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1. Introduction.

Let {b;};>-, be a sequence with finite state and let

Pn({bi}?;l)=#{(bja bj+1a T bj+n—1) |j=19 2, } : 1)
We call P,({b;};>,) the complexity of {b;};2;. The complexity of the sequence
{lix+y]1—[G—Dx+y]|i=1,2, ---} for an irrational number x and a real number y

called a sturmian sequence is known as (n+ 1) ([1]). In several cases, the explicit forms
of the complexity are calculated ([2] and [3]). The purpose of this paper is to introduce
a sequence {Q¥(x,, * -+, x) | i=1, 2, - - -} which we call a generalized Sturmian sequence:
for each (x, - - -, x,)eR*

Qf(xy, -, x)=Dx[xy - DG+ 1)] - - 11 =Dxilxz- - -[xd] 11 (=12, ), (2

and to give the explicit form of the complexity for the generalized sturmian sequence
as follows.

THEOREM 1. Let (x,, - -, X;) be the k-dimensional positive real vector satisfying
x;>2 (I <i<k). Assume that
1 1 1
15 T Ty T Ty T (3)
x, XX XX

be linearly independent over Q. Then the complexity of generalized Sturmian sequence
{Qi(xy, ** +, x)}i2 1 is given by (n+ 1), that is,

Pn({Qi“(xl, T xk)}l?i 1)=(n+ l)k .

2. Dynamical system.

In this section, we will show that the generalized sturmian sequence is related to
a dynamical system.
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For (i, i5, - - *, i) €{0, 1}*, put
Q iy, ig, -~ s i)=Dxilxz Dt i] - - +i]+i4].
Then we have
LEMMA 1. For (iy, iy, - - -, i) €{0, 1}¥, we have
Q iy, -5 ) <[xy [x-1[2%7]- -] -
ProoF. To obtain the assertion, it is sufficient to prove the following relation:
QKL, -, <Dxy - [x-1[2x1]- - 1. “)

We prove this by induction on k. Let us assume that k=1. Because x; >2, it is easy to
see that

O'V)=[x,+1]1<[x;+x;—11<[2x,] .
Therefore (4) holds on k=1. Let us assume that k> 1. By the inductive assumption,
Dol D+ 11 I+ 1) <[xz" - [xe-1[2xd1- - -7 &)
Because x, >2, we have
Q (1, - -, =[xy [xo[ - [xe+ 11 - -1+ 1]+ 1]

<[xy([x2 - [x-1[2x1]- - - 1= +x4]

<[xl e [xk—1[2xk]] . ] .
Hence, we completed the proof.

Let B=(1/xy, 1/(x;x3), - -, 1/(xy " - - x;)). We introduce the dynamical system 7" on
[—1, 0]* as follows:

Tx=x+p mod 1.
For any natural number i, put
P¥(xy, -+, x) =[x, [xy - -[xd]1- - -1] -
Let M be the following k x k matrix
/%,
1/x1x2 l/xz
M= e cen
l/xl...xk l/xk—lxk l/xk

Define the domain B as the image of [—1,0]* by the linear map M, that is,
B=M([—1,0]%. Then we have
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LEMMA 2. The successive return time of nf§=T"(0) into B for a natural number n
is characterized by P¥(x,, - - -, x,). That is, mB mod 1 € B for some integer m>0 if and
only if there exists an integer n such that m= PX(x,, - - -, x;). Moreover, m mod 1 are
not on the boundary of B for every m>1, that is

mpf ¢ oB for m=1,2,---.

