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In this paper we are interested in the slopes, i.e. the ratios of Chern numbers of
surfaces in P* and 3-folds in P>. As these numbers are differential-topological invari-
ants, this gives some clue as to the possible diffeomorphism types of surfaces in P*
and 3-folds in P°.

The geography of Chern numbers of surfaces of general type has been studied quite
intensively [3], [4], [5]1, [7], (8], [10], [12], [14], [15]. (See also Persson’s article [11].)
The Chern numbers satisfy the estimate (1/5)(c, —36) <cZ<3c, and Sommese [14] has
shown that any rational number in [1/5, 3] occurs as the slope c¢?/c, of a surface of
general type.

For 3-folds of general type it is known that c¢,c, <0 and 3¢, —c? is pseudo effective
(Miyaoka’s inequality).

In recent years there has been a lot of interest in the study of codimension 2
subvarieties in P". Let X be of codimension 2. It is well known that X can be viewed
as a dependency locus of r—1 sections of a rank r bundle. Hence its slope is a rational
function of the Chern classes of the bundle which are symmetric functions of the Chern
roots. (See formulas (1.1)~(1.6) and (1.8) ~(1.13).) If the bundle is a direct sum of line
bundles, then the surface is called determinantal. (In this case, the Chern roots are
positive integers.)

Here we first study the slopes of determinantal varieties. For surfaces in P* the
first question to ask is what rational numbers between 1/5 and 3 have the rational
expression (1.6) with s;=) af, for some (a,, - -, a,)eN°. We are able to prove the
following

THEOREM 1. The slopes of determinantal surfaces of general type are all rational
numbers between 1 and 7/5 and an infinite sequence accumulating to 1 from below.

Our approach is, for every rational number a/be[1, 7/5], assigning each s;, for
J<3, a positive integer m;, then solve s, such that (1.6) gives (a—b)/a. (This is possible
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because of the special expression we have.) Hence we are looking for conditions such
that the system {m;=Y;_, n/}}_, has a solution in N* for some s. What we have found
is the technical Theorem 2.9. Since this is a multiple version of the Waring’s problem,
we use the Hardy-Littlewood circle method. After the work had been done, Bombieri
pointed out to me that the result in Theorem 2.9 is closely related to some work of
Hua’s contained in [19]. Since the reference [19] is relatively unaccessible and not
generally known, we include the proof in this paper. We give some outline of the idea
of the method here for the algebraic geometers. (See Vinogradov’s and particularly
Vaughan’s books [16], [17], for more details.) Hopefully it will arouse enough interest
of studying the circle method.

By Cauchy’s integral formula ([je*™**da=1, if h=0. Otherwise 0), the system

{m;=3:_,n/};_, having a solution is equivalent to the nonvanishing of the integral

i=1
N s
J‘Z“:f[ Z e21u'(na1+~~+n'a;)] e—21¢i(m.a,+---+m;a;)da1 ... ddl
n=0

over [0, 17' for some large integers s and M.

We define the major “box™ M(a,, - - -, a;) (for the precise definition, see §2)
centered at (a,/q, - - -, a/q) € [0, 1]' with ¢ “not too large”. The integral {3 over the
complement of the union of the boxes is negligible. On a major box, Y. is approximat-
ed by the product of an “‘algebraic sum” and a “singular integral,” the latter being
independent of (a,/q, - - -, a/q). When summing over major boxes with g=p*,
k=0,1,2, ---, for p larger enough, the algebraic sums don’t have any *“ill effect.”
(Consequence 2 in Proposition 2.7.) If p is small, then we use the fact that the algebraic
sum is the number of solutions of the system ) ;_, n/=0 in Z: (Lemma 2.8). The
implicit function theorem, (2.2) and the second part of (2.3) in Theorem 2.9 imply that
the singular integral (which is of a positive function) is over a set of positive measure.

Let X be a 3-fold in P°. We define the slopes to be y,(X)=c3/(c,c,) and y,(X) =
c3/c;. Then 0 <y, <3. What we have is

THEOREM 2. Let the set of slopes be S;={y;(X) | X is a determinantal 3-fold in P3
of general type}. Then

(i) S, consists of all rational numbers between 1 and 17/12 and an infinite sequence
accumulating to 1 from below.

(1) S, consists of all rational numbers between 1 and 17/7 and an infinite sequence
of positive rational numbers accumulating to 1 from below.

The next step is to either prove better bounds for the slopes of codimension 2
varieties or find more nondeterminantal varieties.

One may construct bundles whose Chern classes are symmetric functions of positive
integers and a dependency locus of the bundle is not determinantal. However we are
unable to get beyond these ranges. What really help are the pull-back’s by degree e
maps. If the limit, as e goes to infinity, of the slopes of these varieties is /, then pushing
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our argument in the application of number theory a bit further, we are able to obtain
all rational numbers between / and the bounds gotten from the determinantal ones,
e.g., by adding the dependency locus of f*F@®; 0(a;), where f*F is the pull back of the
Horrocks-Mumford bundle by a degree e map, we have

THEOREM 3. All rational numbers between 1 and 5/3 are slopes of surfaces in P*.

