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1. Introduction.

A knot in the 3-sphere is said to be tunnel number one if there exists an arc attached
to the knot at its endpoints so that the complement of a regular neighbourhood of the
resulting complex is a genus two handlebody. It is well-known that every torus knot
and 2-bridge knot is tunnel number one. Although no composite knot is tunnel number
one $[7, 8]$ , some non-simple knots are known to be tunnel number one [5]. It seems
difficult to characterize tunnel number one knots.

Among prime knots, genus one knots are relatively easy to deal with and possess
nice properties. For example, genus one fibred knots are exactly the trefoil knot and
the figure-eight knot [1]. Any unknotting number one genus one knot is a double knot
$[4, 9]$ .

In this note, as the first step for the determination of tunnel number one genus
one knots, we shall completely determine all the tunnel number one genus one non-simple
knots.

The tunnel number one non-simple knots in $S^{3}$ are classified by Morimoto and
Sakuma [5]. We review it briefly.

Let $K_{O}$ be a non-trivial torus knot $T(p, q)$ of type $(p, q)$ in $S^{3}$ , and $L=K_{1}\cup K_{2}$ a
2-bridge link $S(\alpha, \beta)$ of type $(\alpha, \beta)$ in $S^{3}$ with $\alpha\geq 4$ . Then there is an orientation-
preserving homeomorphism $f:E(K_{2})\rightarrow N(K_{0})$ which takes a meridian $m_{2}\subset\partial E(K_{2})$ of
$K_{2}$ to a regular fibre $h\subset\partial N(K_{0})=\partial E(K_{0})$ of the Seifert fibration of $E(K_{0})$ . Here, for a
complex $C$ in $S^{3},$ $N(C)$ means the regular neighbourhood of $C$ in $S^{3}$ , and $E(C)$ means
the exterior $S^{3}$ -int $N(C)$ . We denote the knot $f(K_{1})\subset N(K_{0})\subset S^{3}$ by $K(\alpha, \beta;p, q)$ . Then
$K(\alpha, \beta;p, q)$ is a tunnel number one non-simple knot, and conversely any tunnel
number one non-simple knot is obtained in such a manner.

We will calculate the genera of $K(\alpha, \beta;p, q)$ , so that we have the following.
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THEOREM. Let $K$ be a tunnel number one genus one non-simple knot in $S^{3}$ . Then
$K=K(8m, 4m+1;p, q)$ where $m\neq 0$ .

By the argument in Section 5 in [3], we have the following corollary (cf. Problem
8.3 in [2]).

COROLLARY. Let $K$ be a tunnel number one genus one non-simple knot in $S^{3}$ . Then
$E(K)$ admits a depth one taut foliation $\mathscr{F}$ such that $\mathscr{F}\cap\partial E(K)$ is a foliation by circles.

2. Proof of Theorem.

We denote by $g(K)$ the genus of a knot $K$ in $S^{3}$ . Let $K(=f(K_{1}))$ be a tunnel
number one genus one non-simple knot. By the formula in [10], $g(K)\geq n\cdot g(K_{0})+$

$g(K_{1}^{\prime})$ where $n(\geq 0)$ is the winding number of $K_{1}$ in the solid torus $E(K_{2})$ , and $K_{1}^{\prime}$ is
the knot obtained from $K_{1}$ by $-1/pq$-surgery on $K_{2}$ . Thus there are two cases:

Case 1. $n\geq 1$ . Since $g(K)=1$ and $K_{O}$ is non-trivial, we have $n=1$ and $g(K_{0})=1$ .
Hence $K_{0}$ is the trefoil knot. We use the next lemma in [10] (see also [1, Lemma 2.11]).

LEMMA 2.1. Suppose that $n\neq 0$ . Then there is a minimal genus Seifert surface $S$ of
$K$ such that $S\cap\partial N(K_{0})$ consists of $n$ longitudes of $K_{0}$ .

Thus we have a genus one Seifert surface $S$ of $K$ such that $S\cap\partial N(K_{0})$ is one
longitude. Then $S\cap N(K_{0})$ is an annulus, and therefore $K=K_{0}$ is the trefoil knot. This
contradicts that $K$ is non-simple.

Case 2. $n=0$ . In this case we will show that the 2-bridge link $L=K_{1}\cup K_{2}$ is
$S(8m, 3m+1)$ .

LEMMA 2.2. There is a genus one Seifert surface $S$ of $K_{1}$ such that $ S\cap K_{2}=\emptyset$ .

