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Introduction.

For an integral local ring A, we consider the linear topology on QA with fundamental
system of neighborhoods of 0:

ΣA = {am(A) | a ∈ A, a �= 0} .

This topology is said to be the A-topology on QA. Here QA is the quotient field of A and
m(A) is the unique maximal ideal of A. In general, the A-topology is stronger than the m(A)-
adic topology.

For an integral local ring A, we consider the completion

Â = proj.lim A/a (a ∈ ΣA)

with respect to the A-topology.
In this paper we shall study the fundamental properties of the completion Â of an integral

local ring A with respect to the A-topology and show some related examples. The A-topology
and the completion Â are very important conceptions for a valuation ring A, especially in the
case that A is not noetherian. The main results are as follows:

THEOREM 1. Let A be an integral local ring. Then

A is a valuation ring ⇔ Â is a valuation ring .

Moreover, if A is a valuation ring, then the residue field of Â is isomorphic to the residue
field of A and the value group of Â is isomorphic to the value group of A.

For a field K and a subring A of K , let Zar(K|A) denote the set of valuation rings of K

which contain A. Then the set Zar(K|A) has a structure of local ringed spaces (see [4, §1]).

THEOREM 2. Suppose that A is a valuation ring.
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(i) The morphism of local ringed spaces defined by

Zar(QÂ|Â) → Zar(QA|A)

∈ ∈

R �→ QA ∩ R

is a homeomorphism. Moreover the inverse mapping is given by

B̂

�→

B

for B �= QA.

(ii) A = k ⊕ m(A) ⇔ k ⊂ QA, Â = k ⊕ m(Â) for any subfield k of QÂ.
(iii) If the exact sequence 1 → A× → (QA)× → (QA)×/A× → 1 splits, then

1 → Â× → (QÂ)× → (QÂ)×/Â× → 1 also splits.
(iv) If the A-topology on QA is metrizable, then Â is the completion of A and QÂ is

the completion of QA as metric spaces.

REMARK 0. There exists an integral local ring A such that Â is not integral. See
Example 1, (iii).

REMARK 1. Theorem 1 can be proved by the use of the theory of completion of uni-
form spaces. See [2, Chapter 6, §5.3, Proposition 5]. Here we prove Theorem 1 without using
the theory of uniform spaces.

REMARK 2. There exists an equal characteristic complete valuation ring which does
not have the coefficient field. See Example 2.

REMARK 3. The completion Â of a valuation ring A is not determined uniquely from
the residue field and the value group, if A is not noetherian. See Example 3 and Proposition
4.

REMARK 4. The converse of Theorem 2, (iii) does not hold. See Example 4.

The author wishes to express his thanks to Professor Shigeru Iitaka for his advices and
warm encouragement.

1. Here we consider the topologies and the completions of integral local rings.
The following results are well-known.

LEMMA 1. For an integral local ring A, we consider the A-topology on QA.
(i) All the sub A-modules of QA are closed.

(ii) QA is a separable topological field.

For a sub A-module M of QA, we consider the completion

M̂ = proj.lim M/M ∩ a (a ∈ ΣA)

with respect to the A-topology. Then the family Σ̂A = {â | a ∈ ΣA} defines a separable linear
topology on Q̂A as a fundamental system of neighborhoods of 0.
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LEMMA 2. Let A be an integral local ring.
(i) Â ↪→ Q̂A, QA ↪→ Q̂A and A = QA ∩ Â. Moreover Q̂A gives rise to a QA-

module by the natural way.

(ii) Ŝ−1a = S−1â = S−1(aÂ) = a(S−1Â) for any ideal a and multiplicative system S

of A. Therefore Ŝ−1A is a ring and Ŝ−1a is an ideal of Ŝ−1A.
(iii) Â is a local ring and m(Â) = m̂(A). Thus A/m(A) ∼= Â/m(Â).

(iv) If Â is integral, then Σ̂A ⊂ Σ
Â

.

