# The Complexity of Generalized Sturmian Sequences

### Shin-ichi YASUTOMI

Suzuka College of Technology (Communicated by M. Sugiura)

#### 1. Introduction.

Let  $\{b_i\}_{n=1}^{\infty}$  be a sequence with finite state and let

$$P_n(\{b_i\}_{i=1}^{\infty}) = \#\{(b_i, b_{i+1}, \cdots, b_{i+n-1}) \mid j=1, 2, \cdots\}.$$
 (1)

We call  $P_n(\{b_i\}_{i=1}^{\infty})$  the complexity of  $\{b_i\}_{i=1}^{\infty}$ . The complexity of the sequence  $\{[ix+y]-[(i-1)x+y] \mid i=1,2,\cdots\}$  for an irrational number x and a real number y called a sturmian sequence is known as (n+1) ([1]). In several cases, the explicit forms of the complexity are calculated ([2] and [3]). The purpose of this paper is to introduce a sequence  $\{Q_i^k(x_1,\dots,x_k) \mid i=1,2,\dots\}$  which we call a generalized Sturmian sequence: for each  $(x_1,\dots,x_k) \in \mathbb{R}^k$ 

$$Q_i^k(x_1, \dots, x_k) = [x_1[x_2 \dots [x_k(i+1)] \dots]] - [x_1[x_2 \dots [x_ki] \dots]] \quad (i=1, 2, \dots), \quad (2)$$

and to give the explicit form of the complexity for the generalized sturmian sequence as follows.

THEOREM 1. Let  $(x_1, \dots, x_k)$  be the k-dimensional positive real vector satisfying  $x_i > 2$   $(1 \le i \le k)$ . Assume that

$$1, \frac{1}{x_1}, \cdots, \frac{1}{x_1 \cdots x_i}, \cdots, \frac{1}{x_1 \cdots x_k}$$
 (3)

be linearly independent over **Q**. Then the complexity of generalized Sturmian sequence  $\{Q_i(x_1, \dots, x_k)\}_{i=1}^{\infty}$  is given by  $(n+1)^k$ , that is,

$$P_n(\{Q_i^k(x_1, \dots, x_k)\}_{i=1}^{\infty}) = (n+1)^k.$$

## 2. Dynamical system.

In this section, we will show that the generalized sturmian sequence is related to a dynamical system.

For 
$$(i_1, i_2, \dots, i_k) \in \{0, 1\}^k$$
, put
$$Q^k(i_1, i_2, \dots, i_k) = [x_1[x_2 \dots [x_k + i_k] \dots + i_2] + i_1].$$

Then we have

LEMMA 1. For  $(i_1, i_2, \dots, i_k) \in \{0, 1\}^k$ , we have

$$Q^{k}(i_{1}, \dots, i_{k}) < [x_{1} \dots [x_{k-1}[2x_{k}]] \dots]$$

PROOF. To obtain the assertion, it is sufficient to prove the following relation:

$$Q^{k}(1, \dots, 1) < [x_{1} \dots [x_{k-1}[2x_{k}]] \dots]. \tag{4}$$

We prove this by induction on k. Let us assume that k=1. Because  $x_1 > 2$ , it is easy to see that

$$Q^{1}(1) = [x_1 + 1] \le [x_1 + x_1 - 1] < [2x_1].$$

Therefore (4) holds on k=1. Let us assume that k>1. By the inductive assumption,

$$[x_2[\cdots[x_k+1]\cdots]+1] < [x_2\cdots[x_{k-1}[2x_k]]\cdots].$$
 (5)

Because  $x_1 > 2$ , we have

$$Q^{k}(1, \dots, 1) = [x_{1}[x_{2}[\dots[x_{k}+1]\dots]+1]+1]$$

$$< [x_{1}([x_{2}\dots[x_{k-1}[2x_{k}]]\dots]-1)+x_{1}]$$

$$< [x_{1}\dots[x_{k-1}[2x_{k}]]\dots].$$

Hence, we completed the proof.

Let  $\beta = (1/x_1, 1/(x_1x_2), \dots, 1/(x_1 \dots x_k))$ . We introduce the dynamical system T on  $[-1, 0]^k$  as follows:

$$Tx = x + \beta \mod 1$$
.

For any natural number i, put

$$P_i^k(x_1, \dots, x_k) = [x_1[x_2 \dots [x_k i] \dots]]$$

Let M be the following  $k \times k$  matrix

$$M = \begin{pmatrix} 1/x_1 & & & & & \\ 1/x_1x_2 & 1/x_2 & & & & \\ & \ddots & & \ddots & \ddots & & \\ & \ddots & & \ddots & & \ddots & \\ & \ddots & & \ddots & & \ddots & \\ 1/x_1 \cdots x_k & \cdots & \cdots & 1/x_{k-1}x_k & 1/x_k \end{pmatrix} .$$

Define the domain B as the image of  $[-1,0]^k$  by the linear map M, that is,  $B = M([-1,0]^k)$ . Then we have

LEMMA 2. The successive return time of  $n\beta = T^n(0)$  into B for a natural number n is characterized by  $P_n^k(x_1, \dots, x_k)$ . That is,  $m\beta \mod 1 \in B$  for some integer m > 0 if and only if there exists an integer n such that  $m = P_n^k(x_1, \dots, x_k)$ . Moreover,  $m\beta \mod 1$  are not on the boundary of B for every  $m \ge 1$ , that is

$$m\beta \notin \partial B$$
 for  $m=1, 2, \cdots$ .



