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Representation of Harmonic Functions in the Lie Ball
by Dirichlet Series

Mitsuo MORIMOTO and L\^E Hai Kh\^oi*

Sophia University and Hanoi Institute of Information Technology

Abstract. We prove that complex harmonic functions in the Lie ball can be represented in Dirichlet
series by showing the equivalent fact that it can be constructed explicitly a discrete weakly sufficient set for
the space of entire functions of exponential type on the complex light cone.

1. Introduction.

During the last two decades there has been developed extensively a concept of
representing systems of exponents which shows, in particular, that every holomorphic
function $f$ in a convex domain of $C^{n}(n\geq 1)$ can be represented in the form of Dirichlet
series

(1.1) $f(z)=\sum_{k=1}^{\infty}c_{k}e^{\langle\lambda^{k},z\rangle}$ ,

where $\langle\cdot, \cdot\rangle$ is a scalar product.
The possibility of such a representation, as is well-known, relates to the existence

of so-called sufficient and weakly sufficient sets (introduced and considered by Ehrenpreis
[1], Taylor [9] and Schneider [8], among others). Roughly speaking, this relation
can be formulated as follows: for certain spaces $H$ of holomorphic functions the
representation (1.1) holds if and only if the set of frequencies $\{\lambda^{k}\}$ is weakly sufficient,
or equivalently, as it turned out later, sufficient for the dual spaces $H^{*}$ .

This means that in many cases it is important to have an explicit description of
dual spaces. Then for solving the representation problem it suffices to deal with (weakly)
sufficient sets. In this direction there were several papers in which the last sets have
been considered in different spaces of holomorphic functions in convex domains of $C^{n}$

(see, e.g., [2, 4] and references therein).
The first named author, wishing to have duality theorems (i.e., a description of
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dual spaces) for a non-convex set, has started to study analytic functionals (hyper-
functions) on the sphere. Since analytic functionals on the sphere can be regarded as
continuous linear functionals on the space of complex harmonic functions in a neigh-
bourhood of the Lie ball, a study of the last space is of great importance. On this
subject he has obtained several results; in particular, in his recent joint work with K.
Fujita [6] there has been described the dual space of the space of complex harmonic
functions in the Lie ball as the space of entire functions on the complex light cone.

The aim of this paper is to present an application of such results to the represen $\cdot$

tation problem, namely to show that every harmonic functions in the Lie ball can be
represented in Dirichlet series of the form (1.1), by constructing a weakly sufficient seI
for the space of entire functions on the complex light cone.

It should be noted that in the articles on sufficient sets mentioned above these sets
are constructed for the spaces of either entire functions in $C^{n}$ or holomorphic functions
in convex domains of $C^{n}$ . The techniques used in those papers are essentially of convex
domains, while the situation of the light cone considered in the present paper is of $quit\epsilon$

different nature.

ACKNOWLEDGMENTS. This paper was written during the second named author’s
stay in Sophia University, Tokyo, under its STEC grant. He wishes to thank the
Department of Mathematics for the hospitality.

The authors are grateful to K. Fujita for her comments.

2. Preliminaries on absolutely representing systems.

A sequence $(x_{k})$ of non-zero elements of a locally convex space $H$ is said to be ar
absolutely representing system in $H$ if any element $x$ from $H$ can be represented in the
form of the series

$x=\sum_{1}^{\infty}c_{k}x_{k}$ ,

which converges absolutely in the topology of $H$.
It should be noted that this concept is more general than concept of basis, where

the uniqueness of representation is essentially required.
Studying absolutely representing systems Korobeinik has obtained remarkable

results (see, e.g., [2, 3]), in particular, criteria for a given sequence to be absolutel]
representing system in different functional spaces as well as significant properties $0$

such systems. We refer the reader to these articles for having information in detail.
Below is one of the results from [3, Section 8, Corollary of Theorem $F$], which

will be used in the present work.
Let $H_{k}$ be Banach spaces with the norms $\Vert\cdot\Vert_{m}$ such that $H_{m+1}\subset_{\rightarrow}H_{m}$ and $H=$

$\bigcap_{m=1}^{\infty}H_{m}$ is dense in each $H_{m},$ $ m=1,2,\cdots$ . Then $ H=\lim$ proj $H_{m}$ is called a reducee
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projective limit of the Banach spaces $H_{m}$ .

