Tokyo J. MATH.
VoL. 16, No. 1, 1993

Nonexistence Results for Harmonic Maps between
Noncompact Complete Riemannian Manifolds

Kazuo AKUTAGAWA and Atsushi TACHIKAWA

Shizuoka University
(Communicated by Y. Maeda)

§1. Introduction.

In this paper, we prove two kinds of nonexistence results for harmonic maps. The
one is to prove nonexistence of a harmonic map with a rotational nondegeneracy at
infinity, from a simple Riemannian manifold to an Hadamard manifold of negative
sectional curvature bounded away from zero. The other is to prove nonexistence of a
nonconstant harmonic map with a polynomial growth dilatation, from a complete
Riemannian manifold of nonnegative Ricci curvature to a Riemannian manifold of
negative sectional curvature bounded away from zero.

Let M =(M™, h) and N=(N", g) be Riemannian manifolds of dimension m and »
(m, n>2) respectively. Throughout this paper we denote by x=(x?!, ---, x™) and
y=(!, - - -, ¥" local coordinates on M and N respectively. We shall write (h,p(x)) and
(9:;()) for the metric tensors with respect to the local coordinates on M and N
respectively. Moreover, (h*#(x))=(h,5(x)) "1, (¢"(»))=(g:;(»)) "' and h(x) denotes the
determinant of (h,z). The Christoffel symbols on M and N will be denoted by I'j, and
I} respectively.

For a map Ue C'(M, N) we define the energy density e(U)(x) of U at xe M by

1 1 . )
e(U)(x)= £ dU(x)||* = 5 W8 (x) Dot (x) Dgut'(x)gy;(u(x)) ,
where u(x) is the expression of U(x) with respect to the local coordinates (3!, - - -, y")

and D, denotes 0/0x*. For a bounded domain Q< M, we define the energy of U on Q
by
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E(U ; Q)=J e(U)du,
Q

where du=./h(x)dx stands for the volume element on M. A map U: M—N is said to
be harmonic if it is of class C? and is a critical point of the energy functional on any
bounded domain Q< M. The Euler-Lagrange equation for the energy functional is
given by

(1.1) A (x) + KB (X (u(x)) D (x)Dgu(x)=0  for 1<i<n,
where A denotes the Laplace-Beltrami operator on M, i.e.
(1.2) ' A=h"*(x)D,Dg— h**(x)I"2(x)D, .

A Reimannian manifold is said to be simple if it is diffeomorphic to the Euclidean
m-space R™ and furnished with a metric for which associated Laplace-Beltrami operator
is uniformly elliptic, and p,e M is said to be a pole of M if the exponential map at
PoEM gives a diffeomorphism between M and the Euclidean space. Moreover, a
Riemannian manifold N is said to be an Hadamard manifold if it is a complete simply
connected Riemannian manifold with nonpositive sectional curvature.

In [24], the second author proved that there exists no harmonic map U from R™
to an Hadamard n-manifold N with negative sectional curvature Ky, Ky< —x2<0,
satisfying the following uniform rotational nondegeneracy condition (see also [25]):
There exists a positive constant ¢ such that

n m ui 2 e A
> Y|\D,—)=—5  forall' xeR™,
i |l | x|?

where x=(x!, - - -, x™) is the canonical normal coordinate system on R™, u=(u', - - -,

¥") a normal coordinate system centered at U(0), |x|=+)"_, (x®? and |u(x)|=
Vv Y1, (#(x))*. The nonexistence results of this type can be found in [20] also.
Now we can state the first main result.

THEOREM 1.1. Let M be a simple Riemannian m-manifold with a pole p,e M,

(x!, - -+, x™) a normal coordinate system centered at p, and ky(x) the minimum of the
sectional curvature of M at x. Assume that ky(x) satisfies
(1.3) —min{ky(x), 0} <O(r~2) as r=|x|-o0.