FIGURE 2.1. Figure of B(k=2)

**PROOF.** We show that  $P_n^k(x_1, \dots, x_k)\beta \in B \mod 1$ . By the definition we have

$$P_n^k(x_1, \dots, x_k)\beta = \left(\frac{P_n^k(x_1, \dots, x_k)}{x_1}, \dots, \frac{P_n^k(x_1, \dots, x_k)}{x_1 \dots x_k}\right).$$

We will show that for  $1 \le i \le k$ ,

$$\frac{P_n^k(x_1,\dots,x_k)}{x_1\dots x_j} = P_n^{k-j}(x_{j+1},\dots,x_k) - \frac{\varepsilon_j}{x_i} - \frac{\varepsilon_{j-1}}{x_i x_{j+1}} - \dots - \frac{\varepsilon_1}{x_i \dots x_1}, \quad (6)$$

where  $\varepsilon_j = x_j P_n^{k-j}(x_{j+1}, \dots, x_k) - [x_j P_n^{k-j}(x_{j+1}, \dots, x_k)]$  for  $1 \le j \le k-1$  and  $\varepsilon_k = nx_k - [nx_k]$ . We prove (6) by induction on j. Let us assume that j = 1, then we have

$$\frac{P_n^k(x_1, \dots, x_k)}{x_1} = \frac{[x_1 P_n^{k-1}(x_2, \dots, x_k)]}{x_1}$$

$$= \frac{x_1 P_n^{k-1}(x_2, \dots, x_k) - \varepsilon_1}{x_1} = P_n^{k-1}(x_2, \dots, x_k) - \frac{\varepsilon_1}{x_1}.$$
(7)

Let us assume that j > 1. By inductive assumption, we have

$$\frac{P_n^k(x_1, \dots, x_k)}{x_1 \cdots x_{j-1}} = P_n^{k-(j-1)}(x_j, \dots, x_k) - \frac{\varepsilon_{j-1}}{x_{j-1}} - \frac{\varepsilon_{j-2}}{x_{j-1}x_{j-2}} - \dots - \frac{\varepsilon_1}{x_{j-1} \cdots x_1}.$$

Therefore, we have

$$\frac{P_n^k(x_1,\cdots,x_k)}{x_1\cdots x_j} = \frac{P_n^{k-(j-1)}(x_j,\cdots,x_k)}{x_j} - \frac{\varepsilon_{j-1}}{x_jx_{j-1}} - \cdots - \frac{\varepsilon_1}{x_j\cdots x_1}$$

$$= \frac{\left[x_{j}P_{n}^{k-j}(x_{j+1}, \cdots, x_{k})\right]}{x_{j}} - \frac{\varepsilon_{j-1}}{x_{j}x_{j-1}} - \cdots - \frac{\varepsilon_{1}}{x_{j}\cdots x_{1}}$$

$$= P_{n}^{k-j}(x_{j+1}, \cdots, x_{k}) - \frac{\varepsilon_{j}}{x_{j}} - \frac{\varepsilon_{j-1}}{x_{j}x_{j-1}} - \cdots - \frac{\varepsilon_{1}}{x_{j}\cdots x_{1}}.$$

From the fact that  $P_n^{k-j}(x_{j+1}, \dots, x_k)$  is an integer, we have

$$\frac{P_n^k(x_1,\dots,x_k)}{x_1\cdots x_j} \equiv -\frac{\varepsilon_j}{x_j} - \frac{\varepsilon_{j-1}}{x_j x_{j-1}} - \dots - \frac{\varepsilon_1}{x_j\cdots x_1} \mod 1.$$

That is,

Conversely let us assume that  $m\beta \in B \mod 1$ . By the definition of B, there exists  $\varepsilon = (\varepsilon_1, \dots, \varepsilon_k)$  such that for  $1 \le i \le k$ ,  $0 \le \varepsilon_i \le 1$  and  $m^t\beta \equiv M(-^t\varepsilon) \mod 1$ . We show that there exist integers  $P_1 > 0, \dots, P_{k+1} > 0$  satisfying the following conditions

- $(1) \quad P_1 = m,$
- (2)  $P_{j} = [x_{i}P_{i+1}]$  for  $j = 1, \dots, k$ ,
- (3)  $\varepsilon_j = x_j P_{j+1} [x_j P_{j+1}] \text{ for } j = 1, \dots, k.$

If we can show above assertion, then we have  $m = [x_1[x_2 \cdots [x_k P_{k+1}] \cdots]]$ , that is  $m = P_{P_{k+1}}^k(x_1, \cdots, x_k)$  and  $m\beta \notin \partial B$ . We construct  $P_j$   $(j=1, 2, \cdots, k+1)$  by induction on j. By the assumption,  $m/x_1 \equiv -\varepsilon_1/x_1 \mod 1$ . Therefore there exists an integer  $P_2 > 0$  such that

$$m/x_1 = P_2 - \varepsilon_1/x_1. \tag{8}$$

Therefore we have

$$m = \lceil x_1 P_2 \rceil, \qquad \varepsilon_1 = x_1 P_2 - \lceil x_1 P_2 \rceil.$$
 (9)

From the above equation (9) we know that  $0 < \varepsilon_1 < 1$ . So, we have the assertion (2) and (3) for the case j=1. Let us assume that  $P_1, \dots, P_j$  are constructed. Then we have

$$\frac{m}{x_1 \cdots x_j} = \frac{P_2 x_1 - \varepsilon_1}{x_1 \cdots x_j} = \frac{P_2}{x_2 \cdots x_j} - \frac{\varepsilon_1}{x_1 \cdots x_j}$$

$$= \frac{P_j}{x_j} - \frac{\varepsilon_{j-1}}{x_j x_{j-1}} - \cdots - \frac{\varepsilon_1}{x_j \cdots x_1}.$$
(10)

By the assumption, we have

$$\frac{m}{x_1 \cdots x_j} \equiv -\frac{\varepsilon_j}{x_j} - \frac{\varepsilon_{j-1}}{x_j x_{j-1}} - \cdots - \frac{\varepsilon_1}{x_j \cdots x_1} \mod 1. \tag{11}$$

From (10) and (11), we see  $P_j/x_j \equiv -\varepsilon_j/x_j \mod 1$ . Therefore there exists an integer  $P_{j+1} > 0$  such that  $P_j/x_j = P_{j+1} - \varepsilon_j/x_j$ . Then we see easily that  $P_{j+1}$  satisfies the above conditions.

LEMMA 3. Let us denote  $S = \{0, 1\}^k$  and  $Q_a = Q^k(i_1, \dots, i_k)$  for  $a = (i_1, \dots, i_k) \in S$ . Then we have the following assertion:

(1) there exists  $(\varepsilon_1, \dots, \varepsilon_k)$  uniquely such that  $0 < \varepsilon_i < 1$  for  $j = 1, 2, \dots, k$  and

$$M(-ta) + Q_a t \beta \equiv M^t(-\varepsilon_1, \dots, -\varepsilon_k) \mod 1$$
. (12)

- (2) Denoting  $(\varepsilon_1, \dots, \varepsilon_k)$  in (1) by  $\varepsilon^a$ , if  $a = (i_1, \dots, i_k)$ ,  $b = (l_1, \dots, l_k) \in S$  and  $i_j = l_j$  for  $q \le j \le k$ , then  $\varepsilon_i^a = \varepsilon_j^b$  for  $q 1 \le j \le k$ .
  - (3) If  $a \neq b$ , then  $M(-^t a) + Q_b^t \beta \notin B$ .
  - (4) If  $a \neq b$ , then  $Q_a \neq Q_b$ .

