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Introduction.

The reduction theory of binary forms with a positive discriminant and the
characterization of real quadratic numbers by the periodicity of partial quotients of
continued fraction expansions, that is, the reciprocal relation between binary forms and
quadratic numbers was established by Lagrange and Gauss (see Zagier [1]).

The purpose of this paper is to introduce a multi-dimensional diophantine algorithm
instead of the continued fraction algorithm and to discuss a relation between a kind of
reduction theory of indefinite ternary forms and the periodic points of the algorithm.

In Section 1, a diophantine algorithm 7 on X=[0, 1) x [0, 1) is introduced by

T(a, p)=(—[—1/ad—1/a, B/a—[B/a]) .

In Section 3, a characterization of e Q(a) by the algorithm is obtained as an
extension of Lagrange’s theorem:

(1) the point (a, f)e X is a periodic point of the diophantine algorithm if and
only if « is quadratic and Be Q(«),

(2) the point (a, f)e X is a purely periodic point of the diophantine algorithm if
and only if « is quadratic, fe Q(«) and («, B) is reduced (the definition of reduced is in
Section 3).

In Section 4, a class of ternary forms is introduced as follows: a ternary form f,
with integral coefficients given by f, =(x, y, z2)A(x, y, z) is said to be with discriminants
4 and D if A satisfies

(1) (a hb)=1,
a
@ D:i=—|

h
5 l >0 and non square, and

(3) 4= —det4,
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a hyg

where A4 is given by A=( hbf ) On the ternary forms f, with given discriminants
gfc

4 and D, a reduction theory of the ternary forms is discussed in a relation to the periodic

points of the algorithm T.

In Section 5, an equivalence relation among ternary forms by means of a subgroup
I' of SL(3, Z) is introduced, and an extension of Serret’s theorem on continued fraction
expansions is obtained.

1. Definition of the algorithm and its fundamental properties.

Let us go back to the following diophantine algorithm [2].
Let X:=[0, 1) x [0, 1), and let us define the algorithm T on X by

_J(@@®)—1/a, Bla—b(a, B))  if «#0
(1.1) T(a, ﬂ)_{(a, 8) 00
where functions a(a) and b(a, B) are given by
(1.2) a(@)=—[—1/a] and b(a, f)=[B/a]

(see Figure 1). The first coordinate of the algorithm T'is given by the modified continued

fraction algqrithm S on [0, 1) (A survey of the modified continued fraction is found in
Section 6 as Appendix.):

X3
/ X(f)
o
4 X2
N Mo @
@,3)
4,2)
G,2)
@1 | 3 B
@, 1)
1
4,0 | 3,0 | 2,0 b e
> O
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S()=—[—1/a]—1/a.

REMARK 1.1. Let us observe the behavior of the algorithm 7 on invariant sets.
Let

I,:={0}x[0,1),

I:=[0,1)x{0},

J:={(a, peX |a+p=1},

then we see
T(Io) = Io ’
H=I,
T(J)=J.

The restriction T| ;1 of T on I coincides with the modified continued fraction
algorithm S and the restriction T | 5 of T on J is also isomorphic to S by the isomorphism
¢: (o, 1 —a)—>a, that is,

S © ¢ = ¢ ° T|J .
For each (a, f)eX, define a finite or infinite sequence of integral vectors
{(am bn) : n= 1’ 2’ tT .} by

(1 3) (aha bn) = (an(“)9 bn(aa ﬁ)) = (a(an— 1)’ b(“n -1 ﬂn—- 1))
where (a,, B,)’s are defined by

- (1.4) (% B)=T"(2, B) -

We call the sequence of (a,, b,) the name of (a, B) for the algorithm (X, T). We say
(o, B) has a finite name if there exists j such that TV(a, B) e l,.

REMARK 1.2. We see that (a, )€ X has a finite name iff « is rational.

From now on, we assume that « is irrational. By the assumption, for the infinite
sequence (a,, b,) there exist infinitely many »’s such that a, #2.

Let us define a set of n-tuples of pairs (Z‘u Zj by
S E -

A(n)={< al(a)a az(“) s T a,,(oz) )
bl(“? B)’ bz(“, ﬂ)s T, bn(“» ﬂ)

(o, ) e X and oc¢Q},

then each (Z” Z:)GA(n) satisfies the properties called admissible sequences that

157"
(A) a;22,4,>b5,20 (1=i=n),
(B) if there exists a k (1<k<n—1) such that g, — b, =1, then g, ., —b,,, =2, and
moreover if there exists a j (1<j<n—k—1) such that q,,;—b,,;=2 for 1<i<j, then
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G jr1—besje 22
Let us define matrices associated with the name of («, ) by

a, —1 0
A(a,, b,)= ( 1 0 0 )
b, 0 1

dn —qn-1 0
(15) <pn —Pn-1 0>:=A(a1’bl)“.A(an’bn) (ngl)

r, —r,-; 1

90 —94-1 0 100
(<po —P-1 0>1= 01 0>) ;

that is, g,, p, and r, are given by the following recurrent formulae:

and

dn=%W9n-1—"9n-2 »
(16) Pn=0yPpn—1—Dn-2>
rn=anrn—1_rn—2+bn .

dn —94n-1
Pn —Pn-1

Then we see =1.

LEMMA 1.1. The following formulae hold:

1 dn —4dn-1 0 1
(1) <a>=aa1°“an—1<pn —Pn-1 0><an>
ﬁ r, —Trp-3 1 ﬂn
and in particular

(2) a=pn_pn—1an , ﬂ= rn_rn—lan+ﬂn , and 2, = Dn— gy
9n—9n-1%, dn—Gn-1%,

Prn-1—9n-1% .

PrOOF. From the definition of T, (1) is obtained by induction. (2) is deduced from

().

Let us define X(Z" 09 to be

PN

1| ()= (2) 1simaf ror (370 S)eaen.

*%n
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Then {X(Z‘Z") (Z"M’Z”)GA(n)} gives a partition of X. Let U,=X and
noy by L b,
U, ={(o, p)e X|a+ <1}, then we have the following lemma.

