Norms Related to the Lie Norm

Takuya KIMURA

NTT DoCoMo, Inc.

(Communicated by K. Uchiyama)

Abstract. We give a complete proof of Theorem 2.1 related to the Lie norm conjectured by Prof. Mitsuo Morimoto. His conjecture is a special case of our new theorem on convex functions on \mathbb{R}^n .

1. Introduction.

For $z = (z_1, z_2, \dots, z_n) \in \mathbb{C}^n$ and $w = (w_1, w_2, \dots, w_n) \in \mathbb{C}^n$, we put $\langle z, w \rangle = z_1 w_1 + z_2 w_2 + \dots + z_n w_n$ and $z^2 = \langle z, z \rangle = z_1^2 + z_2^2 + \dots + z_n^2$. $\|z\| = \langle z, \bar{z} \rangle^{1/2}$ is the Euclidean norm of z. For $x \in \mathbb{R}$, we have $\|x\| = (x^2)^{1/2}$.

The Lie norm L(z) on \mathbb{C}^n is defined by the formula (see [3], [4], or [5]):

$$L(z) = \sqrt{\|z\|^2 + \sqrt{\|z\|^4 - |z^2|^2}}\,.$$

By the simple calculations, we have

$$\frac{|z^2|}{I(z)} = \sqrt{\|z\|^2 - \sqrt{\|z\|^4 - |z^2|^2}},$$

where z = x + iy, $x, y \in \mathbb{R}^n$. Let $L^*(z)$ be the dual Lie norm defined by

$$L^*(z) = \sup\{|z \cdot \zeta| : L(\zeta) \le 1\} = \sqrt{\frac{\|z\|^2 + |z^2|}{2}}.$$

2. Main results.

December 1999 at a symposium held at RIMS (Research Institute for Mathematical Sciences) in Kyoto, Prof. Mitsuo Morimoto conjectured the following theorem.

THEOREM 2.1. For $z \in \mathbb{C}^n$ we put

$$N_p(z) = \left(\frac{1}{2}\left(L(z)^p + \left(\frac{|z^2|}{L(z)}\right)^p\right)\right)^{\frac{1}{p}}, \quad p \ge 1.$$

Then $N_p(z)$ is a norm on \mathbb{C}^n , that is,

$$(1) \quad N_p(z) \geq 0; N_p(z) = 0 \Leftrightarrow z = 0,$$

Received April 24, 2000

- (2) $N_p(\lambda z) = |\lambda| N_p(z)$ for $\lambda \in \mathbb{C}$,
- (3) $N_p(z+w) \leq N_p(z) + N_p(w)$ for any $z, w \in \mathbb{C}^n$.

REMARK 2.2. Note that $N_1(z) = L^*(z)$, $N_2(z) = ||z||$ and $N_{\infty}(z) = L(z)$. If n = 2, $N_p(z)$ are norms because we have $N_p(z) = (|z_1 + iz_2|^p + |z_1 - iz_2|^p)^{1/p}$, where $z = (z_1, z_2) \in \mathbb{C}^2$.

PROOF. (1) and (2) are trivial. Because L(z) and $L(z) + |z^2|/L(z) = 2L^*(z)$ are convex, and $L(z) \ge |z^2|/L(z) \ge 0$, Theorem 2.3 below implies $N_p(z)$ is convex. Therefore, we have (3).

THEOREM 2.3. Let f and f+g be a real-valued convex function on \mathbb{R}^n , and $f \ge g \ge 0$. Then the function $h: \mathbb{R}^n \to \mathbb{R}$ defined by

$$h(x) = (f(x)^p + g(x)^p)^{\frac{1}{p}}, \quad p \ge 1,$$

is convex on \mathbb{R}^n .

PROOF. First we suppose that f and g are both of C^2 class. We denote partial derivatives by $f_{x_i} = \partial f/\partial x_i$, $f_{x_ix_j} = \partial^2 f/\partial x_j \partial x_i$, etc. Then we have

$$h_{x_{i}x_{i}} = (f^{p} + g^{p})^{\frac{1}{p}-2} \{ (p-1)f^{p-2}g^{p-2}(fg_{x_{i}} - gf_{x_{i}})^{2} + (f^{p} + g^{p})(f^{p-1}f_{x_{i}x_{i}} + g^{p-1}g_{x_{i}x_{i}}) \} \ge 0,$$

$$h_{x_{i}x_{j}} = (f^{p} + g^{p})^{\frac{1}{p}-2} \{ (p-1)f^{p-2}g^{p-2}(fg_{x_{i}} - gf_{x_{i}})(fg_{x_{j}} - gf_{x_{j}}) + (f^{p} + g^{p})(f^{p-1}f_{x_{i}x_{j}} + g^{p-1}g_{x_{i}x_{j}}) \}.$$

We consider the following quadratic form.

$$\left\langle \begin{pmatrix} h_{x_1x_1} & \cdots & h_{x_1x_n} \\ \vdots & \ddots & \vdots \\ h_{x_nx_1} & \cdots & h_{x_nx_n} \end{pmatrix} \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix}, \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} \right\rangle$$

$$= (p-1)f^{p-2}g^{p-2}(f^p + g^p)^{\frac{1}{p}-2} \left\langle \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix}, \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} \right\rangle$$

$$+ (f^p + g^p)^{\frac{1}{p}-1} \left\langle \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix} \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix}, \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} \right\rangle,$$

where $a_{ij} = (fg_{x_i} - gf_{x_i})(fg_{x_j} - gf_{x_j})$, $b_{ij} = (f^{p-1}f_{x_ix_j} + g^{p-1}g_{x_ix_j})$. Since $a_{ii} \ge 0$ and any 2×2 minor determinant