QuEsTION. Is there any surface of general type in P* with slope greater than 5/3?
Is there any 3-fold in P> with slopes y, >17/12 or y,>17/7?

The paper is organized as follows: In section 1, we derive the slope formula in the
desired form. Section 2 is the circle method in which we prove the technical theorem.
For the lemmas marked with an A, we, in Appendix to §2, either remark how to derive
our version or give a proof. (This section is put after Section 5 as an appendix.) Section
3 contains some applications of Theorem 2.9. Section 4 has further applications. The
proof of Theorem 3 is in Section 5.

ACKNOWLEDGEMENT. The author would like to thank Schneider for pointing out
some errors in the first draft of this paper and some inspiring comment which leads to
Proposition 3.3. The author also thanks Hulek for helpful correspondence.

1. The set up.

We do the case of surfaces in P# first. Then we give the analogous formulas for
3-folds in P3. The basic algebraic geometry fact we use is the following:

Let E be a ranks vector bundle on P* with Chern classes ¢;, -, ¢;. If E is
generated by global sections, then the dependency locus of s—1 general sections is a
smooth surface Y with

0— O ' — E—> Fy(c;)—0
and the numerical relations
(1 1) H2=d=C2, HK=63+(C1—‘5)02,
' K?=c,+2(c;—5)c3+(c;—5)%¢, .

Here H is the hyperplane class, K is the canonical class, and d is the degree of Y.

Let a,, - - -, a, be the Chern roots of E (see [2] Appendix A) and Sj=2§=1 ai for
j=1, -+, 4 be the sum of the jth power of g; (i.e. s; is j! times the coefficient of ¢/ in
the Chern character ) e®’ of E). Then we have

1 1
C1=9581, Cz=3(512—sz), 03'—‘?(33—33152"'253),

(1.2)

1
Ca=—r (s#— 654+ 85,55+ 352 —651s,) .
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By definition, the slope of a surface Y is
K2

(1.3) s(Y):=cz(Y) .

If the surface Y lies in P4, then we have the double point formula (see [2, p- 434)).
(1.4) c,(Y)=K?*—(d*>—10d—5SHK) .
It is more convenient to work on the following formula

d*—10d—SHK

(1.5) t:=1—(s(Y))" = <

Combining formulas (1.1), (1.2) and (1.5), we see that

(57 —52)* +[30s7 — 4253 — 305, + 205, 5, — 22 5,]

1.6 t= ;
(1.6) 7 (58 —5,)% +4s,5,— 352 —5, +[50s7 — 80 53 — 505, +40s,5, — 42 5,]

REMARK 1.1. If Y is of general type, then 1/5<s(Y). A result by Ellisgrud and
Peskine says that for any <1, there are only finitely many surfaces of slope s(Y)<b.
So we concentrate to the case 1 <s(Y)<3 which is equivalent to 0<1—(s(Y))~* <2/3.
We want to know if all rational numbers between 0 and 2/3 can be expressed as (1.6).

REMARK 1.2. Let Y=P* be a smooth surface of general type, then wy(1) is
generated by three sections. A theorem of Vogolaar [9] implies that Y is the dependency
locus of a rank 4 bundle E with c¢,(E)=4.

For a 3-fold X in P, we have the following formula analogous to (1.1)—(1.6).
(i) The relations between the intersection numbers of X and the Chern classes
¢; of the bundle:

H3=d=C2, H2K=C3+(Cl‘_6)6'2,
(1.8) HK2=C4+2(c1 —6)CS +(C1 _6)202 Py
K3=C5+3(Cl—6)C4+3(Cl—6)ZC3+(01—6)3C3 -

(ii) The relation between the two sets of symmetric functions:

1
(1.9) Cs =120 (57 — 10575, + 155,57 + 205253 — 205,53 — 305,58, + 24s5)
and (1.2).
(iii) The slopes:
340.¢ K3 13{0.¢ -K3
Lo pm=—2E ya0 =)

(X)) (X)  Key(X) ' es(X)  e3(X)

(iv) ¢;(X) in terms of the intersection numbers in (1.8):
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c,(X)=(15—d)H?*+6HK+K?,

(1.11) ,
3(X) = (6d—70)d+ (2d—S1)H?K—12HK* — K3 .

(v) The formulas we work on:

(d—15)H*K—6HK?
(6d—70)d+ (2d— 51)H*K — 12HK?
K3 '

tyi=1—0 (X))~}

2

(1.12)
t:=1—(y,(X)"'=

In terms of the s;’s, these are

_ [457 —10s3s, + 25355 — 25,855 + 65,527+ */12

(6855 — 170535, + 1305255 — 105,55 + 305,52 — 605,55, + 1255) + */60
_ [257 — 5535, + 5253 — 5,55+ 3s,57]+*/3

(6855 — 170535, + 1305255 — 105,55 + 305,52 — 608, 5, + 1255) + */60

1y

(1.13)

ly

where *’s are polynomials of degree (in a;) less than 5.

DEerINITION. Let X<P” be of codimension 2 and a dependency locus of E. If
E=@® 0(q;), then X is determinantal.

