extended uniquely to an exponentially bounded holomorphic function
on $S_{\psi}$ , continuous on $\overline{S_{\psi}}$ . Thus, $\{S(t)\}_{t\geq 0}$ may be extended to a holomorphic operator
valued function $\{S(z)\}..s.$ , defined by $(^{*})$ with $z$ replacing $t$ .

Conditions (1) and (3) of Definition 3.2 clearly follow from the corresponding
conditions in Definition 3.3. Also by [9], $W(z)$ equals $(d/dz)^{n}S(zXA-r)^{-n}$ , which equals
$(A-r)^{-n}(d/dz)^{n}S(z)$ , since $S(z)$ is holomorphic and $(A-r)^{-n}$ is bounded. Thus
$(d/dz)^{n}S(z)=(A-r)^{n}W(z)$ , which is a semigroup, since $W(z)$ is an $(A-r)^{-n}$-semigroup.
This establishes (2) of Definition 3.2. $\blacksquare$

IV. Sufficient conditions.

Theorems 4.1 and 4.2 provide sufficient conditions for an operator to have an
exponentially bounded holomorphic mild C-existence family. A nonholomorphic version
of Theorem 4.2 (b) is in [11]. Sufficient conditions for an extension of $A$ to generate
an exponentially bounded holomorphic C-semigroup that leaves $D(A)$ invariant (this

is sufficient for the abstract Cauchy problem–see Proposition 2.4) follow almost
immediately from Theorem 3.9 and Theorem 4.2 (Corollaries 4.3 and 4.4). Theorem
4.6 provides sufficient conditions for an operator to generate an exponentially bounded
holomorphic n-times integrated semigroup. A nonholomorphic version of Theorem 4.6
(b) is in [3].

Corollaries 4.3 (a) and 4.4 (a), under some additional hypotheses, are in [5] and
[29].

THEOREM 4.1. Suppose $A$ is closed and there exists $\pi>\psi>\pi/2$ such that $V_{\psi}\subseteq\rho_{C}(A)$,

and $w->(w-A)^{-1}C$, from $V_{\psi}$ into $B(X)$ , is holomorphic. Then there exists a bounded
holomorphic mild C-existence family of angle $(\psi-\pi/2)$ for $A$ if either

(a) $\{x\in D(AC)|ACx\in{\rm Im}(C)\}$ is dense and $\Vert A(w-A)^{-1}C\Vert$ is bounded in $V_{\psi}$ , or
(b) There exists $\epsilon>0$ such that $\Vert A(w-A)^{-1}C\Vert$ is bounded and $O(|w|^{-\epsilon})$ in $V_{\psi}$ .

THEOREM 4.2. Suppose $A$ is closed and there exist $\pi>\psi>\pi/2,$ $k>0$ such that
$(k+V_{\psi})\subseteq\rho_{C}(A)$, and $ w-\rangle$ $(w-A)^{-1}C$, from $(k+V_{\psi})$ into $B(X)$ , is holomorphic. Then there
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exists an exponentially bounded holomorphic mild C-existence family of angle $(\psi-\pi/2)$

for $A$ if either
(a) $\{x\in D(AC)|ACx\in{\rm Im}(C)\}$ is dense and $\Vert A(w-A)^{-1}C\Vert$ is bounded in $(k+V_{\psi})$ ,

$or$

(b) There exists $\epsilon>0$ such that $\Vert A(w-A)^{-1}C\Vert$ is $O(|w|^{-\epsilon})$ in $(k+V_{\psi})$ .
COROLLARY 4.3. Suppose $A$ is closed and there exists $\pi>\psi>\pi/2$ such that

$V_{\psi}\subseteq\rho_{C}(A)$, the map $w\vdash\nu(w-A)^{-1}C$ is holomorphic and $C$ is injective and commutes with
$(w-A)^{-1}C$, for all we $V_{\psi}$ . Then an extension of A generates a bounded holomorphic
C-semigroup of angle $(\psi-\pi/2)$ that leaves $D(A)$ invariant if either

(a) $D(A)$ is dense and $\Vert A(w-A)^{-1}C\Vert$ is bounded in $V_{\psi}$ ; or
(b) There exists $\epsilon>0$ such that $\Vert A(w-A)^{-1}C\Vert$ is bounded and $O(|w|^{-\epsilon})$ in $V_{\psi}$ .
COROLLARY 4.4. Suppose $A$ is closed and there exist $\pi>\psi>\pi/2,$ $k>0$ , such that

$(k+V_{\psi})\subseteq\rho_{C}(A)$, the map $w\mapsto(w-A)^{-1}C$ is holomorphic and $C$ is injective and commutes
with $(w-A)^{-1}C$, for all $w\in V_{\psi}$ . Then an extension $ofA$ generates an exponentially bounded
holomorphic C-semigroup of angle $(\psi-\pi/2)$ that leaves $D(A)$ invariant if either

(a) $D(A)$ is dense and $\Vert A(w-A)^{-1}C\Vert$ is bounded in $(k+V_{\psi})$ ; or
(b) There exists $\epsilon>0$ such that $\Vert A(w-A)^{-1}C\Vert$ is $O(|w|^{-\epsilon})$ in $(k+V_{\psi})$ .
REMARK 4.5. In the preceding results, in order that the map $ w\leftarrow\rangle$ $(w-A)^{-1}C$,

from $V_{\psi}$ into $B(X)$ , be holomorphic, it is sufficient to have $A$ closed and ${\rm Im}(C)\subseteq$

${\rm Im}((w-A)^{3})$ , for we $V_{\psi}$ , with $\Vert(w-A)^{-1}(r-A)^{-1}(s-A)^{-1}C\Vert$ locally bounded. This may
be shown with the identity $(r-A)^{-1}C-(s-A)^{-1}C=(s-rXr-A)^{-1}(s-A)^{-1}C$.

