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Abstract. Let $ F=\langle a, b\rangle$ be the free group generated by $a,$
$b$ . Let $\phi\in Hom(F, SL(2, C))$ be a

homomorphism from $F$ to $SL(2, C)$ . Define $T(\phi)=$ ($tr\phi(a)$ , tr $\phi(b)$ , tr $\phi(ab)$), where trA stands for the trace of
the matrix $A$ . Let $\sigma\in AutF$. Then from [2, 12, 4], there exists a unique polynomial map $\Phi_{\sigma}\in(Z[x, y, x])^{3}$ ,
such that

(tr $\phi(\sigma\langle a)$), tr $\phi\langle\sigma(b))$ , tr $\phi(\sigma(ab)))=\Phi_{\sigma}\langle tr\phi(a)$ , tr $\phi(b)$ , tr $\phi\langle ab$))

with $x=tr\phi(a),$ $y=tr\phi(b),$ $z=tr\phi(ab)$ , and there exists a unique polynomial $Q_{\sigma}$ , such that $\lambda\circ\Phi_{\sigma}=\lambda\cdot Q_{\sigma}$ , where
$\lambda\langle x,$ $y,$ $z$) $=x^{2}+y^{2}+z^{2}-xyz-4$ . In this paper, we will show that $\sigma\in AutF$ if and only if $Q_{\sigma}(2,2, z)\equiv 1$ , and
that this result cannot be improved.

Since the discovery of quasicrystals by Shechtman et al. [14] many authors have
investigated nonperiodic ordered chains of atoms generated by a substitution acting
on a finite alphabet, with each letter representing an atom between two neighbouring
atoms (see [3] and the references therein). Various physical properties of such systems
have been obtained in a dynamical map approach leading to a trace map [1, 10, 11].
For these trace maps, the invertible trace maps (and the invertible substitutions) possess
some very interesting properties which play an important role in the studies mentioned
above [11, 12, 16, 19, 20, 21, 23], therefore it is important to characterize an invertible
trace map.

We recall first some preliminaries.
Let $\mathscr{A}=\{a, b\}$ be an alphabet of two letters, let $\mathscr{A}^{*}$ andFbe the free monoid and

the free group generated by $\mathscr{A}$ respectively. The elements of $\mathscr{A}^{*}$ and $F$ are called words.
The neutral element of $\mathscr{A}^{*}$ is called the empty word which we denote by $\epsilon$ . We denote
by Aut $F$ and End $F$ the group of automorphisms and the group of endomorphisms of
$F$ respectively. A morphism $\sigma$ from $\mathscr{A}^{*}$ to $\mathscr{A}^{*}$ is called a substitution over $\mathscr{A}$ . Such a
morphism can naturally be extended to be a morphism of $F$. If $\sigma$ is also in $AutF$, it is
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called an invertible substitution.
Let $\sigma\in EndF$, then $\sigma$ is determined uniquely by the couple $(\sigma(a), \sigma(b))\in F\times F$, and

we denote by $\sigma=(u, v)$ the homomorphism $\sigma(a)=u,$ $\sigma(b)=v$ . Let $U=\{u_{i}\}$ be a finite sel
of freely reduced words $(\neq\epsilon)$ of $F$, an initial word of $U$ (i.e., of either $u_{i}$ or $u_{i}^{-1}$ ) is called
isolated if it does not occur as an initial word of any other words of $U$. Similarly, we
define an isolated terminal words of $U$.

Let $w$ be a freely reduced word $(\neq\epsilon)$ . The initial word $v$ of $w$ is called the major
initial word of $w$ if $|w|/2<|v|\leq|w|/2+1$ , and the minor initial word $v^{\prime}$ of $w$ is thal
initial word satisfying $|w|/2-1\leq|v|<|w|/2$ , where by $|w|$ we mean the length of the
word $w$ , that is, the number of letters appearing in $w$ . If the length of $w$ is even we
define the right half and the left half of $w$ in an obvious manner.

