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Abstract. We say that a partial elementary map f of a structure M is normal if f can be extended to
an elementary map on M whose domain or range is equal to M. In this paper, we investigate properties for
normal elementary maps.

We prepare some notations. We fix a complete theory 7 of a countable language
L. Throughout this paper, we work in a big model .# of T. We denote subsets of .#
by A4, B, - - -, elementary submodels of .# by M, N, --- and finite tuples of .# by
a,b, ---. And we denote types (possibly with parameters) by p, ¢, - - - and formulas
(possibly with parameters) by ¢, ¥, - - -. The set of realizations of a formula ¢ in a set
A is denoted by @4. A type of a over A4 is denoted by tp(a/A), and for tp(a/F) we write
simply ¢p(a). We write RM(p) for the Morley rank of a type p. We denote mappings
by f,g, - and 0,1, - - -. We write dom(f) and ran(f’) for the domain and the range
of a mapping f respectively. We denote the group of automorphisms of a structure M
which leave A pointwise fixed. We say a partial elementary map of M is maximal if it
is maximal in the set {g:g elementary map on M and g= f}.

LeEMMA 1. Let T be w-stable and M a model of T. If f is a maximal elementary
map on M then dom(f)<M and ran(f)<M.

Proor. It is enough to show that dom(f)<M. Assume the contrary. Put
S={p(x, a) e L(dom(f)): M= 3xp(x,a) and o(x, ) =M \dom(f)}. By the Tarski-
Vaught test, S is not empty. Put S,,..= {¥(x, b): ¥(x, b) is Morley rank minimal in S}.
Take a formula yy(x, by) (€S,.m) Whose Morley degree is minimal in S,.,. Take an
element ce M\dom(f) and an element de M \ran(f) such that M= y(c, b,) and
MEyo(d, f(by)). Since Y(x, by) isolates a type over dom(f), f can be extended to an
elementary map f* on M such that f*(c)=d. This contradicts the maximality of f. So
we have dom(f)<M. [
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COROLLARY 2. Let T be w-stable and M an N,-saturated model to T. If an

elementary map f on M is maximal then dom(f) and ran(f) are R,-saturated elementary
submodels of M.

PrROOF. Let D be the domain of f and R the range of f. By lemma 1, D and R
are elementary submodels of M. Assuume that D is not ¥,-saturated. Put P={p: pe S(A)
for some finite subset 4 of D and p is not realized in D}. By the assumption P # .
Let p be Morley rank minimal in P. By w-stability of 7, we may assume that p is
stationary. Since M is N,-saturated, we can choose a tuple ae M which realizes p.

CLAM 3. a and D are independent over dom(p).

PrROOF OF cLAIM. Assume that @ and D are dependent over dom(p). Then there
is a finite tuple ¢eD such that tp(@/dom(p)u ¢) forks over dom(p). So we have
RM(p) < RM(a/dom(p) v ¢). This contradicts the choice of p. [

By the ¥,-saturation of M, there is a tuple be M \R which realizes f(p). By a
similar argument in claim 3, b and R are also independent over f(dom(p)). Let f*
(e Aut(#)) be an extension of f. Since f(p) is stationary and b and R are independent
over f(dom(p)), we have tp(b/R)=tp(f *(a)/R). Thus we get tp(bR)=tp(f *(a)R)=tp(aD).
This contradicts the maximality of f. So D is Xy-saturated. By a similar argument, we
can prove that R is Ny-saturated. [

DEerFINITION 4. Let M be a model of T of f an elementary map on M. f is a
normal elementary map on M if f can be extended to an elementary map on M whose
domain or range is equal to M.

We next define triples of models which are used for criteria of normality of
elementary maps. The following two definitions are weaker than that of the special
triple in [2]. So we call them a weakly special triple and an almost special triple.