THEOREM 4.6. Suppose there exist $\pi>\psi>\pi/2,$ $k>0$ , such that $(k+\overline{S,})\subset\rho(A)$ .
Then A generates an exponentially bounded holomorphic n-times integrated semigroup
of angle $(\psi-\pi/2)$ if either

(a) $D(A)$ is dense and $\Vert(w-A)^{-1}\Vert$ is $O(|w|^{n-1})$ in $(k+\overline{S_{\psi}})$ ; or
(b) There exists $\epsilon>0$ such that $\Vert(w-A)^{-1}\Vert$ is $O(|w|^{n-1-\epsilon})$ in $(k+\overline{S_{\psi}})$ .
PROOF OF THEOREM 4.1. Note that, since $A(w-A)^{-1}C=n\langle w-A)^{-1}C-C$, either

(b) or (a) imply that there exists finite $M$ such that

$\Vert(w-A)^{-1}C\Vert\leq\frac{M}{|w|}$ , $\forall w\in V_{\psi}$ . $(^{*})$

For $r>0$ , let $\Gamma_{r}\equiv\{se^{\pm i\psi}|s\geq r\}\cup\{re^{i\theta}|-\psi\leq\theta\leq\psi\}$ , oriented counterclockwise.
Define, for $z\in S_{\langle\psi-\pi/2)}$ ,

$W(z)\equiv\int_{\Gamma_{r}}e^{zw}(w-A)^{-1}C\frac{dw}{2\pi i}$ .

By Cauchy’s theorem, this definition is independent of $r>0$ .
Condition (1) ofDefinition 3.5 is clearly satisfied. We will verify that $\{ W(z)\}_{zeS_{(\psi-\sim/2)}}$



HOLOMORPHIC C-EXISTENCE FAMILIES 27

is bounded in the sense of Definition 3.5.
Fix $\phi<(\psi-\pi/2),$ $z\in S_{\phi}$ . Letting $r\equiv 1/|z|$ , then making the change of variables

$y\equiv|z|w$ , we have

$ 2\pi\Vert W(z)\Vert=\Vert\int_{\Gamma_{1}}^{zy}e^{\Pi z}(\frac{y}{|z|}-A)^{-1}C\frac{dy}{|z|}\Vert$

$\leq\int_{\Gamma_{1}}|e^{\Pi z}|M\frac{d|y|}{|y|}zy$ by $(*)$ ,

$\leq 2M\int:e^{x\cos\langle\phi+\psi)}\frac{dx}{x}+2\psi Me$ .

Since $(\phi+\psi)>\pi/2$ , this is finite, so that $\{W(z)\}_{z\in S\psi- n/2}$ is bounded, as in Definition
3.5.

To establish (3) of Definition 3.5, we need to consider

$2\pi i(W(z)x-Cx)=\int_{\Gamma_{r}}e^{zw}((w-A)^{-1}C-\frac{1}{w}c)xdw$ ,

by a calculus of residues argument,

$=\int_{\Gamma_{r}}e^{zw}A(w-A)^{-1}Cx\frac{dw}{w}$ .

If (b) holds, then, since
$\Vert|w|^{\epsilon}A(w-A)^{-1}C\Vert$ is bounded in $S_{\psi}$ , $(^{**})$

dominated convergence implies that, for $z\in S_{\psi-\pi/2}$ ,

$2\pi i\lim_{z\rightarrow 0}(W(z)x-Cx)=\int_{\Gamma_{r}}A(w-A)^{-1}Cx\frac{dw}{w}$ .

The following calculus of residues argument shows that this integral equals zero.
For any $N>r$ , let $\theta_{N}\equiv\{w\in\Gamma_{r}||w|\leq N\}\cup\gamma_{N}$ , where $\gamma_{N}\equiv\{Ne^{i\theta}|-\psi\leq\theta\leq\psi\}$ . By (”),
$\lim_{N\rightarrow\infty}\int_{\gamma_{N}}A(w-A)^{-1}Cx(1/w)dw=0$ . Thus,

$\int_{\Gamma_{r}}A(w-A)^{-1}Cx\frac{dw}{w}=\lim_{N\rightarrow\infty}\int_{\theta_{N}-\gamma_{N}}A(w-A)^{-1}Cx\frac{dw}{w}$

$=\lim_{N\rightarrow\infty}\int_{\theta_{N}}A(w-A)^{-1}Cx\frac{dw}{w}=0$ ,

by Cauchy’s theorem.
This establishes (3) of Definition 3.5, under hypothesis (b).
Suppose (a) holds and $x\in \mathscr{D}\equiv\{x\in D(AC)|ACx\in{\rm Im}(C)\}$ . The same argument,
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using $(^{*})$ in place of $(^{**})$ and the fact that $A(w-A)^{-1}Cx=(w-A)^{-1}ACx=(w-A)^{-1}Cy$,
for some $y\in X$, shows that $W(z)x$ converges to $Cx$, as $z\rightarrow 0$ in $S_{tt-,/2)}$ . Since $\mathscr{D}$ is dense,
the fact that $\{W(z)\}_{zeS_{\psi-n/2}}$ is bounded in the sense of Definition3.5now imp1ies that
the same is true for all $x\in X$.

All that remains is to verify (2) of Definition 3.5. Suppose $|\phi|<\theta$ . By what we have
previously shown, $\{W(te^{i\phi})\}_{t\geq 0}$ is bounded and strongly continuous, when $W(0)\equiv C$ .
We will apply Proposition 2.12. Note that, for $x\in X,$ $t>0$ ,

$2\pi i\int_{0}^{t}W(se^{i\phi})xds=\int_{\Gamma_{r}}[\int_{0}^{t}e^{se^{i\phi}w}ds](w-A)^{-1}$ Cxdw

$=\int_{\Gamma_{r}}(e^{te^{i}w}-1Xw-A)^{-1}Cx\frac{dw}{e^{i\phi}w}$ .