Let $U=\{u_{i}\}$ be a set of freely reduced words $(\neq\epsilon.)$ Then $U$ is called a Nielson
reduced form if the following conditions are satisfied:

(i) Both the major initial and major terminal subwords of each $u_{i}$ are isolated,
(ii) for each $u_{i}$ of even length, either its left half or its right half is isolated.
One of the following three transformations is called an elementary Nielson

transformation: (i) exchange $a$ and $b$ , (ii) replace $a$ (resp. b) by $a^{-1}$ (reps. $b^{-1}$ ), (iii,
replace $a$ (or b) by $ab$ or $ba$ .

THEOREM (Nielsen [5]). Let $W=(w_{1}, \cdots, w_{m})$ be afinite m-tuple offreely reducec
words in F. Then we canfind a sequence $\tau_{1},$ $\cdots,$ $\tau_{k}$ ofelementary Nielsen transformations
such that:

$\tau_{k}\cdots\tau_{1}W=(v_{1}, \cdots, v_{m})$ ,

where $(v_{1}, \cdots, v_{t})$ is a Nielsen reducedform and $ v_{t+1}=\cdots=v_{m}=\epsilon$ .
We call also that $(v_{1}, \cdots, v_{t})$ is the Nielson reducedform of $W$.

Now let $\phi\in Hom(F, SL(2, C))$ (the group of homomorphisms from $F$ to $SL(2,$ $C)$)

Define $T(\phi)=$ ($tr\phi(a)$ , tr $\phi(b)$ , tr $\phi(ab)$), where trA stands for the trace of the matrix $A$

Let $w\in F$, from [12] (see also [13, 15, 17, 18]), there exists a unique polynomia
$P_{w}(x, y, z)\in Z[x, y, z]$ , such that

tr $\phi(w)=P_{w}(T(\phi))$ (1

with $x=tr\phi(a),$ $y=tr\phi(b),$ $z=tr\phi(ab)$ .
Moreover, if $\sigma\in EndF$, then there exists a unique polynomial map $\Phi_{\sigma}(x, y, z)=$

$(\Phi_{1}, \Phi_{2}, \Phi_{3})\in(Z[x, y, z])^{3}$ , such that

$\Phi_{\sigma}(T\phi)=T(\phi\circ\sigma)$ , (2

where $\phi\in Hom(F, SL(2, C))$ . $\Phi_{\sigma}$ is called the trace map associated with $\sigma$ . By (1) and (2)

$\Phi_{1}=P_{\sigma\langle a)}$ , $\Phi_{2}=P_{\sigma\langle b)}$ , $\Phi_{3}=P_{\sigma\langle ab)}$ .
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To state the main result of this note, we recall some definitions and terminology.
Let $\sigma,$ $\tau\in EndF$, we define $\sigma\tau=\tau=\tau\circ\sigma$ .
The abelianization of $F$ is homomorphic to $Z^{2}$ . For $w\in F$, let $\tilde{w}$ be the image of

$w$ , that is $\tilde{w}=(|w|_{a}-|w|_{a^{-1}}, |w|_{b}-|w|_{b^{-1}})$ , where $|w|_{s}$ denotes the number of the letter
$s$ in $w$ . For $\sigma\in EndF$, let $\tilde{\sigma}$ be the matrix $(\sigma(a)^{t}, \sigma(b)^{t})\sim\sim$ , where $A^{t}$ is the transpose of $A$ .
Notice that $\tilde{\sigma}\in M_{2}(Z)$ and $(\sigma\tau)\sim=\tilde{\sigma}\tilde{\tau}$, we have End $F\sim GL(2, Z)$ .

Let $\lambda(x, y, z)=x^{2}+y^{2}+z^{2}-xyz-4$ be the Markov polynomial. Peyri\‘ere [10]
proved that for any $\sigma\in EndF$, there exists $Q_{\sigma}\in Z[x, y, z]$ , such that

$\lambda\circ\Phi_{\sigma}=\lambda\cdot Q_{\sigma}$ . (3)

The following known results will be used in the sequel which may be found in
[12].