DEFINITION 5. Let M,, M, and N be models of T. The triple (M, M,, N) is a
weakly special triple if
1. N<M;and N#M;(i=1,2),
2a. There is an element a, € M,\N such that for all element b, € M, \N,
ipla,,N)#1tp(b,/N);
2b. There is an element b, € M,\N such that for all element a, € M;\N,
tp(b,/N)# tp(a;/N).

DEerINITION 6. Let M,, M, and N be models of T. The triple (M, M,, N) is an
almost special triple if

1. N<M;and N#M,;(i=1,2)

2. tp(a/N)#tp(b/N) for all element ae M \N and be M,\N.
We say that T has a weakly (almost) special triple if there are models M,, M, and N
of T such that (M,, M,, N) is a weakly (almost respectively) special triple. Clearly every
almost special triple is a weakly special triple.
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ProproSITION 7. Let T be w-stable. If T has no almost special triple, then for any
model M of T, all elementary maps on M are normal.

PrOOF. Suppose that there are a model M and elementary maps on M which are
not normal. Let S be the set of all elementary maps on M which are not normal. Take
an elementary map f on M which is maximal in S. By lemma 1, dom(f) and ran(f)
are proper elementary submodels of M. Let f* (e Aut(.#)) be an extension of f. Then
ran(f) is a proper elementary submodel of f*(M). Since f is maximal in S, for all
element ae M \dom(f) and be M \ran(f), we have tp(a* dom(f))# tp(b"ran(f)). On the
other hand, for every element b’ € f*(M)\ran(f) there is an element a’ € M \dom(f) such
that tp(a’” dom(f))=tp(b'"ran(f)). Thus, for all element be M \ran(f) and b'e f*(M)\
ran(f), we have tp(b/ran(f)) #tp(b’/ran(f)). So (M, f*(M), ran(f)) is an almost special
triple. [

LeMMA 8. If there is a weakly special triple (M, M ,, N) with | N|| = A then for any
Kk with Ny <k <A, there is a weakly special triple (M}, M}, N*) with |M¥|=|M%|=
IN*| =k.

ProOF. Let (M,, M,, N) be a weakly special triple with || N|| = 4. Take an element
ae M ,\N such that for all element de M,\N, tp(a/N)#tp(d/N) and an element be M,\N
such that for all element ce M,\N, tp(b/N)#tp(c/N). By induction on j (<w), we
construct models N/, M/ (i=1, 2) of cardinality x with the following properties:

1. N°<N;

2. N°<MP<M,; aecM? and be M?;

3. NI<NI*1<N, tp(a/N'* V) #tp(d/N?* 1) for all de M4 \N’ and

tp(b/N’ T V)% tp(c/N'* 1) for all ce M \N/;

4. M]<MiT'<M;and N '<Mi*!.
Clearly we can choose N°, M{ and M3 which satisfy conditions 1 and 2. Suppose that N7, J
M/ (j<k<w) are defined. Since ae M,\N is a witness of the weakly special triple
(M,, M,, N), for each element de M% \N¥, there are a finite tuple 7 of N and a formula
o(x, y) such that = ¢(a, i) A T1¢(d, ). Since ||[Mf| =k, there is a subset D% of N of
cardinality x such that for all element de M%\N*, tp(a/N*D¥) # tp(d/N*D¥). Similarly
there is a subset DX of N of cardinality x such that for all element ce M{\N k)
tp(b/N*DE) # tp(c/N*D%). Thus we can choose a model N*** of cardinality x such that
Nk<N¥*1 < N and for all element ce M*\N* and de M%\N*, tp(a/N***) #tp(d/N**1)
and tp(b/N**1)#tp(c/N**1). And we can choose models M{*! of cardinality x such
that M¥<M**'<M; and N**' <MK+ Put M¥ =\, M/ and N*={J,_,N’. By
the construction of N* and M¥*, (M}, M¥, N*) is a weakly special triple such that
IM¥l=IMF=IN*I=x. O

LEMMA 9. Let T be w-stable. If there is a weakly special triple (M, M,, N) then
there is a weakly special triple (M¥, M¥, N*) such that |M¥| =M} =|IN*||=8, and
that M¥ ~N*~M}%.
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Proor. Let (M, M,, N) be a weakly special triple. By lemma 8 we can assume
that M, M, and N are countable. Put A=M \N, B=M,\N and N,=N. Then we can
construct countable models N; (1 <i<w) with the following properties:

For all i.