LeMMA 1.2. For each i=0, 1,

ala '“7an . als “"an
1 "X =U, e B;(n
() (bla“'abn) ' !f (bls“"bn> ()

where By(n) and B,(n) are given by

((ay . a,
B°(n)_{<b1, . b,,)eA(n)

such that a,—b,>2 and a;—b;=2 for k<j§n} ,

mr={( o) edn

such that a,—b,=1 and a;—b;=?2 for k<j§n} .

there exists a k (1=k<n)

there exists ak (1<k<n)

?) ™! X(al’ o a,,) > U, is bijective
bl’ s b"

and its inverse map <P(a,,-~-,a,.) is given by
bl’...,b"
¢ a1, an (a’ ﬁ):(pn—pn—la , rn_rn—la“}'ﬁ) .
(bl,"',bn) An—qn-1% n—qn-12

The proof is seen in Lemma 5.2 [2].

2. A characterization of fc Zo + Z.

Let us discuss a necessary and sufficient condition of fe Zo + Z where Z is the set
of integers.

Lemma 2.1. r.q,-1—r,-19,20 and r,p,_y—r,_ 1P, 20.
PrROOF. We know by (1.6)
rn+1qn_rnqn+1=(an+1rn_rn—1+bn+1)qn_rn(an+1qn_qn—1)
=(rnqn—1_rn—1qn)+bn+1qn
;(rnqn—l_rn—lqn)go‘

The other inequality is obtained similarly.
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PROPOSITION 2.1. Let us assume a¢ Q and («, f) € X. Then the following conditions
are equivalent.

(1) there exists ko such that B, _,#0 and B, =0 for any k=k,,

(2) there exists ny such that b,,#0 and b,=0 for any n=ny+1,

(3) there exist integers | and m such that B=1+am, IS0 and m=0.

We notice that kg in (1) is equal to ngy in (2).

PrOOF. From 7(I)=I in Remark 1.1, we obtain (2) from (1). Conversely, let us
assume (2). From that b,=0 for n=ny+ 1, we see

Bn=PBn-1/0-1 for n=zny+1.
In general, we have the following relation:

Bno

Oy 1%y " "0y,

Bn=

0

Suppose that B, #0, then from that 0<a,<1 we see B, is monotone increasing.
Therefore, from the boundedness of B,’s we see [ | fgno a, converges and so a,>1/2 for
all large k. Thus, we have q, =2 for all large k. This contradicts a ¢ Q. Therefore, we
obtain (1). Let us assume (3). From

1 b
o= and B=Lﬁl,
a,—o, a;—oy
we have B, =(la, +m—>b,)—la,. Put l, :=la, + m—>b, and m, := —1I, then we see

,<0, m=0 and mz=zm,.
Because, from B=/+ma, 0<a<1, m=0 and =0, we have
0sl+masl+m=—m;+m.
On the other hand, from the definition of a, and b,;, we know
a,—1<l/a<a, and b, ZI-1lja+m<b;+1.
Therefore, from /<0 we have

1>1'1/d+m—b1 gall'*'m—bl N

that is,
0=a,l+m—->b,=1,.
Put [, :=1I,_,a,+m,_,—b, and m,:= —1I,_,, then we have recursively
Bi=hk+mo,, <0 and m, =0,
and

m2m,2m,= -

v

my

v
v
(]
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We know that there exists k such that mk=mk+1. Then from B,=m,(—1+a,) and
O<a <1, we have m; =0 and so B,=0. Let us assume (1). From the formulae (2) in
Lemma 1.1 and 8,=0, we have
f= "= "1 (P — @)/ (Pic— 1 — G- 1®)
I~ G- 1" (P — 4/ (Pic— 1 — G — 1)
_ = —("Pi—1— "= 1P+ (G- 1" — Gl
that is, by Lemma 2.1, B satisfies f=/+am, /<0 and m>0.

PROPOSITION 2.2. Let us assume o.¢ Q and (o, f)€ X. Then the Sollowing conditions
are equivalent.

(1) - there exists ko such that o, _, +Bro-1#1 and a,+ B, =1 for any k=k,,

(2) there exists ny such that @ny—b,,#2 and a,—b,=2 for any n=ny+1,

(3) there exist integers I and m such that B=1+ am, [>0 and m<0.

We notice that k, in (1) is equal to n, in (2).

ProOF. From T(J)=J in Remark 1.1, we obtain (2) from (1). Conversely, let us
assume (2). From a,—b,=2, n=ny,+1, we see

1 >+(ﬂn —b,,+1>—1= —1+8,+a,

n n an

an+1+ﬂn+1_1=(an+1_

for n=n,. In general,

Otpy + By — 1
anoano+1 o .ano+n

Suppose that a,, + B,,—1#0, then from the boundedness of o, + B.—1 we see Hfg no Ok

converges and so o, >1/2 for all large k. This leads to a contradiction as in the proof
of Proposition 2.1. Let us assume (3). Put /, : =/a, +m—b; and m, : = —/, then we see

ano+n+1 +ﬂno+n+1 —1=

Bi=l+ma,,
L,>0, m<0 and m,=2m.
Because, from f=/+ma, 0<a<1, m<0 and 1>p=0, we have
[Z2l+ma(=P)>I+m and 1>I+m.

Therefore, we have 0=>/+m. This means m, >m. From the definitions of a, and b,,
we know

ay—1<l/u<a, and b,<I'1ja+m<b,+1.
Therefore, from />0 we have

Oél' 1/0(+m—~b1 <all+m_b1=ll .
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Put /. :=1l _,a.+m,_,—b, and m,:= —I,_,, then we have recursively
B=bk+mo,, >0 and m,<0,
m=m;Em,<---=m=---=0.
Therefore, there exists k, such that
m,=my, for all k=k,,
that is, /,_, =/, _, for all k=k,. Therefore, we see
Bi=1,(1—0o) for k=k,.