THEOREM A. Suppose that $H$ is the reduced projective limit of Banach spaces $H_{m}$

with the norms $\Vert\cdot\Vert_{m},$ $m=1,2,$ $\cdots.$ A system $X=\{x_{k}\}_{k=1}^{\infty}$ of non-zero elements is an
absolutely representing system in $H$ if and only $\iota f\forall m\geq 1\exists p\geq 1,$ $\exists C_{m}\in(0, +\infty)$ such
that

(2.1) $\sup_{x\in H}|y(\frac{\chi}{\Vert x\Vert_{p}})|\leq C_{m}\sup_{k\geq 1}|y(\frac{x_{k}}{\Vert x_{k}\Vert_{m}})|$ , $\forall y\in H^{*}$

The inequality (2.1) can be interpreted as follows. Denote

$E_{m}=\{y\in H^{*};$ $|y|_{m}=\sup_{x\in H}|y(\frac{x}{\Vert x\Vert_{m}})|<+\infty\}$ , $m\geq 1$ ,

the Banach space with the norm $|\cdot|_{m}$ . Then $H^{*}=\bigcup_{m=1}^{\infty}E_{m}$ , and we can endow this space
with the inductive topology:

$(H^{*}, \tau)=\lim$ ind $E_{m}$ .
Denote further

$F_{m}=\{y\in H^{*};$ $|\tilde{y}|_{m}=\sup_{k\geq 1}|y(\frac{x_{k}}{\Vert x_{k}\Vert_{m}})|<+\infty\}$ , $m\geq 1$ ,

the seminormed space with the prenorm $|\tilde{y}|_{m}$ .
Obviously, $E_{m}\subset_{\rightarrow}F_{m}\subset H^{*},$ $\forall m\geq 1$ , and this implies that $H^{*}=\bigcup_{m=1}^{\infty}F_{m}$ . Con-

sequently, the space $H^{*}$ can be endowed with the weaker inductive topology

$(H^{*}, \mu)=\lim$ ind $F_{m}$ .
It is easily seen that two topologies $\tau$ and $\mu$ are equivalent if and only if (2.1) holds.

So we arrived to the fact that the following statements are equivalent for any system
$X=\{x_{k}\}$ of non-zero elements of the reduced projective limit $H:i$) $X$ is an absolutely
representing system in $H$ ; ii) the relation (2.1) holds; iii) $\tau=\mu$ .

3. Spaces of complex harmonic functions in Lie balls and their dual.

Recalling some notations we refer the readers to [5-7] for the general background
of this section.

Let $\Vert x\Vert$ be the Euclidean norm on $R^{n+1}$ . The cross norm $L(z)$ on $C^{n+1}$ cor-
responding to $\Vert x\Vert$ is the Lie norm defined by

$L(z)=L(x+iy)=\{\Vert x\Vert^{2}+\Vert y\Vert^{2}+2\sqrt{\Vert x\Vert^{2}\Vert y\Vert^{2}-\langle xy\rangle^{2}}\}^{1/2}$ ,

where $z=x+iy,$ $x,$ $y\in R^{n+1}$ and $\langle x, y\rangle=x_{1}y_{1}+\cdots+x_{n+1}y_{n+1}$ . We denote by $L^{*}(z)$ the
dual Lie norm:
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$L^{*}(z)=\sup_{L\langle\zeta)\leq 1}|\langle z, \zeta\rangle|=\frac{1}{\sqrt{2}}\{\Vert x\Vert^{2}+\Vert y\Vert^{2}+\sqrt{(\Vert x\Vert^{2}-\Vert y\Vert^{2})^{2}+4\langle x,y\rangle^{2}}\}^{1/2}$

Note that $\Vert z\Vert/\sqrt{2}\leq L^{*}(z)\leq L(z)\leq 2L^{*}(z)$ for all $z\in C^{n+1}$ .
The open unit Lie ball is denoted by $\tilde{B}$, i.e., $\tilde{B}=\{z\in C^{n+1} ; L(z)<1\}$ .
Let $\mathcal{O}(R\tilde{B}),$ $R>0$ , be the space of holomorphic functions in $R\tilde{B}$ with the topology

of uniform convergence on compact subsets of $R\tilde{B}$. As is well-known, it is a Fr\’echet-
Schwartz space.