Under hypothesis (b), since $A$ is closed, (”) implies that $\int_{0}^{t}W(se^{i\phi})xds\in D(A)$, with

$2\pi iA(\int_{0}^{t}W(se^{i\phi})xds)=\int_{\Gamma_{r}}(e^{te^{i\prime}w}-1)A(w-A)^{-1}Cx\frac{dw}{e^{i\phi}w}$

$=\int_{\Gamma_{r}}e^{te^{t}w}A(w-A)^{-1}Cx\frac{dw}{e^{i\phi}w}-\int_{\Gamma_{r}}A(w-A)^{-1}Cx\frac{dw}{e^{i\phi}w}$

$=\int_{\Gamma_{r}}e^{te^{i}w}(A-w+wXw-A)^{-1}Cx\frac{dw}{e^{i\phi}w}$

since, as argued previously, the second integral is zero,

$=-\int_{\Gamma_{r}}e^{te^{lt}w}Cx\frac{dw}{e^{i\phi}w}+\int_{\Gamma_{r}}e^{te^{i}w}(w-A)^{-1}Cx\frac{dw}{e^{i\phi}}$ ,

$=2\pi ie^{-i\phi}(W(te^{i\phi})x-Cx)$ ,

again by calculus of residues.
By Proposition 2.12, $\{W(te^{i\phi})\}_{t\geq 0}$ is a bounded mild C-existence family for $e^{i\phi}A$ ,

as desired.
Under hypothesis (a), the same argument, for $x\in D(A)$, using $(^{*})$ and the fact that

$A(w-A)^{-1}Cx=(w-A)^{-1}CAx$, implies that

$e^{i\phi}A(\int_{0}^{t}W(se^{i\phi})xds)=W(te^{i\phi})x-Cx$ . $(^{***})$

Now let $x\in X$ be arbitrary. Choose $\{x_{n}\}\subset D(A)$ such that $x=\lim_{n\rightarrow\infty}x_{n}$ . Then
$W(se^{i\phi})x_{n}$ converges uniformly to $W(se^{i\phi})x$, on $[0, t]$ , thus, since $\Lambda$ is closed, $(^{***})$ is
valid, for all $x\in X$, so that, again by Proposition 2.12, (2) of Definition 3.5 is verified,
concluding the proof. $\blacksquare$
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PROOF OF THEOREM 4.2. Let $B\equiv(A-k)$ . A short calculation shows that

$B(w-B)^{-1}C=A(w+k-A)^{-1}C-\frac{k}{(w+k)}(C+A(w+k-A)^{-1}C)$ , $(^{*})$

for $w\in V_{\psi}$ .
If (a) holds, then, since $k>0,$ $k/(w+k)$ is bounded on $V_{\psi}$ , so that $(^{*})$ implies that

$\Vert B(w-B)^{-1}C\Vert$ is bounded on $V_{\psi}$ . By Theorem 4.1, there exists a bounded holomorphic
mild C-existence family, $W(z)$ , ofangle $(\psi-\pi/2)$ , for $B$, so that $e^{kz}W(z)$ is an exponentially
bounded holomorphic mild C-existenoe family, of angle $(\psi-\pi/2)$ , for $A$ .

If (b) holds, then, as argued above, $(^{*})$ implies that $\Vert B(w-B)^{-1}C\Vert$ is bounded and
$O(|w+k|^{-\epsilon})$ in $V_{\psi}$ . Since $k>0,$ $w/(w+k)$ is bounded on $V_{\psi}$ , thus $\Vert B(w-B)^{-1}C\Vert$ is
$O(|w|^{-\epsilon})$ in $V_{\psi}$ . Theorem 4.1 again yields the desired result. $\blacksquare$

PROOF OF COROLLARIES 4.3 and 4.4. By Theorem 3.9, all that needs to be shown
is that $D(A)$ is left invariant by $W(z)$ . Sinoe $A$ is closed, this is clear from the definition
of $W(z)$ . $\blacksquare$

To prove Theorem 4.6, we will first need the following lemma.

LEMMA 4.7. Suppose $k$ and $r$ are nonnegative, $\psi>\pi/2,$ $(k+\overline{S_{\psi}})\subseteq\rho(A),$ $|\arg(z)|<$

$(\psi-\pi/2)$ , and $n$ is a nonnegative integer. Let $\Gamma_{r,k}\equiv k+\Gamma_{r}$ , where $\Gamma_{r}$ is defined in the proof

of Theorem 4.1. Then, for $x\in D(A^{n})$ ,

$\int_{\Gamma_{r.k}}e^{zw}(w-A)^{-1}xdw=\int_{\Gamma_{r.k}}e^{zw}(w-A)^{-1}A^{n}x\frac{dw}{w^{n}}+2\pi i\sum_{j=0}^{n-1}\frac{z^{j}}{j!}A^{j}x$ .

PROOF. This follows by induction, from the following calculation, where all
integrals are taken over $\Gamma_{r,k}$ and $0\leq j<n$ .

$\int e^{zw}(w-A)^{-1}A^{j}x\frac{dw}{w^{j}}=\int e^{zw}(w-A)^{-1}A^{j}(w-A+A)x\frac{dw}{w^{j+1}}$

$=(\int e^{zw}\frac{dw}{w^{j+1}})A^{j}x+\int e^{zw}(w-A)^{-1}A^{j+1}x\frac{dw}{w^{j+1}}$

$=(2\pi i)\frac{z^{j}}{j!}A^{j}x+\int e^{Z1\nu}(w-A)^{-1}A^{j+1}x\frac{dw}{w^{j+1}}$ . $\blacksquare$