PROOF. Let  ${}^{t}(u_1, \dots, u_k) = M(-{}^{t}a) + Q_a{}^{t}\beta$ . Then, we can show by the analogous method in the proof of Lemma 2 that for  $1 \le j \le k$ 

$$u_j = Q^{k-j}(i_{j+1}, \cdots, i_k) - \frac{\varepsilon_j}{x_i} - \frac{\varepsilon_{j-1}}{x_i x_{j-1}} - \cdots - \frac{\varepsilon_1}{x_i \cdots x_1}, \qquad (13)$$

where  $\varepsilon_i$  are given as follows:

$$\varepsilon_{j} = x_{j} Q^{k-j}(i_{j+1}, \dots, i_{k}) - [x_{j} Q^{k-j}(i_{j+1}, \dots, i_{k})] \qquad (1 \le j \le k-1),$$

$$\varepsilon_{k} = x_{k} - [x_{k}]. \qquad (14)$$

Therefore we have

$$u_j \equiv -\frac{\varepsilon_j}{x_j} - \frac{\varepsilon_{j-1}}{x_j x_{j-1}} - \cdots - \frac{\varepsilon_1}{x_j \cdots x_1} \mod 1$$
,

that is  $M(-^t a) + Q_a^t \beta \equiv M^t(-\varepsilon_1, \dots, -\varepsilon_k) \mod 1$ . For the uniqueness, we prove that if for  $x, y \in [0, 1]^k$ ,  $x \neq y$ , then  $Mx \neq My \mod 1$ . For this purpose it is enough to know that  $B \subset [-1, 0]^k$ . Note that  $2 < x_i$  for  $j = 1, 2, \dots, k$ . We get for  $(a_1, \dots, a_k) \in [-1, 0]^k$ 

$$0 \ge M^{i}(a_{1}, \dots, a_{k})_{j} = \frac{a_{1}}{x_{1} \cdots x_{i}} + \frac{a_{2}}{x_{2} \cdots x_{i}} + \dots + \frac{a_{j}}{x_{i}} > -\sum_{i=1}^{j} \frac{1}{2^{i}} > -1.$$

Therefore we have  $B \subset [-1, 0]^k$ . From the definition of  $\varepsilon_j$ , the number  $\varepsilon_j$  is determined by  $i_{j+1}, \dots, i_k$  and  $x_j, \dots, x_k$ . Therefore the second assertion (2) of the lemma is justified. For the assertion (3), let us assume that  $a \neq b \in S$  and  $i_j \neq l_j$  and  $i_n = l_n$  for  $1 \leq n \leq j-1$ , where  $a = (i_1, \dots, i_k)$ ,  $b = (l_1, \dots, l_k)$ . We shall show that  $M(-^t a) + Q_b^t \beta \notin B$ . Let  $(u_1, \dots, u_k) = M(-^t a) + Q_b^t \beta$ . Recursively, we get

$$u_{j} \equiv \frac{-i_{j} + l_{j} - \varepsilon_{j}}{x_{j}} - \frac{\varepsilon_{j-1}}{x_{j} x_{j-1}} - \dots - \frac{\varepsilon_{1}}{x_{j} \cdots x_{1}} \mod 1, \qquad (15)$$

where for  $n=1, 2, \dots, j$ ,  $\varepsilon_n = x_n Q(l_{n+1}, \dots, l_k) - [x_n Q(l_{n+1}, \dots, l_k)]$  for  $n=1, 2, \dots, j$ . Suppose that  $(u_1, \dots, u_k) \in B$  and put

$$(u_1, \dots, u_k) \equiv M(-e_1, \dots, -e_k) \mod 1$$

where  $0 \le e_n \le 1$ , for  $n = 1, 2, \dots, k$ . Then we have

$$\frac{-i_j + l_j - \varepsilon_j + e_j}{x_i} \equiv 0 \quad \text{mod } 1.$$

Let  $i_i = 0$  and  $l_i = 1$ . Then we see

$$\frac{1-\varepsilon_j+e_j}{x_i}\equiv 0\qquad \text{mod } 1.$$

This is contradictory to  $x_j > 2$ . In the case of  $i_j = 1$  and  $l_j = 0$  we can have also a contradiction. Therefore we get  $M(-t_a) + Q_b^t \beta \notin B$ . The proof of (4) is easily derived from (3).

LEMMA 4. For  $a = (i_1, \dots, i_k) \in S$ , let m be a natural number such that  $M(-^t a) + m^t \beta \in in(B) \mod 1$ , where in(X) is the set of any interior points of X. Then, there exists a natural number n such that  $m = [x_1 \cdots [x_{k-1}[x_k n + i_k] + i_{k-1}] \cdots + i_1]$ .

PROOF. The proof is obtained as same as the proof of Lemma 2.

To observe when  $M(-^ta) + m^t\beta$  belongs to the boundary  $\partial B$  of B we introduce the notation  $G_{(i_1,\dots,i_n)}^{(a_1,\dots,a_n)}$  as follows. For an integer  $n \ge 0$  and  $(a_1,\dots,a_n) \in \mathbb{R}^n$  and  $(i_1,\dots,i_n) \in S$ , define  $G_{(i_1,\dots,i_n)}^{(a_1,\dots,a_n)}$  by

$$G_{(i_1,\dots,i_n)}^{(a_1,\dots,a_n)} = [a_1[\dots[a_n+i_n]\dots]+i_1] \quad \text{if} \quad n>0,$$

$$G_{\phi}^{\phi} = 1 \quad \text{if} \quad n=0.$$

LEMMA 5. For  $a=(i_1, \dots, i_k) \in S$ ,

$${m \in N \mid M(-^t a) + m^t \beta \in \partial B \bmod 1} = {G_{(i_1, \dots, i_{l-1})}^{(x_1, \dots, x_{l-1})} \mid i_l = 1}.$$

Moreover let us assume that  $M(-^ta) + G_{(i_1, \dots, i_{l-1})}^{(x_1, \dots, x_{l-1})^t} \beta \equiv M^t(-\varepsilon_1, \dots, -\varepsilon_k) \in \partial B \pmod{1}$ , where  $i_l = 1$ . Then  $0 < \varepsilon_j < 1$  for  $1 \le j < l$  and  $\varepsilon_l = 0$  and  $\varepsilon_j = i_j$  for l < j.