THEOREM A. Let $\alpha=(b, a),$ $\beta=(a, b^{-1}),$ $\gamma=(ab, b^{-1})$ .
1. Let $\sigma,$ $\tau\in EndF$, then

$\Phi_{\sigma\tau}=\Phi_{\sigma}\circ\Phi_{\tau}$ ;

2. For any $\sigma\in EndF$, we have $\Phi_{\sigma}(2,2,2)=(2,2,2)$ ;
3. The trace maps associated with $\alpha,$

$\beta,$
$\gamma$ (which are the elements of Aut $F$) are

respectively $\Phi_{\alpha}(x, y, z)=(y, x, z),$ $\Phi_{\beta}(x, y, z)=$ ($x,$ $y$ , xy-z), $\Phi_{\gamma}(x, y, z)=(z, y, x)$ .

Now we can characterize Aut $F$ by the Nielsen reduced forms, $\Phi_{\sigma}$ and $Q_{\sigma}$ . In fact,
we have

THEOREM B. Let $\sigma\in EndF$. The following assertions are equivalent:
1. $\sigma$ is invertible (that is, $\sigma\in AutF$);
2. $\sigma=\tau_{1}\cdots\tau_{n}$ , where $\tau_{i}\in\{\alpha, \beta, \gamma\},$ $1\leq i\leq n$ (that is, Aut $F$ is generated by $\alpha,$ $\beta$ and

$\gamma)[8,9,7]$ ;
3. $TheNielsenreducedformof(\sigma(a), \sigma(b))is(a, b)[8,9,7]$ ;
4. $\Phi_{\sigma}$ is invertible [12];
5. $Q_{\sigma}\equiv 1$ ([12]), that is

$P_{\sigma\langle a)}^{2}(x, y, z)+P_{\sigma\langle b)}^{2}(x, y, z)+P_{\sigma\langle ab)}^{2}(x, y, z)-P_{\sigma\langle a)}(x, y, z)P_{\sigma\langle b)}(x, y, z)P_{\sigma\langle ab)}(x, y, z)$

$\equiv x^{2}+y^{2}+z^{2}-xyz$ . (4)

6. The system of equations $\Phi_{\sigma}(x, y, z)=(2,2,2)$ has aunique solution (2, 2, 2) [22].

In particular, if we only consider the invertible substitution, we can replace the
condition 2 of Theorem $B$ by

2’. $\sigma=\tau_{1}\cdots\tau_{n}$ , where $\tau_{i}\in$ { $\alpha$ , (ab, $a$), $(ba,$ $a)$ }, $1\leq i\leq n$ (that is, IS $(\mathscr{A})$ is generated by
$\alpha$ and Fibonacci substitutions (ab, $a$), $(ba, a))[19]$ .

Moreover, by [6], this condition is equivalent to the fact that $\sigma$ is a Sturmian
substitution. For the definition of the Sturmian substitution, we refer to [6].

A natural question is posed: can we weaken the condition $Q_{\sigma}\equiv 1$ and what is
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the best condition? The main aim of this note consists of answering this question: we
will prove that

$\sigma\in AutF=Q_{\sigma}(2,2, z)\equiv 1$ .

Moreover, this condition cannot be improved.
Now let $A=\{\Phi_{\sigma};\sigma\in EndF, \lambda\circ\Phi_{\sigma}=\lambda\}$ , then if $\Phi_{\sigma}\in A$ , then $\sigma\in AutF$, and $A=$

$\langle\Phi_{\alpha}, \Phi_{\beta}, \Phi_{\gamma}\rangle$ , that is, A is the group generated by $\Phi_{\alpha},$ $\Phi_{\beta},$ $\Phi_{\gamma}$ . We then have

THEOREM C. Let $\sigma\in EndF$, then $\sigma\in AutF$ if and only if $Q_{\sigma}(2,2, z)\equiv 1$ , that is

$P_{\sigma\langle a)}^{2}(2,2, z)+P_{\sigma\langle b)}^{2}(2,2, z)+P_{\sigma\langle ab)}^{2}(2,2, z)$

$-P_{\sigma\langle a)}(2,2, z)P_{\sigma\langle b)}(2,2, z)P_{\sigma\langle ab)}(2,2, z)\equiv(z-2)^{2}$

REMARK 1. From Theorem A.3, we obtain that the condition $Q_{\sigma}(2,2, z)\equiv 1$ of
Theorem $B$ is equivalent to $Q_{\sigma}(x, 2,2)\equiv 1$ or $Q_{\sigma}(2, y, 2)\equiv 1$ .