PROOF OF THEOREM 4.6. With $\Gamma_{r,k}$ as in Lemma 4.7, $xeX$, define

$T(z)x\equiv\int_{\Gamma_{r,k}}e^{zw}(w-A)^{-1}x\frac{dw}{2\pi i}$ ,

for $|\arg(z)|<(\psi-\pi/2),$ $r>0$ .
We will show the following.
(1) $\forall x\in D(A),$ $z\in S_{\psi-\pi/2},$ $(d/dz)T(z)x=AT(z)x=T(z)Ax$ .
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(2) $\forall\phi<(\psi-\pi/2),$ $\exists$ finite $M_{\phi}$ such that

$\Vert T(z)x\Vert\leq M_{\phi}e^{(k+1)|z|}\Vert(A-k)^{n}x\Vert$ ,

$\forall z\in S_{\phi},$ $x\in D(A^{n})$ .
(3) $\forall\phi<(\psi-\pi/2),$ $x\in D(A^{n}),$ $T(z)x$ converges to $x$, as $z$ converges to $0$ , in $S_{\phi}$ .
To prove (1), note that, since the integrand is a holomorphic function of both $z$

and $w$ that decays exponentially, we may differentiate $T(z)$ as follows, where all integrals
are taken over $\Gamma_{r,k}$ .

$2\pi i\frac{d}{dz}T(z)x=\int e^{zw}w(w-A)^{-1}xdw$

$=(\int e^{zw}dw)x+\int e^{zw}(w-A)^{-1}Axdw$

$=2\pi iT(z)Ax=2\pi iAT(z)x$ ,

by calculus of residues and the fact that $A$ is closed.
To prove (2), we need some more notation. Let $\Theta_{r}\equiv\{se^{\pm V}’|s\geq r\},$ $F_{r}\equiv\{re^{i\xi}|-\psi\leq$

$\xi\leq\psi\}$ . (Note that $\Gamma_{r}=\Theta_{r}\cup F_{r}.$)
Fix positive $\phi<(\psi-\pi/2)$ . For $z\in S_{\phi}$ and $x\in D(A^{n})$ , we will apply Lemma 4.7. First,

we will obtain an upper bound for the norm of the integral in Lemma 4.7.

$|e^{-zk}|\Vert\int_{\Gamma_{r.k}}e^{zw}(w-A)^{-1}A^{n}x\frac{dw}{w^{n}}\Vert=\Vert\int_{\Gamma_{r}}e^{zy}(y+k-A)^{-1}A^{n}x\frac{dy}{(y+k)^{n}}\Vert$

$=\Vert\int_{\Gamma_{r}|_{z}|}^{zw}e^{\Pi z}(\frac{w}{|z|}+k-A)^{-1}\frac{dw}{|z|(\frac{w}{|z|}+k)^{n}}\Vert$

$=\Vert\int_{\Gamma_{1}}^{zw}e^{\Pi z}(\frac{w}{|z|}+k-A)^{-1}A^{n}x\frac{dw}{|z|(\frac{w}{|z|}+k)^{n}}\Vert$

,

by Cauchy’s theorem,

$\leq[\int_{e_{1}}e^{|w|e^{i\langle\psi-)}}K|\frac{w}{|z|}+k|^{n-1}\frac{d|w|}{|z||\frac{w}{|z|}+k|^{n}}$

$+\int_{F_{1}}eK|\frac{w}{|z|}+k|^{n-1}\frac{d|w|}{|z||\frac{w}{|z|}+k|^{n}}]\Vert A^{n}x\Vert$

,

for some constant $K$, by hypothesis (a) or (b),
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$=K\Vert A^{n}x\Vert(\int_{e_{1}}e^{|w|\cos\langle\psi-\phi)}\frac{d|w|}{|w+k|z||}$

$+e\int_{F_{1}}\frac{d|w|}{|w+k|z||})$

$\leq\Vert A^{n}x\Vert\frac{K}{\sin(\psi)}(\int_{e_{1}}e^{|w|\cos\langle\psi-\phi)}d|w|+2e\psi)$ ;

note that the quantities in parentheses are finite, since $\psi<\pi$ , and $(\psi-\phi)>\pi/2$ .
We also have

$\Vert\sum_{j=0}^{n-1}\frac{z^{j}}{j!}A^{j}x\Vert\leq e^{|z|}\sup_{0\leq j\leq n}\Vert A^{j}x\Vert$ .

Since $(A-k)$ is invertible, $\Vert(A-k)^{n}x\Vert$ and $(\sup_{0\leq j\leq n}\Vert A^{j}x\Vert)$ are equivalent norms on
$D(A^{n})$ . Thus, our estimates above, combined with Lemma 4.7, yield assertion (2).

To prove assertion (3), first suppose we are under hypothesis (b). Lemma 4.7 implies
that, for $x\in D(A^{n})$ ,

$2\pi i(T(z)x-x)=\int_{\Gamma_{r.k}}e^{zw}(w-A)^{-1}A^{n}x\frac{dw}{w^{n}}+2\pi i\sum_{j=1}^{n-1}\frac{z^{j}}{j!}A^{j}x$ .

Since $\int_{\Gamma_{r,k}}\Vert(w-A)^{-1}\Vert(1/|w|^{n})d|w|$ is finite, the same arguments used in the proof of
Theorem 4.1 show that, for $z\in S_{\phi}$ ,

$\lim_{z\rightarrow 0}\int_{\Gamma_{r,lc}}e^{zw}(w-A)^{-1}A^{n}x\frac{dw}{w^{n}}=\int_{\Gamma_{r.k}}(w-A)^{-1}A^{n}x\frac{dw}{w^{n}}=0$ .

Clearly, $\lim_{z\rightarrow 0}\sum_{j=}^{n-}:(z^{j}/j!)A^{j}x$ equals zero. Thus, as $z$ converges to zero in $S_{\phi},$ $T(z)x$

converges to $x$ , under hypothesis (b).
Under hypothesis (a), use Lemma 4.7 again, for $x\in D(A^{n+1})$ :

$2\pi i(T(z)x-x)=\int_{\Gamma_{r,k}}e^{zw}(w-A)^{-1}A^{n+1}x\frac{dw}{w^{n+1}}+2\pi i\sum_{j=1}^{n}\frac{z^{j}}{j!}A^{j}x$ .