FIGURE 2.1. Figure of B (k=2)

ProOF. We show that P¥(x,, - - -, x,)Be B mod 1. By the definition we have

K .o K ...
Pxy, -, xk)B=< Pixy, - ', x)  PHxy, oo, xk)) |

2 2

X X, %
We will show that for 1 <j<k,
g; €i_1 &4

PYxy, -0, x) .
- 1. : =Py ixj g, - —— o L (6

X1 "xj x_, xjxj_l xj"'xl

where &;=x;P; 7 /(x;,q, "+, %) —[x;PX7 (x4 1, -, x)] for 1<j<k—1 and g=
nx,—[nx,]. We prove (6) by induction on j. Let us assume that j=1, then we have

Pﬁ(xn T, Xp) _ [x1Pﬁ‘1(x2, L, x)]

X1 X1
k—1
X Prm (X, t 0, X)) — &y k—1 €
= =P, (%, 1, X)) —— . (7
Xy X1
Let us assume that j> 1. By inductive assumption, we have
PX(xy, -+, x3) . g g &,
e (I TIPS B L S
X1 Xj—1 Xj-1  Xj-1Xj-2 Xj-1"""X%1
Therefore, we have
k . k—G—1 ...
Pr(xy, > Xi) i v )(xja > Xi) 7 it U 2
x1° ° '.xj xj Xij_l xj' 'xl
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k—j .
— [ijn J(xj+1s X)) - &
X;j XiXj-1 Xitt %
: 8' 8‘—. 8
K j j—1 . 1
=P, xjsqs " X)——— o X xy
Xj o XXj-1 A

From the fact that PX~J(x;,,, - - -, x;) is an integer, we have

Pﬁ(xl,"',xk)E_i_sj—ﬂ___,___sl_ mod1.
xl"'xj xj ijj_l Xj"'xl
That is,
1/x, —&
1/x1x, 1/x,
PX(x,, -+, ) B= modl.
Uxyooox - e Uxegxe 1/x, —&

Conversely let us assume that mfe B mod 1. By the definition of B, there exists
e=(g;, "' *, &) such that for 1 <i<k, 0<¢;<1 and m'f= M(—"¢) mod 1. We show that
there exist integers P, >0, - - -, P, ,, >0 satisfying the following conditions

(1) Py=m,

(2) P;=[x;P;;,] forj=1, -k,

Q) &j=x;Pj,1—[x;Pj;,] forj=1,--- k.

If we can show above assertion, then we have m=[x,[x,- - - [x%Pr+.]" - - 1], that
is m= P}, , (x;, - - -, x,) and mB¢ dB. We construct P; (j=1,2, - - -, k+1) by induction

Pr+1

on j. By the assumption, m/x; = —e¢,/x, mod 1. Therefore there exists an integer P, >0
such that
mix,=P,—&,/x,. | ®)
Therefore we have
m=[x,P,], & =x,P,—[x,P,]. 9

From the above equation (9) we know that 0 <¢, < 1. So, we have the assertion (2) and
(3) for the case j=1. Let us assume that Py, - - -, P; are constructed. Then we have

m  Pyx;—g = P &
xl' xJ xl"'xj' X2 xj X1 x_’
S . = S S (10)
xJ' ijj_l .xj"'xl

By the assumption, we have
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m &; &

=— 4 7t ... "1 modl. (11)
xl' x"- xJ iji_l xj" ° 'xl
From (10) and (11), we see P;/x;= —¢;/x; mod 1. Therefore there exists an integer

P;,,>0 such that P;/x;=P;,, —¢;/x;. Then we see easily that P;,, satisfies the above
conditions.

LEMMA 3. Let us denote S={0, 1}* and Q,=Q"iy, - - -, i) for a=(iy, - -, i) €S.
Then we have the following assertion:
(1) there exists (gy, - -, &) uniquely such that 0<g;<1 for j=1,2, ---, k and

M(—'a)+ Q) B=M'(—¢,, -, —&) mod1. (12)

(2) Denoting (g, - -, &) in (1) by €%, ifa=(iy, - -, &), b=y, - -, L)eS and i;=;
for g<j<k, then e§=¢} for g—1<j<k.

(3) If a#b, then M(—'a)+ Q,'f ¢ B.