From the equation (4), $\sigma\in AutF\Rightarrow Q_{\sigma}(x, y, z)\equiv 1\Rightarrow Q_{\sigma}(2,2, z)\equiv 1$ , thus we only
need to prove that $Q_{\sigma}(2,2, z)\equiv 1\Rightarrow\sigma\in AutF$.

To prove the following lemmas, we recall first some facts about Chebyshev
polynomials which can be found in [12].

Let $u_{O}(x)=0,$ $u_{1}(x)=1$ , and by the following recurrence relations we define two
polynomial sequences $\{u_{n}(x)\}_{n\in Z},$ $\{t_{n}(x)\}_{n\in Z}$ , which are called respectively the first and
the second class of Chebyshev polynomials:

$u_{n+1}(x):=xu_{n}(x)-u_{n-1}(x)$ ,

$t_{n}(x):=xu_{n}(x)-2u_{n-1}(x)$ .

It is easy to verify:

$u_{-n}(x)=-u_{n}(x)$ , deg $u_{n}(x)=n-1$ , $u_{n}(2)=n$ , $n\geq 1$ , (5)

$t_{-n}(x)=t_{n}(x)$ , deg $t_{n}(x)=|n|$ , $t_{n}(2)=2$ . (6)

Using these two classes of Chebyshev polynomials, we can obtain the following result
[12]:

Let $A\in SL(2, C)$ , and let $x=trA,$ $y=trB,$ $x=trAB$, then for any $n\in Z$ , we have

$A^{n}=u_{n}(x)A-u_{n-1}(x)$ , $trA^{n}=t_{n}(x)$ . (7)

LEMMA 1. Let $w=a^{m_{1}}b^{n_{1}}a^{m_{2}}b^{n_{2}}\cdots a^{m_{k}}b^{n_{k}}\in F,$ $m_{i},$ $n_{i}\in Z,$ $m_{1}m_{2}\cdots m_{k}n_{1}n_{2}\cdots n_{k}\neq 0$ ,
$k>0$ (if $k=0$ , we take $w=c^{n}$ by convention, where $c\in\{a,$ $b\},$ $n\in Z$ ). Then

deg$P_{w}(2,2, z)=k$ .

PROOF. We prove the lemma by induction. Since $P_{\epsilon}=2$ , the conclusion of the
lemma is true for $k=0$ . Now suppose that the conclusion is true for the positive integers
smaller than $k-1$ . Let
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$w_{1}=a^{m_{1}}b^{n_{1}}\cdots a^{m_{k-1}}b^{n_{k-1}}$ ,

then from (7), for $\phi\in Hom(F, SL(2, C))$ , we have

$\phi_{w}=\phi(w_{1})(u_{m_{k}}(x)\phi(a)-u_{m_{k}-1}(x))(u_{n_{k}}(y)\phi(b)-u_{n_{k}-1}(y))$

$=u_{m_{lc}}(x)u_{n_{lc}}(y)\phi(w_{1}ab)-u_{m_{k}-1}(x)u_{n_{k}}(y)\phi(w_{1}b)$

$-u_{m_{k}}(x)u_{n_{k}-1}(y)\phi(w_{1}a)+u_{m_{k}-1}(x)u_{n_{k}-1}(y)$ .