Since $\int_{\Gamma_{r,k}}\Vert(w-A)^{-1}\Vert(1/|w|^{n+1})d|w|$ is finite, the same arguments show that $T(z)x$

converges to zero, as $z$ converges to zero in $S_{\phi}$ , for $x\in D(A^{n+1})$ .
This is saying that, for all $x\in D(A),$ $(A-k)^{-n}T(z)x$ converges to $(A-k)^{-n}x$ , as $z$

converges to zero in $S_{\phi}$ . By (2), $\Vert(A-k)^{-n}T(z)\Vert$ is bounded, for $z$ near zero, in $S_{\phi}$ . Thus,
since $D(A)$ is dense, $(A-k)^{-n}T(z)x$ converges to $(A-k)^{-n}x$ , as $z$ converges to zero in
$S_{\phi}$ , for all $x\in X$, which is equivalent to (3).

This establishes assertions (1)$-(3)$ .
Assertions (1) and (3) imply that, for all $x\in D(A^{n}),$ $z,$ $w\in S_{\psi-\pi/2},$ $T(z)T(w)x=$

$T(z+w)x$ . If $x\in X$, then, since $(A-k)^{-n}x\in D(A^{n}),$ $(A-k)^{-n}T(z)T(w)x=T(z)T(w)(A-$
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$k)^{-n}x=T(z+wXA-k)^{-n}x=(A-k)^{-n}T(z+w)x$ , so that $T(z)T(w)x=T(z+w)x$, that is,
$T(z)$ is a holomorphic semigroup on $S_{\psi-\pi/2}$ .

By Theorem 3.10 and assertions (1)$-(3),$ $A$ generates an exponentially bounded
holomorphic n-times integrated semigroup of angle $(\psi-\pi/2)$ . $\blacksquare$

V. Characterization.

Theorem 5.4 $(a)\leftrightarrow(b)$ is essentially in [26], where semigroups of class $(H_{n})$ are
considered (see [29], Theorem 2).

THEOREM 5. 1. Suppose $A$ is closed, $\{xeqAC)|ACx\in{\rm Im}(C)\}$ is dense, $\pi/2\geq\Theta>0$

and $S_{(n/2+O)}\subseteq\rho_{C}(A)$. Then the following are equivalent.
(a) There exists a bounded holomorphic mild C-existence family of angle $\Theta$ for $A$ .
(b) $\forall\psi<(\pi/2+\Theta),$ $\Vert A(w-A)^{-1}C\Vert$ is bounded in $S_{\psi}$ .
THEOREM 5.2. Suppose $A$ is closed, $\{xeD(AC)|ACxe{\rm Im}(C)\}$ is dense, $\pi/2\geq\Theta>0$

and $\forall\psi<(\pi/2+\Theta)$ , there exists $k_{\psi}\in R$ such that $(k_{\psi}+S,)\subseteq\rho_{C}(A)$. Then the following are
equivalent.

(a) There exists an exponentially bounded holomorphic mild C-existence family of
angle $\Theta$ for $A$ .

(b) $\forall\psi<(\pi/2+\Theta),$ $\Vert A(w-A)^{-1}C\Vert$ is bounded in $(k_{\psi}+S,)$ .
REMARK 5.3. The preceding theorems, along with Theorem 3.9, may be used to

obtain characterization theorems for holomorphic C-semigroups, since $CA\subseteq AC$, when
$A$ generates a C-semigroup. Under the additional hypothesis that ${\rm Im}(C)$ is dense, similar
characterizations appear in [5] and [29].

When $A$ generates a bounded holomorphic C-semigroup of angle $\Theta$ , then
$S_{n/2+O}\subseteq\rho_{C}(A)$; this may be seen using Proposition 2.8 and the proof of Lemma 5.5 (b).
When there exists a bounded holomorphic mild C-existence family of angle $\Theta$ for $A$ ,
then it may be shown that ${\rm Im}(C)\subseteq{\rm Im}(w-A),$ $\forall w\in S_{n/2+O}$ .

THEOREM 5.4. Suppose $D(A)$ is dense. Then the following are equivalent.
(a) A generates an exponentially bounded n-times integrated semigroup ofangle $\Theta$ .
(b) $\forall\psi<(\pi/2+\Theta),$ $thereexistsk_{\psi}>0suchthat(k_{\psi}+S_{\psi})\subseteq\rho(A)and\Vert(A-r)^{-n}A(w-$

$ A)^{-1}\Vert$ is bounded in $(k_{\psi}+S,)$ , for some $r\in\rho(A)$ .
(c) $\forall\psi<(\pi/2+\Theta)$ , there exists $k_{\psi}>0$ such that $(k_{\psi}+S_{\psi})\subseteq\rho(A)$ and $\Vert(w-A)^{-1}\Vert$ is

$O(|w|^{n-1})$ in $(k_{\psi}+S_{\psi})$ .
We will need the following lemma.

LEMMA 5.5. Suppose $\Theta<\pi/2$ .
(a) If A generates an exponentially bounded n-times integrated semigroup, then

there exists $k>0$ such that $(k+S_{\partial})\subseteq\rho(A)$ and $\Vert(w-A)^{-1}\Vert$ is $O(|w|^{n-1})$ in $(k+S_{O})$ .
(b) If there exists a bounded mild C-existence family for $A$ and $S_{O}\subseteq\rho_{C}(A)$, then
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$\Vert A(w-A)^{-1}C\Vert$ is bounded on $S_{\partial}$ .