4) If a#b, then Q,#Q,.

ProOOF. Let ‘(uy, - -, u)=M(—'a)+ Q,f. Then, we can show by the analogous
method in the proof of Lemma 2 that for 1<j<k

uj=Qk_j(ij+1a "'aik)"—j_‘—j_l—_"'__‘._“*’ (13)
where ¢; are given as follows:
8j=ijk_j(ij+1s T ik)_[ijk_j(in R A (1<j<k-1),

g=x,—[x] .

Therefore we have

(14)

E; Ei_4 &y
w=— Bt . B poqi,
x] Xij_l Xj"'xl

that is M(—‘a)+ Q=M (—¢,, - - -, —¢g,) mod 1. For the uniqueness, we prove that if

for x, ye[0, 17%, x#y, then Mx# My mod 1. For this purpose it is enough to know

that Bc[—1, 0]*. Note that 2<x; for j=1,2, - - -, k. We get for (a;, - - -, a)e[—1, 0]*
a, a L

. 1
0>Miay, -, ay),= + TR B S,

X1t X Xt Xj X; i=1 2'

Therefore we have B<[—1,0]*. From the definition of ¢; the number ¢; is deter-
mined by i;,,, - -, § and x;, - - -, x;,. Therefore the second assertion (2) of the lemma
is justified. For the assertion (3), let us assume that a#be S and i;#/; and i,=/, for
l<n<j—1,wherea=(i;, - - -, i), b=(,, * - -, [,). We shall show that M(—‘a)+ Q}f ¢ B.
Let (uy, - - -, w)=M(—'a)+ QiB. Recursively, we get
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u= Lt e B it WO S (15)
Xj ijj_l X;* - 'xl
where for n=1,2, - - -, j, £,=x,0,+1> = > b)—[%.OUp+1, -, 4)] for n=1,2, - -, j.
Suppose that (u,, - * -, ¥,)€ B and put

(uls “'9uk)EM(_el, T _ek) m0d17
where 0<e,<1, for n=1, 2, - - -, k. Then we have

—ij+lj—8j+ej _

0 modl .
Xj
Let {;=0 and /;=1. Then we see
1=5%e 0 modl.
X;

J

This is contradictory to x;>2. In the case of i;=1 and /;=0 we can have also
a contradiction. Therefore we get M(—'a)+ Q}B ¢ B. The proof of (4) is easily derived
from (3).

LEMMA 4. For a=(i,, "', i)€S, let m be a natural number such that
M(—'a)+m'Bein(B) mod 1, where in(X) is the set of any interior points of X. Then,
there exists a natural number n such that m=[x,- - -[x_[xn+ i +i-1]1 - +i ]

ProoOF. The proof is obtained as same as the proof of Lemma 2.

To observe when M(—'a)+ m'B belongs to the boundary 0B of B we introduce the
notation G{¢>"># as follows. For anintegern>0and (a, - - -, a,)e R"and (i;, - -, iy) €S,
define G+ by

@1, in)

Germ=lail - -[a,+i] 1401 if #>0,

G¢=1 if n=0.
LEmMMA 5. For a=(iy, - -, i) €S,
{meN | M(—'a)+m'BedBmod 1} ={GFr 70 | =1} .
Moreover let us assume that M(—'a)+GEr. V=M (—¢y, -+, —e)edB (mod 1),

where iy=1. Then 0<¢;<1 for 1<j<l and & =0 and ¢;=i; for I<j.