PROOF. Let m be a natural number such that  $M(-^ta)+m^t\beta\in\partial B \mod 1$ . Then, there exists  $(-\varepsilon_1, \cdots, -\varepsilon_k)\in[-1, 0]^k$  and  $M(-^ta)+m^t\beta\equiv M^t(-\varepsilon_1, \cdots, -\varepsilon_k) \mod 1$ . Let l be a natural number such that  $0<\varepsilon_j<1$  for  $1\le j< l$  and  $\varepsilon_l\in\{0, 1\}$ . Then analogously in the proof of Lemma 3 we get the integers  $P_1, \cdots, P_l>0$  such that (1)  $P_1=m$ , (2)  $P_i=[x_jP_{j+1}+i_j]$  for  $j=1, \cdots, l-1$ , (3)  $\varepsilon_j=x_jP_{j+1}-[x_jP_{j+1}]$  for

 $j=1, \dots, l-1$ . Therefore, inductively we get

$$\frac{m}{x_{1} \cdots x_{l}} - \frac{i_{l}}{x_{l}} - \cdots - \frac{i_{1}}{x_{1} \cdots x_{l}} = \frac{\left[x_{1} P_{2} + i_{1}\right]}{x_{1} \cdots x_{l}} - \frac{i_{l}}{x_{l}} - \cdots - \frac{i_{1}}{x_{1} \cdots x_{l}}$$

$$= \frac{x_{1} P_{2} - \varepsilon_{1} + i_{1}}{x_{1} \cdots x_{l}} - \frac{i_{l}}{x_{l}} - \cdots - \frac{i_{1}}{x_{1} \cdots x_{l}}$$

$$= \frac{P_{2}}{x_{2} \cdots x_{l}} - \frac{\varepsilon_{1}}{x_{1} \cdots x_{k}} - \frac{i_{l}}{x_{l}} - \cdots - \frac{i_{2}}{x_{2} \cdots x_{l}}$$

$$= \frac{P_{l}}{x_{l}} - \frac{\varepsilon_{l-1}}{x_{l-1} \cdots x_{1}} - \cdots - \frac{\varepsilon_{1}}{x_{1} \cdots x_{k}} - \frac{i_{l}}{x_{l}}.$$
(16)

Therefore we get

$$P_l/x_l - i_l/x_l \equiv -\varepsilon_l/x_l \mod 1$$
.

Let us assume that  $\varepsilon_l = 1$ , then we have

$$\frac{P_l - i_l + 1}{x_l} \equiv 0 \quad \mod 1.$$

This contradicts the irrationality of  $x_l$ . Let us assume that  $\varepsilon_l = 0$ , then, we have

$$\frac{P_l - i_l}{x_l} \equiv 0 \quad \mod 1.$$

Therefore we have  $P_l = i_l = 1$ . By using the fact we have  $m = [x_1 P_2 + i_1] = \cdots = [x_1[\cdots [x_{l-1} + i_{l-1}] \cdots] + i_1] = G_{(i_1, \dots, i_{l-1})}^{(x_1, \dots, x_{l-1})}$ . Hence, we get

$$\{m \in \mathbb{N} \mid M(-^t a) + m^t \beta \in \partial B \mod 1\} \subset \{G_{(i_1, \dots, i_{l-1})}^{(x_1, \dots, x_{l-1})} \mid i_l = 1\}$$
.

Conversely, for  $1 \le j \le k$ , if we set

$$\varepsilon_{j} = \begin{cases}
x_{j} G_{(i_{j+1}, \dots, x_{l-1})}^{(x_{j+1}, \dots, x_{l-1})} - \left[x_{j} G_{(i_{j+1}, \dots, i_{l-1})}^{(x_{j+1}, \dots, x_{l-1})}\right] & 1 \leq j < l-1 \\
x_{l-1} - \left[x_{l-1}\right] & j = l-1 \\
0 & j = l \\
i_{j} & l < j \leq k,
\end{cases}$$
(17)

then we get

$$-\frac{i_j}{x_j} - \cdots - \frac{i_1}{x_j \cdots x_1} + G_{(i_1, \dots, i_{l-1})}^{(x_1, \dots, x_{l-1})} \frac{1}{x_j \cdots x_1} \equiv -\frac{\varepsilon_j}{x_j} - \cdots - \frac{\varepsilon_1}{x_j \cdots x_1} \mod 1$$

Therefore, we have

$$G_{(i_1,\dots,i_{l-1})}^{(x_1,\dots,x_{l-1})} \in \{m \in \mathbb{N} \mid M(-^t a) + m^t \beta \in \partial B \mod 1\}$$
.

We completed the first half of the lemma. And the last half of the lemma is derived

easily from (17) and the uniqueness of  $\varepsilon_1, \dots, \varepsilon_k$ .

We see easily the uniqueness of the expression of the numbers  $G_{(i_1,\dots,i_l)}^{(x_1,\dots,x_l)}$  as follows.

LEMMA 6. If  $(i_1, \dots, i_l) \neq (j_1, \dots, j_l)$ , then  $G_{(i_1, \dots, i_l)}^{(x_1, \dots, x_l)} \neq G_{(j_1, \dots, j_l)}^{(x_1, \dots, x_l)}$ 

LEMMA 7. If there exists  $e = (\varepsilon_1, \dots, \varepsilon_k) \in \mathbb{R}^k$  satisfying the both conditions:

- (A)  $[0, 1]^k \cap [0, 1]^k + e$  has an inner point.
- (B) If the edge point of  $[0, 1]^k$  is in  $[0, 1]^k + e$ , then it is in the boundary of  $[0, 1]^k + e$ . Then, there exists a natural number m satisfying the following conditions:
  - (a)  $\#\{a \in S \mid a \in \partial([0, 1]^k + e)\} = 2^m$ .
- (b) If  $a = (i_1, \dots, i_k) \in S$  belongs to  $\partial([0, 1]^k + e)$ , then  $\#\{j \mid 1 \le j \le k, i_j e_j \in \{0, 1\}\} = m$ .