(v) If Â is integral, then the following conditions are equivalent:
(a) Σ̂A = Σ

Â
.

(a′) Σ̂A and Σ
Â

define the same topology on Â.

(b) A ↪→ Â is continuous with respect to the Â-topology.
(c) For any α ∈ Â, there exists a ∈ A such that αÂ = aÂ.
(d) A ∩ A = 0 ⇒ A = 0 for any closed ideal A of Â with respect to the

topology defined by Σ̂A.
(e) Q̂A = QÂ.
(e′) (QA)×Â× = (QÂ)×.

(vi) If Â is integral and Σ̂A = Σ
Â
, then Â ∼= ̂̂

A and (QA)×/A× ∼= (QÂ)×/Â×.

PROOF. (i) Since Q̂A is a torsion-free and divisible A-module, the field QA acts nat-
urally on Q̂A.

(ii), (iii) and (iv) are easy.
(v) (c) ⇒ (a) ⇒ (a′) ⇒ (b): Obvious.
(b) ⇒ (c): Take any α ∈ Â. We can assume α �= 0. Since α ∈ Â = A + αm(Â) by (b),

there exist a ∈ A and β ∈ m(Â) such that α = a + αβ. Then a = α(1 − β) and 1 − β ∈ Â×
imply (c).

(c) ⇒ (d): Easy.

(d) ⇒ (b): For any α ∈ Â, α �= 0, we put A = αm(Â). Then A is a non 0 closed
ideal of Â. Therefore A ∩ A �= 0 by (d). Thus there exists a ∈ A ∩ A such that a �= 0.
Since a ∈ A ⊂ αm(Â) + am(Â), there exist β, γ ∈ m(Â) such that a = αβ + aγ . Then
a(1 − γ ) = αβ and 1 − γ ∈ Â× imply (b).

(c) ⇒ (e): Put a = A and S = A − {0} in (ii). Then Q̂A = (A − {0})−1Â ⊂ QÂ.
Conversely, for any α ∈ Â and β ∈ Â, β �= 0, there exists b ∈ A such that b �= 0 and
bÂ = βÂ by (c). Since bα ∈ bÂ = βÂ, there exists γ ∈ Â such that bα = βγ . Therefore
α
β

= γ
b

∈ (A − {0})−1Â = Q̂A.

(e) ⇒ (b): Take any α ∈ Â, α �= 0. Since 1
α

∈ QÂ = Q̂A = (A − {0})−1Â, there exist

a ∈ A − {0} and β ∈ Â such that 1
α

= β
a

. Since am(Â) = αβm(Â) ⊂ αm(Â), we obtain (b).
(c) ⇒ (e′): Easy.
(e′) ⇒ (b): Take any α ∈ Â, α �= 0. Since α ∈ (QÂ)× = (QA)×Â×, there exist

a ∈ (QA)× and β ∈ Â× such that α = aβ. Since a ∈ A and am(Â) = αm(Â), we obtain
(b).
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(vi) Since A/a ∼= Â/â holds for any a ∈ ΣA, we get Â ∼= ̂̂
A. Moreover we obtain

A× = (QA)× ∩ Â× by (i). Therefore (QA)×/A× ∼= (QÂ)×/Â× by (v).

COROLLARY. Â is integral and Σ̂A = Σ
Â

⇔ Q̂A is a field.

REMARK. For an integral local ring A, the family Σ×
A = {1 + a | a ∈ ΣA} is an fun-

damental system of neighborhoods of 1 with respect to the A-topology on the multiplicative
group (QA)×. Moreover we have

(i) Â× = Â× = proj.lim A×/U (U ∈ Σ×
A ).

(ii) (Q̂A)× = (̂QA)× = proj.lim(QA)×/U (U ∈ Σ×
A ).