By $u_{m_{k}}(2)u_{n_{k}}(2)=m_{k}\cdot n_{k}\neq 0$ , and by the induction hypothesis

deg $P_{w_{1}a}(2,2, z)$ , deg $P_{w_{1}b}(2,2, z)\leq k-1$ ,

thus we only need to prove that deg $P_{w_{1}ab}(2,2, z)=k$ .
By repeating the process above, we are led to compute the degree of $P_{(ab)^{k}}(2,2, z)$ .

From (7), we get immediately

deg $P_{(ab)^{k}}(2,2, z)=\deg(t_{k}(z))=k$ .

We thus finish the proof of the lemma.

By this lemma, we obtain immediately the following

COROLLARY 1. With the notations as above. If deg $P_{w}(2,2, z)=k$ , then there exists
$u\in F$, such that $w=uvu$

‘ 1 where $v=a^{m_{1}}b^{n_{1}}a^{m_{2}}b^{n_{2}}\cdots a^{m_{k}}b^{n_{k}},$ $m_{1}m_{2}\cdots m_{k}n_{1}n_{2}\cdots n_{k}\neq 0$ ,
$m_{i},$ $n_{i}\in Z$ . In particular, if deg $P_{w}(2,2, z)=0$ , then $v=d^{n}$ , where $d\in\{a, b\},$ $n\in Z$ .

Let $\psi\in Z[x, y, z]$ , we denote by deg $\psi$ the degree of $\psi$ . (For $\Psi=(\psi_{1}, \psi_{2}, \psi_{3})\in$

$(Z[x, y, z])^{3}$ , we set deg $\Psi:=\deg\psi_{1}+\deg\psi_{2}+\deg\psi_{3}.$ )
From Theorem A.4, for any permutation $\Phi$ of $(x, y, z)$ , there exists $\pi\in\langle\alpha, \gamma\rangle$ , such

that $\Phi=\Phi_{\pi}$ , thus, without loss of generality, we can suppose that

deg $\Phi_{1}\leq\deg\Phi_{2}\leq\deg\Phi_{3}$ .

LEMMA 2. Suppose that $\sigma\in EndF$ and suppose that $Q_{\sigma}(2,2, z)\equiv 1$ . Ifdeg $\phi\geq 3$ , then

$\deg(\phi_{3}-\phi_{1}\phi_{2})<\deg\phi_{3}$ , $(*)$

where $\phi_{i}(z)=\Phi_{i}(2,2, z),$ $i=1,2,3,$ $\phi(z)=\Phi_{\sigma}(2,2, z)$ .

PROOF. By the hypotheses $Q_{\sigma}(2,2, z)\equiv 1$ and the formula (3), we have

$\phi_{1}^{2}+\phi_{2}^{2}+\phi_{3}^{2}-\phi_{1}\phi_{2}\phi_{3}-4=(z-2)^{2}$ (8)

that is
$\phi_{1}^{2}+\phi_{2}^{2}+\phi_{3}(\phi_{3}-\phi_{1}\phi_{2})-4=(z-2)^{2}$ (9)

Note first that $\phi_{1}$ and $\phi_{2}$ cannot be constants simultaneously, otherwise the degree
of the left hand side of (8) $\geq 6$ , and that of the right hand side is 2.

Now we consider two different cases:
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Case 1): $\phi_{1}(z)\equiv c$ . Since deg $\phi_{\sigma}\geq 3$ , we have deg $\phi_{3}\geq 2$ . If deg $\phi_{3}\neq\deg\phi_{2}$ , the
degree of the left hand of (8) $\geq 4>the$ degree of the right hand of (8), therefore we must
have deg $\phi_{3}=\deg\phi_{2}=k\geq 2$ .