2. Some number theory.
In this section we study the following problem.

Given integers m, - - -, my, are there positive integers ny, * -, ns
s i .
such that m;=Yi_, nf for j=1, ---,1?

The existence of the n;’s is equivalent to the nonvanishing of the integral
N s
jz=f[ Z e21ri(na1+m+n‘a;)j| e—2ni(m1a1+---+m,a,)da1 ... doc,
n=0

over [0, 1]’ for some large integers s and N.

In Theorem 2.9 we will give some conditions on the m;’s for this to be true.

Let 6 denote (various) small constants (may depend on /) and N be a large integer
specified later. For any g, a;, - - -, a,€ N such that a;<q<N?®, we define the major box

Mq(ala o '5al)={(ala T -,a,)E[O, l]l | Iaj'_aj/ql<N—j+aa for Jj= 1, - al} .

REMARK. The major boxes are mutually disjoint.

Let M=|)Mja,, -+, a)). We will show [Proposition 2.2] that the integral |}
over the complement of M is negligible.
Let f(x)=a,x'+ - +a,x. First we give a bound of the exponential sum Y _  e2m/®,
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CONVENTION. Let f, g real valued functions. f=0(g) means | f|<cg for some
constants ¢>0.

In our estimate we will freely use the following

Fact 1. For «, BeR, |e®*—e |=0(a—B)).

LEMMA 2.1.A. Ifd=(ay, -, 0)¢M, then Y \_ ™™ =0O(N'9).
This immediately implies

PROPOSITION 2.2. [ o 11 2. =O(N*" "),

Next we describe the exponential sum A=Y  2*/® on the major box
Mq(al, T al)' .

Let a=(ay, -, 0) e My(a,, - - -, @), where a;=a;/q+ B; with |ﬂj|<N‘1+". Write
n=gqd+r with 0<d<N/q and 0<r<g—1. Then

djnj=<ﬁ+ﬂj)(qd+r)j=z+ﬂrf+ﬁjqjdj+ O(Nd—lq) .
q q

So we have the factorization 4=S(q, a,, - * -, a)v(B) + O(N?%) where

q—1
S(@ ay, -+- @)= 3 errrtrarde and
r=0

Nig )
U(B-)= Z 62m(ﬁqu+“-+ﬂxq'd') .
d=0

Since

max |e 27i(B1gqd + - +1g'd") __ ,27i(B1qd’ + - + Pigtd’t) |
d,d’ elk,k+1]

=0() | B;q’(d’—d7)|)=O(N~7*°¢/(N/gy) ") = O(N?),
we have o(B)=(g/ e b rav++buaY)gy 1 O(N?). Changing variable gives v(f)=
(1/g) [} e?mi B>+ +E) gy, 4 O(N?). Hence
N
(2.1) A =LS(‘I,01, e, az)f 2B+ +8hdy + O(N?) .
q 0

The algebraic sums are multiplicative:

LemMa 2.3.A[16,p.46]). S(q',ai, ", a)Sq", af, ---,a/)=8(q'q", a1q”" +ai q’,
s al,q”+a1”q,), if(qla qﬂ)= 1.

We need the following two lemmas to approximate the integral | over a major
box.

LEMMA 24.A. |S(g,ay, " -, a)|<c()g' ™
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LEMMA 2.5.A. Let V=[j e v+ +bdqy Then

| V|<c’(l)N|:1 + N"]le]_w .

il

LEMMA 2.6. For s sufficiently large, qu(al,'-',a;)Z=BC+ O(N*—1+3-(1+2++D)
where

1 s )
B=[_ S(q, ag, ", al):l e—Zm(mla1+-..+m1m)/¢1 s
q

N s
= 2wi(B1y + -+ +ByY) —2zi(mf1+ - +mipy)
C e dy | e dp .
[Bjl<N=Ji+o o .

Proof. In (2.1), let S=S(q,a,, - - -, ;) and V=[1 e2mbw*++b'gy Then

j Z= Ase—-Zni(mla1+~--)d&
My(ay, -, a1) Mgy(ay, -, a1)

= f l:i SV + O(Nﬁ):r e~ 2milmipr+ ) o= 2mi(miay +~~-)/qu'
1g;1<N-3+sL 4

S
= [i] e 2ni(mia; +--+)/q f Vse—Zm'(muh + ---)dB'
q |Bj|<N-J+s

+ max 0<c(l)eNf" j‘l VledB) .

e+ f=sf=>1

Clearly the maximum occurs when e=s—1. Lemma 2.5.A implies that the error is

' —(s—1)/1
0<N"+S“IJ [1+2Nf|/3j|] dif).
[Bjl<N=J*+o jsto

Integrating gives the expected error (assuming (s—1)//>1). [

PROPOSITION 2.7. For s sufficiently large, there is an integer Q= Q(l) such that if
Q | m; for all j, then

Z=CC+ O(Ns"l+(’+2)5-(1+2--~+1))
b
[0,1}

where C is as in Lemma 2.6 and c=c(my, - - -, m;, §)>0.