EXAMPLE 1. Let k be a field and t an indeterminate over k. For a, b ∈ k, we put

A = k[t2 + at + b, t3 + at2 + bt](t2+at+b,t3+at2+bt) .

Then A is an integral local ring.
(i) If t2 + at + b ∈ k[t] is irreducible, then Â = k ⊕ (t2 + at + b)k′[[t2 + at + b]]

and Q̂A = k′((t2 + at + b)). Here k′ = k[t]/(t2 + at + b).
(ii) If t2 + at + b = 0 has a double root α ∈ k, then Â = k ⊕ (t − α)2k[[t − α]] and

Q̂A = k((t − α)).
(iii) If t2 + at + b = 0 has distinct two roots α, β ∈ k, then

Â = {(f, g ) ∈ k[[t − α]] × k[[t − β]] | f (α) = g (β)}
and Q̂A = k((t − α)) × k((t − β)).

The proof is obvious from the fact that the A-topology coincides with the m(A)-adic
topology.

2. Here we consider the topologies and the completions of valuation rings.
Suppose that A is a valuation ring. Then any separable linear topology on A defined by

ideals is either the discrete topology or the A-topology. Moreover

A is noetherian ⇔ the A-topology coincides with the m(A)-adic topology.

Let K be a field. For various valuation rings A with quotient field K , we consider the
A-topology on K .

LEMMA 3. Let K be a field and A0 a subring of K . For A,B ∈ Zar(K|A0), we define

A ∼ B ⇔ the A-topology coincides with the B-topology on K .

Then ∼ is an equivalence relation on Zar(K|A0).

(i) For A,B ∈ Zar(K|A0), we put A ∨ B = A[B] = B[A] ∈ Zar(K|A0). Then
Zar(K|A ∨ B) = Zar(K|A) ∩ Zar(K|B) and

A ∼ B ⇔ A ∨ B �= K or A = B = K .
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(ii) If dim Zar(K|A0) < ∞, then the corresponding disjoint union is given by

Zar(K|A0) = {K} ∪
⋃

A∈Zar(K |A0)
dimA=1

{A} .

(ii′) If A0 ∈ ZarK, then the corresponding disjoint union is given by

Zar(K|A0) = {K} ∪ (Zar(K|A0) − {K}) .

PROOF. (i) ⇐: Since A ⊂ B � K ⇒ A ∼ B holds for any A,B ∈ Zar(K|A0), we
obtain A ∨ B �= K ⇒ A ∼ B.

⇒ : It suffices to prove that A ∼ B, A �= K , B �= K ⇒ A ∨ B �= K for any A,
B ∈ Zar(K|A0). Put pA = ⋂

�∈SpecA
��=0

p. Then

pA = {a ∈ K | lim
i→+∞ ai = 0 with respect to the A-topology} ∈ Spec A .

Therefore A ∼ B implies pA = pB . We put p = pA = pB . Assume that p �= 0. If we put
C = A�, then C = B�. Thus A ∨ B ⊂ C �= K . Assume that p = 0. Then there exists
q ∈ Spec B such that 0 �= q ⊂ m(A). If we put C = B�, then q = m(C) and A ⊂ C �= K .
Thus A ∨ B ⊂ C �= K .

(ii) and (ii′) are easy from (i).

LEMMA 4. Suppose that A is a valuation ring. Then
(i) Â ∩ A = A for any closed ideal A of Â with respect to the topology defined by Σ̂A.

(ii) Â is an integral local ring and Σ̂A = Σ
Â

.

PROOF. For a ∈ ΣA, we denote by p� : Â → A/a the natural projection.
(i) For any ideal A, take an open ideal a� of A such that p�(A) = a�/a. Then

a� ⊃ (A ∩ A) + a and A ⊂ â ⇔ a� = a. Since A is a valuation ring and A is closed, we
obtain A � â ⇒ a� = A ∩ A. Therefore a� = (A ∩ A) + a holds for any a ∈ ΣA. Thus

Â ∩ A = proj.lim((A ∩ A) + a)/a = proj.lim p�(A) = A .