Consider the space of complex harmonic functions in $R\tilde{B}$ :

$\mathcal{O}_{\Delta}(R\tilde{B})=\{f\in \mathcal{O}(R\tilde{B});\Delta f=(\frac{\partial^{2}}{\partial z_{1}^{2}}+\frac{\partial^{2}}{\partial z_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial z_{n+1}^{2}})f=0\}$ .

Since this space is a closed subspace of the space $\mathcal{O}(R\tilde{B})$ , it also is a Fr\’echet-Schwartz
space.

Furthermore, take and fix some sequenoe $0<(q_{m})\uparrow 1$ . Let

$H_{m}=\{f\in \mathcal{O}_{\Delta}(Rq_{m}\tilde{B})\cap C(\overline{Rq_{m}\tilde{B}})\}$ , $m\geq 1$ .

Then, due to the homogeneity of the continuous Laplace operator, we can easily verify
that the space $\mathcal{O}_{\Delta}(R\tilde{B})$ is the reduced projective limit of the Banach spaces $H_{m}$ .

We denote
$\tilde{S}_{0}=\{\zeta\in C^{n+1} ; \zeta^{2}=\zeta_{1}^{2}+\zeta_{2}^{2}+\cdots+\zeta_{n+1}^{2}=0\}$

the complex light cone.
The Cauchy kemel is defined as follows:

(3.1) $K_{O}(\xi, \zeta)=\frac{1+2\langle\xi,\zeta\rangle}{(1-2\langle\xi,\zeta\rangle)^{n}}$ .

This kernel is a symmetric holomorphic function in the set

{ $(\xi,$ $\zeta)\in C^{n+1}\times C^{n+1}$ ; $L(\xi)L^{*}(\zeta)<1/2$ or $L^{*}(\xi)L(\zeta)<1/2$}.

Also note that since

$L(\zeta)=2L^{*}(\zeta)$ , $\forall\zeta\in\tilde{S}_{0}$ ,

if $\zeta\in\tilde{S}_{0}$ then $K_{0}(., \zeta)$ is a holomorphic function in the set $\{\xi\in C^{n+1} ; L(\xi)L(\zeta)<1\}$ and
satisfies the Laplace equation in this set.

For an entire function $F$ on the complex light cone $\tilde{S}_{o}$ there is a Cauchy integral
formula [11]:

(3.2) $F(\xi)=\int_{M}F(\rho\zeta)K_{0}(\xi, \tau/\rho)dM(\zeta)$ , $\forall\rho>0,$ $\forall\xi\in\tilde{S}_{0},$ $ L(\xi)<\rho$ ,
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where $dM$ is the normalized invariant measure on $M=\{\zeta\in\tilde{S}_{0} ; L(\zeta)=1\}$ .
We introduce the following space ofentire functions ofexponential type $R$ on $\tilde{S}_{0}$ :

$ Exp(\tilde{S}_{0};R)=\lim$ ind $\tilde{E}_{m}$ ,

where

$\tilde{E}_{m}=\{F\in \mathcal{O}(\tilde{S}_{0});|F|_{m}=\sup_{\tilde{s}_{o}}\frac{|F(\zeta)|}{e^{Rq_{m}L^{*}\langle\zeta)}}<+\infty\}$ , $m\geq 1$ ,

and $0<(q_{m})\uparrow 1$ .
The Fourier-Borel transform of an analytic functional $T\in \mathcal{O}_{\Delta}^{*}(R\tilde{B})$ is defined by

$\mathscr{F}^{S}T(\zeta)=\langle T_{z}, e^{\langle z.\zeta\rangle}\rangle$ , $\zeta\in\tilde{S}_{0}$ .

In [10] R. Wada obtained the following duality result (see also [7]).

THEOREM B. The Fourier-Borel transformation establishes a topological isomor-
phism between the strong dualof $\mathcal{O}_{\Delta}(R\tilde{B})$ , the space $\mathcal{O}_{\Delta}^{*}(R\tilde{B})$ , and the space $Exp(\tilde{S}_{0} ; R)$ .

This duality theorem allows us, as will be seen in the next section, to prove the
possibility of representation of complex harmonic functions in $R\tilde{B}$ by Dirichlet series.