Let N be an Hadamard n-manifold whose sectional curvature is bounded above by a
negative constant — k2. Then there exists no harmonic map U : M— N which satisfies the
Sfollowing condition:

(1.4) l}nnl inf (log| x|) {I x| ( = )2 (e(U)(x)— e(p)(x))} >0,

sinh(xp)
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where p(x)=disty(U(x), q,) for an arbitrarily fixed point q,€ N.
Especially, for the case that M= R? we get the following result.

COROLLARY 1.1. Let N be as in Theorem 1.1. Then, there is no harmonic map
U: R?- N satisfying the following condition:
2
(1.5) lim inf(log|x [)? {| x|? <L) (e(U)(x)— e(p)(x))} >0.
x| > 0 sinh(xp)

A C! map ¢: M—N is said to have bounded (first) dilatation if there exists a
constant K>1 such that 4,(x)<K?1,(x) for all xe M, where A, (X)=A,(x)= - >
An(x)=>0 are the eigenvalues of the pull-back quadratic form ¢*g on T, M.
Goldberg-Har’El [11] and Sealey [21] proved (improving on a succession of earlier
result [12]) that harmonic maps with bounded dilatation, from a complete Riemannian
manifold of nonnegative Ricci curvature to a Riemannian manifold of negative sectional
curvature bounded away from zero, are constant maps. Kendall [16], [17] also obtained
similar results by using stochastic methods. We shall generalize the concept of bounded
dilatation. For each s>0, we say that a C! map ¢ : M—N has polynomial growth
dilatation of order at most s if there exist a constant K> 1 and some point p, € M such that

(1.6) A1 (x) < K21 +r(x)?)¥?2,(x) forall xeM,

where r(x)=dist,/(poy, X) and 4,(x) =>A,(x)> - - >4,(x)=0 are the eigenvalues of ¢ *g
on T, M. It turns out that this definition is independent on the choice of the point p, e M.
The second main result can be stated as follows.

THEOREM 1.2. Let M be a complete Riemannian manifold of nonnegative Ricci
curvature Ric,,>0 and N a Riemannian manifold of negative sectional curvature Ky,
Ky< —x2<0. Let U: M — N be a harmonic map with polynomial growth dilatation of
order at most s. If s=2, then the energy density e(U) of U is bounded on M. Furthermore,
if s<2, then U is a constant map.

COROLLARY 1.2. Under the same assumptions as in Theorem 1.2, if m=dimM =2,
then every harmonic map U : M*— N with polynomial growth dilatation of order at most

2 is a constant map.

In [5] Choi and Treibergs constructed an explicit one-parameter family of harmonic
diffeomorphisms of the hyperbolic plane H? onto itself (See also [19]). Recently,
constructions of harmonic maps from the hyperbolic m-space H™ to H" with unbounded
image have been obtained in [1] (for m=n=2) and Li-Tam [18], [19] (for all m, n>2),
by solving the asymptotic Dirichlet problem for harmonic maps between H™ and H".

On the other hand, not much has been known about harmonic maps from R™ to
H" with unbounded images. In fact, Eells-Lemaire proposed the following problem.

PROBLEM. ((7.4) in [7]) Is there a harmonic map from R? to H? of rank 2 almost
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everywhere? (Certainly such a map ¢ must have infinite energy F(g ; R?)=oo. Further,
¢ can not have bounded dilatation.)

For an affirmative answer of this question, Choi-Treibergs [6] also constructed a
class of harmonic diffeomorphisms from R? into H? with unbounded images. Corollary
1.1 implies that these harmonic diffcomorphisms never satisfy the rotational non-
degeneracy condition (1.5) at infinity. Also Corollary 1.2 implies that these harmonic
maps have never polynomial growth dilatation of order at most 2. These facts, together
with Theorem 1.1 and Theorem 1.2, suggest a special aspect of harmonic maps from
R™ to H".

Finally, we would like to mention that Liouville-type theorems have been obtained,
for examples, in [2], [8], [9], [13], [14] and [22].

2. Proof of Theorem 1.1.

First of all, we prove some differential geometric estimates which are based on
Lemma 6 of [15].