(ii) Â is integral: It suffices to prove

α, β ∈ Â , β �= 0 , αβ = 0 ⇒ α = 0 .

Since β �= 0, there exists a0 ∈ ΣA such that β /∈ â0. For any a ∈ ΣA, there exists b ∈ ΣA

such that b ⊂ aa0. If we write

p�(α) = a mod b , p�(β) = b mod b (a, b ∈ A) ,

then b /∈ a0 and hence Ab � a0. Since A is a valuation ring, we get a0 ⊂ Ab. Moreover
αβ = 0 implies that

ab ∈ b ⊂ aa0 ⊂ a · Ab = ab .

Therefore a ∈ a and hence α ∈ â. Since a ∈ ΣA is arbitrary, we obtain α = 0.
Σ̂A = Σ

Â
: Obvious from (i) and Lemma 2, (v).

Then the proof of Theorem 1 is complete from Lemma 2 and Lemma 4.
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LEMMA 5. Let A be a valuation ring. If p ∈ Spec A and p �= 0, then Â� = Â�̂.

PROOF. Since A� �= QA, the A�-topology coincides with the A-topology on QA by
Lemma 3, (i). Let S̄ denote the saturation of the multiplicative system S = A − p in Â. Then,
by Lemma 2, (v), we get S̄ = Â − p̂. By Lemma 2, (ii), we obtain

Â� = Ŝ−1A = S−1Â = S̄−1Â = Â�̂ .

COROLLARY. If A is complete and B ∈ Zar(QA|A), thenBisalso complete.

PROOF OF THEOREM 2. (i) Since (QA∩R)×Â× =R× holds for any R∈Zar(QÂ |Â),
the square in topological spaces:

Zar(QÂ|Â) → Zar(QA|A)

↓ ↓
i.Sub((QÂ)×/Â×) → i.Sub((QA)×/A×)

commutes. Here i.Sub(Γ ) denotes the set of isolated subgroups of a totally ordered abelian
group Γ . Therefore the mapping: Zar(QÂ|Â) → Zar(QA|A) is a homeomorphism. More-
over, for any B ∈ Zar(QA|A), B �= QA, we get B̂ ∈ Zar(QÂ|Â) by Lemma 5 and
QA ∩ B̂ = B by Lemma 2, (i). Therefore the completion gives the inverse mapping.

(ii) and (iii) are easy to prove.
(iv) For B ∈ Zar(QA|A), let CA(B) denote the set of Cauchy sequences of B and

C0
A(B) the set of zero sequences of B with respect to the A-topology. Then we obtain B̂ ∼=

CA(B)/C0
A(B). Therefore Â and QÂ = Q̂A are the completions as metric spaces.

REMARK. The morphism: Zar(QÂ|Â) → Zar(QA|A) of local ringed spaces defined
in Theorem 2, (i) is an isomorphism if and only if A ∼= Â.

The following result is induced from Lemma 3, (i) and Theorem 2, (i).

COROLLARY. Let K be a field and A0 a subring of K . Then

A ∼ B ⇒ QÂ = QB̂

for any A, B ∈ Zar(K|A0). Here ∼ is the equivalence relation on Zar(K|A0) defined in
Lemma 3.

PROOF. By Theorem 2, (i), we have A ⊂ B � K ⇒ QÂ = QB̂ for any A, B ∈
Zar(K|A0). Therefore A ∨ B �= K ⇒ QÂ = QB̂. By Lemma 3, (i), we obtain A ∼ B ⇒
QÂ = QB̂ .