4. Weakly sufficient sets on the complex light cone.

Let $\Lambda$ be any subset of $\tilde{S}_{0}$ . Then this subset and the corresponding sequence of
seminormed spaces

$E_{m}^{\Lambda}=\{F\in Exp(\tilde{S}_{0} ; R);|F|_{m}^{\Lambda}=\sup_{\Lambda}\frac{|F(\zeta)|}{e^{Rq_{m}L^{*}\langle\zeta)}}<+\infty\}$ , $m\geq 1$ ,

where $0<(q_{m})\uparrow 1$ , generate in $Exp(\tilde{S}_{0} ; R)$ another weaker inductive topology. If these
two topologies are equivalent, then the set $\Lambda$ is called a weakly sufficient set for the
space $Exp(\tilde{S}_{0} ; R)$ . So the complex light cone $\tilde{S}_{0}$ itself is a weakly sufficient set for
$Exp(\tilde{S}_{0} ; R)$ .

Note that

$\sup_{z\in Rq_{m}\tilde{B}}|e^{\langle\zeta,z\rangle}|=e^{Rq_{m}L^{*}\langle\zeta)}$ , $\forall\zeta\in\tilde{S}_{0},$ $\forall m\geq 1$ .

Applying Theorem A and the remark that follows to the spaces in Theorem $B$ we
obtain the following result.

PROPOSITION 4.1. Let $\lambda^{k}\in\tilde{S}_{0}(k=1,2, \cdots)$ . Then the system $(e^{\langle\lambda^{k},z\rangle})_{k=1}^{\infty}$ is absolute-
ly representing in the space $\mathcal{O}_{\Delta}(R\tilde{B})$ if and only $\iota f$ the set $\Lambda=\{\lambda^{k}\}_{k=1}^{\infty}$ is weakly sufficient
for the space $Exp(\tilde{S}_{0} ; R),$ $i.e.$ ,

$\forall m\in N\exists s=s(m)\in N$ , $\exists C=C(m)>0$
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$\sup_{\zeta\in S_{o}}\frac{|F(\zeta)|}{e^{Rq_{s}L^{*}\langle\zeta)}}\leq C\sup_{k\geq 1}\frac{|F(\lambda^{k})|}{e^{Rq_{m}L^{*}(\lambda^{k})}}$ , $\forall F\in Exp(\tilde{S}_{0} ; R)$ .

The important question now is whether there exists such a sequence $\Lambda$ . We proceed
to study this problem.

In the paper [4], following Korobeinik’s scheme in [2] for constructing $discret\epsilon$

weakly sufficient sets in the space of entire functions of exponential type of one complex
variable, the second named author has proved the explicit existence of the discrete sel
$\Lambda\subset C^{n}$ that is weakly sufficient for the weighted space of entire functions in $C^{n}$ and
obtained theorems of representation of holomorphic functions in Dirichlet series.

As was already noted in the introduction, the situation considered in the presenl
paper is quite different from those mentioned above: the complex light cone is never a
domain in $C^{n+1}$ . Nevertheless, it tums out that the ideas for the domain case can be
applied to the space $Exp(\tilde{S}_{0} ; R)$ for construction of weakly sufficient sets.

For $F\in Exp(\tilde{S}_{0} ; R)$ and $t>0$ we set

$C_{t}=\{\zeta\in\tilde{S}_{0} ; L^{*}(\zeta)=t\}$ ,

$M_{t}(F)=\sup_{\zeta\in C_{t}}|F(\zeta)|$ .

LEMMA 4.2. Let $F\in \mathcal{O}(\tilde{S}_{0})$ . Then $M_{t}(F)\leq M_{s}(F)$ for $0<t\leq s$ .
PROOF. Take and fix $z\in C_{t}$ . The expansion of $F(z)$ in a series of homogeneous

polynomials shows that the function $F(\lambda z),$ $\lambda\in C$ , is an entire function with respect tc
$\lambda$ . Therefore, since $0<t<s$ we have

$|F(z)|\leq\sup_{|\lambda|=/\iota}|F(\lambda z)|\leq M_{s}(F)$ ,

and the desired inequality follows.

LEMMA 4.3. Let $F$ be an entire function on $\tilde{S}_{0}$ ofexponential type $r_{0},$
$i.e.$ , for some

$A\geqq 0$

$|F(\zeta)|\leq A\exp\{r_{0}L^{*}(\zeta)\}$ , $\forall\zeta\in\tilde{S}_{0}$ .
Then $\forall r>r_{O}$

(4.1) $\lim_{t\rightarrow}\inf_{\infty}\frac{M_{t+1}(F)}{M_{t}(F)}\leq e^{r}$

PROOF. Since $F$ has the exponential type $r_{0}$ from the definition of $M_{t}(F)$ it follows
that

log $M_{t}(F)=\log\sup_{\zeta\epsilon}|F(\zeta)|\leq\log A+r_{0}t$ .