PROOF. Since s is sufficiently large, the integral |Y over [0, 1]\ M can be ignored.
We sum up the right hand side of Lemma 2.6 over all major boxes and denote B by
B(q, a, - * *, a;) for the major box M (a,, - -, a)). (Note that C is independent of the
major box.) Therefore,
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Z=C2,B(q’ al, ° T Ty al)+0(Ns—1+6(l+2)—(1 +2+...+’)) ,
[0, 1)

where the summation )" is over all 0 <a;<g<N® with (¢, a,, - - -, @))=1. From Lemma
2.4.A we have the following useful
CLaM. Let q be fixed. Then )’ o _ | B(q,ay, -+, )| <c’q~*®V if s/2)>1.
PROOF OF THE CLAIM. The left hand side is bounded by (cq~1")%q"..

The easy consequences are
LY sodwn=11B@ ay, - -, a)|<c*Q' ™9, je., the expression (given by
Lemma 2.3.A)

Z z B(q9ala ”.sal)=n Z Z B(pkaal’.'.sal)
q (g,a)=1 p k=0pta;

makes sense.
2. Let p be fixed, then

s

o) X C
> IB(p,al,-",az)|<W>——1

k=1 pkaj

which is less than 1 for all p> P. Moreover for some P'>P,e:=) _,.c*/(p?*P~1)-0.
Therefore

o0 cs
I1 Y % B~ ay, - a)> ] (I_T(znT)Nes>0°
p>P k=0 pta; p>P P

The following lemma applied to

K
Z Z B(p*, ay, -, a)= Z B(pX,a,, - -, a) for K>»0

k=0pta; 1<a;j<pK

gives Z:’:ozym B(p*, a,, - - -, @)>0. This takes care of the factors with p<P’. So

Q0
czz Z B(q’al, ”.aal)=n Z z B(pk’al, "'9al)>0' O
q (g,4)=1 p k=0 pta;
LeMMA 2.8. If q|m; for all j, then leajqu(q, ai, -, a;))>q"" s for some s,.

PROOF. Writing

Y Bga, ---,a,)=q<'-s>(l > e<,..,,)

1<aj<gq q ar=1

1 g .
N Z ezm(r'l+---+r;—m,)a,/q

q a=1
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and using the fact that
1 i eZnihr/q={ 1 if |k
q r=1 0 otherwise ,

we see that the left hand side of the inequality is ¢' ~*n, where n is the number of the
solutions to the system {) _, r/=m; (mod g)}}_,.

CLAIM. n>q*"* for some s, <s, if s is large.

PROOF OF THE CLAIM. Let # ={F=(r,r? ---,r')eZ]} and denote %+ - - - +% (k
times) by k%. Then there is s, such that s,% =s%, Vs>s,. i.e. 5;% is a closed subset
of the finite group (Z, +). So s,% is a subgroup. Now for any rs,+1, " ", I's, there is
an inverse of 7y 4+ - - +7,in 5,%; i.e. there are ry, - - -, r, € Z, such that

i+ trl=—@l+ - +r)  (modg). O

THEOREM 2.9. Given IeN, and for s=s(l) large, if (z,, - - -, z,) € RS, satisfies

2.2) #{z;#0} =1,
then for sufficiently large K=K(z,, * - -, z,) and integers my, -+ -, m, satisfying
(2.3) m;=0 (mod Q) and |K¥(z{+ - +z))—m;|<Ki~*

where 1<j<I and Q=Q(l), the system {m;=n{+ - - - +ni}\_ | has a solution in N°.

PrROOF. We will show that under the assumptions (2.2) and (2.3), the integral |
in Proposition 2.7 is positive, i.e.

C=f [ JNez::i(ﬁxy+-..+ﬂtyt)dy]se_2ni(m1ﬂ1 +-..+mzﬁz)(o(B')dB'> O(Ns— 1+1+2)5—-(1 +2+"‘+l)) ’
R! o
where ¢(p) is the bump function centered at (0, - - -, 0) with (B)=1 if | ;| < N~7*2,
Let ¢4(1)=[e*™*o(B)dp, where ¢(B) is the bump function centered at 0 with
@(B)=1 for | B|<b. Then ¢4(4) ﬁQin(znbz) (r2)>0if |A|<1 and >0 small. So

N N
C=J J\ Gp Y1+ +ys—my) - ¢ﬂ,(yi+"'+ysl_ml)dyl e dys
0 0

and C>measure of T:={(y,, ***, ) |0<y;,<Nand |Y3_, yi—m;|<1}.
CLAM. The measure of T is > OQ(NS~ (1 +2+ -+

PROOF OF THE CLAIM. We consider the map (wy, -, w) > (X w;, =+ -, Y. w}). (2.2)
implies that [0¢/0w;]; has maximal rank at (z;, - - -, z,) and the implicit function theorem
implies that for K large, (m,/K, - - -, m;/K')eIm ¢, i.e. there are w,, - -, w,e R, such
that
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J oo J—_1J 1
(2.3) wi+ +wi=—, 1<j<li.

