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Abstract. This paper discusses the situation that the large deviation rate functional has two distinct minimizers,
for a model described by Wiener measures with certain densities involving a scaling. The motivation comes from the
study of the so-called ∇ϕ interface model with weak self potentials. The pinned Wiener measures case was discussed
by [3].

1. Introduction and results

In this paper, we are interested in the law of large numbers for a sequence of probability
measures {µN }N=1,2,... on the space C = C(I, R), I = [0, 1], under the critical situation that
the rate functional of the corresponding large deviation principle admits two minimizers. The
sequence of probability measures {µN }N=1,2,... is defined from the Wiener measures involv-
ing a proper scaling with densities determined by a class of potentials W . Such measures
naturally arise as a continuous analog of the ∇ϕ interface model with weak self potentials in
one dimension. The relation to the ∇ϕ interface model was stated in section 3 in [3]. The
large deviation principle (LDP) is easily established for {µN } and the (unnormalized) rate
functional is given by ΣW , see (3) below. The purpose of the present paper is to prove the law

of large numbers (LLN) for {µN } under the situation that ΣW admits two minimizers h̄ and

ĥ. We shall specify the conditions for the potentials W , under which the limit points under

µN are either h̄ or ĥ as N → ∞.
We now formulate our problem more precisely. Let ν0 be the law on the space C of the

Brownian motion such that x(0) = 0. The canonical coordinate of x ∈ C is described by
x = {x(t); t ∈ I }. For a ∈ R, x ∈ C and N = 1, 2, . . . , we set

hN(t) = 1√
N

x(t) + h̄(t) , t ∈ I , (1)

where h̄(t) ≡ a. The law on C of hN with x distributed under ν0 is denoted by νN . Let
W = W(r) be a (measurable) function on R satisfying the condition:

There exists A > 0 such that lim
r→∞ W(r) = 0, lim

r→−∞ W(r) = −A
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and − A ≤ W(r) ≤ 0 for every r ∈ R . (W.1)

We consider the distribution, indeed a finite volume Gibbs measure, µN on C defined by

µN(dh) = Z−1
N exp

{
−N

∫
I

W(Nh(t))dt

}
νN(dh) , (2)

where ZN is the normalizing constant. Under µN , as N → ∞, negative h has an advantage
since the density factor becomes larger if it takes negative values. This causes a competition,
especially when a > 0, between the effect of the potential W pushing h to the negative side
and the boundary condition a > 0 keeping h at the positive side.

The large deviation principle (LDP) holds for µN on C as N → ∞ under the uniform
topology. The speed is N and its (unnormalized) rate functional is given by

ΣW (h) = 1

2

∫
I

ḣ2(t)dt − A|{t ∈ I ; h(t) ≤ 0}| , (3)

for h ∈ H 1
a,F (I), i.e., for absolutely continuous h with derivatives ḣ(t) = dh/dt ∈ L2(I)

satisfying h(0) = a, where |·| stands for the Lebesgue measure. For more precise formulation,
cf. [4], [6] and Theorem 6.4 in [2] for a discrete model. The LDP immediately implies the
concentration property for µN :

lim
N→∞ µN(dist∞(h,HW ) ≤ δ) = 1

for every δ > 0, where HW = {h∗; minimizers of ΣW } and dist∞ denotes the distance under
the uniform norm ‖·‖∞. In particular, if ΣW has a unique minimizer h∗, then the law of large
numbers (LLN) holds under µN :

lim
N→∞ µN(‖h − h∗‖∞ ≤ δ) = 1 (4)

for every δ > 0.

We consider the structure of HW . It is easy to see that HW = {h̄} when a ≤ 0. We now

assume that a > 0. Let ĥ be the curve composed of two straight line segments connecting
three points (0, a), P (T , 0) and (1, 0) in this order. The angles at the corner P is equal
to θ ∈ [0, π/2], which is determined by the Young’s relation (free boundary condition):

tan θ = √
2A. More precisely saying, if 0 < a ≤ √

2A we have T = a/
√

2A, and

ĥ(t) =
{

a − √
2At , t ∈ I1 = [0, T ] ,

0 , t ∈ I2 = [T , 1] .