3. Here we show some examples of completions of valuation rings.

PROPOSITION 1. Let K be a field and t an indeterminate over K . If A ∈ Zar K is
noetherian, then

(i) B1 = A[[t]]�(A)[[t ]] is a valuation ring with quotient field (A − {0})−1B1 and
satisfies A = K ∩ B1, B1/m(B1) ∼= A/m(A)((t mod m(B1))) and K×/A× ∼= (QB1)

×/B×
1 .
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(ii) Â{{t}} = {∑∞
i=−∞ ait

i | ai ∈ Â, limi→−∞ ai = 0} is a complete valuation ring

with quotient field K̂A{{t}} = {∑∞
i=−∞

ai

b
t i | b ∈ A, b �= 0, ai ∈ Â, limi→−∞ ai = 0} and

B̂1 = Â{{t}}.
(iii) A = k ⊕ m(A) ⇔ B1 = k((t)) ⊕ m(B1) for any subfield k of Kalg .

The proof is easy.

Note that the valuation ring A[t]�(A)[t ] = K(t) ∩ B1 = K(t) ∩ Â{{t}} is said to be the
trivial extension of A.

PROPOSITION 2. Let K be a field and t an indeterminate over K . If A ∈ Zar K, then
(i) B0 = (A ⊕ tK[t])�(A)⊕tK[t ] = A ⊕ tK[t]tK[t ] is a valuation ring with quotient

field K(t) and satisfies A = K∩B0, A/m(A) ∼= B0/m(B0) and K(t)×/B×
0

∼= (t mod B×
0 )Z×

K×/A× (lexicographical order).
(ii) B = A ⊕ tK[[t]] is a complete valuation ring with quotient field K((t)) and B̂0 =

B.
(iii) A = k ⊕ m(A) ⇔ B0 = k ⊕ m(B0) for any subfield k of K .
(iv) The following conditions are equivalent:

(a) The exact sequence 1 → A× → K× → K×/A× → 1 splits.
(b) The exact sequence 1 → B×

0 → K(t)× → K(t)×/B×
0 → 1 splits.

(c) The exact sequence 1 → B× → K((t))× → K((t))×/B× → 1 splits.

The proof is easy.

COROLLARY. Both the mappings

f :
Zar K → Zar K(t)

∈ ∈

A �→ B0

and g :
Zar K → Zar K((t))

∈ ∈

A �→ B

are closed immersions.

PROOF. If we put R0 = K[t]tK[t ] ∈ Zar K(t) and R = K[[t]] ∈ Zar K((t)), then
there exist isomorphisms: Zar K ∼= Zar(R0/m(R0)) ∼= Zar(R/m(R)) of local ringed spaces.
Therefore f : Zar K → {R0} and g : Zar K → {R} are homeomorphisms, and hence f and
g are closed immersions.

EXAMPLE 2. Let k be a field. Assume that k is not algebraically closed. Take two
indeterminates t , u over k and an irreducible polynomial p ∈ k[u] such that deg p � 2, and
put B = k[u](p) ⊕ tk(u)[[t]]. Then B is an equal characteristic complete discrete valuation
ring of dimension two, but does not have the coefficient field.

Let A be a ring and Γ a totally ordered abelian group. Then the set

A((Γ )) = {x ∈ AΓ | {γ ∈ Γ | x(γ ) �= 0} is a well-ordered subset of Γ }
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is a sub A-module of the direct product AΓ . For x, y ∈ A((Γ )), we define xy ∈ A((Γ )) by

xy :
Γ → A

∈ ∈

γ �→
∑
α∈Γ

x(α)y(γ − α) .

Then A((Γ )) turns out to be a ring with this product (see [2, Chapter 6, §3, Exercise 2]), and
the following two subsets

A[[Γ ]] = {x ∈ A((Γ )) | x(γ ) �= 0 ⇒ γ � 0} ,

A[Γ ] = {x ∈ A[[Γ ]] | {γ ∈ Γ | x(γ ) �= 0} is a finite subset of Γ }
are subrings of A((Γ )). Moreover n = {x ∈ A[Γ ] | x(0) = 0} is an ideal of A[Γ ] and satisfies
A[Γ ] = A ⊕ n.