REPRESTENTATION OF HARMONIC FUNCTIONS 337

Hence,

(4.2) $\lim_{t\rightarrow}\inf_{\infty}\frac{\log M_{t}(F)}{t}\leq r_{0}$ .

Assume that (4.1) is not true. Then there is $r>r_{0}$ such that for all $t$ large enough
.. we have

$M_{t+1}(F)\geq e^{r}M_{t}(F)$ ,

which implies that

$\lim_{1\rightarrow}\inf_{\infty}\frac{\log M_{t}(F)}{t}\geq r>r_{0}$ .

This contradicts (4.2).

The following result plays a crucial role in our discussions.

PROPOSITION 4.4. For any numbers $ 0<\rho_{1}<\rho$ , if $z,$ $w\in C_{\rho_{1}}$ and $F\in \mathcal{O}(\tilde{S}_{0})$ , then

$|F(z)-F(w)|\leq\frac{2\sqrt{2}n(n+1)}{\rho(1-\rho_{1}/p)^{n+1}}M_{\rho}(F)|z-w|$ .

PROOF. Take $z,$
$w\in\tilde{S}_{0}$ with $ L(z)=L(w)=\rho_{1}<\rho$ . Then, by the Cauchy intergal

formula (3.2) on $\tilde{S}_{0}$ and Lemma 4.2, we have

(4.3)
$|F(z)-F(w)|\leq\sup_{\eta\in\tilde{S}_{O},L\langle\eta)=\rho}|F(\eta)|\cdot\sup_{\eta\in\tilde{S}_{o},L\langle\eta)=\rho}|K_{0}(z,\overline{\eta}/\rho^{2})-K_{0}(w,\overline{\eta}/\rho^{2})|$

$\leq M_{\rho}(F)\cdot\sup_{\eta\in SL\langle\eta)=\rho}|K_{0}(z,\overline{\eta}/\rho^{2})-K_{0}(w,\overline{\eta}/\rho^{2})|$
.

Consider $K_{0}(\xi, \zeta)$ with $\zeta\in\tilde{S}_{0},$ $ L(\zeta)=1/\rho$ . As is well-known, in this case $K_{0}(\xi, \zeta)$ is
a holomorphic function with respect to $\xi$ in the Lie ball $\rho\tilde{B}=\{\xi\in C^{n+1} ; L(\xi)<\rho\}$ . Then
the function

$f_{\zeta}(t)=K_{0}(tz+(1-t)w, \zeta)$ , $t\in[0,1]$ ,

is well defined, because $L(tz+(1-t)w)\leq tL(z)+(1-t)L(w)=\rho_{1}<\rho,$ $\forall t\in[0,1]$ .
Consequently, for $\xi=\overline{\eta}/\rho^{2}$ we have

(4.4) $|K_{0}(z,\overline{\eta}/\rho^{2})-K_{0}(w,\overline{\eta}/\rho^{2})|=|f_{\zeta}(1)-f_{\zeta}(0)|\leq\sup_{t\in[0,1]}|f_{\zeta}^{\prime}(t)|$ .

Furthermore, on the one hand

$f_{\zeta}^{\prime}(t)=\sum_{j=1}^{n+1}\frac{\partial K_{0}}{\partial\xi_{j}}$
.

$\frac{\partial\xi_{j}}{\partial t}=\sum_{j=1}^{n+1}\frac{\partial K_{0}}{\partial\xi_{j}}$
. $(z_{j}-w_{j})$ .

On the other hand, since $L(tz+(1-t)w)\leq\rho_{1}<\rho,$ $\forall t\in[0,1]$ , we have
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$|\frac{\partial K_{0}}{\partial\xi_{j}}|\leq\sup_{\xi\in C^{n+1},L\langle\xi)\leq\rho_{1}}|\frac{\partial K_{0}}{\partial\xi_{j}}|$ , $j=1,2,$ $\cdots,$ $n+1$ .

Hence,

(4.5) $|f_{\zeta}^{\prime}(t)|\leq\sum_{j=1}^{n+1}\{\sup_{\xi\in C^{n+1}.L\langle\xi)\leq\rho_{1}}|\frac{\partial K_{0}}{\partial\xi_{j}}|\}|z-w|$ .