PROOF. (a) Let $S(t)$ be the n-times integrated semigroup generated by $A$ . By
hypothesis, there exist finite, positive $M,$ $s$ so that $\Vert S(t)\Vert\leq Md^{t},$ $\forall t\geq 0$ . It is wellknown
(see [22]) that $\{w|{\rm Re}(w)>s\}\subseteq\rho(A)$ , with

$(w-A)^{-1}x=\int_{0}^{\infty}w^{n}e^{-wt}S(t)xdt$ ,

when $x\in X,$ ${\rm Re}(w)>s$, so that
(1) $\Vert(w-A)^{-1}/w^{n}\Vert\leq M/({\rm Re}(w)-s)$, for ${\rm Re}(w)>s$ .

If we $(s+S_{O})$ , then we may write $w=s+re^{i\phi}$ , where $r>0,$ $|\phi|<\Theta$ . Thus, $|w-s|/$

$({\rm Re}(w)-s)=r/r\cos(\phi)$ , so that
(2) $|(w-s)/({\rm Re}(w)-s)|\leq 1/\cos(\Theta)$ , for $w\in(s+S_{\partial})$ .

Finally, choose any $k>s$ . There exists finite $c$ such that
(3) $|w/(w-s)|\leq c$, for $w\in(k+S_{O})$ .
Putting (1), (2) and (3) together gives

$\Vert\frac{(w-A)^{-1}}{w^{n}}\Vert\leq(\frac{Mc}{\cos(\Theta)})\frac{1}{w}$

for $w\in(k+S_{O})$ .
(b) Let $W(t)$ be the bounded mild C-existence family for $A,$ $ M\equiv\sup_{t\geq 0}\Vert W(t)\Vert$ . The

same argument as that given in the proof of Theorem 3.6, in [11], shows that

$(w-A)^{-1}Cx=\int_{0}^{\infty}e^{-wt}W(t)xdt$ , $\forall w\in S_{\partial}$ , $x\in X$ .

Thus, we have, as in the proof of (a),
(4) $\Vert(w-A)^{-1}C\Vert\leq M/{\rm Re}(w)$,
(5) $|w/{\rm Re}(w)|\leq 1/\cos(\Theta)$ ,

for we $S_{O}$ , so that

$\Vert A(w-A)^{-1}C\Vert=\Vert w(w-A)^{-1}C-C\Vert\leq(\frac{M}{\cos(\Theta)}+\Vert C\Vert)$ ,

for $w\in S_{O}$ . $\blacksquare$

PROOF OF THEOREM 5.1. $(a)\rightarrow(b)$ . Fix $\psi<(\pi/2+\Theta)$ . Choose $\phi>0$ such that
$(\psi-\pi/2)<\phi<\Theta$ . There exist bounded mild C-existence families for both $e^{i\phi}A$ and
$e^{-i\phi}A$ . Since $(\psi-\phi)<\pi/2$ , Lemma 5.5 implies that $\Vert A(e^{\pm i\phi}y-A)^{-1}C\Vert=\Vert A(y-$

$ e^{\pm i\phi}A)^{-1}C\Vert$ is bounded, for $y\in S_{\langle\psi-\phi)}$ . Since $S_{\psi}$ is the union of $e^{i\phi}S_{\langle\psi-\phi)}$ with $e^{-i\phi}S_{(\psi-\phi)}$ ,
this implies that $\Vert A(w-A)^{-1}C\Vert$ is bounded, for we $S_{\psi}$ .

$(b)\rightarrow(a)$ follows from Theorem 4.1 (a). $\blacksquare$
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PROOF OF THEOREM 5.2. $(a)\rightarrow(b)$ . Fix $\psi<(\pi/2+\Theta)$ . Choose $\phi$ so that $(\psi-\pi/2)<$

$\phi<\Theta$ . Let $W(z)$ be the mild C-existence family for $A$ . There exists positive $k$ and $M$

such that $\Vert W(z)\Vert\leq M|e^{kz}|,$ $\forall z\in S_{\phi}$ . Let $B\equiv(A-k)$. Then $e^{-kz}W(z)$ is a bounded
holomorphic mild C-existence family of angle $\phi$ , for $B$ . By Theorem 5.1, since
$\psi<(\pi/2+\phi),$ $\Vert(y-B)^{-1}C\Vert=(1/|y|)\Vert C+B(y-B)^{-1}C\Vert$ is $O(1/|y|)$, for $y\in S_{\psi}$ . This is
saying that $\Vert(w-A)^{-1}C\Vert$ is $O(1/|w-k|)$ , for $w\in(k+S_{\psi})$ . Let $k_{\psi}\equiv(k+1)$. Since $|w/(w-k)|$

is bounded in $(k_{\psi}+S_{\psi}),$ $\Vert(w-A)^{-1}C\Vert$ is $O(1/|w|)$ in $(k_{\psi}+S_{\psi})$ , so that $\Vert A(w-A)^{-1}C\Vert=$

$\Vert w(w-A)^{-1}C-C\Vert$ bounded in $(k_{\psi}+S,)$ , as desired.
$(b)\rightarrow(a)$ follows from Theorem 4.2 (a). $\blacksquare$

PROOF OF THEOREM 5.4. $(c)\rightarrow(a)$ follows from Theorem 4.6 (a).
$(a)\rightarrow(c)$ . Fix $\psi<(\pi/2+\Theta)$ . Choose $\phi>0$ such that $(\psi-\pi/2)<\phi<\Theta$ . By Proposi-

tion 3.7 (a), both $e^{i\phi}A$ and $e^{-i\phi}A$ generate exponentially bounded n-times integrated
semigroups.

Since $(\psi-\phi)<\pi/2$ , Lemma 5.5 implies that there exists $k>0$ such that
$\Vert(e^{\pm i\phi}y-A)^{-1}\Vert=\Vert(y-e^{\pm i\phi}A)^{-1}\Vert$ is $O(|y|^{n-1})$ , for $y\in(k+S_{(\psi-\phi)})$ . There exists $k_{\psi}$ so
that $(k_{\psi}+S_{\psi})$ is contained in the union of $e^{i\phi}(k+S_{t’-\phi)})$ with $e^{-i\phi}(k_{\psi}+S_{\langle\psi-\phi)})$ . Thus,
$\Vert(w-B)^{-1}\Vert$ is $O(|w|^{n-1})$ , for $w\in(k_{\psi}+S_{\psi})$ , as desired.