AO0. N;nAB=, N;<N,;,<4# and N;A, N;B< .M,
When i is even.

El. For every tuple a, element ae N;A and tuple ¢e N,, there is an element

ceN,; ., such that if tp(a@)=tp(¢) then tp(aa)=tp(cc);

E2. For every tuple b, element be N;B and tuple ceN,, there is an element

ce N;,, such that if tp(b)=tp(¢) then tp(bb) = tp(cc);
When i is odd.

Ol. For every tuple ¢, element ce N; and tuple ae N;A, there is an element

ae N; A such that if tp(¢)=tp(a) then tp(cc)= tp(aa);

02. For every tuple ¢, element ce N; and tuple beN,;B, there is an element

be N;, B such that if tp(¢)=tp(b) then tp(cc)=tp(bb).
Let N; (i<¥,) be such countable models. Put N*={ ), N, M¥=),. N;4 and
M3%=\J,., N:B. By the construction of N,, (M ¥, M¥, N*)is a weakly special triple such
that [M§{||=||M5| =|N*|=¥,. By a back-and-forth argument, we have N*~ M} by
El and Ol and N*~M#* by E2 and O2. [

Next theorem shows a relation between special triples and normality of elementary
maps on a model.

THEOREM 10. Let T be w-stable. The following are equivalent.

1. T has no weakly special triple.

2. T has no almost special triple.

3. For any model M of T, all elementary maps on M are normal.

PrOOF. 1) = 2) is clear. By proposition 7, we have 2) = 3). We prove 3) = 1).
Suppose that there is a weakly special triple (M, M,, N). By lemma 9, we may assume
that |[M,|=|M,||=||N||=N,and M, ~N~M,. Let g: M, - M, be the isomorphism.
Put f=g~'|N.

CLamM 11. fis not normal on M,.

Proor oF CLamM. Since (M,, M,, N) is a weakly special triple, we can choose
an element ae M,\N such that for all de M,\N, tp(a/N)#tp(d/N) and an element
be M,\Nsuchthatforallce M,\N, tp(b/N)#tp(c/N). Assume that f isnormal on M.
Case 1) Assume that f can be extended to an elementary map 4, on M, whose domain
is M. Then we have tp(aN)=tp(h,(aN))=tp(h,(a)g ™ *(N))=tp(g-h,(a)N). But goh,(a)e
M ,\N. This contradicts the choice of a.

Case 2) Assume that f can be extended to an elementary map 4, on M, whose
range is M,. By a similar argument in case 1, this contradicts the choice of b. []

This completes the proof of the theorem. [J
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We next concentrate on elementary maps on N,-saturated models. Corollary 12
shows a relation between triples of X -saturated models and normality of elementary
maps on N,-saturated models.

COROLLARY 12. Let T be w-stable. The following are equivalent.

1. There is no weakly special triple of N,-saturated models.

2. There is no almost special triple of No-saturated models.

3. For any Ry-saturated model M of T, all elementary maps on M are normal.

Proor. By corollary 2 and a similar argument in the proof of theorem 10, we
obtain the proof. []

In the proof of 3) = 1) in theorem 10, we constructed a non-normal elementary
map f on a countable model M. But f may have a property that | M \dom(f)|=|M \
ran(f)|=|dom(f)| because there is a theory which has no almost special triple
(M, M,, N) such that | M,\N|=|M,\N|<||N|.

ExaMPLE. Let G be a proper elementary extension of (Z5, +) and H a proper
elementary extension of (Z§, +). Put N=Z9®Z$, M=GPZ§ and M,=Z{ D H.
Then, it can be seen that (M,, M,, N) is an almost special triple of models of Th(N).