PROOF. From (A), we can easily derive that  $|\varepsilon_j| \le 1$  for  $j = 1, \dots, k$ . And from (B) we have  $\varepsilon_i = 0$  for some i. To simplify, we assume that  $\varepsilon_1 = \dots = \varepsilon_m = 0$  and  $\varepsilon_j \ne 0$  for j > m. Let  $a = (i_1, \dots, i_k) \in S$  satisfying  $a - e \in [0, 1]^k$ . Then we can easily derive that for m < j,

$$i_j = \begin{cases} 1 & \text{if } \varepsilon_j > 0 \\ 0 & \text{if } \varepsilon_i < 0 \end{cases}.$$

Therefore, we get

$$\{a \in S \mid a \in \partial([0, 1]^k + e)\} = \{a = (i_1, \dots, i_k) \in S \mid i_j = sg(\varepsilon_j) \text{ for } m < j\}, \qquad (18)$$

where

$$sg(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x < 0. \end{cases}$$

From (18), we can derive (a) and (b).

In general for a recurrent transformation  $F: X \rightarrow X$ , the transformation  $F_A$  on A is said to be the induced transformation to the set A if the following relation holds

$$F_A x = F^{n(x)} x$$
 for any  $x \in A$ , (19)

where  $n(x) = \min\{n \mid F^n x \in A, n \ge 1\}$ . We will introduce the induced transformation  $T_B$  to the set B of the transformation  $(\mathbb{R}^k/\mathbb{Z}^k, T)$ , where  $T: x \to x + \beta \mod 1$ . We denote the interval  $[\min(a, b), \max(a, b)]$  by  $\langle a, b \rangle$ . We have the following lemma.

LEMMA 8. For  $a = (i_1, \dots, i_k) \in S$ , let  $B_a = M(\prod_{j=1}^k \langle -i_j, -1 + \varepsilon_j^a \rangle)$ . Then we have

- (1)  $B = \bigcup_{a \in S} B_a$  and if  $a \neq b \in S$ ,  $in(B_a) \cap in(B_b) = \emptyset$ .
- (2)  $T_B x \equiv x + Q_a \beta \mod 1$  for  $x \in in(B_a)$  and  $T_B(B_a) = M(\prod_{j=1}^k \langle -1 + i_j, -\varepsilon_j^a \rangle)$ .
- (3)  $m\beta \notin \partial B_a$ , for any natural number m > 0 and any  $a \in S$ .



FIGURE 2.2. The induced transformation  $T_R(k=2)$ 

PROOF. (1) We will show firstly that  $\bigcup_{a \in S} \prod_{j=1}^k \langle -i_j, -1 + \varepsilon_j^a \rangle = [-1, 0]^k$ . Let  $(a_1, \dots, a_k)$  is any element of  $[-1, 0]^k$ . Note from Lemma 3 that  $\varepsilon_j^a$  is determined by  $i_{j+1}, \dots, i_k$  for  $1 \le j \le k-1$  and  $\varepsilon_k^a$  is the independent value for any a. Hence, we denote  $\varepsilon_j^a$  for  $1 \le j \le k-1$  by  $\varepsilon_{(i_{j+1}, \dots, i_k)}$ , where  $a \in S$  and  $a = (*, \dots, *, i_{j+1}, \dots, i_k)$ , and we denote  $\varepsilon_k^a$  by  $\varepsilon$ . We will inductively construct  $i_k, i_{k-1}, \dots, i_1$  satisfying the following relation, for  $j = k, k-1, \dots, 1$ ,

$$a_j \in \langle -i_j, -1 + \varepsilon_{(i_{j+1}, \dots, i_k)} \rangle$$
 (20)

Firstly, let  $i_k$  be

$$i_{k} = \begin{cases} 0 & \text{if} \quad a_{k} \in (-1+\varepsilon, 0] \\ 1 & \text{if} \quad a_{k} \in [-1, -1+\varepsilon) \end{cases}.$$

And assume that  $i_k, \dots, i_{j+1}$  can be constructed satisfying (20). Then put  $i_j$  as follows:

$$i_{j} = \begin{cases} 0 & \text{if } a_{j} \in (-1 + \varepsilon_{(i_{j+1}, \dots, i_{k})}, 0] \\ 1 & \text{if } a_{j} \in [-1, -1 + \varepsilon_{(i_{j+1}, \dots, i_{k})}). \end{cases}$$

Then we have

$$a_j \in \langle -i_j, -1 + \varepsilon_{(i_{j+1}, \dots, i_k)} \rangle$$
.

Therefore we can construct by induction  $i_1, \dots, i_k$ . Hence we get that

$$(a_1, \dots, a_k) \in \prod_{j=1}^k \langle -i_j, -1 + \varepsilon_j^a \rangle$$
.

The proof of disjointness of  $B_a$  and  $B_b$  is easy.

(2) Let x be any element of  $B_a$ , where  $a = (i_1, \dots, i_k)$ . By Lemma 3, we know  $M(-^t a) + Q_a \beta \equiv M^t(-\varepsilon_1^a, \dots, -\varepsilon_k^a) \mod 1$ . Hence, by the definition of  $B_a$  we get

$$B_a + Q_a \beta = M \left( \prod_{j=1}^k \langle -1 + i_j, -\varepsilon_j^a \rangle \right) \mod 1.$$

Hence, we have  $x + Q_a \beta \in B$ . We will show that  $x + Q_a \beta$  is the first return point to B. Let m > 0 be natural number such that  $x + m\beta \in B \mod 1$ . Then,  $B + m\beta \cap B \neq \emptyset$  in  $\mathbb{R}^k/\mathbb{Z}^k$ . Hence, there exists  $b = (j_1, \dots, j_k) \in S$  such that  $M(-^tb) + m^t\beta \in B$ . Firstly, we assume that  $M(-^tb) + m^t\beta \in in(B)$ . From Lemma 4, there exists a natural number n > 0 such that  $m = [x_1[\dots[x_kn + j_k]\dots] + j_1]$ . If  $n \ge 2$ , by Lemma 1 we get,

$$m = [x_1[\cdots [x_k n + j_k]\cdots] + j_1] \ge [x_1[\cdots [x_k 2]\cdots]] > Q_a$$
.