LEMMA 2.1. Let M, be a Riemannian p-manifold with a pole Pos O, -,y a
normal coordinate system centered at p,,, (7:{(»)) the metric tensor with respect to the
normal coordinate system and K(y) and k(y) the maximum and minimum of the sectional
curvatures of My at y respectively. Let f,, f, be functions of class C*(R ., R..) which satisfy

Jo()
t

2.1)

=1, f(H>0 Vte(©, ), a=0,1.

t—0

Assume that

o {_fé’(t) 1-{11',(:)}2},S )

2.2) O A0

1) 1-— {f{(t)}z}
L @Y

where t=|y|=./ ;’= L O”)%. Then we have the following estimates

SK(y)Smin{—

@3) [P+ ;E ;')’:;(J/')§'§J>'Y:j(.}’)(XlX]+}’krkz(Y)X1Xl)> P+ tff D NEE,
2 2
2.4) 12+ f°‘ 1oD) 25y, (hxixim g2 482 LIS

for all y, Xe RP, where t=|y|, {=(X, y)y/t? and E=X—.

PrROOF. Let P, (a=0, 1) be a warped product manifold R, x,_ S?~!. Then the
metric tensor of P, with respect to a normal coordinate system (y!, - - -, y?) centered at
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{0} x P~ ! is given by

»y ﬁ,uyl)(a___yjy_f)
=Tt e \ )

Moreover the maximum and the minimum of sectional curvatures at y are attained
by
” ¢ 1__ ! P 2
IO E Q)
AU fa (@)

where t=|y| (see [22]). Now, applying Rauch’s comparison theorem to M, and P,,
we get the following estimates as in the proof of Lemma 6 of [15]:

2

2.5) fo(t) S Y i +y"I“kz(y)€‘£’) fl(t)
0> Y ONEE REAON
2.6) f°‘ )Iélz_v.,(y)f‘é’>f 10, ¢ 2

for all y, & e R? with (¢, y)=Z;.’=1 Elyi=0, where &=/ ]-, ()%

Since (') is a normal coordinate system, we have the following relations (cf. [15])
(@ rOW'= il Y=y,

@7 | ® Cr(yly*=0,

© 1OV TLOW =Ty’ = —rklj(J’)ykyj'f'}’kJ’jDk?ﬂ

| =0+y*Dy(y;iy") —yudly* =y*Diy' —y'=0.

Remarking the above relations we get
)’ij(J’)(Xin‘FJ’kF;l(J’)XIXj)=7ij()’)cicj+Vij(J’){fi'fj'*‘kuxil(J’)élfj} .

Using above equality, from (2.5), (2.6) and (2.7) we get (2.3) and (2.4). O

LEMMA 2.2 Let M be as in Theorem 1.1. Let ¢, and c, be constants which satisfy

2.8) c5> —inf{kp(x) : xe M, |x|<1},
' 2> —inf{| x|?ky(x) : xe M, |x|=1}.

Then there exists a positive constant c, = c,(cy, ¢;) such that
(2.9) Pag(XNEE? + XTT 55(x)E°E8) < Cohap(x)E*EP
for all x and E€ R™.

Proor. For a constant k, put ¢,(f)=c;3t+c,t*, and choose the constants cj, ¢,
and a so that
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(2.10) (p,,(l)=—’1?sinhk » @(1)=coshk, ¢ (1)=ksinhk.

Moreover, put

t . 1—{pi()}?
@ (1) () =12 {(fk( )} )
o)’ 0]
It is easy to see that if ¢3, ¢,>0 and a>0, then @;, ¢; <O0.
On the other hand, from (2.10), we have

=a,=k*(e*—e M)/{(k—De*+ (k+1)e™*},

' c3——1—{(1—£_—1—)e"+(1+k+1>e_"},
(2.12) 1 2k a—1 a—1
1

_ C1N\k -k
Lc‘t———-—zk(a_l){(k De*+(k+1)e™*} .