Now, T=K{(u;, ", u,) | 0<u,<N/K and | @ @) — @ (W)|<K~7} and observe that
measure{(vla Y vl) Ivjng—J}=K—(1+2+“‘+l), D

3. Applications of Theorem 2.9.

In this section we will apply Theorem 2.9 to see what rational numbers can be
certain rational expressions of some Newton functions of integers.
Let z=(z,, " *,z)€R® and the jth Newton functions s;=);_,z/. Suppose

b=P,+ P, and ¥ =¥,+ ¥, are polynomials in sy, - - -, 5;,, where P, (resp. ¥,) is the
form of maximal degree D (in z;).

PROPOSITION 3.1. For s sufficiently large, the image (®/¥)(N”) is a dense subset in
(Po/ ¥ o)(RY).

PROOF. Given (D,/¥,)(2) € (Do/P,)(R5), we may assume (2.2) holds for z. Now
choose K>0 as in Theorem 2.9 and let m; be a multiple of Q so that

G.1) | Ki(z{+ - +zi)—m;|<Q

and in particular (2.3) holds. Therefore m;=s;(%1) for some 7eN®, and (3.1) implies
| K’s;j(z)—s;() | < Q. Thus

B(s1(A), - - -, (W)= K Po(5,(2), - - -, si(D)+ O(QK ™)
=K2(®,(s(2)) + O(QKP™ 1)) .
The same holds for ¥(s(n)) and thus
O(s(7)) _ Po(s(2)+OQK™Y) _ @o(s(2))
P(s(7) Po(s(D)+OQK™") Po(s(2)

where gg—0 as K—oo. [

Ex

PROPOSITION 3.2. Let ®=Dy+ P, and ¥ =(s5,+ ¥Yo)+ ¥, be polynomials over Q
such that &, ¥,, ¥,€Q[s,, -, 5,-1]), and @y, s,+ ¥, are forms of maximal degree | in
z;. Then

%o ®:)nQ,

@
- N>

8 0
where lfl\i consists of elements in R% satisfying (2.2), i.e. #{z;#0}>1.
PrROOF. Let a/b=(Py/(s;+ ¥o))(2), where Z satisfies (2.2). Let 0, =0,(®, ¥, a/b)e

N to be specified later, and K be a large integer (according to Theorem 2.9). Choose
multiples m,, - - -, m;_, of @ such that
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(3.2 | Kisj(D)—m;|<Qy,  j=1,",1-1
and define m, by the equation

(3 3) ¢(m17 ..'9ml—1) =f_
m+ Yo+ ¥y)(my, - my_y) b

In order to use the Theorem 2.9, we need to verify condition (2.3) for m,.

Cia 1. Q,|m. This is clear since m,=(b/@)B(m,, - -, my_ ) —(Fo+ ¥ 1)y,
co-,my_y), Q| m; for j=1, -, 1—1, and we can choose the appropriate Q,.

CLamm 2. |K's;(5)—m,|<O(Q,K'™1). This follows from the construction

‘m,—K's,(2)=(—%d5——('I’0+ 'I’1)>(m1, T, mz—1)—KlSt(2)

=<£ Bo— W0>(Ksl(2), - KT () - Kis(2) + 0(Q, K'Y
a

=0(Q:K'™").

(The first equality is by (3.3), the second is by (3.2), and the last is by the definition of
b/a).

Theorem 2.9 implies that there is 7€ N* such that m;=s;(7), j=1, - - -, . It follows
from (3.3) that (®/¥)(s(n))=(a/b). O

PROPOSITION 3.3. Let ® and ¥ be as in Proposition 3.2. For j=1, -+, 1, let 5;,€ Z
be given and let s(z, e)=(e5, +s}, * - *, €'5,+5;), where eeN and sj= z{. If (s(Z, €))/
(5;+ Po(s(Z, €))) =a/b for some ZeR5,, and e€N, then B(s(n, €))/P(s(7, €)) =a/b for some
neN°®.

Proor. We choose Q,, K, m,, - -+, m,_, as in Proposition 3.2, and define
b ~
m,=;¢(so)——(l//0+lﬁ1)(so)—K’e’s, s

where So=(Ke§1 +m1, ttt, Kl— le'_1§,_ 1 +m,_ 1).
The same argument as in Proposition 3.2 works here.

b
mt-KlSIl(f):(; 450"/’0)(1(6’51 +my, -, KT TS )
—K'si(2)+0(Q,K'™ )

b .
=(—¢0—!//0)(Ke§1+Ksi(Z), L KT+ KT s 4(2)
a

—K's{(2)+0(Q,K' 1)
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=K'|:(% ¢o_‘//o>(s(z—, e)):|+O(Q1K'_ 1)=0(Q1Kl_ 1) . [

4. The slopes of determinantal varieties.

In this section we will prove the theorems. First we prove that the slopes of a
determinantal variety have the upper bounds, then we show the existence of sequences
accumulating to the lower bounds. Finally we use Proposition 3.2 to show all rational
numbers in between occur.

(i) Surfaces. We will work on r=1—s5"" and use formula (1.6).
LEMMA 4.1. If 4s,55—3s2—5,>0, then t<2/7.