Suppose [, #1, then from (a,, B) € X, we see a,>1/2 for k2k,. This contradicts the
irrationality of a. Therefore /,, must be equal to 1. Let us assume (1) and (2). From
the formula (2) in Lemma 1.1 and f,=1—a,, we have

B=Dx—Pi—1—TPr-1FT—-1P) — (@ — k-1 — Q- 1T+ DT - 1)% -
We notice that
qn_qn—l_qn—lrn+ann—1
=qn-1—Gn-2—Gn-2"n—-1+dn-1"n-2+(@,—b,—2)q,_, .

We se€€ g,—qu—1—Gn-1"s+quTn—1 IS @ constant for n=ny+ 1 from the assumption (1)
or (2). The constant is denoted by 4. We also see that p,—p,_1 —Pp—17a+Pprn-1 15 a
constant for n=>ny+ 1, which is denoted by B. From that 4 and B are integers and that
(o, B)e X, we see that A-B=0. Let us assume 4 <0. Then we can put f in the form:

f=B— Aa where A4, B=<0.

From Proposition 2.1, it is to say that B, =0 for large n. This contradicts the assumption.

3. A characterization of e Q(a).
Let us consider a map T on X x R? by
(a—1/a, B/la—b,a—1/y, 6/y—b) if a#0
(o, B, 7y, 9) if a=0,
where a=a(a) and b=>b(a, B). Put
Uy:={( PeX|a+p<1}
Uy:={(a, peX|a+p=1}
X*:={(y,0)eR*|y21,6=<0 and y+6>0}
X%:={(y,8)eR?*|y=1,6<0and y+6=1}

(3.1 T(x, B, 7, 5)={
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X, =U;x X%, X,=U,x X%
and
(3.2) X=X,uX,,

then the set X is T-invariant set on X x R2, and moreover, we see that the map T is
bijective on X (except on I, x X¥, Ix X¥ and Jx X%¥). We call the restriction T|p a
natural extension on X of the algorithm (X, T). (See figure 2.)

A\ 4

>

FIGURE 2

DEerFINITION 3.1. We say (a, f) is reduced with respect to (X, T) if the following
conditions hold:

(1) (x PeX,

(2) a is quadratic irrational,

(3) PeO(x), where Q(x) is the quadratic field generated by «, and
4) (a, B, &, P)e X, where @ means the algebraic conjugate of o.

LeMMA 3.1. If (a, B) is reduced, then (a,, B,) is reduced.
ProoF. From (a,, B,)=T(x, B) and (o, B, & B)e X, we see
(@1, B1» &1, Br1)=(a,—1/a, Bla—by, a;— 1/, Bja—b,)
=T(, B,a BeX.

Therefore, (a,, B,) is reduced.
We first discuss the case that feaZ+ Z.
ProPOSITION 3.1. (1) (a, B) is reduced and BeaZ+ Z if and only if the name of

(«, P) is purely periodic in the following sense: the sequence of the digits {a,}s-  is purely
periodic and b;=0 for all i or a,—b;=2 for all i.
(2) If (, P) is reduced and BeaZ+ Z, then (o,,, B,,) is reduced where n, is the

integer given in Propositions 2.1 and 2.2.

PROOF. Let us assume that (o, B) is reduced and feaZ+ Z. Then a is reduced



270 SHUNII ITO AND HIROKO TACHII

with respect to ([0, 1), S). Therefore, by Theorem 6.2 in Appendix, the sequence of the
digits {a,} >, is purely periodic. On the other hand, by Propositions 2.1, 2.2 and that
BeaZ+ Z we see b,=0 for n=ny+1 or a,—b,=2 for n=ny+ 1. Therefore, we must
prove that n,=0. Suppose that b, #0 and b,=0 for any n>n,, that is, Bn,-1#0 and
Bn,=0. By Lemma 3.1 we know that (a,, - ;, B,,— 1) is reduced. On the other hand, we
know

oz,,o = a,,o -

no—1 no—1

Therefore, by b,,#0 and B, =0 we see
Bro-1=bpy"0ny—1 -
Thus, by B,,—; ¢ [ —&m,_1, 0] we see
(%no—15 Bro—15 Ong—15 m)¢7

This contradicts the assumption that («,, - ;, B,, - 1) is reduced. Suppose that Qpy—b,, #2
for some n, and a,—b,=2 for any n>n,, that is, Opo—1+Bno—1#1 and a, +8, =1.
From the assumption and

1 Bn. -
Uy = Ay — and B, =""%"1_p |
no—1 no—1
we see
_1—1
L+a,°—b,o=a,°+ﬂ,o=1 .
ano -1

Therefore

ﬂno—l =C.ano—l + l
where C=0 or C< —2. Thus we see
(ano— 1> Bno— 1 ano— 1> ﬂno— 1) ¢"_, .
This contradicts the assumption that (e, _ 4, B,,-1) is reduced. The converse is trivial.
Now, we must prove (2). By Proposition 2.1, 2.2 and that feaZ + Z, we see b, =0

fornzny+1 or a,—b,=2 for n=ny+ 1. Then the name of («,,, B,,) is purely periodic.
Therefore, by (1) («,,, B,,) is reduced.

COROLLARY 3.2. (a, f) is reduced and BeaZ+ Z if and only if o is reduced with
respect to ([0, 1), S) and B=0 or a+f=1.

LEMMA 3.2. Let us assume that (o, p) is reduced and B¢ aZ+ Z then there exists
(a*, B*) uniquely such that («*, B*) is reduced and T(a*, B*)=(, B).
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PrROOF. We know that T is bijective except on I, x X¥, Ix X¥ or Jx X¥. By
Corollary 3.2 and the assumption that f ¢ «Z + Z we see that («, B, &, B) does not belong
to the above sets. Therefore, there uniquely exists (a*, B*, y*, §*) such that

T(a*, B*,v*,06%)=(x B, 4 B).
Moreover, we see
y*=a* and 6*=p*,
that is, (a*, f*) is reduced.
LemMMA 3.3. If (a, P) is reduced, then the set {(a,, B,) | n=0, 1,2, - - -} is finite.