Now we estimate $|\frac{\partial K_{O}}{\partial\xi_{j}}|,j=1,2,$ $\cdots,$ $n+1$ . By the definition (3.1),

$K_{0}(\xi, \zeta)=\frac{1+2\langle\xi,\zeta\rangle}{(1-2\langle\xi,\zeta\rangle)^{n}}$ , $\xi\in C^{n+1},$ $L(\xi)\leq\rho_{1}<\rho,$ $\zeta\in\tilde{S}_{0},$ $ L(\zeta)=1/\rho$ .

Then

(4.6) $\frac{\partial K_{0}}{\partial\xi_{j}}=\frac{2\zeta_{j}}{(1-2\langle\xi,\zeta\rangle)^{n+1}}[(n+1)+2(n-1)\langle\xi, \zeta\rangle]$ .

Since the Lie norm and its dual have a property that
$|\langle\xi, \zeta\rangle|\leq L(\xi)L^{*}(\zeta)$ , $\forall\xi,$ $\zeta\in C^{n+1}$ ,

and $L(\zeta)=2L^{*}(\zeta),$ $\forall\zeta\in\tilde{S}_{0}$ , we get

2 $|\langle\xi, \zeta\rangle|\leq L(\xi)L(\zeta)\leq\frac{\rho_{1}}{\rho}<1$ .

Therefore, from (4.6) it follows that

(4.7) $|\frac{\partial K_{0}}{\partial\xi_{j}}|\leq\frac{2|\zeta_{j}|}{(1-\rho_{1}/\rho)^{n+1}}[(n+1)+(n-1)\rho_{1}/\rho]$

$\leq\frac{4n|\zeta|}{(1-\rho_{1}/\rho)^{n+1}}=\frac{2\sqrt{2}n}{\rho(1-\rho_{1}/\rho)^{n+1}}$ .

From (4.5) and (4.7) it follows that

(4.8) $|f_{\zeta}^{\prime}(t)|\leq\frac{2\sqrt{2}n(n+1)}{\rho(1-\rho_{1}/p)^{n+1}}|z-w|$ , $\forall t\in[0,1],$ $\forall\zeta\in\tilde{S}_{0},$ $ L(\zeta)=1/\rho$ .

Combining $(4.3)-(4.4)$ and (4.8) completes the proof of the proposition.

Now let $(t_{k})_{k=1}^{\infty}$ be a sequence ofpositive numbers satisfying the following conditions

$(t_{k})\uparrow+\infty$ ; $\lim_{k\rightarrow\infty}\frac{t_{k+1}}{t_{k}}=1$ .

In the sequel in order to simplify computations we consider $(t_{k})_{k=1}^{\infty}=(k)_{k=1}^{\infty}$ al-
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though the result is valid for a general case.
Take and fix some natural number $N_{0}\geq 1$ and mark on each $C_{K}(K=N_{0},$ $N_{0}+$

$1,$ $\cdots$ ) $l_{K}$ points $\zeta_{K,1};\zeta_{K,2};\cdots;\zeta_{K,l_{K}}$ which form the $1/(K+1)^{n+1}$ -net of $C_{K}$ .
We renumerate the obtained system of points $\{\zeta_{K,j} ; 1\leq j\leq l_{K}, K\geq N_{0}\}$ under one

sequence, denoted by $\Lambda=(\lambda^{k})_{k=1}^{\infty}$ , writing first all the points with $K=N_{0}$ , and then with
$K=N_{0}+1$ , etc.

The meaning of a choice of the number $N_{0}$ is that the frequencies $(\lambda^{k})$ can be
chosen arbitrarily far away from the origin of coordinates.

Now we are able to state the main result of this paper.

THEOREM 4.5. The sequence $\Lambda=(\lambda^{k})_{k=1}^{\infty}$ constructed above is a weakly sufficient set

for all spaces $Exp(\tilde{S}_{0} ; R),$ $R>0$ , or equivalently, the system $(e^{\langle\lambda^{k},z\rangle})_{k=1}^{\infty}$ is absolutely
representing in all spaces $\mathcal{O}_{\Delta}(R\tilde{B}),$ $R>0$ .

PROOF. Let $R$ be an arbitrary positive number. We recall that

$ Exp(\tilde{S}_{0} ; R)=\lim$ ind $\tilde{E}_{m}$ ,

where

$\tilde{E}_{m}=\{F\in \mathcal{O}(\tilde{S}_{0})$ ; $|F|_{m}=\sup_{\tilde{s}_{o}}\frac{|F(\zeta)|}{e^{Rq_{m}L^{*}\langle\zeta)}}<+\infty\}$ , $m\geq 1$ .