PROOF. Let A=(s?—s,)%, B=30s2—(40/3)s}—30s,+20s,5,—(20/3)s;, C=
4s,53—3s?—s, and D=10(s, —s?). Then

A+B 2

t= <
(7/2)A+C+2B+D 7

is equivalent to (3/2)B— D < C. Using the inverse of formulas (1.1) and (1.2), we have
the left hand side

(3/2) B— D= —40d—30HK <0,
while the right hand side is nonnegative by assumption. []
LEMMA 4.2. Let s;=)7_,a/l If a;>0, then 4s,5,—3s2—5,>0.
PrOOF. Hélder’s inequality gives
s;=Y.a7=Y a/?a?? < (¥ a)' 2(Y a)'? = (s;55)" .
Similarly s, <s,s5. O
Next, we work on the sequence accumulating to the lower bound.

LEMMA 4.3. Let YcP* be a determinantal surface which comes Jrom a bundle
E= @ 0(a;) with Chern classes c,, - - -, c,. If c;>7c,, then d*—10d—5HK>0.

PROOF. By (1.1), we have
d*—10d—SHK=c,(c,— Sc; + 15)— Sc, .
This is at least 2c,c, —Sc3=c3+Y., _;aa(ai+a;). [

LEMMA 4.4. Let E=®0(a;) with a,> a,>--->a, If a,>k for some k, then
c;—kc, > —k? unless a, <k.
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PROOF. c,—kc,>aa,—k(ay+a)+a; Yy ., ai—k> .o, ai_>_'(a1 —k)a,—k)—k*. O
PROPOSITION 4.5. t has exactly one accumulating point coming from a sequence
outside of [0, 2/7].

Proor. It follows from Lemmas 4.3 and 4.4 that this sequence comes from bundles
with a,>0 and the other a;’s bounded by 7. So we write ¢ in (1.6) as quotient of
polynomials in a,, and we have t=0(a?)/O(a;). This is 0 when a; —»c0. [

Proor OF THEOREM 1. To use Proposition 3.2, we put @,=(s7 —s,)* and ¥,=
(7/2)(s? —s,)*> +4s,5,—3s%, and check the range of T:=®,/(¥,—s,) for Newton

functions evaluated on Z=(z,, - -, z)eR% with at least four different nonzero
coordinates for s sufficiently large. -
Take s—1 numbers 1>4,> - >A,>1—¢, and let Z=(1, t4,, - - -, tA) eR?% . Then

T=O0(?). Hence lim,_, T=0. On the other hand, when all the z;’s are very near 1,
then s;~s for all j. So lim,,,T=2/7. So T evalu%ed on the line segment L={(1,
thy, -+, thy) | 0<t<1} gives (0,2/7). Note that LcR%. [

(ii) 3-fold. Now we work on formulas (1.12)—(1.13):

_ [455 — 10535, + 25253 — 25,53+ 65,57 ] + #%/12
(68S15_ 170S3S2+ 13OS12S3—“ IOSZS3 +30S1S22—6OS1S1S4+ 12S5)*/60 ’

21

— [2s15_5813s2+S12S3_s2S3+3SIS22]+***/3
(6855 —170s3s, + 1305255 — 105,55 + 305,52 — 6055, + 1255) +%/60

193

where

*=270s, — 1080s,5; — 13552 + 1890525, — 9455 — 6480(s 5, + 57 — 5,) + 432057

wx =185, — 725,855 — 2752 + 162525, — 815} + 2285, — 68455, + 45657 —756(s{ —5)

wkk =95, — 365,55 — 952 + 72575, — 3657 + 9353 — 279515, + 18657 —294(s{ —s,) .
PROPOSITION 4.6. If ¢, =6, then t, <5/17 and t, <10/17.
ProOOF. The two inequalities 5/17—¢, >0 and 10/17—¢,>0 are equivalent to
F+24c,c3+12¢2c,+102¢2 +12¢,—429(c3 + ¢1¢,) + 1062¢, >0  and
4F+48c,c3+24c2c, +102¢2 +24c,—501(c3+¢y¢5) +1172¢, >0,

where F=8s2s5; — 65,57 — 55,54 + 25,55 + 85 is the degree 5 part.

We show that F>0 in Lemma 4.7. It is easy to see that when c; is large
(24c, —429)c; +(12¢; —429)c, ¢, >0 and (48¢; —501)c; +(24¢c; — 501)c, ¢, > 0. The cases
with ¢; small, one can check directly. [] '

LEMMA 4.7. 8s253;—65,5% — 55,5, +25,53+55>0.