Now by corollary 1, we have

$\sigma(a)=ud^{m}u^{-1}$ , $u\in F$ , $d\in\{a, b\}$ , $m\in Z$ ,

$\sigma(b)=va^{m_{1}}b^{n_{1}}a^{m_{2}}b^{n_{2}}\cdots a^{m_{k}}b^{n_{k}}v^{-1}$ , $v\in F$ ,

where $m_{1}m_{2}\cdots m_{k}n_{1}n_{2}\cdots n_{k}\neq 0,$ $m_{\iota},$ $n_{i}\in Z$ . In particular, by the equations (7) and (6),
$\phi_{1}(z)=t_{m}(2)=2$ , thus by the equation (8), we obtain that

$(\phi_{3}-\phi_{2})^{2}=(z-2)^{2}$

i.e., $\phi_{3}-\phi_{2}=\pm(z-2)$ .
Now, we consider the case of $d=a$, the case of $d=b$ can be discussed in the same

way. If $u^{-1}v\neq b^{n_{k}}$ and $u^{-1}v\neq a^{l}$ for any $l\in Z$ , then $\sigma(ab)=ua^{m}u^{-1}va^{m_{1}}b^{n_{1}}a^{m_{2}}b^{n_{2}}\cdots$

$a^{m_{lc}}b^{n_{k}}v^{-1}$ , so by Lemma 1,

deg $\phi_{3}=\deg P_{\sigma(ab)}(2,2, z)>k$ ,

which is contradictory to the condition deg $\phi_{2}=\deg\phi_{3}$ .
Putting now

$P_{k}(x, y, z)=P_{a^{1}b^{n_{1}}a^{m_{2}}b^{n_{2}}\cdots a^{m_{k}}b^{n_{k}}}(x, y, z)$ ,

$P_{k-1}(x, y, z)=P_{b^{n_{1}}a^{m_{2}}b^{\mathfrak{n}_{2}}\cdots a^{m_{k}}b^{n_{k}}}(x, y, z)$ ,

then by Lemma 1, $\deg p_{k}(2,2, z)=k,$ $\deg p_{k-1}(2,2, z)=k-1$ .
From the equations (7), (5) and (6), we have

$P_{a^{n}b^{n_{1}}a^{m_{2}}b^{n_{2}}\cdots a^{m_{lc}}b^{n_{k}}}=tr(u_{n}(x)A-u_{n-1}(x))B^{n_{1}}A^{m_{2}}B^{n_{2}}\cdots A^{m_{k}}B^{n_{k}}$

$=u_{n}(x)p_{k}(x, y, z)-u_{n-1}(x)p_{k-1}(x, y, z)$

so that

$\Phi_{3}(x, y, z)-\Phi_{2}(x, y, z)=(u_{m+m_{1}}(x)-u_{m_{1}}(x))p_{k}(x, y, z)$

$+(u_{m+m_{1}-1}(x)-u_{m_{1}-1}(x))p_{k-1}(x, y, z)$ ,

if $u^{-1}v=a^{l}$ .
Thus by the equation again, we have

$\phi_{3}-\phi_{2}=\Phi_{3}(2,2, z)-\Phi_{2}(2,2, z)$

$=m(p_{k}(2,2, z)-p_{k-1}(2,2, z))$

which contradicts that $\phi_{3}-\phi_{2}=\pm(z-2)$ . We have a contradiction for the case
$u^{-1}v=b^{n_{k}}$ , similarly.

Case 2): None of $\phi_{1},$ $\phi_{2},$ $\phi_{3}$ is constant. If deg $\phi_{3}\neq\deg\phi_{1}\phi_{2}$ , the degree of the
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left hand of (9) $=\deg\phi_{3}+\max$($\deg\phi_{3}$ , deg $\phi_{1}\phi_{2}$) $\geq 2+2=4>the$ degree of the right hand
of (9), this contradiction shows that

deg $\phi_{3}=\deg\phi_{1}\phi_{2}\geq 2$ .

This implies that $\deg(\phi_{3}-\phi_{1}\phi_{2})\leq\deg\phi_{3}$ .
If $\deg(\phi_{3}-\phi_{1}\phi_{2})=\deg\phi_{3}$ , the same analysis as above will give also a contradiction,

so we still have $(*)$ .

Notice that $\alpha,$ $\gamma$ are the permutations of $(x, y, z)$ and the role of $\beta$ is to change the
third component to xy-z (in the discussions above, it is $\phi_{1}\phi_{2}-\phi_{3}$), we get therefore

COROLLARY 2. With the notations above, let $\sigma\in EndF$. If deg $\phi_{\sigma}\geq 3$ , then there
exists $\pi\in AutF$, such that

deg $\phi_{\pi\circ\sigma}<\deg\phi_{\sigma}$ .