(2.11) Gu(D)=—1>

From the above equalities, we can see that if k is sufficiently large then a>1 and c,,
¢4>0. Thus we can take a constant k, so that @, and ¢, are monotone decreasing
functions for k> k,. Now take k>max{k,, ¢, ¢,} and put

1 .

—sinh kt 0<t<l,
fl)=1 ¥

(D) t>1.

Then, by a direct calculation, we see that
/(O e 0/{0) SEP
G Q@)

Moreover, remarking the monotonicity of @, and ¢,, we obtain

(2.13) < —c2 for 0<t<1.

(2.14) B < —kP<—c* for 1<t.

Now, by (2.8), (2.13) and (2.14), we can apply Lemma 2.1 with My=M and f,= f,.
On the other hand #f;/ f, is bounded. Thus, putting ¢, =sup, , tfy/fi + 1, we get (2.9).
O

Let u=(u'(x), - - -, u"(x)) be the expression of a harmonic map U: M—N in terms
of a normal coordinate system centered at any fixed point ¢, in N. Then u satlsﬁes the
following equation of weak form:

(2.15) f h8g,;{ DDy’ + @*T},D ' Dgul}/ h dx=0, VoeCP(R™ R").
Rm
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PROPOSITION 2.1. Let N be as in Theorem 1.1 and u the expression of a harmonic
map U : M— N with respect to a normal coordinate system on N centered at an arbitrary
fixed point q,€ N. Then we have the following differential inequality for |u|.

sinh(2x| u|) { K

(2.16) Alu(x)— — sinh(c| u])

2
} {e(u)(x)—e(p)(x)} =0,

where A denotes the Laplace-Beltrami operator on M defined by (1.2) and |u|=
VX1 O 1 DullR=37_ WDy Dgit, |(D\u))l|f=h**D,ju|Dglul.

Moreover, if M is simple and u satisfies (1.4), then we get
2.17) Alul———° ___sinh@xlul)=0 on M\ Bg,0)
2x| x |2 log| x|
for some e,>0 and Ry, >0.
Proor. Taking ¢ =un, ne CF(R™, R) in (2.15) and using (2.7a), we get

1 o
(2.18) J N het {? D, u|2Dsn+ng,;(Du' Dyu’ + u*r,i,D,u‘D,uf)} V hdx=0.

For a fixed xeM, let {e,},=1..m» be an orthonormal basis of 7T,M, and write
e, =), - €J(0/0x”) in terms of the local coordinate system (x', - - -, x™) on M. In (2.3),
take f, =;%sinh(xor), Mo=N, X'=eZD,', and sum up with respect to y, then we get
the following inequality

cosh(k|u|)

———— - i j
sinh(x u]) g:; &g,

(2.19)  h*g,j(u) (D' Dy’ + W Ty D' Dp?) = | L 1P+ 3 |u]
=1

where

Zj , weiD,ul

(=¢), 4= P ¥ and ¢{=(¢)=(e;Du'—(}).
Here, we used the fact that
(2.20) Y elef=h¥(x).
y=1
Moreover, using (2.20) again, we can see that
IDlul?l3
2 __ 2 __ haﬂDa u 2D ,
¥q yZ”}:(Cy) | B |u|> Dy u|? T

(2.21)
;1 gi; (&3 = e(u)(x) — | (D) u )| x(x) = e(u)(x) — e(p)(x) .

From (2.18), (2.19) and (2.21), we can deduce that | 4| satisfies the differential inequality
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(2.16).
Now, assume that u satisfies (1.4) and that M is simple. Then (h*f) satisfies
AXP<h®(x)X,X, Vx,XeR"

for some positive constant A, and therefore (1.4) implies

——— 1 {e(u)(x)—e _—————
{smh( )} {e(u)(x)—e(p)(x)} = |zlogl |
for some ¢, and sufficiently large | x|. Combining (2.16) and the above inequality, we
get the differential inequality (2.17). _ O

Now, we can prove Theorem 1.1 by comparing |u| with a suitable supersolution
of (2.17).

