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Abstract. Our aim is to check that the notions of positive entropy, chaos in the sense of Devaney and ω-chaos
are equivalent for the circle maps.

Some notions of ‘chaos’ are introduced in discrete dynamical systems. We are interested
in relationships between those notions. For any continuous map of the compact interval into
itself, Li([Li2]) showed that it is chaotic in the sense of Devaney if and only if it has positive
entropy. On the other hand, for continuous maps of the circle into itself, Kuchta([Ku]) gave
a characterization of chaos in the sense of Li-Yorke. In the present paper we show that the
result due to Li is also true for maps of the circle.

Devaney([De]) noticed that any member in class of maps called ‘chaotic’ has properties
of topological transitivity, the periodic points which are dense and sensitive dependence on
initial conditions.

Let (X, d) be a compact metric space and C(X) denote the set of continuous maps of X

into itself. For f ∈ C(X) we say that a set A ⊂ X is f -invariant if f (A) ⊂ A, and that f

is topologically transitive if for every pair of non-empty open sets U and V in X, there is a
positive integer n such that f n(U) ∩ V �= ∅. f ∈ C(X) is said to be chaotic in the sense of
Devaney if there is an f -invariant closed infinite set D ⊂ X such that the following conditions
hold:

(D1) f |D is topologically transitive and
(D2) Per(f |D) is dense in D,

where f |D denotes the restriction of f to D and Per(f |D) is the set of all periodic points of
f |D . D is called a chaotic set (see [De] and [Li2]). It is well known that if D is chaotic then
f |D has sensitive dependence on initial conditions, i.e. there exists a δ > 0 such that for any
x ∈ D there exists a sequence yk of points in D which converges to x, and a sequence nk of
positive integers such that d(f nk (yk), f

nk (x)) > δ (cf. [BBCDS], [Si] and [GW]). Remark
that if D is a subinterval of R, then (D1) implies (D2) (cf. [Li1], [Si] and [VB]).
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On the other hand, for any continuous map f of the interval into itself, Li ([Li2]) intro-
duced the following notion of ω-chaos, and showed that f is ω-chaotic if and only if f has
positive entropy. A subset S of X is called an ω-scrambled set for f if, for any x, y ∈ S with
x �= y, the following conditions hold:

(ω1) ω(x, f ) \ ω(y, f ) is uncountable,
(ω2) ω(x, f ) ∩ ω(y, f ) �= ∅ and
(ω3) ω(x, f ) �⊂ Per(f ),

where ω(x, f ) is an ω-limit set of a point x ∈ X. f is called ω-chaotic if there exists an
uncountable ω-scrambled set for f (see [Li2]).

Our aim is to show the following:

MAIN THEOREM. Let f be a continuous map of the circle into itself. The following
conditions are equivalent.

(I) f has positive topological entropy.
(II) There is an uncountable ω-scrambled set S such that

⋂
x∈S ω(x, f ) �= ∅.

(III) f is ω-chaotic.
(IV) There is an ω-scrambled set consisting of exactly two points.
(V) f is chaotic in the sense of Devaney.

(VI) There is a chaotic set D which contains an uncountable ω-scrambled set S.

Let S1 and I denote the unit circle and the interval respectively. For maps of the circle,
Silverman showed that a topologically transitive map has a periodic point if and only if the

entire space S1 is chaotic (see [Si, Theorem 7.1]). Kuchta ([Ku]) proved remarkable results
for continuous maps of the circle with zero topological entropy, which will be used later in
the proof of Main Theorem (see Lemmas 5 and 10 stated below).

We denote by h(f ) the topological entropy of f . Let f ∈ C(S1) and deg(f ) denote the
degree of f . If deg(f ) �= 0,±1, then h(f ) ≥ log | deg(f )| > 0 (see [ALM, p. 263]). F

denotes a lift of f . If deg(f ) = 1, then

ρ(F ) =
{

lim sup
n→∞

Fn(x) − x

n
: x ∈ R

}

is either one point or a compact interval, and moreover, f has periodic points whose periods
are denominators of rational numbers contained in ρ(F ) (see [It]). It can be easily checked
that h(f ) > 0 if and only if ρ(F ) is not one point. (The proof is clear by Lemma 4 stated
below.)