ProOF. Let m be a natural number such that M(—'a)+m'fedB mod 1. Then,
there exists (—&;, - -, —g)e[—1,0]* and M(—‘a)+m'B=M'(—¢,, -+, —&) mod 1.
Let / be a natural number such that 0<g;<1 for 1<j</ and £¢€{0,1}. Then
analogously in the proof of Lemma 3 we get the integers P,, - -, P;>0 such that
(1) Py=m, 2) Pj=[x;Pj,1+i;] for j=1,---,1-1, 3) &;=x;Pj41—[x;Pj4+,] for
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j=1, - -+, I—1. Therefore, inductively we get

161

(16)

17

m J . i, _ [xPr+i] g ) Iy
XX X XX XX x; Xp X
_ xy Py—e+iy o iy
X1 X% X1 X100 X%
P, €1 I l2
.x2 xl x1 'xk x, x2 X
N SR S
Xy X177 Xy Xyt X X
Therefore we get
Pl/xl—il/xlE—Bl/xl mOdl .
Let us assume that g;=1, then we have
P—i+1
L 1" =0 modl.
X
This contradicts the irrationality of x;. Let us assume that ¢ =0, then, we have
P,—i
—t T=9 mod 1.
X1
Therefore we have P;=i;=1. By using the fact we have m=[x,P,+i;]="
L[ -Dxim g +i-11 -1+, 1=G G007, Hence, we get
{meN | M(—'a)+m'BedBmod 1} = {GFr. ¥4 | =1} .
Conversely, for 1 <j<k, if we set
X G =[Gy Pl 1<j<i—1
e.= Xp—1—[x-4] j=1-1
710 j=1
i I<j<k,
then we get
i i 1 E; 3
—t 4G Y ———=—TL— - —— 1 modl.
Xj XjrT Xy Xjt Xy Xj Xjt Xy

Therefore, we have

G(xx."',xr-l)e{meN I M(—‘a)+m'BedBmod 1} .

(1,05 i1-1)

We completed the first half of the lemma. And the last half of the lemma is derived
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easily from (17) and the uniqueness of &;, - * -, &.

We see easily the uniqueness of the expression of the numbers G2 as follows.

(TSN 1))

LEMMA 6. If (iy, -, i) #(1s =" "> J1), then GEUED £ GELI ),

LEMMA 7. If there exists e=(g,, - - -, &) € R* satisfying the both conditions:

(A) [0, 1]* [0, 1]*+e has an inner point.

(B) If the edge point of [0, 11 is in [0, 11* + e, then it is in the boundary of [0, 11* +e.
Then, there exists a natural number m satisfying the following conditions:

(@) #{aeS|aecd([0, 11 +e)}=2"

) If a=(y, ", i)eS belongs to ([0, 11+e), then #{j|1<j<k, ij—e;e
{0, 1}}=m.

Proor. From (A), we can easily derive that |g|<1 for j=1, ---, k. And from
(B) we have ¢,=0 for some i. To simplify, we assume that ¢, =--- =g, =0 and ¢;#0

for j>m. Let a=(i;, - * -, i) € S satisfying a—ee [0, 1]*. Then we can easily derive that
for m<j,

,_{1 if >0
7o if ¢;<0.
Therefore, we get
{aeS | aed([0, 1T +e)} ={a=(iy, " - -, i€ S | i;=sg(e;) for m<j}, (18)
where

1 if x>0

sg(x)={0 if x<O0.

From (18), we can derive (a) and (b).

In general for a recurrent transformation F: X— X, the transformation F, on 4 is
said to be the induced transformation to the set A4 if the following relation holds

F x=F"9x for any xeAd, (19)

where n(x)=min{n | F"xe A,n>1}. We will introduce the induced transformation Ty
to the set B of the transformation (R*/Z*, T), where T: x—x+  mod 1. We denote the
interval [min(a, b), max(a, b)] by <{a, b). We have the following lemma.

LEMMA 8. Fora=(iy, -, i) €S, letB,,=M(]_[';=1 {—i; —1+¢€%)). Then we have
(1) B=\,.sB,and if a#beS, in(B,) N in(By)= .