Proor. We know by Remark 6.1 in Appendix that the set {a, |n=0,1,2, ---} is
finite. Let us denote

o -_—ﬁ'l_t_l'_’— ”l) and ﬂ]:ul-’-—v-’__ “l)_

j
From (2) of Lemma 1.1, we have

Bn__.(qn_qn—lan)ﬂ_rn+rn—1“n -
Therefore, ¢, which is the denominator of B, is given by m,-f,, and so the set of
denominators of §,’s is finite.
From Lemma 3.1, (a,, B,)’s are reduced for any n=0. Therefore, the following
inequality holds:

¢)) 0<B,<a, and —u,<B,<0, or
@ %,=<p,<1 and 1-%,<B,=<0.
These are equivalent to
1y 0§u,,+v,,\/3<a,,-t,, and —&",,-t,,<u,,—v,,\/3§0, or
@y at,;t,,§u,,+v,,\/7)_<t,, and (1—&;)t,,§u,,——v,,\/3§0.

Therefore, from finiteness of {«,}’s and {#,}’s we have the finiteness of {«,}’s and {v,}s.
This means that the set of {8, |n=0, 1,2, - -} is finite.

ProrosiTioN 3.3.  If (a, B) is reduced, then (o, B) is purely periodic with respect to
T, that is, there exists k such that T*(a, f)=(a, p).

Proor. The case that fe Za+ Z is discussed in Proposition 3.1. Therefore, we
assume that B¢ Zoa+Z. By Lemma 3.3, there exist k and N such that (ay, fy)=
(A +x> By+x)- By Lemma 3.2, we see
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(On-1> Bn-1)=(N+k-1, BN+k-1)

(@, B)=(o%s Bi) -
Let us consider the boundary of X¥,i=1, 2. We put
6,=0X¥n{6=0}\{(1,0)}
g,=0X¥n{y+0=0}\ {(1, —1)}
63=0X3  {6=0}\ {(1, 0)}
0,=0X%n {y+5=1}\{(1,0)} .
Let us denote e-neighbourhood U(a;, €) of boundaries o; as follows:
U(o;,&)=U(03, 8)={(»,0) | 1<y<o0,0=5<s}
U(0,,8)={(y,0) | 1<y<oo, —e<y+=<0}
U(o4,8={(y,0) | 1<y<oo,1—e<y+6<1}.
Then we have the following properties of the images of U(oy, €).

LEMMA 3.4. For sufficiently small ¢>0, we have:

(1) Fori=1 or 3, if b; #0 then T((a, B) x U(o:, &)) =(ay, B1) X (X¥)° for some j=
1, 2. If b, =0 then T((x, B) x U(o, €)) <(a4, B1) x U(o;, €) for some i=1, 3.

(2) If a,—b,#2 then T((a, B)x U(o,, &) =(2q, By) X (X¥)° for some j=1, 2. If
a,—b, =2 then T((a, B) x U(6,, &)) =(aty, B1) X (XF L U(0y,, £)).

3 If a,—b,#1, 2 then T((a, B) x U(o,, &) =(2y, B1) X (X})° for some j=1, 2.
Ifa,—b,=1 then T((a, B) x U(0,, £))=(ay, B1) X U(6,, €). If a,—b, =2 then T((a, B) x
U(as, &)) = (a4, B1) X U(04, 9).

PrOOF. Let us observe the picture of image of U(os;, ¢) by the map (y, §)—
(—1/y, 6/7). (See Figure 3.)

for i=1lor3 for i=2 for i=4

figure of images of U(s;, €), i=1, 2, 3, 4, by the map (y, §)— (—1/y, 6/y)
FIGURE 3 '
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Then from the observation of translations of figures by (a,, —b;) it is easy to get
the conclusion.

As the corollary of the lemma we have the following corollary.
CorOLLARY. If T"(a, B, v, 8) € U(o;, €) for all n, then b,=0 or a,—b,=2 for all n.

THEOREM 3.4. The name of (o, B)€ X is eventually periodic, that is, there exist N
and k such that (ay, By) =y +xs By +x) if and only if a is quadratic and B € Q(a).

ProOF. From formulae (2) in Lemma 1.1, “only if” part is easy. Let us assume
that o is quadratic, S Q() and (a, f) € X. We will show that there exists N such that
(an, By) is reduced. From the definition of §,, we have '

(33) ﬁn= Bn—l "‘bn= 1 {ﬂn—Z —bn—l}_bn= .

Op—1 Op—1 Op—2
b b b B
n—1 n—2 1 (4]
=_bn_ - - « .. + DY :
Qp—1 Op— 10,2 Opy—1 oy Op—1 Oo

By Appendix, we may assume that ;> 1. So we see that (o, Bo, %, 0) e X.

Let us denote («,, B,, &,, B¥) = T"(ao, Bo, %o, 0), then we know that (a,, B,, %,, ¥ e X
for all n. Then by (3.1), (3.3) the distance between (a,, B, %, B,) and (a,, B, %, f¥) on
R* is given by

B |

01" "0

|Ba—BX 1=

Therefore, from the finiteness of a,’s and the fact that &, > 1 for all n, we see | B,— f*|
converges to zero. If there eixsts NV such that (ay, fy, &y, By) is in the interior of X, then
the conclusion holds. Assume that (a,, f,, &,, B,) ¢ interior of X for all n. Then from the
fact that | B,—B*|—0 as n—>oo, Lemma 3.4 and its corollary, and «,, a,¢ Q, (&,, B,)
must be near the boundaries o, or g, in U(g,, ¢) for all large n, that is, b, should be
equal to O for all large n or a,— b, should be equal to 2 for all large n. Therefore, from.
Propositions 2.1 and 2.2, 8,=0 or a,+ B,=1 for large n. Thus from Proposition 3.1 we
obtain the conclusion.

THEOREM 3.5. (a, B) is reduced if and only if (a, P) is purely periodic, that is, there
exists k such that T*(a, B) = («, B).

ProoF. ‘“‘only if” part is proved in Proposition 3.3. Conversely, if («, f) is purely
periodic, then a and f are denoted by

azpn—pn—la and ﬁ= rn_rn—1a+ﬂ )
dn—9n-1% dn—qn-1%

Therefore, we see g, ;&% — (g, + p,— 1)+ p, =0, that is, a is quadratic and f € Q(«). Thus,
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by the proof of Theorem 3.4 we know there exists N such that (ay, By) is reduced. By
Lemma 3.1 and pure periodicity, we see for some j that (ay., By+ j)=(a, p) is also
reduced.