PrROOF OF THEOREM 1.1. We first give supersolutions of the elliptic equation
corresponding to (2.17) which tend to infinity on a bounded region.

Let M be as in Theorem 1.1 and (x!, - - -, x™) a normal coordinate system on M.
Let py(t)=log(1+#)—log(1—7¢°), B,={xeM:|x|<s} and @;, x(x): Bgx—R be a

function defined by
1 K| x
P,R(X) = '; Ps ( I) .

R

Denote r=|x| and t=«r/R. Then

1 1
, A‘Pa,x,x(x) = ? haﬁDaDﬁ(pa,x,R - ; h*r Jprco.;,x,R
(2.22)

1':2 P! (t)+%{(tr(h“")— Y haﬂrz,,xv)— l}p{,

y=1

For a fixed xeM, let {e,},=1...m €.=(el, - -, el) be an orthonormal basis of
T, M. Using (2.20), we can see that

tr(h*f) — Zl h*8T 1px" = tr(h*f) — h** Zl [y ph™x"
'y = ,’ =
=tr(h*?)— ). elefl,zx"
n=1

=tr(h*f)+ ). {x’elefrl (Dhg,)xerel}
n=1

apy

=tr(h*?) + Z {x"egelT y5,— D (hg,x")eZel + hy (D, x")ezel}

n=1




HARMONIC MAPS 139

=tr(h*?)+ ) {x%elefl 5, —,pel€l +hy,0leret
n=1
=tr(h*f) + Z {x"erell .5, + h,pelel} — 6,,n**

= Z {hogelel + x"etell 5.} = z hog(elel +x'T'§elel) .
Thus, using Lemma 2.3, we get the following estimate
(2.23) tr(h*f)— Z h*eT}px" < c, Z h.gelel =mc, .

'y=

Combining (2.22) and (2.23), we obtain

com—1
(2.24) A@s o r(X)<—5 R2 pi () +-2 pK1) -

Rr

Now, a direct calculation leads us to the following inequality for | x| >1.

€ .
A@;, j(X) — ——————sinh(2k@; , r(x))
2k| x|*log| x|

2K [ -2 {5(5+czm—2) log <5- t)—s}
K

S1:z2(1 128)2 log(Rt/x)L

+13%72 {6(6 —c,m+2)log (i:— t) — e}]

2(P~2+13972) R
BT csologl — |—¢ep,
R*(1—1*%)*1log(Rt/x) K

for 0<d<1 and some cs=c(c,, m)>0. Thus, for any £¢>0, if we take 6=0(R)=
min{e/(cslog(R/x)), 1}, we obtain

(2.25)

(2.26)  A@srr()——— - sinh(2K@s  x())<O  on Bg\B,.
- 2x| x |2 log| x| -

In the following let us assume that R is sufficiently large so that &/(c5 log(R/x))<1. For
any fixed xe R™\ B,,
6(R)logt=w \ .__f__ as R 2+,
cslog(R/x) Cs

and therefore

PR =d®ost  g=lcs a5 R p +00.
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Thus, putting

1 14e5ls
fi=—log o,

K l—e e
we can see that
(2.27) P r(X) 1= Psr) ., rR(*¥) N € as R 7 +oo.

Let u(x) be the expression of a harmonic map U : M — N with respect to a normal

coordinate system x=(x!, - - -, x™) on M centered at the pole of p,e M and a normal
coordinate system y=(y!, - - -, »") on N centered at arbitrary fixed point ¢, N. Take

Ry >1 and put K=Supg, |u|. Assume that U is not a constant map. Then | #| can not
remain bounded because of a Liouville-type theorem due to [14]. Thus, there exists a
compact set D R™ \ Bg, on which |u|>pu+¢+2.