$(a)\rightarrow(b)$ . Fix $\psi<(\pi/2+\Theta)$ . As in $(a)\rightarrow(c)$ , there exists $k_{\psi}>0$ such that
$(k_{\psi}+S_{\psi})\subseteq\rho(A)$ . By Theorem 3.10, there exists $r>k_{\psi}$ such that $A$ generates an
exponentially bounded holomorphic $(A-r)^{-n}$-semigroup of angle $\Theta$ . Theorems 5.2 and
3.9 now imply (b).

$(b)\rightarrow(a)$ . By Theorems 5.2, 3.9 and 2.13, $A$ generates an exponentially bounded
holomorphic $(A-r)^{-n}$-semigroup of angle $\Theta$ . Theorem 3.10 thus implies (a). $\blacksquare$

VI. Stability.

For a bounded holomorphic C-semigroup generated by $A$ to be stable it is sufficient
that the range of $A$ be dense (Corollary 6.2). When the range of $C$ is dense, it is also
necessary (Theorem 6.6). This is equivalent to the solutions of the corresponding abstract
Cauchy problem (6.3) being stable.

THEOREM 6.1. Suppose $W(t)$ is a bounded holomorphic C-semigroup generated by
A. Then $\lim_{t\rightarrow\infty}W(t)x=0,$ $\forall x\in\overline{{\rm Im}(A)}$ .

COROLLARY 6.2. Suppose ${\rm Im}(A)$ is dense and $W(t)$ is a bounded holomorphic
C-semigroup generated by A. Then $\lim_{t\rightarrow\infty}W(t)x=0,$ $\forall xeX$.

This immediately yields information about the following stable abstract Cauchy
problem.

$u^{\prime}(t, x)=A(u(t, x))(t\geq 0)$ , $\lim_{t\rightarrow\infty}\Vert u(t, x)\Vert=0$ . (6.3)
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COROLLARY 6.4. Suppose ${\rm Im}(A)$ is dense and A generates a bounded holomorphic
C-semigroup. Then (6.3) has a unique solution, $\forall xeC(D(A))$ .

THEOREM 6.5. Suppose $W(t)$ is a C-semigroup generated by $A$ and $\lim_{t\rightarrow\infty}W(t)x=0$,
$\forall x\in D(A)$ . Then $\overline{C(D(A))}\subseteq\overline{{\rm Im}(A)}$ .

THEOREM 6.6. Suppose ${\rm Im}(C)$ is dense and $W(t)$ is a bounded holomorphic
C-semigroup generated by A. Then the following are equivalent.

(a) $\lim_{t\rightarrow\infty}W(t)x=0,$ $\forall x\in X$.
(b) $\lim_{t\rightarrow\infty}W(t)x=0,$ $\forall x\in D(A)$ .
(c) ${\rm Im}(A)$ is dense.
(d) (6.3) has a unique solution, $\forall x\in C(D(A))$ .
PROOF OF THEOREM 6.1. Exactly as with strongly continuous holomorphic semi-

groups (see [27], Theorem 5.2), one may use the analyticity of $W(t)$ to show that
$AW(t)$ is bounded, $\forall t>0$ , and $\Vert AW(t)\Vert=\Vert(d/dt)W(t)\Vert$ is $O(1/t)$, as $ t\rightarrow\infty$ . Thus,
$\lim_{t\rightarrow\infty}W(t)x=0,$ $\forall x\in{\rm Im}(A)$ . Since $W(t)$ is bounded, the same is true, $\forall x\in\overline{{\rm Im}(A)}$ . $\blacksquare$

PROOF OF COROLLARY 6.4. Since $A$ generates a C-semigroup, $W(t),$ $(6.3)$ , without
the stability condition, has the unique solution $u(t, Cx)=W(t)x$ , when $x\in D(A)$

(Proposition 2.4). Corollary 6.2 now implies that this is a solution of (6.3). $\blacksquare$

PROOF OF THEOREM 6.5. Suppose $\phi\in X^{*}$ annihilates ${\rm Im}(A)$ . Then, $\forall x\in D(A)$,
$t\geq 0,0=(d/dt)\phi(W(t)x)$ . Thus $\phi(W(t)x)=\phi(Cx),$ $\forall t\geq 0$ , so that $\phi(Cx)=0$, that is, $\phi$

annihilates $C(D(A))$ . $\blacksquare$

PROOF OF THEOREM 6.6. $(b)\rightarrow(c)$ . By Proposition 2.6 (c), $\forall x\in X$, $t>0$ ,
$(1/t)\int_{0}^{t}W(s)xds\in D(A)$ . Since $\lim_{t\rightarrow 0}C((1/t)\int_{0}^{t}W(s)xds)=C^{2}x,$ $C(D(A))$ is dense in ${\rm Im}(C^{2})$ ,
which is dense, since Im(C) is dense. Thus $C(D(A))$ is dense, so that, by Theorem 6.5,
${\rm Im}(A)$ is dense.

$(c)\rightarrow(a)$ is Corollary 6.2.
$(d)\leftrightarrow(b)$ . Since $A$ generates a C-semigroup, $W(t)$ , without the stability condition,

has the unique solution $u(t, Cx)=W(t)x,$ $\forall x\in D(A)$ . $\blacksquare$

VII. Examples.

We apply section IV to matrices of operators, acting on the products of (possibly
different) Banach spaces,

$A\equiv\left\{\begin{array}{llll}A_{11} & A_{12} & \cdots & A_{1n}\\\vdots & \ddots & & \vdots\\\vdots & & \ddots & \vdots\\ A_{n1} & \cdots & \cdots & A_{nn}\end{array}\right\}$ ,

on $x_{j=1}^{n}X_{j}$ , where $A_{ij}$ maps a subspace of $X_{j}$ into $X_{i}$ . Another approach to (1.1), with
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such an $A$ , may be found in [12], [13], [14], [20] and [21].