If A is integral, then A((Γ )), A[[Γ ]] and A[Γ ] are all integral. Let A(Γ ) denote the
quotient field of A[Γ ]. Since n is a prime ideal of A[Γ ], the ring

R(A,Γ ) = A[Γ ]�
is integral and local.

PROPOSITION 3. Let k be a field and Γ a totally ordered abelian group.
(i) R(k, Γ ) is a valuation ring with quotient field k(Γ ), residue field k and value group

Γ .
(ii) R(k, Γ ) = k ⊕ m(R(k, Γ )), k(Γ )× ∼= R(k, Γ )× × Γ (isomorphism of groups)

and k(Γ )×/R(k, Γ )× ∼= Γ (anti-isomorphism of ordered set).

For a proof, see [2, Chapter 6, §3.4, Example 6]).

COROLLARY. For a valuation ring A, the following conditions are equivalent:
(a) There exists an injective homomorphism ϕ : R(k, Γ ) → A of local rings such that

Im(ϕ) + m(A) = Im(ϕ) · A× = A.

(b) A = k ⊕ m(A) and there exists an split exact sequence 1 → A× → (QA)× →
Γ → 0.

EXAMPLE 3. Let k be a field and Γ = Zn (lexicographical order). Then there exist
algebraically independent indeterminates t1, · · · , tn over k such that

(1) k((Γ )) = k((tn)) · · · ((t1)),
(2) k[[Γ ]] = k ⊕ ⊕n

i=1 tik((tn)) · · · ((ti+1))[[ti]],
(3) k[Γ ] = t1k[tn, t−1

n , · · · , t2, t−1
2 ][t1] ⊕ · · · ⊕ tn−1k[tn, t−1

n ][tn−1] ⊕ k[tn],
(4) k(Γ ) = k(tn, · · · , t1),
(5) R(k, Γ ) = k ⊕ ⊕n

i=1 tik(tn, · · · , ti+1)[ti](ti),
(6) R̂(k, Γ ) = k ⊕ t1k(tn, · · · , t2)[[t1]] ⊕ ⊕n

i=2 tik(tn, · · · , ti+1)[ti](ti) .

Therefore R̂(k, Γ ) �= k[[Γ ]], if n � 2.

The proof is easy.
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Let A be a ring and Γ a totally ordered abelian group. For α ∈ Γ , we define tα ∈ A((Γ ))

by tα : γ �→ tα(γ ) = δα,γ . Then (tαx)(γ ) = x(γ − α) for any x ∈ A((Γ )).

PROPOSITION 4. Let k be a field and Γ a totally ordered abelian group. If rank Γ =
1, then

R̂(k, Γ ) =
{ ∞∑

i=0

citγi | ci ∈ k, γi ∈ Γ, 0 = γ0 < γ1 < γ2 < · · · , lim
i→∞ γi = +∞

}
.

Therefore R̂(k, Γ ) �= k[[Γ ]], if Γ is not discrete.

The proof is easy.

EXAMPLE 4. Let k be a field of characteristic p ( �= 0) and Γ = Z[ 1
p
] ⊂ R. Put⎧⎪⎪⎨

⎪⎪⎩
x = t1

y =
∞∑
i=1

tγ
i
,

(
γi = ipi + 1

pi

)

and K = k(x, y), A = K ∩ R̂(k, Γ ) ∈ Zar(K|k). Then
(i) K/k is the rational function field of two variables and A satisfies A = k ⊕ m(A),

K×/A× ∼= Γ . But the exact sequence 1 → A× → K× → Γ → 0 does not split.
(ii) Â = R̂(k, Γ ). Thus the exact sequence 1 → Â× → (QÂ)× → Γ → 0 splits.

4. Here we show some examples of valuation rings of infinite dimension and comple-
tions of such valuation rings.

EXAMPLE 5. For a field k and algebraically independent countable indeterminates
t1, t2, t3, · · · over k, we put

K = k(· · · , t3, t2, t1) , A = k[· · · , t3, t2, t1] .