Moreover, we can see that HW = {h̄} when a >
√

2A. Then, {h̄, ĥ} is the set of all critical

points of ΣW (cf. Section 6.3 in [2]), and this implies that HW ⊂ {h̄, ĥ}.
This paper is concerned with the case where both h̄ and ĥ are minimizers of ΣW , i.e.

ΣW (h̄) = ΣW (ĥ); note that ΣW (h̄) = 0 and ΣW (ĥ) = a(1 + √
2A)/2 − A. In fact, in the
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following, we always assume the conditions (W.1) and

a > 0 and ΣW (h̄) = ΣW (ĥ) . (W.2)

If the condition (W.2) holds, we have a = √
2A/2 and T = 1/2.

We are now in a position to state our main results.

THEOREM 1 (Concentration on h̄). In addition to the conditions (W.1) and (W.2), if

W(r) = 0 for all r ≥ K (W.3)

is fulfilled for some K ∈ R, then (4) holds with h∗ = h̄.

THEOREM 2 (Concentration on ĥ). In addition to (W.1) and (W.2), if the following
three conditions

∃λ1, α1 > 0 such that W(r) ∼ −λ1r
−α1 (i.e. the ratio tends to 1) as r → ∞ (W.4)

∃λ2, α2 > 0 such that W(r) ≤ −A + λ2|r|−α2 as r → −∞ (W.5)

0 < α1 < min{α2/(α2 + 1), α2/2} and
∫

I1

ĥ(t)−α1dt >

∫
I

h̄(t)−α1dt (W.6)

are fulfilled, then (4) holds with h∗ = ĥ.

The rate functional ΣW of the LDP is determined only from the limit values W(±∞),
but for Theorems 1 and 2 we need more delicate information on the asymptotic properties of
W as r → ±∞ to control the next order. Let us try to explain the roles of the above conditions
in a rather intuitive way. The condition (W.3) (with K = 0) means that W is large at least for
r ≥ 0 so that the force pushing the interface (or the Brownian path) downward is weak and

not enough to push it down to the level of ĥ. On the other hand, since the values of Nh(t)

in (2) are very large for t close to 0, compared with (W.3), the interface is pushed downward
because of the condition (W.4) and, once it reaches near the level 0, the condition (W.5) forces

it to stay there. This makes the interface reach the level of ĥ. The second condition in (W.6)
is fulfilled if 1/2 < α1 < 1, and such α1, which simultaneously satisfies the first condition in
(W.6), exists if α2 > 1.

The same kind of problem is discussed for weakly pinned Gaussian random walks in [1].

In one dimension, they proved the coexistence of h̄ and ĥ under the free boundary condition at
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the right edge and the concentration on ĥ under the Dirichlet boundary condition at the right
edge. The problem for the pinned Wiener measures with our densities is discussed by [3].

Section 2 gives the proofs of Theorems 1 and 2.

2. Proofs of results

We consider the following quantity:

lim
N→∞

µN(‖h − ĥ‖∞ ≤ δ)

µN(‖h − h̄‖∞ ≤ δ)
(5)

for arbitrary small δ > 0.