Consider $|F|_{m}$ , which can be rewritten as follows

$|F|_{m}=\sup_{t>0}\frac{M_{t}(F)}{e^{tRq_{m}}}$ , $F\in Exp(\tilde{S}_{0} ; R),$ $m\geq N_{0}$ .

Let $K\geq N_{0}$ be a fixed natural number.
For $t\leq K$, due to Lemma 4.2, we have

$M_{t}(F)$ $M_{K}(F)$ $M_{K}(F)$
$KR$

$\overline{e^{tRq_{m}}}\overline{e^{tRq_{m}}}\overline{e^{KRq_{m-1}}}\leq\leq e$

On the other hand, since

$\lim_{p\rightarrow\infty}\{(p+1)q_{m-1}-pq_{m}\}=-\infty$ ,

there is a positive $P_{m}$ satisfying

$P_{m}\geq\sup_{p\geq 1}\{(p+1)q_{m-1}-pq_{m}\}$ .

Hence, for $t\in(p,p+1$ ] we have

$\frac{M_{t}(F)}{e^{tRq_{m}}}\leq\frac{M_{p+1}(F)}{e^{tRq_{m}}}\leq\frac{M_{p+1}(F)}{e^{\langle p+1)Rq_{m-1}}}e^{R[\langle p+1)q_{m}- 1^{-}pq_{m}]}\leq\frac{M_{p+1}(F)}{e^{\langle p+1)Rq_{m-1}}}e^{RP_{m}}$ .
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Thus, if C $=\max\{e^{KR}, e^{RP_{m}}\}$ , then for all N$\geq Kwecanwrite$

(4.9) $X_{N}$ $:=\sup_{0<t\leq N}\frac{M_{t}(F)}{e^{tRq_{m}}}\leq\max\{\sup_{0<t\leq K}\frac{M_{t}(F)}{e^{tRq_{m}}}$ ; $\sup_{K\leq t\leq N}\frac{M_{t}(F)}{e^{tRq_{m}}}\}$

$\leq C\max\{\frac{M_{K}(F)}{e^{KRq_{m- 1}}}$ ; $\sup_{K\leq p\leq N}\frac{M_{p+1}(F)}{e^{\langle p+1)Rq_{m- 1}}}\}$

$=C\sup_{K\leq p\leq N+1}\frac{M_{p}(F)}{e^{pRq_{m- 1}}}$ $:=CY_{N}$ .

Furthermore, there exists $w_{p}\in C_{p}$ such that $|F(w_{p})|=M_{p}(F)$ . We can find some point
$\zeta_{p,j_{0}}$ from $l_{p}$ points marked on $C_{p}$ that satisfies $|w_{p}-\zeta_{p,j_{0}}|\leq 1/(p+1)^{n+1}$ .

By Proposition 4.4, we have

$M_{p}(F)-|F(\zeta_{p.j_{0}})|=|F(w_{p})|-|F(\zeta_{p,j_{0}})|\leq|F(w_{p})-F(\zeta_{p,j_{0}})|\leq\frac{A_{n}}{p+1}M_{p+1}(F)$ ,

where $A_{n}=2\sqrt{2}n(n+1)$ .
Hence,

$\frac{M_{p}(F)|F(\zeta_{p.j_{0}})|}{e^{pRq_{m- 1}}e^{pRq_{m- 1}}}\leq A_{n}\frac{M_{p+1}(F)}{(p+1)e^{pRq_{m- 1}}}$

$=\frac{M_{p+1}(F)}{e^{\langle p+1)Rq_{m-1}}}\cdot\frac{A_{n}e^{Rq_{m- 1}}}{p+1}\leq\frac{M_{p+1}(F)}{e^{\langle p+1)Rq_{m-1}}}\cdot\frac{A_{n}e^{R}}{p+1}$

Consequently,

$Y_{N}=\sup_{K\leq p\leq N+1}\frac{M_{p}(F)}{e^{pRq_{m-1}}}$

$\leq\sup_{K\leq p\leq N+1}\frac{|F(\zeta_{p.j_{0}})|}{e^{pRq_{m- 1}}}+\sup_{K\leq p\leq N+1}\{\frac{A_{n}e^{R}}{p+1}\cdot\frac{M_{p+1}(F)}{e^{\langle p+1)Rq_{m- 1}}}\}$ .