Applying Main Theorem, we have the following corollary.

COROLLARY. Let f ∈ C(S1). Then,
(1) if deg(f ) �= 0,±1, then f is chaotic in the sense of Devaney,
(2) in the case when deg(f ) = 1, f is chaotic in the sense of Devaney if and only if

ρ(F ) is not one point.
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Li and Yorke ([LY]) introduced another notion of chaos. We say that f ∈ C(X) is chaotic
in the sense of Li-Yorke if there is an uncountable set C ⊂ X such that for any x, y ∈ C with
x �= y, the following conditions hold:

(L1) lim supn→∞ d(f n(x), f n(y)) > 0 and
(L2) lim infn→∞ d(f n(x), f n(y)) = 0.
If h(f ) > 0 (f ∈ C(I) or C(S1)), then f is chaotic in the sense of Li-Yorke. However,

the converse is not true in general (cf. [Sm], [BC, §VI.3] and [Ku]).

We say that a point x(∈ I or S1) is homoclinic if there exists a point y (x �= y) such that

f n(y) = y , x ∈
⋂
ε>0

⋃
m≥0

f nm({a : d(a, y) < ε}) and f nk(x) = y

for some n, k > 0. In the case of f ∈ C(I), we know that h(f ) > 0 if and only if f has a

homoclinic point (cf. [BC, Proposition III.21]). When f ∈ C(S1), h(f ) > 0 implies that f

has a homoclinic point. The converse, however, is not true (cf. [BCMN] and [BC, Theorem
IX.28]).

REMARK. Let (X, d) be a compact metric space. Then f ∈ C(X) is chaotic in the
sense of Devaney if and only if f n is chaotic in the sense of Devaney for n > 0.

Indeed, suppose that f n is chaotic in the sense of Devaney. Let D′ denote a chaotic set

for f n. Then it is easily checked that D = ⋃n−1
i=0 f i(D′) is a chaotic set for f . Conversely,

suppose that f is chaotic in the sense of Devaney. Let D denote a chaotic set for f . Since

f |D is topologically transitive, there exists a point x ∈ D such that Orb(x, f ) = D. Here Ē

denotes the closure of E. Put D′ = Orb(x, f n), and then it is easily checked that D′ is a closed

infinite set. Since Orb(x, f ) = ω(x, f ) = ⋃n−1
i=0 ω(f i(x), f n), we have Orb(f i(x), f n) =

ω(f i(x), f n) = f i(ω(x, f n)) = f i(Orb(x, f n)) for i ≥ 0. Then f n(D′) = D′ and f n|D′ is

topologically transitive. Moreover, Per(f ) ∩ ω(f i(x), f n) = ω(f i(x), f n) for i ≥ 0, which

implies Per(f n) ∩ D′ = D′. Then Per(f n|D′) is dense in D′. Thus D′ is a chaotic set for f n.

To show Main Theorem we decompose the class C(S1) into the following three disjoint
sets:

F0 = {f ∈ C(S1) : h(f ) = 0, Per(f ) = ∅} ,

F1 = {f ∈ C(S1) : h(f ) = 0, Per(f ) �= ∅} and

F2 = {f ∈ C(S1) : h(f ) > 0} .

It is known that f ∈ F0 if and only if f is topologically semiconjugated to an irrational
rotation of the circle (see [Ku, Theorem B]), and that f ∈ F2 if and only if there exists a
closed set Y and n > 0 such that f n(Y ) = Y and f n|Y is at most two-to-one topologically
semiconjugated to the one-sided shift map (cf. [BC, Theorem IX.28] and [Li2]).