2.1. Proof of Theorem 1. If the limit of (5) is equal to 0, then (4) holds with h∗ = h̄.
In view of the scaling, we may assume K = 0 in the condition (W.3) without loss of generality.
Introduce the first hitting time 0 ≤ τ ≤ 1 of hN(t) to 0 on the event Ω0 = {hN hits 0} by

τ = inf{t ∈ I ; hN(t) = 0}. Then, from the condition (W.3) with K = 0, the strong Markov
property of hN(t) under νN shows that

ZNµN(‖h − ĥ‖∞ ≤ δ)

≤
∫

S≥T −c

EνS
0

[
exp

{
− N

∫ 1

S

W(
√

Nx(s))ds

}]
νN(τ ∈ dS)

+ νN(Ωc
0, ‖h − ĥ‖∞ ≤ δ) ,

where νS
0 (more generally νS

α ) is the law on the space C([S, 1], R) of the Brownian motion

such that x(S) = 0 (or x(S) = α) and c = δ/
√

2A arises from the condition ‖h − ĥ‖∞ ≤ δ.
However, in the first term, the conditions (W.1) and (W.3) with K = 0 imply that

−N

∫ 1

S

W(
√

Nx(s))ds ≤ ANXS,1 ,

where XS,1 = |{s ∈ [S, 1]; x(s) < 0}| is the occupation time of x on the negative side. Since
XS,1 = (1 − S)X0,1 in law and ν0(X

0,1 ∈ ds) = 1/{π√
s(1 − s)}ds (see Proposition 4.11 in

[5], p. 273), we obtain that

EνS
0

[
exp

{
− N

∫ 1

S

W(
√

Nx(s))ds

}]
≤

∫
I

eAN(1−S)s

π
√

s(1 − s)
ds .

Simple calculation yields that∫
I

eAN(1−S)s

π
√

s(1 − s)
ds = 2

π

∫ π/2

0
eAN(1−S)/2 cosh

(
AN(1 − S)

2
sin θ

)
dθ

≤ 2

π

∫ π/2

0
eAN(1−S)(1+sin θ)/2dθ .
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Then, by Laplace’s method, we have
∫

I

eAN(1−S)s

π
√

s(1 − s)
ds ≤ 2√

A(1 − S)π

1√
N

eAN(1−S),

for sufficiently large N , see [7] .
On the other hand, the distribution of τ under νN is given by

νN(τ ∈ dS) = a
√

N√
2πS3

e− a2N
2S dS ,

for 0 < S < 1, see (6.3) in [5], p. 80.
Combining these all facts, for N large enough, we have

ZNµN(‖h − ĥ‖∞ ≤ δ) ≤ 2a√
2Aπ

∫
S≥T −c

e−Nf (S)√
S3(1 − S)

dS + νN(‖h − ĥ‖∞ ≤ δ) , (6)

where

f (S) = a2

2S
− A(1 − S) .

Since f (S) = ΣW (ĥS) − ΣW (ĥ) for the curve ĥS defined similarly to ĥ with T replaced by
S, we see that f (S) ≥ 0 and f attains its minimal value 0 at S = T (= 1/2). Furthermore, by
the condition (W.2), it behaves near T as

f (S) = 2a2

S

(
S − 1

2

)2

∼ 4a2
(

S − 1

2

)2

.

This proves that the first term in the right hand side of (6) behaves as O(1/
√

N) as N → ∞.

Therefore, for every 0 < δ < ‖h̄ − ĥ‖∞, by noting that νN(‖h − ĥ‖∞ ≤ δ) ≤ e−CN for

some C > 0 (since the LDP holds for νN with speed N and the rate functional Σ0(h), which
is defined by A ≡ 0 in (3)), we have that

lim
N→∞ ZNµN(‖h − ĥ‖∞ ≤ δ) = 0 .

On the other hand, the condition (W.3) implies for every 0 < δ < (a ∧ b) that

lim
N→∞ ZNµN(‖h − h̄‖∞ ≤ δ) = lim

N→∞ ν0(‖x‖∞ ≤ √
Nδ) = 1 .

Thus, the proof of Theorem 1 is concluded.