(2) Tex=x+Q,p mod1 for xein(B,) and Te(B)=M([J}=1{—1+1i, —&D).
(3) mpPB¢oB,, for any natural number m>0 and any a€ S.
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Boo Ts(Bo1y) Ty(Ba 1y
/
Ty
~ T, B(B(l 0))
/
Ty(B o))

FiGURE 2.2. The induced transformation Ty (k=2)

ProOF. (1) We will show firstly that ( J, s[1}-, <—i; —1+&>=[—1,0]* Let
(ay, - -, a) is any element of [ —1, 0]*. Note from Lemma 3 that gj is determined by

lj+1, "> for 1<j<k—1 and &f is the independent value for any a. Hence, we denote
¢ for 1<j<k—1 by ¢;,,, ....;,)» Where aeS and a=(x, -, %, i;,q1, ", §), and we
denote & by &. We will inductively construct i, i,_4, * * -, i; satisfying the following
relation, for j=k, k—1, ---, 1,

a;e—ij —l4eg,, iy - (20)
Firstly, let i, be
ikz{o ?f ae(—1+¢,0]
1 if gqel[—1, —1+¢).
And assume that i, - - -, i;,; can be constructed satisfying (20). Then put i; as follows:
i-={0 if a;e(—1+4eg,,,, .. i 0]
Tl if age[—1, —l4eg,,, ) -
Then we have
a;e—i; —14eu,, iy -

Therefore we can construct by induction i;, - - -, i,. Hence we get that
k
(ay, -, a)e [ <—ip —1+e%).
j=1

The proof of disjointness of B, and B, is easy.
(2) Let x be any element of B,, where a=(i;, - - *, i;). By Lemma 3, we know
M(—‘a)+ Q=M (—¢ef, - - -, —ef) mod 1. Hence, by the definition of B, we get

J

k
B,,+Q,,ﬁ=M< (=141, —e‘})) mod 1.
=1
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Hence, we have x+ Q,f € B. We will show that x+ Q,f is the first return point to B.
Let m>0 be natural number such that x+mpfeB mod1l. Then, B+mfn B#J in
R*/Z*. Hence, there exists b=(j,, - - -, j,) €S such that M(—'b)+m'Be B. Firstly, we
assume that M(—'b)+m'Bein(B). From Lemma 4, there exists a natural number n>0
such that m=[x,[- - [xn+j] - -1+j]. f n=2, by Lemma 1 we get,

m=[x;[-Dxn+jld -1+ 120l [x2]---11>Q, .

Let us consider the case of n=1. We assume that a#b. Then, we know that x e B,. But
from (2) of this lemma, it is impossible. Therefore m=Q,. Let us consider the case of
M(—'b)+m'BedB. Then we see from Lemma 5, m=G {7V, where /<k and i;=1.
And from Lemma 5 and Lemma 6, we know

{beS| M(—'b)+m'BedB}={(ny, - - -, n)eS | n;=i; for 1<j<l}.
Therefore, we have
${beS | M(—'b)+m'BedB}=2¢",
and for b=(ny, - - -, m)e{beS | M(—'b)+m'BedB} we get
#{j| 1<j<k ;€{0, 1)} =k—I+1,
where M'(—¢,, - -, g)=M(—'b)+m’p.

On the other hand from the fact that B+mpB N B# & in R*/Z* and Lemma 7 we
know that there exists re€ N such that

${beS | M(—'b)+m'BedB}=2",
and for b=(n, - - -, m)e{beS | M(—'b)+m'BedB} we get
${j| 1<j<k, ge{0,1}}=r,

where M'(—g,, -+, —g)=M(—'b)+m'f. However, this result contradicts the
previous result. Thus the proof is completed.