Let R, be sufficiently large so that R,/x> R, and

O, (X)<E+1 on D.
This choice is the case because of (2.27). On the other hand it is easy to see that
Yr, (%) =@ r,(x)+u
satisfies (2.26) on By, ,.\B;. Thus we get

Ayg, sinh2xy g, ) <0 on Bg,\Bi:,

0
2x] x|*log| x|

Alu| sinh(2x| u[) >0 on R™\ By,

0
2k]| x |2 log| x |
and

{¢R,2u+c>|u| on 0By,

llm l,,Rl= +OO .
x|~ R1/x

Now, taking R, sufficiently large so that By, >> By, (2> B;) and that By, /;‘\BROD D,
we can use a comparison theorem for elliptic equations (see for example [10] Theorem
10.1) and get

l/,R1ZIu| on BR;/I:\BRO ’
especially
lu|<yYg,<&E+p+1 on D.

It contradicts our choice of D. Thus Theorem 1.1 is proved. O
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PROOF OF COROLLARY 1.1. Assume that M =R?and a harmonic map U: R2—>N
satisfies (1.5). Then we have

(2.28) Alu|— _sinh(x|u)=0  on M \Br,(0)

)
2«| x |*(log| x |)

instead of (2.17). Moreover, for this case m=2 and ¢, =1 in (2.24). Thus we get

A@; . r(X)— ) sinh(2Kk@; . r(X))

e
2| x|*(log| x |)

zx(ta—2+t36—2) (£>}2_ ‘J
= R%(1— ) (log(Ri/x))* [52{“ "y

instead of (2.25). Thus for any ¢>0, if we take 6 =min{e/(log(R/x)), 1}, we obtain

(2.29)

(2.30)  Agsr(x)—

€
sinh(2x@; . r(x)) <0 on B B, .
21| x |2 (log] x )2 (2x@;,,r(X)) rie \B1

Now (2.28) and (2.30) enable us to proceed as in the proof of Theorem 1.1 and get the
assertion of Corollary 1.1. ]

3. Proof of Theorem 1.2.

LEMMA 3.1. Let U: M— N be a smooth map with polynominal growth dilatation of
order at most s and u an expression of U. Then

3.1 h*'h?°D ' D gu’D yukDJul(gik gn—9gudic) = (U)?,

8
K2L2(1 + r2)s/2 e
where K is the same constant as in (1.6) and L=min{m, n}.

Proor. For any xeM, we may choose orthonormal frames at x so that
(0*9)op(xX) = A,(x)0,5. We first note

1
e(U)x)=— 3 A(x) and Ap,,(x)= - - =1,(x)=0.
2 1<a<L
Since u has polynomial growth dilatation of order at most s, we then have at x
h*'h*D u'D ,,ufD yukDaul(g w1 —9Jud )
=2 Y A0)A(x) =24, (x)A5(x)
1<a<fs<sL

2 8

2 2
X 2(1 +r(x)?)? A1(x) ZK2L2(1 +r(x)?)"? CCU
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LEMMA 3.2. Under the same assumption as in Theorem 1.2,

2

K
e
K2L2(1+ 722

(3.2) Ae(U) > (U)?.

PROOF. If u is an expression of a harmonic map U: M— N, then the following
Weitzenbock formula (cf. [7]) holds
Ae(U)=||VdU||> + h*hP* MR ,D u'Dsu’g,;
- hayhﬂﬁ NR; jk,(u)D,uiD puiju"D‘,u' ,

where V is the covariant derivative on the bundle T*M @ ¥~ TN, Ricy, =(MR,,) the
Ricci tensor of M and Ry=("R;;,) the curvature tensor of N. From (3.1), (3.3) and
the assumptions that Ric,, >0 and Ky < —x2<0, we then obtain

Ae( U) 2 hayhﬂa MRapruiDau jgij - ha‘yhﬂ6 NRijkl(u)DauiDpujDrukDaul
2K 2hnhﬂ60a“iDpujD yukDéul(gikgﬂ —9udjr)
S 8k ?
KL +ry72°

(3.3)

(U)*.

(|

From (3.2) and the maximum principle, Theorem 1.2 is immediate provided M is
compact.