4. Reduction theory of ternary forms.

In this section, we discuss a reduction theory of ternary forms by the algorithm
X, 7).

Let us denote the ternary form f, with integer coefficients as follows:

fA('x, Y, Z)=(xa Y, Z)At(xa Y Z)

i3

A:=—detd, D:= —det(a h)

where A4 is given by

h
b
f

o N Q

Put

h b

and call 4 (D) the discriminant (small discriminant) of f,.

AssUMPTION. We assume that the small discriminant D of f, is positive and non

square. Moreover, we also assume that integers a, b and 4 do not have common divisor
and b>0.

Let us denote the set of ternary forms satisfying the assumption by TF.

PROPOSITION 4.1. For each f,eTF, f,(x,y,1) has the following canonical rep-
resentation.

4.1 Sa(x, y, D=b(ax+y+p)@x+y+B)+k
where o, f and k are given by
h—./D _ h+D bg—hf —hg+af
= 0F——, Xg=—"_—, Yo=—T-—,
b b —-D —-D
ﬂ=ocx0+yo, B=&x°+yo and' k=—A/D.

o
4.2)

PrROOF. Let us denote

x x'—xq 1 0 —x\ /x’
<y>=<y’—yo>=<0 1 —yo>i(y’>,
1 1 00 1 1
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1 O -— xO
H= < O 1 _yo 9
00 1
and consider the form:

Sy, D=y, )'HAH'(x", y', 1) .
From the assumption D> 0, the equation:

{ax+hy=g
hx+by=f

has the unique solution (x,, y,):

(-4 20
Yo —D \—-h a/\f
Therefore, we have
a h —axo—hy,+g a h 0
g f —gxo—fyot+c 0 0 —gxo—fyotc

that is, we have the following representation:

a h 0\ /x
Sy, D=(x', y, 1)<h b 0><y )
0 0 k 1

S ENEI (N

b
where k is given by
k=—gxo— fyo+c.
Thus by (4.2) the form f, has a representation:
. Ja(, y, ) =blax+y+oxg+yo)(@x+y+axe+yo) +k .
It is easy to see
k=—gxo— fyo+c=—4/D.
Therefore, we have the canonical representation (4.1).

FUNDAMENTAL LEMMA 4.1. Let us define a matrix S, as follows:



276 SHUNIJI ITO AND HIROKO TACHII

m 1 —n,
(4.4) S1=<_1 0 0 s ml,nlez.
0 0 1
For each ternary form f, € TF, let us denote a form f,, and the canonical form of f4,(x, y, z)
a hy gy
with respect to A,='S;AS, =(h1 b, f1> by fu(xy,2)=(x,y,2)4,'(x,y,z) and
g1 i @

Sa, (6 ¥, )=by(a;x+ B, + y)(oc_lx+ﬁ—1+ y)+k,. Then the following properties hold:
(1) D, (=-ayb, +h%)=D,
(2) 4, (=—detd,)=4,
(3) ki=k,
4 oy=m;—1/a,
(5) Bi=Blo—n,.

ProoF. The matrix 4, is given as follows:

a hy g,
(4.5) A1= h1 bl fl =tS1AS1
g1 i o
am? —2hm, +b am,—h —amn,+hn,+gm,—f
=< am,—h a —an,;+g
—amn,+hn,+gm,—f —an,+g an?—2gn, +c

Therefore, we know
D,=—a;b, +h?=—(am?—2hm, +b)a+(am,—h)*=D .
From detS; =1, we know
A4,=4 and k;=k.

(4) is obtained with a simple calculation:

(5) is obtained as follows. We have
byg,—h fi=a(—amn, +hn; +gm,—f)—(am,—h)(—an,+g)=hg—af.

Similarly, we have
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—hig +afi =—(am; —h)(—amyn, +hn, +gm, — f)
+(am?—2hm, +b)(—an, +g)
= —my(hg—af)—n,(ab—h?)+(bg—hf) .

Therefore, B, is written as

hg—af+ —my(hg—af)—ny(ab— h?)+(bg — hf)
Lab—n? ab— h?

hg—af _bg—hf
ab—h?*  ab—h?
1 - —
=_(bg hf -t hg+af)
o \ ab—h? ab—h?
Let us define a map ¢ : TF— R? by
(4.6) o(f)=(2, B)

where (o, f) is given by the canonical representation (4.1) of f,.

Bi=u

=—(m;—a,) 1

_nl =—'—n1 .
o

LEMMA 4.2. The map ¢ is injective on TF with the same discriminants D and A.

PrROOF. From the assumption oif TF, i.e. (a,b, h)= 1, the solution a of bx2—
2hx+a=0 is given uniquely. Let us assume that (o, )= o(f. +) and

al hl gl
A’=<h’ b £ .
gl fl cl

The solution a («") was given as the solution of bx2—2hx+a=0 (b'x*—2h'x+a’'=0).
Therefore, by the assumption (a, b, h)=1 and >0, we see

a=a', b=b', h=h if a=a'.
On the other hand, by f=pB' we see
 Xo=Xxp and. yo=y;.
Therefore, by (4.3) we know
g=g' and f=f".

And we also know that c=c¢’ by relation between k and the pair of discriminants. This
means A is equal to 4’.

Let us denote by TF, the subset of TF in which the form satisfies the property
e(f)=(, B)e[0,1)x[0,1).
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We call a ternary form f, € TF, reduced if ¢(f,) is reduced. We denote the set of reduced
ternary forms by RTF,.
Let U be an operator on TF, as follows:

UfA =fA1
where A4, is given by (4.5) and m, and n, are defined as follows:
my:=—[—1/a] and n,:=[f/a],

where (o, f)=¢(f,). The following proposition is obtained from the Fundamental
Lemma 4.1.

PROPOSITION 4.2. The map ¢ given by (4.6) is injective and the following com-
mutative diagram holds: ‘

that is, @(Uf)=T(pf,).