Let us consider the case of n=1. We assume that  $a \neq b$ . Then, we know that  $x \in B_b$ . But from (2) of this lemma, it is impossible. Therefore  $m=Q_a$ . Let us consider the case of  $M(-^tb)+m^t\beta \in \partial B$ . Then we see from Lemma 5,  $m=G_{(i_1,\dots,i_{l-1})}^{(x_1,\dots,x_{l-1})}$ , where  $l \leq k$  and  $i_l=1$ . And from Lemma 5 and Lemma 6, we know

$$\{b \in S \mid M(-tb) + m^t\beta \in \partial B\} = \{(n_1, \dots, n_k) \in S \mid n_i = i_i \text{ for } 1 \le j \le l\}$$
.

Therefore, we have

$$\#\{b\in S\mid M(-{}^{t}b)+m{}^{t}\beta\in\partial B\}=2^{k-1},$$

and for  $b = (n_1, \dots, n_k) \in \{b \in S \mid M(-tb) + m^t\beta \in \partial B\}$  we get

$$\#\{j \mid 1 \le j \le k, \, \varepsilon_i \in \{0, 1\}\} = k - l + 1$$

where  $M^{t}(-\varepsilon_{1}, \dots, \varepsilon_{k}) = M(-^{t}b) + m^{t}\beta$ .

On the other hand from the fact that  $B+m\beta\cap B\neq\emptyset$  in  $\mathbb{R}^k/\mathbb{Z}^k$  and Lemma 7 we know that there exists  $r\in\mathbb{N}$  such that

$$\sharp \{b \in S \mid M(-{}^{t}b) + m^{t}\beta \in \partial B\} = 2^{r},$$

and for  $b = (n_1, \dots, n_k) \in \{b \in S \mid M(-t) + m^t \beta \in \partial B\}$  we get

$$\sharp \left\{ j \mid 1 \leq j \leq k, \, \varepsilon_j \in \left\{0, \, 1\right\} \right\} = r \; ,$$

where  $M'(-\varepsilon_1, \dots, -\varepsilon_k) = M(-tb) + mt\beta$ . However, this result contradicts the previous result. Thus the proof is completed.

(3) Suppose that  $m\beta \in \partial B_a \mod 1$  for some  $m > 0 \in \mathbb{N}$  and some  $a = (i_1, \dots, i_k) \in S$ . And let  $(-\varepsilon_1, \dots, -\varepsilon_k) \equiv m\beta \mod 1$ , where  $0 \le \varepsilon_j \le 1$ , for  $j = 1, \dots, k$ . Then, as same as Lemma 2, we know that there exists  $n \in \mathbb{N}$  such that  $m = P_n^k(x_1, \dots, x_k)$  and satisfying the following relation: for  $j = 1, \dots, k$ ,

$$\varepsilon_{j} = x_{j} P_{n}^{k-j}(x_{j+1}, \dots, x_{k}) - [x_{j} P_{n}^{k-j}(x_{j+1}, \dots, x_{k})].$$

Therefore we know that  $0 < \varepsilon_j < 1$ , for  $j = 1, \dots, k$ . From the definition of  $B_a$ , there exists a natural number j such that  $-1 + \varepsilon_j^a = -\varepsilon_j$ . From the proof of Lemma 3, we get

$$-x_{j}P_{n}^{k-j}(x_{j+1}, \dots, x_{k}) + [x_{j}P_{n}^{k-j}(x_{j+1}, \dots, x_{k})]$$

$$= -1 + x_{j}Q^{k-j}(i_{j+1}, \dots, i_{k}) - [x_{j}Q^{k-j}(i_{j+1}, \dots, i_{k})].$$

From the fact that  $x_j$  is the irrational number the above equation is impossible. Therefore we have  $m\beta \notin \partial B \mod 1$ .

LEMMA 9. The following relation holds.

$$P_{n}(\{Q_{i}^{k}(x_{1}, \dots, x_{k})\}_{i=1}^{\infty}) = \#\left\{\bigcap_{j=0}^{n-1} T_{B}^{-j}(B_{b_{j}}) \mid b_{j} \in S \text{ and } in\left(\bigcap_{j=0}^{n-1} T_{B}^{-j}(B_{b_{j}})\right) \neq \varnothing\right\}. \tag{21}$$

PROOF. We show that there exists a one to one and onto map between

$$\{(Q_i^k(x_1, \dots, x_k), \dots, Q_{i+n-1}^k(x_1, \dots, x_k)) \mid i=1, \dots\}$$

and

$$\left\{\bigcap_{j=0}^{n-1}T_B^{-j}(B_{b_j})\;\middle|\;b_j\!\in\!S\;\text{and}\;\inf\!\left(\bigcap_{j=0}^{n-1}T_B^{-j}(B_{b_j})\right)\!\neq\!\varnothing\right\}.$$

From Lemma 8 (2), for any natural number i>0 there exists  $a_i \in S$  such that  $Q_{a_i} = Q_i^k(x_1, \dots, x_k)$ . We make  $(Q_i^k(x_1, \dots, x_k), \dots, Q_{i+n-1}^k(x_1, \dots, x_k))$  corresponded to  $\bigcap_{j=0}^{n-1} T_B^{-j}(B_{a_{i+j}})$ . This mapping is denoted by  $\phi$ . Firstly, we show that  $\phi$  is well defined. From Lemma 2 and Lemma 8, we get

$$P_i^k(x_1, \dots, x_k)\beta \in B_a, \quad \text{mod } 1.$$
 (22)

From Lemma 2, we know

$$P_{i+j}^k(x_1, \dots, x_k)\beta \equiv T_B^j(P_i^k(x_1, \dots, x_k)\beta) \quad \text{mod } 1$$

From (22) we have  $T_B^j(P_i^k(x_1, \dots, x_k)\beta) \in B_{a_{i+j}} \mod 1$ . Therefore, we get

$$P_i^k(x_1, \dots, x_k)\beta \in \bigcap_{i=0}^{n-1} T_B^{-i}(B_{a_{i+j}}) \mod 1$$
.