2.2. Proof of Theorem 2. We prove the limit of (5) is equal to ∞. From the definition
(2) of µN and by recalling (1), we have

ZNµN(‖h − ĥ‖∞ ≤ δ)

= Eν0

[
exp

{
−N

∫
I

W(
√

Nx(t) + Nh̄(t))dt

}
, ‖x + √

N(h̄ − ĥ)‖∞ ≤ √
Nδ

]
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= Eν0[exp{F̂N (x)}, ‖x‖∞ ≤ √
Nδ] ,

where

F̂N (x) = −N

∫
I

W(
√

Nx(t) + Nĥ(t))dt + √
N

∫
I

( ˙̄h − ˙̂
h)(t)dx(t) − N

2

∫
I

( ˙̄h − ˙̂
h)2(t)dt .

The third line follows by means of the Cameron-Martin formula for ν0 transforming x +√
N(h̄ − ĥ) into x. However, since ˙̄h(t) ≡ 0 and

∫
I

˙̂
h(t)dt = ĥ(1) − ĥ(0) = −a, we have

1

2

∫
I

( ˙̄h − ˙̂
h)2(t)dt = AT ,

by the condition (W.2). Moreover, since ˙̂
h = −√

2A on I ◦
1 and 0 on I ◦

2 ,
∫

I

( ˙̄h − ˙̂
h)(t)dx(t) = √

2A(x(T ) − x(0)) = √
2Ax(T ) ,

recall that x(0) = 0 under ν0. Therefore, we can rewrite F̂N (x) as

F̂N (x) = −N

∫
I1

W(
√

Nx(t) + Nĥ(t))dt + √
2ANx(T ) − N

∫
I2

{W(
√

Nx(t)) + A}dt

=: F
(1)
N (x) + F

(2)
N (x) + F

(3)
N (x) .

To give a lower bound on F
(1)
N , we consider subinterval Ĩ1 = [0, T − √

2/A δ] of I1.

Then, since ĥ ≥ 2δ on Ĩ1, on the event A1 = {‖x‖∞ ≤ √
Nδ}, we have for t ∈ Ĩ1,

√
Nx(t) + Nĥ(t) ≥ −Nδ + Nĥ(t) ≥ Nδ → ∞ (as N → ∞) ,

and also
√

Nx(t) + Nĥ(t) ≤ N(ĥ(t) + δ). Accordingly, by the condition (W.4), for every

sufficiently small ε > 0, the integrand of F
(1)
N times −N is bounded from below as

−NW(
√

Nx(t) + Nĥ(t)) ≥ (λ1 − ε)N1−α1(ĥ(t) + δ)−α1 ,

which implies, by recalling −W ≥ 0, that

F
(1)
N ≥ (λ1 − ε)N1−α1

∫
Ĩ1

(ĥ(t) + δ)−α1dt =: (λ1 − ε)C1(δ)N
1−α1 ,

on A1 for sufficiently large N .

To give lower bounds on F
(2)
N and F

(3)
N , we introduce two more events

A2 = {x(T ) ≥ 0} ,

A3 = {x(t) ≤ −N−κ for all t ∈ Ĩ2 := [T + N− 1
2 −κ , 1]} ,

where 0 < κ < 1/2 will be chosen later. Then, obviously F
(2)
N ≥ 0 on A2. If x ∈ A3, noting

that −W(r) − A ≥ −A for all r ∈ R, we have from (W.5)
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F
(3)
N ≥ −AN

1
2 −κ + N

∫
Ĩ2

{−W(
√

Nx(t)) − A}dt

≥ −AN
1
2 −κ − λ2N

1−α2(
1
2 −κ)|Ĩ2| ,

for sufficiently large N . These estimates on F
(1)
N , F

(2)
N and F

(3)
N are summarized into

F̂N ≥ (λ1 − ε)C1(δ)N
1−α1 − AN

1
2 −κ − λ2N

1−α2( 1
2 −κ)|Ĩ2| (7)

on A1 ∩ A2 ∩ A3 for sufficiently large N .
The next lemma gives a lower bound on the probability ν0(A2 ∩ A3).

LEMMA 1. There exists C > 0 such that

ν0(A2 ∩ A3) ≥ CN− 1
4 − 3

2 κ exp{−18N
1
2 −κ } .