THEOREM 4.3 (A reduction theory of ternary forms).  For any ternary form f, € TF,,
there exist Ne Z* and ke N such that

UN*M*if — UN*if, e RTF, (0=<j<k,leN).

This is an immediate consequence of Proposition 4.2, Theorem 3.4 and Theorem 3.5.

5. Equivalence relation on 7F;.

Let us define a subgroup I"' of SL(3, Z) as follows:

/a b 0
1":=[<c d 0>ESL(3,Z)].
s t 1

By means of I', we introduce an equivalence relation on X. We say (a, f) is I'-related
to (o, ') with Ser if (1) there exists SeI” such that (a, f)=S(a’, f’), that is, the
following relation holds:

c+do’ 8 s+ta' +p
o= > e —
a+ba’ a-+ ba’

and (2) a+ba’ >0, where S is given by
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ab O
.1 S==<c d 0].
s t 1

Let us denote (a, f) ~5(a’, B") if (a, B) is I'-related to (o', ') with Sel.
LEMMA 5.1. The relation ~g is an equivalence relation.

PrROOF. On the assumption (a, f)~5 (', B'), we will see that S~ (a, f)=(a’, B')
and S”'eI. Under the notation (5.1) we have

d —=b 0
S7l=| % = 0).
* % 1

c+do’ 1
= >0
a+ba’ a+ba’

Hence, we see that

d—bo=d—b

Therefore, ‘we have (o', B')~s-1(x, B). Let us assume (a, f)~5, (a’, ) and (', B)~s,
(a”, B”). Putting v
S1=<c1 dl 0 and S2=<CZ dz 0),
sy ot 1 s, tp 1

S,S,er is given by
Sl'S2=< %k %k 0 .

* * 1

Therefore, we see
(a1a;+b1cy)+(asb, +bydy)a” =ay(a, +b,a”") + by(c, +dya’)

c,+dya”

=(a,+b,o") a,+b
(ay+b, )< 1 1 ay+b,a"

>=(a2 +bya")Na, +b0")>0.

To discuss a decomposition of the element of I', we introduce the following concept.
For two integer vectors (I, m, n) and (I’, m’, n’) we say that (I, m, n) is next to (I',m’, n’),
if the following conditions hold:

©0) I>r'=0,

1 ' m—I-m'=1,

2) I>U'n—I'n"Z0.
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LEMMA' 5.2. Assume that (I, m, n) is next to (I'ym’, n’), and I>m>0,1>n=>0. And

let us denote
L =17 0 0 1 0 I =I'" 0
m; —mj 0)= -1 a, 0>(m —m’ 0)
n, —nj 1 0 —-b, 1 n —n 1

where a, and b, are given by
ay=—[-1l/m]l and b,=[n/m].
Then (I, my, n,) is next to (I, my, n), and I, >m; 20 and I, >n, 20.

PrROOF. From the definitions of a,, b, and

L, =l 0 m -m 0
(m1 —my 0 |=| —l4+am I'—am’ 0),
n, —nj 1 —mb,+n m'b,—n’ 1

we see /; >m,; 20 and I, >n, 20. From the assumptions (0), (1) and />m>0, we see
m>m'20, that is, /, >/, =20. From
L =0

’ =1’
ml '_ml

_‘ 0 1
—1 al

I =
m —m’
the condition (1) is true.

The condition (2): /; >1'\n; —I,n’, 20 is equivalent to m>m’'n—mn’ =0. Therefore,

we must show that m>m’'n—mn’=0. By the assumptions (1), (2) and m>0, we have
the following inequalities:

Im(n’+ 1)>n(1+Im")=Imn’ .
Therefore, the following inequalities hold:
(5.2) n+Il(nm'—n'm)=z0 and n+Il(mm'—n’'m—m)<0.

From />n and (5.2) we have m'n—mn’ 20. Suppose m’'n—mn’ —m 2 0. Then from (5.2)
we have 0> n. This contradicts n=0. So we have m>m’'n—mn’. Therefore, the condi-
tion (2) is satisfied.

LEMMA 5.3. If(, m,n)isnextto(lI'ym’,n’)yand I>m=>0, [>n=0 then there exists k

such that
I =I' 0 a —-10 aq —10
<m —m’ 0)=<1 0 O>-'-<1 0 0)
n —n 1 b 0 1 b, 0 1

where (Z‘ Z:) is given as a name of (m/l, n/l) by the algorithm T.

1
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Proor. Applying Lemma 5.2 repeatedly, we have a k such that m,=0. From
conditions (0) and (1) we see that J,= —mj =1 and / +r=0. And we see that 7, =0 from
Ly>m:20, and n; =0 from condition (2). Therefore, we have

1 00 0 1 0 0 1 0 I =0 0
01 0>=<—1 g 0 ---<—1 ag OJlm —m' 0.
001 0 -5 1 0 —b, 1 n —n' 1

LEMMA 5.4. Assume B¢aZ+ Z, then

(1) Ay=("aGn-1—uln—1) = (PaPu_1 — Pu¥a-,) is increasing for large n,

(2 B,=r,g,_1—r,_19,—q, tends to negative infinity,

B)  Co=rugn-1—Pu-1)=Tu-1(gn—P.)—(qa—py) tends to negative infinity.

PROOF. (1): By (1.6), we see
An=An—1 +bn(qn—1 —Pn- 1) .

From the assumption a ¢ Q, f¢aZ+ Z and Proposition 2.1, there exists infinitely many
b, such that b,#0. Therefore, from qn—P,>0 we have (1).
(2): For the sequence B,, we can show the following properties:
(B1) B, is strictly monotone decreasing,
(B2) if m+1#m,,, then

B,,+1>B,, and B, ,,>B, ,,>-- >B,,.,
(B3)™ if M+ l#Em,myj+l=me, .5, 1SjSN—1 and my,y+1#m,y,, then
B, +1>B,, .  +x-

Then we have the conclusion (2). From (1.6), B, ., is written és
Bn+1=Bn+(_an+1+bn+1+l)qn+qn—1 .