In proof of Main Theorem, implications (II) ⇒ (III) ⇒ (IV) and (VI) ⇒ (V) are obvious,
and (I) ⇒ (II) and (I) ⇒ (VI) are obtained from the following lemma:
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LEMMA 1. If f ∈ F2 then there are a chaotic set D and an uncountable ω-scrambled
set S ⊂ D such that

⋂
x∈S ω(x, f ) �= ∅.

The proof of Lemma 1 is similar to that in [Li2, Chapter 4] and so we omit the proof.
Therefore, to conclude Main theorem we give only the proof of (IV) ⇒ (I) and (V) ⇒ (I),
which are described by the following propositions.

PROPOSITION 2. If f ∈ F0 ∪ F1 then f is not chaotic in the sense of Devaney.

PROPOSITION 3. If f ∈ F0∪F1 then there is no ω-scrambled set consisting of exactly
two points.

We denote by π : R → S1 the natural projection. For f ∈ C(X) and x ∈ X we denote
by Fix(f ) the set of all fixed points of f , and denote by Orb(x, f ) the orbit of f .

LEMMA 4 [BC, Theorem IX.28]. f ∈ C(S1) belongs to F1 if and only if Per(f ) �= ∅
and for any periods n, k (n < k) of periodic points of f , k/n is a power of two.

LEMMA 5 [Ku, Lemma 2.3]. Let g ∈ F1 with Fix(g ) �= ∅. Then there exist G : R →
R a lift of g and a compact interval I ′ ⊂ R with length greater than one such that G(I ′) ⊂ I ′.

LEMMA 6. Let f ∈ F1. If y1, y2 ∈ ω(x, f ) for x ∈ S1, then ω(y1, f ) = ω(y2, f ).

PROOF. For f ∈ F1 there exists n > 0 such that Fix(f n) �= ∅. Put g = f n and then
g ∈ F1. By Lemma 5 there exist G a lift of g and a compact interval I ′ ⊂ R with length

greater than one. Since y1, y2 ∈ ω(x, f ) = ⋃n−1
i=0 ω(f i(x), g ), we have z1 = f �(y1), z2 =

f m(y2) ∈ ω(x, g ) for some �,m. Then there exist x ′ ∈ (π |I ′)−1({x}), z′
1 ∈ (π |I ′)−1({z1})

and z′
2 ∈ (π |I ′)−1({z2}) such that z′

1, z
′
2 ∈ ω(x ′,G|I ′). From Lemma 4 it is easily checked

that each period of periodic points of G|I ′ is a power of two. By [BC, Proposition VI.7] we
have

ω(z1, g ) = π |I ′(ω(z′
1,G|I ′)) = π |I ′(ω(z′

2,G|I ′)) = ω(z2, g ) .

Therefore,

ω(y1, f ) =
n−1⋃
i=0

ω(f i(z1), g ) =
n−1⋃
i=0

ω(f i(z2), g ) = ω(y2, f ) . �

For f ∈ F1 we denote Λ(f ) = ⋃
x∈S1 ω(x, f ) and Λ2(f ) = ⋃

x∈Λ(f ) ω(x, f ).

LEMMA 7. For f ∈ F1, x ∈ Λ2(f ) implies x ∈ ω(x, f ).

PROOF. Let x ∈ Λ2(f ). Then by the definition of Λ2(f ), there are points a, b ∈ S1

such that x ∈ ω(a, f ) and a ∈ ω(b, f ). Then we have a, x ∈ ω(b, f ). Therefore, by Lemma
6, it holds that (x ∈)ω(a, f ) = ω(x, f ). �

LEMMA 8. If f ∈ F1 then Λ(f ) \ Λ2(f ) is a countable set.
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PROOF. Let n, g ,G, I ′ be defined as in the proof of Lemma 6. Then the set Λ(G|I ′) \
Λ2(G|I ′) is countable (cf. [Xi, Theorems 1 and 2]). Since