PROOF. Consider an auxiliary event

A4 = {−3N−κ ≤ x(T + N− 1
2 −κ ) ≤ −2N−κ } .

Then, by the Markov property, we have

ν0(A2 ∩ A3) ≥ ν0(A2 ∩ A3 ∩ A4)

= Eν0
[
ν

0,T +N
− 1

2 −κ

0,α (x(T ) ≥ 0) · νT +N
− 1

2 −κ

α (x(t) ≤ −N−κ ,∀ t ∈ Ĩ2),A4
]
,

where α = x(T + N− 1
2 −κ ) and ν

0,T +N
− 1

2 −κ

0,α is the law on the space C([0, T + N− 1
2 −κ ], R)

of the Brownian bridge such that x(0) = 0, x(T + N− 1
2 −κ ) = α. However,

ν
0,T +N

− 1
2 −κ

0,α (x(T ) ≥ 0) ≥ C1N
κ
2 − 1

4 exp{−18N
1
2 −κ} − C2N

− 1
2 exp{−2T N} ,

for sufficiently large N with C1, C2 > 0, see the proof of Lemma 2.2 in [3]. On A4, we have

νT +N
− 1

2 −κ

α (x(t) ≤ −N−κ , ∀t ∈ Ĩ2) ≥ P0
(

max
t∈I

|B(t)| ≤ t̄−1/2N−κ
) ≥ C3N

−κ ,

where t̄ = 1 − T − N− 1
2 −κ and C3 > 0. Therefore, we obtain

ν0(A2 ∩ A3) ≥ C4N
κ
2 − 1

4 · N−κ · exp{−18N
1
2 −κ } · ν0(A4) ,

for sufficiently large N with C4 > 0. However, we obtain ν0(A4) ≥ N−κ , see the proof of
Lemma 2.2 in [3]. This completes the proof of the lemma. �

Since Lemma 1 shows

ν0(A1 ∩ A2 ∩ A3) ≥ ν0(A2 ∩ A3) − ν0(Ac
1)

≥ ν0(A2 ∩ A3) − e−δ2N/4 ≥ exp{−20N
1
2 −κ} ,
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for sufficiently large N (recall 1
2 − κ < 1), we have from (7)

ZNµN(‖h − ĥ‖∞ ≤ δ) (8)

≥ exp{(λ1 − ε)C1(δ)N
1−α1 − AN

1
2 −κ − λ2N

1−α2(
1
2 −κ)|Ĩ2| − 20N

1
2 −κ}

≥ exp{(λ1 − 2ε)C1(δ)N
1−α1} ,

for sufficiently large N if 1 − α1 > 0 (i.e. α1 < 1), 1
2 − κ < 1 − α1 (i.e. κ > α1 − 1

2 ) and

1 − α2(
1
2 − κ) < 1 − α1 (i.e. κ < 1

2 − α1
α2

). One can choose such κ : α1 − 1
2 < κ < 1

2 − α1
α2

under the first condition in (W.6), which implies that α1(1 + 1
α2

) < 1 and 1
2 − α1

α2
> 0.

On the other hand, we have

ZNµN(‖h − h̄‖∞ ≤ δ) = Eν0[exp{F̄N (x)}, ‖x‖∞ ≤ √
Nδ] , (9)

where

F̄N (x) = −N

∫
I

W(
√

Nx(t) + Nh̄(t))dt .

However, since
√

Nx(t) + Nh̄(t) ≥ N(h̄(t) − δ) on the event A1, the condition (W.4) shows

F̄N ≤ (λ1 + ε)N1−α1

∫
I

(h̄(t) − δ)−α1dt =: (λ1 + ε)C2(δ)N
1−α1 . (10)

Comparing (8) and (9) with (10), since (λ1 − 2ε)C1(δ) > (λ1 + ε)C2(δ) for sufficiently small
δ and ε > 0 by the second condition in (W.6), the proof of Theorem 2 is concluded.
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