Moreover, there exists $\tau\in AutF$, such that

deg $\phi_{\tau\circ\sigma}\leq 2$ .

By corollary 2, we can suppose that deg $\phi_{\sigma}\leq 2$ .

LEMMA 3. Suppose that $\sigma\in EndF$ and deg $\phi_{\sigma}\leq 2$ , then there exists $\tau\in AutF$, such
that

$\Phi_{\tau}\circ\Phi_{\sigma}(2,2, z)=(2,2, z)$ .

PROOF. From Theorem A.2, we have $\phi_{i}(2)=2,$ $i=1,2,3$ .
1) $\phi_{1},$ $\phi_{2}$ are constants. From the discussion above we have $\phi_{1}=\phi_{2}\equiv 2$ . By (8)

we get either $\phi_{3}=z$ or $\phi_{3}=4-z$ . In the latter case, notice that

$\Phi_{\beta}\circ\Phi_{\sigma}(2,2, z)=\Phi_{\beta}(2,2,4-z)=(2,2, z)$ .

Thus for both of these two cases, the conclusion of the lemma is true.
2) $\phi_{1}$ is constant, deg $\phi_{2}=\deg\phi_{3}=1$ . From $\phi_{1}\equiv 2$ and (8), we get

$(\phi_{3}-\phi_{2})^{2}=(z-2)^{2}$ ,

so $\pm(\phi_{3}-\phi_{2})=z-2$ . Using $\alpha$ and $\gamma$ we can always exchange $\phi_{2}$ and $\phi_{3}$ , thus we only
need to consider the case $\phi_{3}-\phi_{2}=z-2$ . Since deg $\phi_{3}=1$ , we can suppose that
$\phi_{3}=nz+m,$ $n,$ $m\in Z$ . By $\phi_{3}(2)=2$ , we see that $m\in 2Z$ and $\phi_{2}=\phi_{3}-(z-2)=(n-1)z+$

$(m+2)$ .
Let $\pi=\alpha\gamma\alpha$ , then $\Phi_{\pi}(x, y, z)=(x, z, y)$ , so

$\Phi_{\pi\circ\beta\circ n\circ\sigma}(2,2, z)=(2,2\phi_{3}-\phi_{2}, \phi_{3})=:(2, \phi_{2}^{\prime}, \phi_{3})$ .
Notice that $\phi_{2}^{\prime}=2\phi_{3}-\phi_{2}=(n+1)z+(m-2)$ , by exchanging $\phi_{2}^{\prime}$ and $\phi_{3}$ , we can suppose
that $\phi_{3}=(n+1)z+(m-2)$ . Repeat this process and notice that $m\in 2Z$ , after a finite
number of steps, we can suppose that $\phi_{3}=nz$ . From $\phi_{3}(2)=2$ again, we obtain finally:
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after a finite number of applications of elements of $AutF,$ $\phi_{3}=z$ . For the case $m<0$ ,
we can treat in the same way. From the discussions avove, we have proved that there
exists $\tau\in AutF$, such that $\Phi_{\tau}\circ\Phi_{\sigma}(2,2, z)=\Phi_{\tau\sigma}(2,2, z)=(2,2, z)$ .

PROOF OF THEOREM C. Assume that $Q_{\sigma}(2,2, z)\equiv 1$ . By Lemma 3, there exists
$\tau\in AutF$, such that $\Phi_{\tau\sigma}(2,2, z)=(2,2, z)$ . For convenience, we write simply $\sigma$ instead of
$\tau\sigma$ . From the equality above, it follows that

$P_{\sigma\langle a)}(2,2, z)=2$ , $P_{\sigma\langle b)}(2,2, z)=2$ , $P_{\sigma\langle ab)}(2,2, z)=z$ .