PrOOF. First, we have sZs; + 55> 2s,5,, because
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slzs3=(s2 +2) aiaj)Za,?>s5 +2) ata; and sys,=ss+ . afa;.

i<j i#j i#j

It suffices to show that 6s,(s,53—53)+ 5753 — 35,5, +25,5;>0. Assuming a,>a, - -,
and dehomogenizing the expression by dividing a], we can replace s; by 1+35;, where
§; is the sum of ith powers of d;=a;/a,. Note that 0<d;<1 and 0<§;,, <§;. We have

(i) 5383 — 35184+ 25253 > (1 +5)2(1 4+ 53) = 3(1 +5)(1 +53) + 2(1 + 5)(1 + 53)
=57+ 5283 +25, + 25,8, —§, — 53— 5,55,
(i1) 651(5153—53)>(1+3)(1 +53) — (1 +5,)2 =5, + 53 + 5,5, — 25, — §2,
(i) + (i) = 5255+ 25,53, + (§2 — 55 >0. O
PROPOSITION 4.8. ¢, (respectively t,) has exactly one accumulating point coming

Jrom a sequence outside of [0, 5/17] (resp. [0, 10/17]).

PROOF. By the same reasoning as in Proposition 4.5, we use t;=0(a})/0(a3),
i=1,2.In(1.12), for ¢, >0 we need (d— 15)H>K— 6 HK*>0. This is ¢,(c; — 7)(c, — 6¢,) +
(¢2—6c4)+(15¢ ¢, —126¢,) + c5(c, — 12¢, + 57). For t,>0, we use

(6d—70)d+(2d—S1)H*K — 12HK?

=(c3 + 6'1202 )(202 —24c,+93)+c,c2—6c2—12¢, .

When ¢, —12¢, >0, these expressions are positive. []
LEMMA 4.9. Let X be a determinantal 3-fold. Then c4(X)<0.
PrOOF. This is because rk Pic(X)<2 and A*(#,)>0.
PrROOF OF THEOREM 2. The line segment in the proof of Theorem 1 works here.

REMARK. A straight forward generalization of the determinantal surfaces is the
dependency locus of @ E(a;), where E is a bundle generated by sections and a;eN.
However none of the constructions (sum, or tensor of known bundles) gives any new

slope.

5. Some slopes of nondeterminantal varieties.

In this section we show how to use Proposition 3.3 to get the rational numbers
between the slopes of the determinantal ones and the limit of pull-backs’s by finite maps
of a fixed variety.

PROPOSITION 5.1. Let F be a bundle on P* with Chern classes c,, - - -, c4. If for all
a;eN, f*F®,0(a;) has a nonsingular surface as a dependency locus, where f is any degree
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e map. Then any rational number between 1 and (cy+2c,c3+cicy)/(ca+2¢,c3+cic,
—c2) is a slope.

Proor. If the Chern character of F is ch(F)=1+§ +4+5,+%+5,+ -, then
ch(f*F)=1+e§, ++e25,+Lte35;+ - - -. Also note that Chern character is additive.

The proposition follows from Proposition 3.3 and our assumption. To see the range
of the slopes gotten from f*F, we use formulas (1.1) and (1.5), so that

e*(c)+- -

{(f*F)=
e*(ca+2cic3+cicy)+ -

a

Similarly, we have the following for 3-folds in P5.

PROPOSITION 5.2. Let F be a bundle on P> with Chern classes cy, - - -, cs. If for all
a;eN, f*F@,0(a;) has a nonsingular 3-fold as a dependency locus, where f is any degree
e map. Then

(i) Any rational number between [1,17/12] and (cs+ 3¢ cq+3cfcs+cic,)/(cs+
3cicqa+3cicy+cicy, —cye3) is the slope c,(X) for some 3-fold X.

(i) Any rational number between [1,17/7] and (cs+ 3¢ cq+3cic, +c1 3ey))/(es+
3cica+3c2cy+cicy—2c,03) is the slope c5(X) for some 3-fold X.

ProOOF OF THEOREM 3. Let F be the Horrocks-Mumford bundle with ¢, =5 and
Cz = 10.

CLAaM. f*F@®!_, O(a;) has nonsingular surfaces as dependency loci.

ProoF. This is already in the argument given by Horrocks and Mumford [20].
It is sufficient to see the case of E=F@!_, O(a;). A point xeP* is in the dependency
locus of /+1 general sections s,, - - -, 5,4, if and only if there are scalars ¢y, - -, ¢;44
such that ¢,;s;+ - +¢;4 154+ 1(x)=0. As in [20], E is generated by global sections
outside of a set of 25 skew lines L. So the dependency locus is nonsingular except
possibly at points of L. Let xe L and e, e, be basis of the 0,-module F,. Then a section
§s=c¢y81+ " +¢4+15+1 can be written as as+bt+ct’+dt”+2i=1 o;. Here a;€ O(e;),
(a,b,c,d)eP(I'(F)), s=e;, t=fe, +ue,, t'=f'e;+u'e,, t"=f"e, +u"e,, where f, [, [,
u,u',u" €0, and u, u’', u" generate the ideal of L at x.

Let QO be the projective space associated to I'(E) and let Z = Q xP* be repre-
sented by (s, x) such that s(x)=0. Then Z is described near x by equations

a+bf+cf +df"=0,
bu+cu' +du”"=0,
d1=0, T, al=0.