(3) Suppose that mpedB, mod 1 for some m>0eN and some a=(iy, - -, )€ S.
And let (—é&y, -, —g)=mpP mod 1, where 0<¢;<1, for j=1, - - -, k. Then, as same as
Lemma 2, we know that there exists neN such that m= P¥x,, - - -, x;) and satisfying

the following relation: for j=1, -- -, k,

8j=ijﬁ_j(xj+1a T, xk)'_[xjps_j(xj+19 LX)l

Therefore we know that 0<eg;<1, for j=1, - - -, k. From the definition of B,, there
exists a natural number j such that —1+¢%= —¢;. From the proof of Lemma 3, we get
_ijlr:_j(xj+19 T xk)+[ijﬁ—j(xj+1s T, xl]

=—1 +ijk—j(ij+ 10 ; ) ik)—[ijk_j(ij+19 Y ik)] .
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From the fact that x; is the irrational number the above equation is impossible.
Therefore we have mB¢ dB mod 1.

LEMMA 9. The following relation holds.

b;e S and m( _ﬂl T;f(B,,j)> # @} . @D

Jj=0

j=0

n—1
Pn({Q{"(xls T 5 1)=#{ ﬂ TEj(Bbj)

ProOF. We show that there exists a one to one and onto map between

{(Q?(xla LX), Qi-‘,,_,,_l(xl, Tt X)) l i=1,---}

and
n-1 n
{,ﬂ T5i(By,) _

j=0

-1
b;eS and in( Oo T;’(B,,J));é@} )
. From Lemma 8 (2), for any natural number i>0 there exists q;€.S such that
Q. =Qi(xy, - -+, x). We make (QF(xy, ** ", %), ***, @F4nmi(xy, -+ +, X)) corresponded
to () ;.';3 Ty "(Bai”_). This mapping is denoted by ¢. Firstly, we show that ¢ is well
defined. From Lemma 2 and Lemma 8, we get

P¥(xy, -+, x)BEB,, mod1. (22)

J

From Lemma 2, we know
P§+J{x1’ Y xk)ﬂET{;(Pf(xp L x0B) modl1.

From (22) we have T4(P¥(x,, - -, xi)P) € B,,, , mod 1. Therefore, we get

n—1 )
P?(xlﬂ o .’xk)ﬁe m TB_j(Bai+f) mOdl *
j=0

J

This gives the well definedness of ¢. Next we will show that ¢ is the onto mapping. Let

n—1

z‘n( N T;’(Bb,.))#@,
j=0

where b;€ S. By the Kronecker Approximation Theorem (for example [4]) and formula

(1) we know that the set {mB | meN} is dense in R¥/Z*. Therefore from Lemma 3, we

see that {P¥(x,, - -, x,)B|i=1,2, - - -} is dense in B. We know that there exists natural

number i such that

n—1

N T;J(Bb,.)> .

j=0

Pi(xy, -, xk)ﬂein<

Therefore, we have Pf, (xy, - -, xi)B € By, for j=0, - - -,n—1. From Lemma 8, we get
OF i(xqy, o, X)=0,, for j=0, ---,n—1. Therefore we know that ¢ is the onto
mapping. And it is easily shown that ¢ is the one to one mapping.



166 SHIN-ICHI YASUTOMI

Define the transformation T, ... ,,, on [—1, 0]* by the following equation:
Ty =M 'TpM .
Then, from Lemma 8, T, ..., is also defined as the following formula:
Ty xg¥)=x+a—e*  if xe B+ ™ for aeS, (23)

where Bf,""""""’=n'1f=1 {—i; —1+&%. Let n be the projection R*->R*~! satisfying
Wy, - Y=z * -+, y)- From now on we denote .S={(i,, -, &) | i;€{0, 1} for
j=1, .t ',k} by Sk'
LeEMMA 10. The following commutative relation holds.
T, -
[—1,0] —==, [—1,0]*
"l "l (24)
k—1 T(xz."'.xk) k—1
[-L10 — [-1,0]
And, for a€ S,
n(BSF) = B (25)
Proor. From the equation (14), we can derive that for ae S, &4 = e7@ for2<j<k.
Therefore, from the definition of B we can easily get the lemma.
For a natural number n>0 let us introduce the partition A% as follows:

-1
), Tl )25}

n—1
{ () The, 0B ™) | by Sy and in(
ji=0

j
Then we have the following lemma.