PROOF. Let $R$ be a genus one Seifert surface of $K$. Suppose that $ R\cap\partial N(K_{0})\neq$

$\emptyset$ . By a suitable isotopy, we can assume that $R\cap\partial N(K_{0})$ contains no inessential circle
on $\partial N(K_{0})$ . Then neither $E(K_{0})\cap R$ nor $N(K_{0})\cap R$ contains disk components. If the
component of $N(K_{0})\cap R$ meeting $K$ is an annulus, we have a contradiction, since $n=0$ .
Therefore $N(K_{0})\cap R$ consists of some annuli and a twice punctured disk $P$ whose
boundary contains $K$. Consider an annulus $Q\subset\partial N(K_{0})$ bounded by two components
of $\partial P$ . We note that the two components of $\partial P$ are not homologous on $\partial N(K_{0})$ when
their orientations are induced by that of $P$, since $n=0$ . Then $S=P\cup Q$ is orientable,
and therefore it gives a genus one Seifert surface of $K$ contained in $N(K_{0})$ . Hence $f^{-1}(S)$

is a desired Seifert surface of $K_{1}$ disjoint from $K_{2}$ . $\square $

LEMMA 2.3. There is an annulus $A$ embedded in the solid torus $E(K_{2})$ such that
$ A\cap K_{1}=\emptyset$ and that one boundary component of$A$ is lying in $S$ and the other is a meridian
of $\partial E(K_{2})$ .
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PROOF. Let $(B^{i}, K_{1}^{i}\cup K_{2}^{i})(i=1,2)$ be trivial 2-string tangles corresponding to a
2-bridge representation of $L=K_{1}\cup K_{2}$ . Here $K_{j}^{i}(i=1,2)$ are subarcs of $K_{j}(j=1,2)$ . Let
$\tau$ be a simple arc corresponding to a tunnel of the link $L$ as illustrated in Figure 1. By
an isotopy, we can suppose that $B^{1}=N(K_{1}^{1}\cup K_{2}^{1}\cup\tau;S^{3})$ , and therefore we can suppose
that $B^{1}\cap S$ consists of disks as in Figure 1. Assume that the number of components
of $B^{1}\cap S$ is minimal. Then $B^{2}\cap S$ is incompressible in $B^{2}-(K_{1}^{2}\cup K_{2}^{2})$ , since $S$ is
incompressible in $E(L)$ .

Let $D$ be a disk properly embedded in $B^{2}$ which separates $K_{1}^{2}$ and $K_{2}^{2}$ . Then, since
$B^{2}\cap S$ is a torus with holes and is incompressible in $B^{2}-(K_{1}^{2}\cup K_{2}^{2})$ , it cannot be
contained in a component of $B^{2}-D$ . Hence $(B^{2}\cap S)\cap D\neq\emptyset$ . By the incompressiblity
of $B^{2}\cap S$, we may assume that there is no circle component of $(B^{2}\cap S)\cap D$ . Let $\alpha$ be
an outermost arc component of $(B^{2}\cap S)\cap D$ in $D$ . Boundary-compression of $B^{2}\cap S$

along $\alpha$ gives a band connecting one component of $B^{1}\cap S$ with itself as illustrated in
Figure 2by the minimality of the number of components of $B^{1}\cap S$ . Therefore, we can
$findanannulusstatedinLemma2.3$ . $\square $

$(B^{1}, K|\cup K_{2}^{I})$ $(B^{2}, K_{1}^{2}\cup K_{2}^{2})$

FIGURE 1

FIGURE 2
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Let $l$ be the component of $\partial A$ lying in $S$ . If $l$ is separating in $S$, then $l$ is parallel
to $K_{1}(=\partial S)$ . However this implies that $K_{1}$ is a meridian of $K_{2}$ , which is impossible.
Therefore $l$ is non-separating in $S$. Let $D$ be the disk in $S^{3}$ obtained from $A$ by capping
one boundary component of $A$ in $\partial N(K_{2})$ off by a meridian disk of $N(K_{2})$ . Compressing
$S$ along $D$ gives a disk $S^{\prime}$ such that $\partial S^{\prime}=K_{1}$ and $S^{\prime}$ meets $K_{2}$ in two points of opposite
sign.

Let $B_{1}$ be a thin regular neighbourhood of $S^{\prime}$ in $S^{3}$ . Then $(B_{1}, B_{1}\cap L)$ gives the
tangle (the 2-string Hopf tangle) as shown in Figure 3.

We note that $K_{1}$ is contained in $B_{1}$ . Let $B_{2}=c1(S^{3}-B_{1})$ . Then $(B_{2}, B_{2}\cap L)=$

$(B_{2}, B_{2}\cap K_{2})$ is a 2-string tangle. The tangle $(B_{1}, B_{1}\cap L)$ is a prime tangle [6]. Since
any 2-bridge link cannot have a decomposition into two prime tangles [6], the 2-
string tangle $(B_{2}, B_{2}\cap K_{2})$ is a trivial tangle. Since $L$ has the form as shown in Figure
4, $L$ is a Montesinos link. However $L$ is 2-bridge, therefore $(B_{2}, B_{2}\cap L)$ is an integral
tangle as shown in Figure 5.

Thus the 2-bridge link $L$ corresponds to the continued fraction

$2+\frac{1}{-2m-\frac{1}{2}}=\frac{8m}{4m+1}$
.

FIGURE 3

FIGURE 4
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FIGURE 5

This completes the proof of Theorem.
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