We now assume that M is noncompact. We will modify the maximum princi-
ple argument as in [4]. Take the point poeM as in (1.6) and for a>0, let
B,(po)={xe M ; r(x)=disty(p,, x)<a} be the geodesic ball of radius a and centered

at po.
LEMMA 3.3. Under the same assumptions as in Theorem 1.2, for any a>0, we have
(m+6)K?*L%a*(1 +a?)*?

(3.4) e(U)x) < 2@ —r(0)?)

Jor all xe B,(p,).

PROOF. Assuming that e(U) is not identically zero on B,(p,), we consider the
function

f@)=@—r(x))’e(U)x),  xeB,(po).

Since M is complete, the closure of B,(p,) is compact and then f attains a nonzero
maximum at some point p e B,(p,). As in §2 of [3], we may assume that p is not on
the cut locus of p, and then f is C? in a neighborhood of p. Then we have

Vi(p)=0, Af(p)<0.
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Hence at p
Ve(U)= 4rVr
e(U) a*—r?’
Ae(U) _IVeU)I? 8 4(1+rAr)
e(U) = eU)? (a®-r)? a*—r?

]

from which we obtain

Ae(U)(p) __ 24r(p)* 4 +r(p)Ar(p))
e(U)p) ~ (a®~r(p)*)? a*—r(p)’

On the other hand, according to Lemma 9 of [26], the following inequality holds

@3.5)

. m—1 1 @ s e
(6  Arp)< min [r(p)_ Y f (1~ k)? Ricy(6(), a(t))dt],

where d(¢) is the tangent vector of the unique minimizing geodesic o : [0, 7(p)] > M
from p, to p. Since the Ricci curvature of M is nonnegative, (3.6) implies the estimate

3.7 r(p)4dr(p)<m-—1.
It follows from (3.5) and (3.7) that
2o vav2 Ae(U)(p) 2
(@*—r(p)°) ——_——e(U)(p) <4(m+6)a“ .

Hence from (3.2) we obtain

(m+ 6)K2L%a*(1+ r(p)2)"/2
2k 2

f(p)=(a*—r(p)*)*e(U)(p) <

< (m+6)K2L%a*(1 +a®)*?
- 2k 2 '
Since p is the maximum point of f in Ba(po), this implies
(m+6)K2L2%a*(1 + a*)*?
2K 2

(@® —r(x)*)*e(U)(x) <

b

for all xe B,(p,) and then e(U) satisfies the inequality (3.4). O

PrOOF OF THEOREM 1.2. Take any point xe M and fix it. Letting a— o0 in the
inequality (3.4), we then obtain

(m+6)K>L?
2

e(U)(x)< when s=2

and e(U)(x)=0 when s<2, i.e. U is a constant map. This completes the proof of
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Theorem 1.2. O

PROOF OF COROLLARY 1.2. By Theorem 1.2, ¢(U) is bounded on M. It is well-
known that a bounded subharmonic function on a 2-dimensional complete Rieman-
nian manifold with nonnegative Ricci curvature is constant. From (3.2) we ob-
tain that the energy density e(U) of U is constant. Using this result also in (3.2) then
gives that u is a constant map. O

A map ¢ : M— N is said to be linear growth if there exist points p,e M and g, € N
such that '

lim sup

t— o0

, 1
u(q; )<°o,

where u(o, 1)=sup{disty(qo, ¢(x)) ; xe M, disty(py, xX)=t}. It turns out that this
definition is independent of the choice of p,e M and g, € N. By the argument as in [2],
we see that a harmonic map u, from a complete manifold with nonnegative Ricci
curvature to an Hadamard manifold is linear growth if and only if its energy density
e(U) is bounded on M. From this result together with Theorem 1.2, we then obtain the
following corollary.

COROLLARY 3.1. Let M be a complete Riemannian manifold with nonnegative Ricci
curvature and N an Hadamard manifold with negative sectional curvature, Ky < —x? <0.
Then every harmonic map U : M— N with polynomial growth dilatation of order at most
2 is linear growth.
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