LEMMA 11. The mapping IT: At %9 — AC2 ) js defined by

H(x)=n(x) for xedAyFr >,
Then, for any y€ A¥>"* we have
$I1-Y(y)=n+1 and ( U x)=[——1, 0]xy.
xel~ ()
ProOF. From Lemma 10, IT is well defined. And we note that for any j and a€ S,

the i-coordinate of (T4 Bxs»®d) are in the set {0, 1} U {{—mx;} |meN}. It is

(X1, Xx)

concluded by the formula (23). We will prove this lemma by the induction on n. Let
n=1. Then, we have

A(lxl,.",xk)={ng"'"’x'c) | aESk} ’ A(lxz,---,xk)={ngz,---,xk) l aESk_.l} .

Therefore, from Lemma 10, we get
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=1/ p(x2, s XK)y — (X1,%2, %5 XK) (x1,%2,°", XK)
n-\B )={B B .

20", i) ©,i2, b > P (1,52, i)
And from the formula (17), we get g{% iz "# =g{l.i2" %) Therefore, we have
€0, — 1@y G —1, — 1 4g{izy =1, 0].
Hence, we get
B3 O BRI =[—1, 01 x BEy% .

This means that the case that n=1 is verified. We assume that n>1. By the inductive
assumption, for any ye A2

$II"(y)=n and U x=[-10]xy.

xell ~ 1(y)
From the definition of A we get
AGe o = {BEFL M AT (%) | ae S, and xe 4G x0Y 26)
Az = {BEFR W N T oY) | @€ S, -y and ye Az}
Then, we get the following fact for ye 4$2,>* and a=(i,, - - *, L)€ Si_,
O YTy, () N BE2 30
={Tixr, -, x(¥) 0 BE % | xe I (W {T sy, oo miX) 0BG  | xe T~ (1)},

where a‘=(i, i,, - - -, i;). Therefore, we get

z=(BG" ) U B U T, oonrx(X)

Xl ~ YT (x,, ..., x)() A B 20 X)) xell = 1(y)
=[—1,0] x B&>"5) A[—1,0] x y=[—1, 0] x (B&>"™ A y) . Q7

There exist real numbers p, g such that
Ty, moX)=Lp, g1 xy .
We may assume that there exists numbers p,<p,, - - - <p, such that
{Teer, om0 | xe I )} ={[ps pr+11xy | i=0,1, -, n—1}.
From the note before, we derive that p;€ {0, 1} U {{ —mx;} | meN}. Therefore, we get
—1+&¥¢{p;|i=0,1, -, n}.

Therefore, there exists natural number / such that 0</<n and p;< —1+¢,<p;,;.
Hence we get

{Tiey, e mX¥) 0BG 9( 9) | i€ {0, 1}, er”l(y)}

={[Pm> Pm+11 Xy N B&F> ™ | 0<i<lor I<m<n—1}
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U{lp, —1+e1xyn B> Y U{[—14e, pry 1 xyn BE» w3}
Therefore, we get
$I1™ (T, .., (V) N BE> ) =n+1.
Hence the proof is completed.
LEMMA 12. For any irrational number x> 1, we know #Af,"’=n+ 1.
The lemma is proved as same as Lemma 11.

PROOF OF THE THEOREM. From Lemma 10, we get

n—1 n—1
P!, - 5z )=+ 1) Tk |y and i ) T;"(B,,,));e@}
- #{”ﬁl Ti(B,,) | b;e S and in( 0 T{,(B,,J_)) # g}
j=0 j=0
=$|*.A$lxh'"-xk) . (28)

From Lemma 11 and Lemma 12, we get # A% % =(n+1)*. Therefore, we get

Pn({Q;c(xl’ Y xk)}l?i 1)=(n+ l)k .
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