Hence Z is everywhere nonsingular. So is the dependency locus of s;, * - *,85,44. [

Appendix to §2. Notations as in §2. In particular, é denotes various constants.
To prove Lemma 2.1.A, we need
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DIRICHLET PRINCIPLE [16, p. 9]. Given 0€R, VQ>1, there exists a/qeQ, with
(a,9)=1 and 1<g<Q such that |8 —a/q|<1/90Q, and

WEYL’S INEQUALITY [16,p.11]. Let f(x)=ax'+ - - +a,xe Q[x] with|a—a/q|<
g~ 2. Then Ve>0, there exists c=c(¢) such that

e2nif(n)

<CN1+e(q—1+N-1+qN_l)1/(21_l).

REMARK. If N°<g<N'"% theng '+ N~'+gN~'<3N~and the right hand side
of Weyl’s inequality is bounded by ¢cN!~@/2'" -2,

PROOF OF LEMMA 2.1.A. Let A=Y _ 2™+ +am e Dirichlet Principle to
find a/q with (a, g)=1 such that

1
<———— and ¢g<N'7%,

(A.1) N

oy——

We will approximate 4 by an exponential sum with lower degree in n inductively until
the Remark above is applicable.
Now let M eZ with

(A2) M~N'"%  where §,>0, .

We break A in subsummations of M terms each, ie. A= ZN/M S; and §;=
Y nr1= 1 g2nilemt +9m) where g(n)=a;_n' "1+ - - - +o,n and

(A.3) n=(G—1M .
CLamM. |[§; |<}:"1+1—1 2nilg(m) +@lan') | 4 O(N?1 92 )f),

PrOOF OF CLAM. (A.1) implies an'<amj+(a/q)(n'—n})+ N>~ (n'—n}). (A.2)
and (A.3) imply N°~'(n'—n})=O(N’"'MN'"*)=0(N° %), Now factoring out
e2™@=ajam; from each summand and Fact 1 in §2 gives the claim.

Denote Y nii -1 g2+ @am) in the Claim by 7;. We have

N/M

|A|<Z | T;|+ O(N**%1~ "2)<N"2max|T|+O(N”’51 %) and

ji=1

max| T;| <2 max
Ni<N

Z e 2rilg(n) +(ajg)nt)
n=0

q—1
=2max|y Y eZrim+@an)

Ni1<N|r=0 n=r(g)
n<Ni

Z e21u'g(n) .

n=r(q)
n<N;

<2N? max

0<r<gq
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The last inequality is because g < N? (otherwise the Remark is applicable.).

Let r be fixed and n=qd+r. Then gn)=o,_(qd)' " *+ - +oa,(qgd)+ - is a
polynomial of degree /—1 in d with leading coefficient f=¢' 'a,_,. Let S=
Da<nig€ ™. Use Dirichlet Principle to find a’/q’ with (a,¢)=1, such that
4" 2y —a'/q’ | <1/(¢'N'"*~%) and ¢’ <N'~1%.

Case 1. If ¢'>N?%, then the Remark implies S=O(N'7%). Hence A=
O(Nl *(63—52—6))'

Case 2. If ¢<N?, then we continue the process. This process will terminate,
because the property of the coefficients «,, - - -, &, that & ¢ M is carried to the coefficients
of the new polynomials, e.g. if ¢’ <N°%, then ¢'q' ! < N'~17% and ¢’q'~! < N%. On the
other hand the coefficient of d'~2 is B,_,=q' " 2(y_ (= Dr+o;_,). If B,_,=a"/q" +
O(N~"~2+%)) with q" <N% and a;,_, =a,/q, + ON~ ¢~ 1%%) with g, < N°, then o;_, =
a"l(q"q' =) +(—Dra,/q; + O(N~¢~2*%9) with g,q"q' "> < N>~ D*8i+3

ProorF oF LEMMA 2.3.A. The left hand side is

a 4 ,
P= Z Z e 2mil@i/a)y + (@Y g )+ o+ (@jla)r T + @f (g’ )+ )
r'=1r=1

Since (¢', ¢")=1, {r'}8_,={(r'q")}% - ,(modulo ¢’). Also note that
A4 - -
&—F—'Z”—)(q”lrl‘l"-ql"r”'l)
q

!

Ly S qry-z(
q q

a; a; ,
q q

I/ 1,0

Since (¢', ¢")=1, y=q"r'+q'r” represents all integers between 1 and ¢'q” when ' and
r” run through all possible integers. Therefore

q'q” .
P= z e2ni((ai/q’+a’1’/q”)y+-"+(aj‘/q’+a3'/q”)y1+---) . O
y=1

REMARK ON LEMMA 2.4.A. This is Weil’s Theorem, see e.g. [6] p. 223: Let
S €F [x] of degree n>1 and g.c.d.(n, g)=1. Then |zcqu x(f(©)|<(n—1)q>.
We take a larger constant ¢(/) to cover the cases with (I, g) #1.

REMARK ON LEMMA 2.5.A. This is Van den Corput. See, e.g. [13] p. 309: Let
¢(x)€R be smooth in [a, b]. If | ¢ ©(x)| > 1, then | [? e™**@dx | < c, A~ 1k holds when (i)
k=2, (ii) or k=1 and if ¢’(x) is monotonic. We need to normalize our polynomial.
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