Furthermore, since $\zeta_{p.j_{0}}\in C_{p}$ we have

$\frac{|F(\zeta_{p.j_{0}})|}{e^{pRq_{m- 1}}}\leq\sup_{\lambda^{k}\in C_{p}}\frac{|F(\lambda^{k})|}{e^{pRq_{m- 1}}}$ .

Choose $K\geq N_{0}$ so that

$\frac{A_{n}e^{R}}{p+1}\leq\frac{1}{4}$ , $\forall p\geq K$ .

Then, denoting

$T_{N}=\sup_{K\leq p\leq N+1}\sup_{\lambda^{k}\in C_{p}}\frac{|F(\lambda^{k})|}{e^{pRq_{m-1}}}$ ,
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we obtain

$Y_{N}\leq T_{N}+\frac{1}{4}Y_{N}+\frac{A_{n}e^{R}}{p+1}\cdot\frac{M_{N+2}(F)}{e^{(N+2)Rq_{m- 1}}}$ ,

or equivalently,

(4.10) $\frac{3}{4}Y_{N}\leq T_{N}+\frac{A_{n}e^{R}}{p+1}\cdot\frac{M_{N+2}(F)}{e^{\langle N+2)Rq_{m-1}}}$ .

Now take and fix anumber $\sigma>r_{0}$ , where $r_{0}$ is the type of the function $F$, i.e.,

$|F(\zeta)|\leq A\exp\{r_{0}L^{*}(\zeta)\}$ , $\forall\zeta\in\tilde{S}_{0}$ .

By Lemma 4.3, there exists $(p_{j})\uparrow+\infty$ such that

$M_{p_{j}+1}(F)\leq e^{\sigma}M_{p_{j}}(F)$ , $\forall j\geq 1$ .

In (4.10) putting $N=p_{j},p_{j}+1,$ $\cdots$ , since for all $j$ large enough

$\frac{A_{n}e^{R+2\sigma}}{p_{j}+1}\leq\frac{1}{4}$ ,

we then have

$\frac{3}{4}Y_{p_{j}}\leq T_{p_{j}}+\frac{A_{n}e^{R}}{p_{j}+1}\cdot\frac{M_{p_{j}+2}(F)}{e^{\langle p_{j}+2)Rq_{m- 1}}}\leq T_{p_{j}}+\frac{A_{n}e^{R+2\sigma}}{p_{j}+1}\cdot\frac{M_{p_{j}}(F)}{e^{p_{j}Rq_{m-1}}}$

$\leq T_{p_{j}}+\frac{1}{4}\frac{M_{p_{j}}(F)}{e^{p_{j}Rq_{m- 1}}}\leq T_{p_{j}}+\frac{1}{4}Y_{p_{j}}$ ,

which is equivalent to

(4.11) $Y_{p_{j}}\leq 2T_{p_{j}}$ , for allj large enough.

Combining (4.9) and (4.11) we get

(4.12) $X_{p_{j}}\leq 2CT_{p_{j}}$ .

Note that $|F|_{m}^{\Lambda}$ can be rewritten as follows

$|F|_{m}^{\Lambda}=\sup_{p\geq 1}\sup_{\lambda^{k}\in C_{p}}\frac{|F(\lambda^{k})|}{e^{pRq_{m}}}$ .

If $F\in\tilde{E}_{m}$ , then in (4.12) letting $ p_{j}\rightarrow\infty$ we get

$|F|_{m}\leq 2C\sup_{p\geq K}\sup_{\lambda^{k}\in C_{p}}\frac{|F(\lambda^{k})|}{e^{pRq_{m-1}}}\leq 2C|F|_{m-1}^{\Lambda}$ .

On the other hand, if $F\in Exp(\tilde{S}_{0} ; R)$ , but $F\not\in\tilde{E}_{m}$ , then
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$|F|_{m}=\lim_{j\rightarrow\infty}X_{p_{j}}=+\infty$

and from (4.12) it follows that $|F|_{m-1}^{A}=+\infty$ , too.
Thus, we always have

$|F|_{m}\leq 2C|F|_{m-1}^{\Lambda}$ , $\forall F\in Exp(\tilde{S}_{0} ; R)$ ,

which, due to Proposition 4.1, completes the proof of the theorem.
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