This gives the well definedness of  $\phi$ . Next we will show that  $\phi$  is the onto mapping. Let

$$in\left(\bigcap_{j=0}^{n-1}T_B^{-j}(B_{b_j})\right)\neq\emptyset$$
,

where  $b_j \in S$ . By the Kronecker Approximation Theorem (for example [4]) and formula (1) we know that the set  $\{m\beta \mid m \in \mathbb{N}\}$  is dense in  $\mathbb{R}^k/\mathbb{Z}^k$ . Therefore from Lemma 3, we see that  $\{P_i^k(x_1, \dots, x_k)\beta \mid i=1, 2, \dots\}$  is dense in B. We know that there exists natural number i such that

$$P_i^k(x_1, \dots, x_k)\beta \in in \left(\bigcap_{j=0}^{n-1} T_B^{-j}(B_{b_j})\right).$$

Therefore, we have  $P_{i+j}^k(x_1, \dots, x_k)\beta \in B_{b_j}$  for  $j=0, \dots, n-1$ . From Lemma 8, we get  $Q_{i+j}^k(x_1, \dots, x_k) = Q_{b_j}$  for  $j=0, \dots, n-1$ . Therefore we know that  $\phi$  is the onto mapping. And it is easily shown that  $\phi$  is the one to one mapping.

Define the transformation  $T_{(x_1,\dots,x_k)}$  on  $[-1,0]^k$  by the following equation:

$$T_{(x_1, \dots, x_k)} = M^{-1}T_BM$$
.

Then, from Lemma 8,  $T_{(x_1,\dots,x_k)}$  is also defined as the following formula:

$$T_{(x_1, \dots, x_k)}(x) = x + a - \varepsilon^a$$
 if  $x \in B_a^{(x_1, \dots, x_k)}$  for  $a \in S$ , (23)

where  $B_a^{(x_1,\dots,x_k)} = \prod_{j=1}^k \langle -i_j, -1 + \varepsilon_j^a \rangle$ . Let  $\pi$  be the projection  $\mathbb{R}^k \to \mathbb{R}^{k-1}$  satisfying  $\pi(y_1,\dots,y_k) = (y_2,\dots,y_k)$ . From now on we denote  $S = \{(i_1,\dots,i_k) \mid i_j \in \{0,1\} \text{ for } j=1,\dots,k\}$  by  $S_k$ .

LEMMA 10. The following commutative relation holds.

$$\begin{bmatrix}
-1,0]^{k} & \xrightarrow{T_{(x_{1},\cdots,x_{k})}} [-1,0]^{k} \\
\pi \downarrow & \pi \downarrow \\
[-1,0]^{k-1} & \xrightarrow{T_{(x_{2},\cdots,x_{k})}} [-1,0]^{k-1}
\end{bmatrix} (24)$$

And, for  $a \in S$ ,

$$\pi(B_a^{(x_1,\dots,x_k)}) = B_{\pi(a)}^{(x_2,\dots,x_k)}. \tag{25}$$

PROOF. From the equation (14), we can derive that for  $a \in S$ ,  $\varepsilon_j^a = \varepsilon_{j-1}^{\pi(a)}$  for  $2 \le j \le k$ . Therefore, from the definition of  $B_a^{(x_1, \dots, x_k)}$ , we can easily get the lemma.

For a natural number n>0 let us introduce the partition  $\Delta_n^{(x_1,\dots,x_k)}$  as follows:

$$\left\{\bigcap_{j=0}^{n-1}T^j_{(x_1,\dots,x_k)}(B^{(x_1,\dots,x_k)}_{b_j})\,\middle|\,b_j\in S_k\text{ and }in\left(\bigcap_{j=0}^{n-1}T^j_{(x_1,\dots,x_k)}(B^{(x_1,\dots,x_k)}_{b_j})\right)\neq\varnothing\right\}.$$

Then we have the following lemma.

LEMMA 11. The mapping  $\Pi: \Delta_n^{(x_1, \dots, x_k)} \to \Delta_n^{(x_2, \dots, x_k)}$  is defined by

$$\Pi(x) = \pi(x)$$
 for  $x \in \Delta_n^{(x_1, \dots, x_k)}$ .

Then, for any  $y \in \Delta_n^{(x_2, \dots, x_k)}$  we have

$$\#\Pi^{-1}(y) = n+1$$
 and  $\left(\bigcup_{x \in \Pi^{-1}(y)} x\right) = [-1, 0] \times y$ .

PROOF. From Lemma 10,  $\Pi$  is well defined. And we note that for any j and  $a \in S$ , the *i*-coordinate of  $\partial(T^j_{(x_1,\dots,x_k)}B^{(x_1,\dots,x_k)}_a)$  are in the set  $\{0,1\} \cup \{\{-mx_i\} \mid m \in \mathbb{N}\}$ . It is concluded by the formula (23). We will prove this lemma by the induction on n. Let n=1. Then, we have

$$\Delta_1^{(x_1,\dots,x_k)} = \{B_a^{(x_1,\dots,x_k)} \mid a \in S_k\}, \qquad \Delta_1^{(x_2,\dots,x_k)} = \{B_a^{(x_2,\dots,x_k)} \mid a \in S_{k-1}\}.$$

Therefore, from Lemma 10, we get

$$\Pi^{-1}(B_{(i_2,\dots,i_k)}^{(x_2,\dots,x_k)}) = \{B_{(0,i_2,\dots,i_k)}^{(x_1,x_2,\dots,x_k)}, B_{(1,i_2,\dots,i_k)}^{(x_1,x_2,\dots,x_k)}\}.$$

And from the formula (17), we get  $\varepsilon_1^{(0,i_2,\cdots,i_k)} = \varepsilon_1^{(1,i_2,\cdots,i_k)}$ . Therefore, we have

$$\langle 0, -1 + \varepsilon_1^{(0, i_2, \dots, i_k)} \rangle \cup \langle -1, -1 + \varepsilon_1^{(1, i_2, \dots, i_k)} \rangle = [-1, 0].$$

Hence, we get

$$B_{(0,i_2,\cdots,i_k)}^{(x_1,x_2,\cdots,x_k)} \cup B_{(1,i_2,\cdots,i_k)}^{(x_1,x_2,\cdots,x_k)} = [-1,0] \times B_{(i_2,\cdots,i_k)}^{(x_2,\cdots,x_k)} \ .$$

This means that the case that n=1 is verified. We assume that n>1. By the inductive assumption, for any  $y \in \Delta_{n-1}^{(x_2, \dots, x_k)}$ 

$$\#\Pi^{-1}(y) = n$$
 and  $\bigcup_{x \in \Pi^{-1}(y)} x = [-1, 0] \times y$ .