If —a,, +b,s;+1=—1,then B,, <B, If —a,,,+b,,,+1=0, then by the property
(B) of admissible sequences there exists / (1) such that

—a;+b;+2=0 for n+2<j<n+1+1
and —a,,;4;+b,,,+,+2<0. Therefore, we have
Byri=By -1+ (—@py+ b,y +1)q,11_4 tqn+1-2
=Byii-1—Gnsi-1+Gns1-2»
and similaly
Buvi-i=Byiioi 1 —Guiimic1 FGus1-i_2 (1=i<1-2).

Thus, from B, =B,+g¢,_, we have
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B, 1=B,—qp+1-1+qntqn-1-
By using the above equality we have
Boviv1 =By (—apiir 1+ basin 1 ¥ Dpsi+ dnvi—s
=B, +(—@ps141tbpr141+ Dnsri+qutdn-1 -
Now, we choose {m,} which is the subsequence of N as follows:
{my | k=1,2, - }=N\{n+1, -, ntl | =Gy +bpey+1=0,
— it by +2=0 QZiZD), —api141+bppyr1+2<0}.

Then B, satisfies the properties (B1) and (B2). Let us assume that —a,, ,, +bpy,+1t+1=
0, thatis, B,,,j+1=B,,,j+qmj_1.ThenthereexistsljsuchthatB,,,J“jH=B,,,j+(—a,,,j+,j+1+
By 1,41+ Dmy+1;+ Gmy+ Gmy-1 and _am,+tj+1+bm,+z,+1+2<0- Now, put mj, =
m;+1;+1 then we have

B, .. =Bpu+(—an,,  tbp, +Dm,. 1+ Gm;+ Gmy-1 -
There exists N such that
~ G,y +it Dy, i+ 1#0 for 1SiSN—1 and -—a,,, +n+bm,  +xv+1=0.
Then m;, , + N is a first m, which is larger than m; and satisfies m, +1#my . ;. We know
By +N=Bm +n-1FH (8 snt by e N Dy 4 N=1F Gy 4v-2 <
=B, ., +N-11qm;.,+N-2

= mj+1+N—2+(—amj+l+N-—1+bmj+1+N—1+2)qm,+1+N—2+qmj+1+N—3
N—-1

=Bm_,~+,+ 'Zl (_am_“.1+i+bm_,+1+i+2)qm1+1+i—1+qm1+1—1
i=

=ij+(.‘_aMJ+1+bm_f+1+2)qu+1—l +qu+qMJ—1
N-1

+ 'Zl (—an+|+i+bMJ+1+i+2)qMJ+1+i—l

N-1
= mj+1 + .Zo (_amj+1+i+bmj+1+i+z)qmj+,+i-—1+qm, .

By the way, we know

—ay,,,tby,, , +2<0

and

—am1+l+i+bm1+1+i+2§0 (léléN——l)
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Therefore, we have
By,  +N<Bp+1 -
This means that (B3) holds.

(3): Put g¥:=q,—p,. Then thefe exists n, such that g¥>gq¥ >0 for n=n,.
Therefore, we can prove (3) similarly as in the proof of (2).

THEOREM S5.1. Let us assume that

(1) (o, B) and (¢', B)e X,

) a¢Qand fé¢aZ+2Z,

3) (a,p)~s5(a', B’) for some SeT.
Then there exist n, m such that

(am ﬁn) = (a;m B;n) .

REMARK S5.1. Let us assume that

(1) (o ) and (o', B)e X,

2 a'¢Qand f'ea'Z+2Z,

3) (a, p)~s(a’, B") for some Ser.
Then there exist », m such that

Oy =0y »
p,=0 or 1—qa,,
Bm=0 or 1—a,,.

In particular, a¢ Q and feaZ+ Z. _

In fact, from (2) and (3), it is easy to see that a, f also satisfy a¢ Q and feaZ+ Z.
Therefore, by Propositions 2.1 and 2.2, ;=0 or a;+ =1, and ;=0 or a} + B, =1 for
kz=k,. From (3), we are able to assume that there exists a matrix 4 e SL(2, Z) such
that o =Aa’. Then by Serret’s theorem on the modified continued fraction expansion,
there exist n and m (= k,) such that a,=a),.

PrROOF OF THEOREM 5.1. Put

a b 0
S=<cd0,
s t 1

9n —qn-1 O
(a,’ﬂl)= p;. _"'p;n—l 0 (a;vﬂ;u)

7’
r, —r,—i 1

Then we have
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aq,+bp, —(aqp-1+bp,-,) 0
(@, B)=| cqn,+dp, —(cqp-1+dp,_1) 0 (e Br) -
Sqpt+itpp+r, —(qu_1+tpp_1+r,_y) 1

To obtain the conclusion, we show firstly the following inequality (0) for “next” is
satisfied for some n. From o' ¢ Q, ¢.,>¢,_, >0, we know

1>9,-1/4,>0
and from the assumption a+ba’>0 and p,/q,—a’ as n+> co we see
a+b(p,/q,)>0 for large n.
The inequality (0): aq,+ bp,>agq, -, +bp,_,>0 is equivalent to
- Gn-1 a+bP,_1/90-1)
4.  a+b(p./q)
Therefore, we see the inequality (0) holds for large n.
The inequality: aq, + bp, > cq,+dp,>0 is equivalent to
St d(p:./q:.) >0
a+b(p./q.)

1

From ae X, «’'¢ Q and
(c+dn)/(a+ba)=a,

we see that the above inequality holds for large n. Similarly, we see that the inequality:
aq,+bp,>sq,+tp,+r,>0 holds for large n.
Put

(@, B”):=(otn, Ba)

a b 0
(a, ﬂ)=<6’ d 0)(°t", B") .

st 1
Then we can assume by above discussion that
a>-b'>0, a'>c'>0 and a'>s5'>0.