Thus

deg $P_{\sigma\{a)}(2,2, z)=\deg P_{\sigma(b)}(2,2, z)=0$ , (10)

deg $P_{\sigma\langle ab)}(2,2, z)=1$ . (11)

By the equality (10) and Corollary 1, there exist $u,$ $v\in F,$ $m,$ $n\in Z$ , such that

$\sigma=(u^{-1}a^{m}u, v^{-1}b^{n}v)$ or $(u^{-1}b^{n}u, v^{-1}a^{m}v)$ .
Thus

$\sigma(ab)=u^{-1}a^{m}uv^{-1}b^{n}v$ or $u^{-1}b^{n}uv^{-1}a^{m}v$ . (12)

Without loss of generality, it suffices to consider the case of $|u|\geq|v|$ . Assume that
$u=b^{k}u^{\prime}$ and that the first letter of u’ is a, then by the equality (12),

$\sigma(ab)=u^{\prime-1}b^{-k}a^{m}b^{k}u^{\prime}v^{-1}b^{n}v$ .

From (8), $\deg P_{\sigma\{ab)}(2,2, z)=1$ , we have thus $u^{\prime}v^{-1}=b^{l}$ by Lemma 1, so $u=b^{k}v$ . It follows
that $\sigma(ab)=u^{-1}a^{m}b^{n}u,$ $u\in F$, i.e. $P_{\sigma(ab)}=P_{a^{m}b^{n}}$ . By (7),

$z=P_{\sigma\{ab)}(2,2, z)=P_{a^{m}b^{n}}(2,2, z)$

(13)
$=u_{m}(2)u_{n}(2)z-xu_{n-1}-yu_{m-1}(2)+2u_{m-1}(2)u_{n-1}(2)$ .

By comparing the coefficients of $z$ in the two sides of (13), we have $u_{n}(2)u_{m}(2)=1$ , thus
$m$ and $n$ have the same sign. Suppose that $m,$ $n>0$ , by comparing the coefficients of $x$

and $y$ in (13), we see that $m=n=1$ are the unique solution of (13). For $m,$ $n<0$ , we
obtain $m=n=-1$ in the same way.

So, we have

$\sigma=(u^{-1}a^{\epsilon}u, u^{-1}b^{\epsilon}u)$ , or $(u^{-1}b^{\epsilon}u, u^{-1}a^{\epsilon}u)$ ,

where $\epsilon=\pm 1,$ $u\in F$. That is, $\sigma$ is either an inner automorphism or a product of an inneI
automorphism and an involution of $F$.

From the discussions above, we see that, if $Q_{\sigma}(2,2, z)\equiv 2$ , then there exists $\tau\in AutF$,

such that $\tau\sigma\in AutF$, i.e. $\sigma\in AutF$. This completes the proof of Theorem C.
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REMARK 2. As $Q_{\sigma}(2,2, z)$ is a polynomial of $z$ , if there exists an inPnite number
of $z$ , such that $Q_{\sigma}(2,2, z)=0$ , then $Q_{\sigma}(2,2, z)\equiv 0$ ; on the other hand, for any $n\in N$ , there
exists $\sigma$ , such that deg $Q_{\sigma}(2,2, z)>n$ , that is, the condition of Theorem $C$ cannot be
weakened.

REMARK 3. By Theorem $C$ , to determine that $\sigma\in EndF$ is invertible, we only need
to verify $\lambda\circ\Phi_{\sigma}(2,2, z)=\lambda(2,2, z)$ .

By using the same method as the one used in the proof of Theorem $C$ and the
proof of Theorem5of [12], we have

THEOREM D. Let $\sigma\in EndF$, then the following assertions are equivalent:
i) $\sigma$ is not an injection;
ii) there exists $m,$ $n\in Z,$ $w\in F$, such that $\sigma=(w^{m}, w^{n})$ ;
iii) $Q_{\sigma}(2,2, z)\equiv 0$ (or $Q_{\sigma}(x,$ $2,2)\equiv 0$ , or $Q_{\sigma}(2,$ $y,$ $2)\equiv 0$).
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