$$\begin{vmatrix} a_{ij} & a_{ik} \\ a_{lj} & a_{lk} \end{vmatrix} = 0 \quad \text{for any } i < l \,, \quad j < k \,,$$

the first quadratic form in the righthand side is non-negative definite. (e.g. [2, X §4]) By convexity of f and f + g, the second quadratic form can be calculated as follows:

$$\left\langle \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{pmatrix} \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix}, \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} \right\rangle$$

$$= f^{p-1} \left\langle \begin{pmatrix} f_{x_1x_1} & \cdots & f_{x_1x_n} \\ \vdots & \ddots & \vdots \\ f_{x_nx_1} & \cdots & f_{x_nx_n} \end{pmatrix} \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix}, \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} \right\rangle$$

$$+ g^{p-1} \left\langle \begin{pmatrix} g_{x_1x_1} & \cdots & g_{x_1x_n} \\ \vdots & \ddots & \vdots \\ g_{x_nx_1} & \cdots & g_{x_nx_n} \end{pmatrix} \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix}, \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} \right\rangle$$

$$\geq g^{p-1} \left\langle \begin{pmatrix} (f+g)_{x_1x_1} & \cdots & (f+g)_{x_1x_n} \\ \vdots & \ddots & \vdots \\ (f+g)_{x_nx_1} & \cdots & (f+g)_{x_nx_n} \end{pmatrix} \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix}, \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} \right\rangle \geq 0.$$

Hence the quadratic form in the lefthand side is non-negative definite and the function h is convex. (e.g. [6, IV 42 Theorem F])

Second, we consider the general case. Let α_{ρ} be a regularizing function of Friedrichs. (e.g. [1, §1.3]) We put $f_{\rho} = f * \alpha_{\rho}$, $g_{\rho} = g * \alpha_{\rho}$ and $h_{\rho} = (f_{\rho}^{p} + g_{\rho}^{p})^{1/p}$. Then $f_{\rho} \geq g_{\rho} \geq 0$ because

$$f_{\rho}(x) = \int_{\mathbf{R}^n} f(y)\alpha_{\rho}(x-y)dy \ge \int_{\mathbf{R}^n} g(y)\alpha_{\rho}(x-y)dy = g_{\rho}(x) \ge 0.$$

The function f_{ρ} is convex because for any $\lambda_1, \lambda_2 \geq 0, \lambda_1 + \lambda_2 = 1$,

$$f_{\rho}(\lambda_{1}x_{1} + \lambda_{2}x_{2}) = \int_{\mathbb{R}^{n}} f(\lambda_{1}x_{1} + \lambda_{2}x_{2} - y)\alpha_{\rho}(y)dy$$

$$= \int_{\mathbb{R}^{n}} f(\lambda_{1}(x_{1} - y) + \lambda_{2}(x_{2} - y))\alpha_{\rho}(y)dy$$

$$\leq \int_{\mathbb{R}^{n}} (\lambda_{1}f(x_{1} - y) + \lambda_{2}f(x_{2} - y))\alpha_{\rho}(y)dy$$

$$= \lambda_{1}f_{\rho}(x_{1}) + \lambda_{2}f_{\rho}(x_{2}), \quad x_{1}, x_{2} \in \mathbb{R}^{n}.$$

Similarly, $(f+g)_{\rho}=f_{\rho}+g_{\rho}$ is convex. Therefore, the function h_{ρ} is convex. Because h is continuous (e.g. [6, IV 41]), h_{ρ} tends to h pointwisely as $\rho \searrow 0$. So h is also convex. (e.g. [7, Theorem 10.8])

REMARK 2.4. Since f and f+g are subharmonic, $f_{\rho} \geq f \geq 0$ and $f_{\rho}+g_{\rho} \geq f+g \geq 0$. (e.g. [1, Proposition 4.4.16]) If $a_2 \geq a_1 \geq 0$, $b_2 \geq b_1 \geq 0$, $a_1 \leq b_1 \leq 2a_1$ and $a_2 \leq b_2 \leq 2a_2$, then $a_1^p + (b_1 - a_1)^p \leq a_2^p + (b_2 - a_2)^p$. Therefore, h_{ρ} tends decreasingly to h as $\rho \searrow 0$.

ACKNOWLEDGEMENT. This paper is a part of my master's thesis studied in Sophia University (1998–2000). I am heartily grateful to Prof. Mitsuo Morimoto (International Christian University) and Prof. Kôichi Uchiyama (Sophia University) for their helpful advice.

References

- [1] C. BERENSTEIN and R. GAY, Complex Variables An Introduction, Springer (1991).
- [2] F. R. GANTMACHER, Matrix theory Vol. 1, Chelsea (1959).
- [3] M. MORIMOTO, Analytic Functionals on the Lie Sphere, Tokyo J. Math. 3 (1980), 1-35.
- [4] M. MORIMOTO, *Hyperfunctions on the Sphere*, Sophia Kokyuroku in Math. **12** (1982), Dept. of Math., Sophia Univ. (in Japanese).
- [5] M. MORIMOTO, Analytic Functionals on the Sphere, Amer. Math. Soc. (1998).
- [6] A. W. ROBERTS and D. E. VARBERG, Convex functions, Academic Press (1973).
- [7] R. T. ROCKAFELLAR, Convex Analysis, Princeton Univ. Press (1970).

Present Address:

NTT DoCoMo, Inc.,

SANNO-PARK TOWER 33F 2-11-1, NAGATACHO, CHIYODA-KU, TOKYO, 100-6150 JAPAN. *e-mail*: kimuratak@nttdocomo.co.jp