For n � 0, we put

An = k(· · · , tn+1) ⊕
n⊕

i=1

tik(· · · , ti+1)[ti](ti) .

Moreover we put

A∞ = k ⊕
∞⊕
i=1

tik(· · · , ti+1)[ti](ti) .

Then
(i) An = R(k(· · · , tn+1), Zn),A∞ = R(k, Z⊕N) ∈ Zar(K|A).

(ii) Ân = k(· · · , tn+1) ⊕ t1k(· · · , t3, t2)[[t1]] ⊕ ⊕n
i=2 tik(· · · , ti+1)[ti](ti) for n �

1 and Â∞ = k ⊕ t1k(· · · , t3, t2)[[t1]] ⊕ ⊕∞
i=2 tik(· · · , ti+1)[ti](ti). Therefore QÂ∞ =

k(· · · , t3, t2)((t1)).
(iii) A∞ ∈ Zar(K|A)cl and Zar(K|A∞) = {A∞, · · · , A2, A1,K}, A∞ ⊂ · · · ⊂ A2 ⊂

A1 ⊂ A0 = K , A∞ = ⋂∞
n=0 An.
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EXAMPLE 6. For a field k and algebraically independent countable indeterminates
t−1, t−2, t−3, · · · over k, we put

K = k(t−1, t−2, t−3, · · · ) , A = k[t−1, t−2, t−3, · · · ] .

For n � 0, we put

Bn = k(t−1, · · · , t−n) ⊕
∞⊕

i=n+1

t−ik(t−1, · · · , t−i+1)[t−i](t−i) .

Then
(i) Bn = R(k(t−1, · · · , t−n), Γn) ∈ Zar(K|A). Here

Γn = {(· · · , 0, e−m, · · · , e−n−1) | m � n + 1, e−m, · · · , e−n−1 ∈ Z}
is a totally ordered abelian group with the lexicographical order.

(ii) B̂n = k(t−1, · · · , t−n) × ∏∞
i=n+1 t−ik(t−1, · · · , t−i+1)[t−i](t−i) .

(iii) B0 = R(k, Γ0) ∈ Zar(K|A)cl and Zar(K|B0) = {B0, B1, B2, · · · ,K}, B0 ⊂
B1 ⊂ B2 ⊂ · · · ⊂ K ,

⋃∞
n=0 Bn = K .

EXAMPLE 7. For a field k and algebraically independent countable indeterminates
(tn)n∈Z over k, we put

K = k(· · · , t1, t0, t−1, · · · ) , A = k[· · · , t1, t0, t−1, · · · ] .

For n ∈ Z, we put

Cn = k(· · · , tn+1) ⊕
n⊕

i=−∞
tik(· · · , ti+1)[ti](ti) .

Moreover we put

C∞ = k ⊕
∞⊕

i=−∞
tik(· · · , ti+1)[ti](ti) .

Then
(i) Cn,C∞ = R(k, Z⊕Z) ∈ Zar(K|A).

(ii) Ĉn = k(· · · , tn+1) × ∏n
i=−∞ tik(· · · , ti+1)[ti](ti) and

Ĉ∞ = k × ⊕∞
i=1 tik(· · · , ti+1)[ti](ti) × ∏0

i=−∞ tik(· · · , ti+1)[ti](ti ).
(iii) C∞ ∈ Zar(K|A)cl and Zar(K|C∞) = {C∞, · · · , C1, C0, · · · ,K}, C∞ ⊂ · · · ⊂

C1 ⊂ C0 ⊂ · · · ⊂ K , C∞ = ⋂∞
n=−∞ Cn,

⋃∞
n=−∞ Cn = K.

REMARK. We can use the field k((Γ )) in Examples 5, 6 and 7 instead of k(Γ ), to obtain
similar results.
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