LEMMA 7.1. (Lemma 7.4 from [11]) Suppose $B$ is an injective operator, from $X_{1}$

into $X_{2}$ , and for $i=1,2$ , there exists injective $D_{i}\in B(X_{i})$ such that $D_{2}B$ and $D_{1}B^{-1}$ are
bounded. Then $B$ is closable and $\overline{B}$ is injective.

EXAMPLE 7.2. Suppose $n,$ $m\in N\cup 0,$ $s\in\rho(G_{1})\cap\rho(G_{2})$ ,

$\left\{\begin{array}{ll}G_{1} & B\\0 & G_{2}\end{array}\right\}$ , $D(A)\equiv D(G_{1})\times[D(B)\cap D(G_{2})]$ ,

where
(1) $G_{i}$ generates a strongly continuous holomorphic semigroup, for $i=1,2$ .
(2) $(s-G_{1})^{-m}B$ is bounded.
(3) $D(G_{2}^{n})\subset D(B)$ .
(4) $B$ is closed.

Then $A$ is closable and th$ere$ exists an exponentially bounded holomorphic mild C-existence
family for $\overline{A}$, where

$C\equiv\left\{\begin{array}{ll}I & 0\\0 & (s-G_{2})^{-n}\end{array}\right\}$ .

PROOF. By (3) and (4), $[B(s-G_{2})^{-n}]\in B(X_{2}, X_{1})$ . For $r\in\rho(G_{1})\cap\rho(G_{2}),$ $(r-A)$ is

injective. By Lemma 7.1, with $D_{i}\equiv\left\{\begin{array}{ll}(s-G_{1})^{-m} & O\\O & (s-G_{2})^{-n}\end{array}\right\}$ , for $i=1,2,$ $A$ is closable,

and ($ r-A\gamma$ is injective. Since

$(r-A)^{-1}\left\{\begin{array}{ll}I & 0\\0 & (s-G_{2})^{-n}\end{array}\right\}=\left\{\begin{array}{ll}(r-G_{1})^{-1} & (r-G_{1})^{-1}[B(s-G_{2})^{-n}](r-G_{2})^{-1}\\0 & (r-G_{2})^{-1}(s-G_{2})^{-n}\end{array}\right\}$ ,

$\Vert\overline{A}(r-\overline{A})^{-1}C\Vert$ is bounded in a sector $(k+V_{\psi})$ , for some $k>0,$ $\psi>\pi/2$ . It is also not
hard to see that $\alpha G_{1}$ ) $xD(G_{2})\subseteq\{x\in D(AC)|ACxe{\rm Im}(C)\}$ . Thus the result follows
from Theorem 4.2 (a). $\blacksquare$

EXAMPLE 7.3. Suppose $N_{2},$ $\cdots N_{n},$ $M_{1},$ $\cdots,$ $M_{n-1}eN$ ,

$A\equiv[_{0}^{G_{1}^{\backslash }}0B_{1,2}G_{2}$

$0$

$B_{n_{G_{n}^{-}}1n}B_{1.n},]$ ,

$n$

$D(A)\equiv D(G_{1})xD(G_{j}^{N_{j}})$ ,
$j=2$
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where
(1) $D(G_{j}^{N_{j}})\subseteq D(B_{i,j})$ , for $1<j\leq n$ .
(2) $G_{i}$ generates a strongly continuous holomorphic semigroup, for $1\leq i\leq n$ .
(3) $Thereexistss\in Csuchthat(s-G_{i})^{N}{}^{t}B_{i,j}(s-G_{j})^{-N_{j}}eB(X_{j}, X_{i})$ , $forl\leq t<j\leq n$ .

$(N_{1}\equiv 0)$

(4) There exists $s\in C$ such that $(s-G_{i})^{-M}{}^{t}B_{\ddagger,j}(s-G_{j})^{M_{j}}$ is bounded, for $1<i<j\leq n$ .
Then $A$ is closable and there exists an exponentially bounded holomorphic $(s-A)^{-1}$ C-
existence family for $\overline{A}$, where

$C\equiv[oOI(s-.G_{2})^{-N_{2}}O.$

$00$

$(s-G_{n})^{-N_{n}}00]$ .

PROOF. As in Example 7.9, in [11], it may be shown that $A$ is closable,
$\bigcap_{k=1}^{n}\rho(G_{k})\subseteq\rho_{C}(\overline{A})$ and $\Vert(r-\overline{A})^{-1}C\Vert$ is $O(1/|r|)$ in a sector $(k+V_{\psi})$ , for some $k>0$ ,
$\psi>\pi/2$ , so that this follows from Theorem4.2 (b). $\blacksquare$

EXAMPLE 7.4. As argued in Example 7.11, in [11], we may choose, in Examples
7.2 and 7.3, $X_{j}\equiv L^{p}(R^{N})(1\leq p\leq\infty),$ $G_{j}$ equal to a constant coefficient differential oper-
ator $p_{j}(D)$ , where $D=(i(\partial/\partial x_{1}), \cdots, i(\partial/\partial x_{n})),$

$p_{j}$ is an elliptic nonconstant polynomial
such that $\{p_{j}(x)|xeR^{N}\}\subseteq(k-V_{\phi})$ , for some $k\in R,$ $0\leq\phi<\pi/2$ (such as $G_{j}$ equal to the
Laplacian), and $B_{i,j}$ equal to a linear partial differential operator, $B_{i,j}\equiv\sum_{|\alpha|\leq m_{ij}}h_{\alpha.i.j}D^{\alpha}$ ,
of arbitrary order, where $h_{\alpha,t,j}$ is infinitely differentiable with bounded derivatives.
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