We next think about a non-normal elementary map f on a model M such that
| M \dom(f)|=|M\ran(f)|<|dom(f)|. We construct a model M* and an elementary
map f on M* such that | M*\dom(f)|=|M*\ran(f)|<R,, |dom(f)|=N, and f is not
normal.

THEOREM 13. Let T be w-stable. If T has an almost special triple (M|, M,, N)
of countable models with the following properties:

1. N is Rq-saturated,

2. M ~M,;

3. There is a finite tuple ce N such that AB | ;N where A=M ,\N and B= M,\N.
Then there are a model M* of T and an elementary map [ on M* such that f is not
normal, |dom(f)|=|ran(f)|=N, and | M*\dom(f)|, | M*\ran(f)| <N,.

PrOOF. Let (M, M,, N) be an almost special triple of countable models which
satisfies condition 1 and 2. Since T is w-stable, we can construct {N,; a<¥,} with
following properties:

1. Ng=N,;
i. N,iy (2N,)is countably saturated and N, | 5, 4B,
ili. Ny={), .,N, (5 is limit).
It is clear that N is also N,-saturated when § is limit.

CLamM 14. tp(N,/cAB)=1tp(N/¢AB) for all a<X;.

ProOF OF CLAIM. By the w-stability of 7, we can assume that tp(4B/N) is the
unique non-forking extension of tp(4B/c). We fix « <N ;. Since N and N, are countably
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saturated, we have N,~_N. So there is an automorphism f (€ Aut{.#)) with f: N— N,.
By the construction of N,, tp(4B/N,) is the unique non-forking extension of tp(AB/c).
Since AB | -N, we have f(AB)|:N,. Then tp(f(4AB)/N,) is also the unique non-forking
extension of tp(f(AB)/¢) (=tp(AB/c)). So we have tp(f(AB)/N,)=tp(AB/N,). Thus we
have tp(ABN/¢)=tp(f(AB)N,/c)=tp(ABN,/¢). [

Put Ny, = U“N‘ N,.

CLAamM 15. Ny, A~Ny,B.

PROOFOFCLAIM. Byclaim 14, we have N4~ N, Bforalla<¥\,. Letg,: N,A - N,B
be an isomorphism for each a <N,. By the elementary chain principle, for all a <¥,,
N,A and N,B are elementary submodels of Ny, 4 and Ny, B respectively. Let ¢(a) be
an L(Ny,A)-sentence. For every L(Ny,A)-sentence y, there is B (<N;) such that
Y € L(NyA). So we have, for some y <N, Ny, 4 ¢(a) if and only if N, 4= ¢(a). Thus
we have Ny, 4= ¢(a) if and only if Ny, BE ¢(g,(@). O

Let 6: Nyw,4A— Ny, B be an isomorphism and t: Ny, —» 0o~ '(Ny,) an elementary
map on Ny, A4.

CLAM 16. The model Ny, A and the elementary map t on Ny, A are what we look for.

PROOF OF cLAIM. By the construction of Ny, 4 and 7, we have | dom(t) |=| Ny, | =N,
and | Ny, 4\dom(t)| =] A|<N,. Assume that 7 is normal. Then, for example, 7 can be
extended to an elementary map p on Ny, 4 whose domain is Ny,4. Then we have
1p(aNy,)=tp(p(aNy,)) = tp(p(a)o ™ '(Ny,))=tp(o - p(a)Ny,) for all ae A. Since o-p(a)€ B,
this is a contradiction. When 1 can be extended to an elementary map p’ whose range
is Ny, A4, we can prove similarly. [ '

This completes the proof of theorem 13. []

QuEesTION. Is there another condition for a theory to have an elementary map f
on a model M such that | M \dom(f)|=|M\ran(f)|<|dom(f)| and f is not normal?
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