Λ(f ) \ Λ2(f ) = Λ(g ) \ Λ2(g ) ⊂ π(Λ(G|I ′) \ Λ2(G|I ′)) ,

the conclusion is obtained. �

THE PROOF OF PROPOSITION 2. Proposition 2 is true for f ∈ F0, and so we check
the case of f ∈ F1. Suppose f has a chaotic set D for f . Since f |D is topologically

transitive, there exists a ∈ D such that Orb(a, f ) = D. Since Per(f |D) is dense in D,
there exist p1, p2 ∈ Per(f |D) such that the orbits for p1 and p2 are distinct. Then we have
ω(p1, f ) ∩ ω(p2, f ) = Orb(p1, f ) ∩ Orb(p2, f ) = ∅. Since p1, p2 ∈ ω(a, f ), Lemma 6
implies ω(p1, f ) = ω(p2, f ). This is a contradiction. Therefore f is not chaotic in the sense
of Devaney.

THE PROOF OF PROPOSITION 3 FOR f ∈ F1. The proof for maps of the circle is
similar to that for maps of the interval (cf. [Li2]). Suppose {y, z} (y �= z) is an ω-scrambled

set. Then there exists u ∈ ω(y, f ) ∩ ω(z, f ). By Lemmas 6 and 7, ω(y, f ) ∩ Λ2(f ) =
ω(u, f ) = ω(z, f )∩Λ2(f ). Thus ω(y, f )\ω(z, f ) ⊂ Λ(f )\Λ2(f ). By Lemma 8, Λ(f )\
Λ2(f ) is countable, thus a contradiction. Therefore there is no ω-scrambled set consisting of
exactly two points.

THE PROOF OF PROPOSITION 3 FOR f ∈ F0. Let f ∈ F0. We have deg(f ) = 1 since
f ∈ F0 has no periodic points. We say that a set ∅ �= A ⊂ X is a minimal set if ω(a, f ) = A

for every a ∈ A. To obtain the conclusion, we need the following Lemmas 9 and 10.

LEMMA 9 [Mi, Theorem A]. Let f ∈ F0 and F : R → R be a lift of f . Then there

exists an uncountable minimal set A ⊂ S1 such that F |π−1(A) is a nondecreasing function.

LEMMA 10 [Ku, Corollary 3.4 and Lemma 3.7]. Let f, F,A be as in Lemma 9. Then,

for any x, y ∈ π−1(A), (x, y) ∩ π−1(A) = ∅ implies

F([x, y]) = [F(x), F (y)] and (F (x), F (y)) ∩ π−1(A) = ∅ .

Let A be the minimal set constructed in Lemma 9. Then ω(x, f ) = A for x ∈ S1.
Indeed, for x ∈ S1 there exist x ′ ∈ π−1({x}) and a′, b′ ∈ π−1(A) such that x ′ ∈ [a′, b′] and
(a′, b′) ∩ π−1(A) = ∅. By using Lemma 10 inductively we have that

Fn([a′, b′]) = [Fn(a′), F n(b′)] and (F n(a′), F n(b′)) ∩ π−1(A) = ∅ (1)

for any n > 0. Put J = π([a′, b′]) and a = π(a′). By (1) it is easily checked that for
n,m ∈ N, Int(f n(J )) = Int(f m(J )) or Int(f n(J )) ∩ Int(f m(J )) = ∅, where Int(Z) denotes
the interior of Z. Since Per(f ) = ∅, we have Int(f n(J )) ∩ Int(f m(J )) = ∅ for n �= m, and
so limn→∞ d(f n(x), f n(a)) = 0 because f n(x), f n(a) ∈ f n(J ). Since A is a minimal set,
ω(x, f ) = ω(a, f ) = A.

By the above fact it follows that ω(x, f ) = ω(y, f ) for x, y ∈ S1. This shows that there
is no ω-scrambled set consisting of exactly two points.
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