Putting

dn —4qn-1 0
@, B")=| pn —pPn-1 0 |(a,,B,),

n ”
r, —rn_; 1

let us denote again that



DIOPHANTINE ALGORITHM 285

a'q,+b'py —(@'qy-1+b'py-1 0
(2, ﬁ)=< c'qn+dp, —(¢'q7-1+d'py-y 0>(a$.’, n) -
S'quttPytry —('quo1 P +ryy) ]
Then we see
a'qn+b'py>a't' —b's'+a'(r g, -1 —ry-14,) +b0'(rypa—1—r4-1P) 20,

because by Lemma 5.4 (1) and a’'> — b’ >0, the inequality

e R Y (A T U X 4 ST A 14

>a't'—b's' + @ {(regs- 1 —Ti-140)— (api- 1 T4 P} 20

holds for large n. On the other hand, by Lemma 5.4 (3) and a’> —b’'>0, we see the
another inequality

Ly

QgL +bPy>at b’ +a (g~ i 1gy) D T DY

holds for large n. Therefore, by Lemma 5.3 there exists N= N(n) for each large n such

that
(a,ﬁ)=< 1 0 0) 1 0 0)(01.',/31.')-
b, 0 1 by 0 1

To finish the proof of the theorem we must know finally that

(ons B)=(ay, By) for some n

where (ay, By) is given by the relation:
(a’ B)=(P a1, AN’ (aN’ ﬁN) .
GieN)

We know from the assumption f’'¢a’Z+ Z, which is equivalent to feaZ+ Z, that
infinitely many («,, B;/) are in U,. In fact, suppose that («,, B.)) € U, for all large n. This
assumption is equivalent to a,—b,=2 for all large n. But by Proposition 2.2 this
contradicts f'¢a'Z+ Z.

Notice that U, is equal or subset of domain of bijective map ¢ (@0 oy Then from

bl R ...,b
(o5 Bn) € U, for some n and from bijectivity of (p(ah...,,,N) we have i
. by, . bn
(on, By)=(an, Br) -
Let us decompose RTF, by </, #, and %, as follows:

o :={f eRTF, | B¢aZ+ Z for (x, B)=(f)}
| B,:={f€RTF, | Im,n: B=ma+n,m=20,n=<0 for (o, f)=o(f)}
B,:={feRTF, |Im,n: B=ma+n,m<0,n>0 for (a, f)= ()}
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and #:=%,V %,.
Let us define an operator ¥ on TF,; by

-1 0 1
Vig:i=f i aw where W=| 0 -1 ——1).
0 0 1

Then it is easy to see
e(Vf)=(a, 1—a—p)
where (o, ) =¢(f,). Therefore, we have
V(#,)=%, and V(#,)=24%, .
Then we obtain the following theorem.

THEOREM 5.2. For any f,ge RTF,
(1) if f~g and f, ge oA then there exists k such that

Uf=g,
2) (A) if f~g and f, ge B, then there exists k such that
U'f=g,
B) if f~g, feB, and ge B, then there exists k such that
UVf=g,

where f~g means o(f)~s ¢(g) for some SeT.

The theorem is immediately obtained from Proposition 4.2, Theorem 5.1 and
Remark 5.1.

6. Appendix. On modified continued fraction algorithm.

~ In this section, we give a rough survey without proof of the facts for the modified
continued fraction expansion which are used in this paper.
The algorithm S: [0. 1)+ [0, 1) is given by

{—[—l/a]——l/a if a#0
Sa=

0 if a=0
and

1
St 1y

an(a) (=an)=_|: :I (n;l)a

then the triple ([0, 1), S, a(x)) gives the following expansion: for irrational o,
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A= ! ] (nz1).

a,—S"a

a,—--

We call a, (=2) digit of the modified continued fraction expansion which was called
B-continued fraction expansion in [3].

Let us introduce 2 x 2 matrices as follows:
(qn _qn—-l):=<a1 _1)...(011 _1> (ngl)
Pn —DPn-1 I 0 1 0
—q_ 10
( (‘10 q 1):=( ) ).
Po —P-1 01

DPn—Dn—1%,
dn—9n— 1%

Then we know a formula:

o=

THEOREM 6.1. For each irrational a€[0, 1)

1) 0<gy-1<g,(nz1),

(2) a~pn/qn>0 (ng 1) andpn/qn T a (T]—'CX)) .

THEOREM 6.2. (1) (Lagrange) a is quadratic iff the sequence of digits a, are
eventually periodic.

(2) (Galois) a is quadratic and reduced iff the sequence of digits a, are purely

periodic, where a quadratic number o is reduced if 0<a <1 and &> 1, where & means the
algebraic conjugate of o.

REMARK 6.1. If « is reduced, then the set {S"a |n=1,2, - - -} is finite.

Forirrational a, a’ € [0, 1), we say that a is equivalent to o’ if there exists 4 € SL(2, Z)
satisfying the relation:

_ c+da’
a+ba'

C d
We denote it as o~ 4 a'.

Then the relation ~ is an equivalence relation.

[0

where

THEOREM 6.3. (Serret) For irrational o, o' €[0, 1), if a~a' then there exist m and
n (1) such that S" la=S""1to’.
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Now, we introduce a reduction theory of binary forms. Let us denote the binary
form f, with integer coefficients as follows:

fA(x’ y) : =(X, y)A t(xa y)

A_(a b/2)
\B2 ¢

and assume that D= —det4>0, ¢>0 and (g, b, ¢)=1.
We denote the set of binary forms satisfying above assumption by BF. Let us define
a map ¢: BF— R by ¢(f,)=a where a is the solution of f,(—1, x)=0 such that

e )
=

where A is given by

And let us denote by BF, the subset of BF in which the form satisfies the property

(p(.fA)=aE [09 1) .
And, let Ube an operator on BF, defined by Uf, = 4, Where 4, and U, are given by
Al :=tUa1AUa1

U‘,1:=(al1 ;1) where a,:=—[—1/«] .

Then, the following commutative diagram holds:

BF, —— [0,1)

U S
15:11?1 2. [ol, 1)

that is, @(Uf,)=S(ef,).
We call f, reduced forms if ¢(f,) is reduced. We denote the set of reduced forms

by RBF,. Then, we have the following theorem.

THEOREM (The Reduction Theory of Binary Forms). For any binary form f,e BF,,
there exist Ne Z* and ke N such that

UN"'"""J'fA:UN"'ijERBFl 0=j<k,leN).
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