From the definition of  $\Delta_n^{(x_1,\dots,x_k)}$ , we get

$$\Delta_{n}^{(x_{1}, \dots, x_{k})} = \left\{ B_{a}^{(x_{1}, \dots, x_{k})} \cap T_{(x_{1}, \dots, x_{k})}(x) \mid a \in S_{k} \text{ and } x \in \Delta_{n-1}^{(x_{1}, \dots, x_{k})} \right\}, 
\Delta_{n}^{(x_{2}, \dots, x_{k})} = \left\{ B_{a}^{(x_{2}, \dots, x_{k})} \cap T_{(x_{2}, \dots, x_{k})}(y) \mid a \in S_{k-1} \text{ and } y \in \Delta_{n-1}^{(x_{2}, \dots, x_{k})} \right\}.$$
(26)

Then, we get the following fact for  $y \in \Delta_{n-1}^{(x_2, \dots, x_k)}$  and  $a = (i_2, \dots, i_k) \in S_{k-1}$ 

$$\Pi^{-1}(T_{(x_2,\dots,x_k)}(y)\cap B_a^{(x_2,\dots,x_k)})$$

$$= \{T_{(x_1, \dots, x_k)}(x) \cap B_{a^0}^{(x_1, \dots, x_k)} \mid x \in \Pi^{-1}(y)\} \bigcup \{T_{(x_1, \dots, x_k)}(x) \cap B_{a^1}^{(x_1, \dots, x_k)} \mid x \in \Pi^{-1}(y)\},$$

where  $a^i = (i, i_2, \dots, i_k)$ . Therefore, we get

$$\bigcup_{x \in \Pi^{-1}(T_{(x_2, \dots, x_k)}(y) \cap B_a^{(x_2, \dots, x_k)})} z = (B_{a^0}^{(x_1, \dots, x_k)} \cup B_{a^1}^{(x_1, \dots, x_k)} \cap \bigcup_{x \in \Pi^{-1}(y)} T_{(x_1, \dots, x_k)}(x)$$

$$= [-1, 0] \times B_a^{(x_2, \dots, x_k)} \cap [-1, 0] \times y = [-1, 0] \times (B_a^{(x_2, \dots, x_k)} \cap y) . \tag{27}$$

There exist real numbers p, q such that

$$T_{(x_1, \dots, x_k)}(x) = [p, q] \times y$$
.

We may assume that there exists numbers  $p_0 < p_1, \dots < p_n$  such that

$$\{T_{(x_1,\dots,x_k)}(x) \mid x \in \Pi^{-1}(y)\} = \{[p_i, p_{i+1}] \times y \mid i=0, 1, \dots, n-1\}.$$

From the note before, we derive that  $p_i \in \{0, 1\} \cup \{\{-mx_i\} \mid m \in \mathbb{N}\}$ . Therefore, we get

$$-1 + \varepsilon_1^{a^0} \notin \{p_i \mid i = 0, 1, \dots, n\}$$
.

Therefore, there exists natural number l such that  $0 \le l \le n$  and  $p_l < -1 + \varepsilon_1 < p_{l+1}$ . Hence we get

$$\begin{aligned} & \{T_{(x_1, \dots, x_k)}(x) \cap B_{a^i}^{(x_1, \dots, x_k)}(\neq \emptyset) \mid i \in \{0, 1\}, x \in \Pi^{-1}(y)\} \\ &= \{ [p_m, p_{m+1}] \times y \cap B_a^{(x_2, \dots, x_k)} \mid 0 \le i < l \text{ or } l < m \le n-1 \} \end{aligned}$$

$$\cup \{ [p_{l}, -1 + \varepsilon_{1}] \times y \cap B_{a}^{(x_{2}, \dots, x_{k})} \} \cup \{ [-1 + \varepsilon_{1}, p_{l+1}] \times y \cap B_{a}^{(x_{2}, \dots, x_{k})} \}.$$

Therefore, we get

$$\#\Pi^{-1}(T_{(x_2,\dots,x_k)}(y)\cap B_a^{(x_2,\dots,x_k)})=n+1$$
.

Hence the proof is completed.

LEMMA 12. For any irrational number x > 1, we know  $\sharp \Delta_n^{(x)} = n + 1$ .

The lemma is proved as same as Lemma 11.

PROOF OF THE THEOREM. From Lemma 10, we get

$$P_{n}(\lbrace Q_{i}^{k}(x_{1}, \cdots, x_{k})\rbrace_{i=1}^{\infty}) = \sharp \left\{ \bigcap_{j=0}^{n-1} T_{B}^{-j}(B_{b_{j}}) \middle| b_{j} \in S \text{ and } in \left( \bigcap_{j=0}^{n-1} T_{B}^{-j}(B_{b_{j}}) \right) \neq \varnothing \right\}$$

$$= \sharp \left\{ \bigcap_{j=0}^{n-1} T_{B}^{j}(B_{b_{j}}) \middle| b_{j} \in S \text{ and } in \left( \bigcap_{j=0}^{n-1} T_{B}^{j}(B_{b_{j}}) \right) \neq \varnothing \right\}$$

$$= \sharp \Delta_{n}^{(x_{1}, \dots, x_{k})}. \tag{28}$$

From Lemma 11 and Lemma 12, we get  $\sharp \Delta_n^{(x_1,\dots,x_k)} = (n+1)^k$ . Therefore, we get

$$P_n(\{Q_i^k(x_1, \dots, x_k)\}_{i=1}^{\infty}) = (n+1)^k$$
.

ACKNOWLEDGEMENT. We wish to thank Prof. Shunji Ito for providing nice working condition and his helpful comments. We wish to thank Prof. Shigeru Tanaka and Prof. Makoto Mori for their helpful comments.

#### References

- [1] M. Morse and G. A. Hedlund, Symbolic dynamics  $\Pi$ . Strurmian trajectories, Amer. J. Math. 62 (1940), 1-42.
- [2] P. Arnoux, C. Mauduit, I. Shiokawa and J. Tamura, Complexity of sequences by billiard in the cube, Bull. Soc. Math. France 122 (1994), 1-12.
- [3] P. Hubert, Complexité de suites définites par des trajectories de billiard, preprint (1994).
- [4] J. W. S. Cassels, An Introduction to Diophantine Approximation Theory, Cambridge Tracts in Math. 45 (1957).

Present Address:

GENERAL EDUCATION, SUZUKA COLLEGE OF TECHNOLOGY, SHIROKO, SUZUKA, MIE, 510–02 JAPAN.